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ABSTRACT

The large-scale text-to-image diffusion model, represented by Stable Diffusion,
has achieved remarkable success in the field of image generation. Transferring
pretrained diffusion models to downstream domains with parameter-efficient tun-
ing (PEFT) methods such as Adapter and LoRa have become the most common
paradigms. Despite their widespread usage, there has been limited research on
systematically studying how the design of these components would impact the
final tuning effectiveness. In this paper, we investigate the automatic design of
an optimal tuning architecture. Specifically, we employ a reinforcement learning-
based neural network search method to facilitate the automatic design of the tun-
ing architecture for PEFT of Stable Diffusion with few-shot training data. Our
search space includes micro-structures similar to Adapter, LoRa, as well as their
insertion positions. For effective searching and evaluation, we build a large-scale
tuning dataset. Through our search, we successfully obtained a novel tuning ar-
chitecture that reduces parameter count by 18% compared to the widely adopted
LoRa approach but still surpasses across various downstream tasks hugely. We
also conduct extensive analysis of the searched results, aiming to provide valuable
insights to the community regarding parameter-efficient tuning for large-scale dif-
fusion models.

1 INTRODUCTION

Recently, diffusion models have achieved remarkable success in various generative tasks, such as
image generation Zhang & Agrawala (2023); Mou et al. (2023); Rombach et al. (2022); Radford
et al. (2021); Saharia et al. (2022), 3D generation Xu et al. (2023); Poole et al. (2022); Jain et al.
(2022), image inpainting Xie et al. (2023); Lugmayr et al. (2022), and video generation Harvey et al.
(2022); Ho et al. (2022), due to their high-fidelity and high-diversity generation capability.

Among these applications, text-to-image generation Radford et al. (2021); Saharia et al. (2022);
Rombach et al. (2022) is particularly popular. Users can input a textual description, known as a
prompt, and the diffusion model can generate high-quality images corresponding to the prompt.
Stable Diffusion Rombach et al. (2022) is currently the most popular open-sourced model. It is
trained on LAION-5B dataset Schuhmann et al. (2022), which contains 5 billion text-image pairs,
enabling it to provide a comprehensive depiction of objects. However, the performance of Stable
Diffusion in generating images for specific domains is not satisfactory. Therefore, transfer learning,
which effectively adapts a publicly available and large-scale pretrained Stable Diffusion model to a
specific domain, has become a popular application paradigm.

The pioneering work of transferring pretrained diffusion models to downstream tasks is Dream-
booth Ruiz et al. (2023), which tunes all parameters of the diffusion model to adapt to the specific
object of interest. However, diffusion models often have a large number of parameters and incur
significant training and inference costs due to their multi-step denoising process. For example, Sta-
ble Diffusion adopts a U-Net as its denoiser. Although it first uses a VAE to map images to a latent
space, the U-Net still contains approximately 861 million parameters, resulting in significant costs
for full fine-tuning. Therefore, reducing the cost of fine-tuning large-scale pretrained diffusion mod-
els has become a huge challenge. Inspired by the parameter-efficient tuning (PEFT) methods first
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Figure 1: Left: Average FID score on downstream tasks vs. trainable parameters. Our method
achieves better transferring results while tuning the fewest parameters. right: Examples of tuning
results on Nelson’s sparrow from CUB-200-2011 dataeset. Our searched architecture achieves better
performance for both FID (↓) and visual quality.

investigated in natural language processing (NLP), such as Adapter He et al. (2022) and LoRa Hu
et al. (2021) and prefix tuning Li & Liang (2021), the community tries to conduct PEFT on Sta-
ble Diffusion. Currently, facilitated by the open-source WebUI, the community usually directly
applies LoRa for tuning, which adds low-rank bypasses to simulate full fine-tuning. However, com-
pared to the simple transformer structure commonly used in NLP, the U-Net in Stable Diffusion has
more components, including residual blocks, self-attention, cross-attention, FFN, as well as different
stages like downsampling, bottleneck, and upsampling. Therefore, there is more room for designing
parameter-efficient tuning architecture for the Stable Diffusion.

In this paper, we aim to investigate automatic neural architecture design of parameter-efficient tuning
methods for Stable Diffusion He et al. (2022) with reinforcement learning-based methods Zoph &
Le (2016); Tan et al. (2019) We want to determine what plug-in structures are most suitable and
where they should be inserted into the Stable Diffusion U-Net, as well as how they affect the final
results. Therefore, our search space is set to the micro-structure design of plug-in modules like
Adapter and LoRa, as well as their insertion locations. The are many sub-modules and connections
in Stable Diffusion UNet where we can inject our searched plug-in modules, making our search
space super flexible. For searching and evaluation, we sample images from existing fine-grained
recognition datasets which consist of many sub-classes, and collect images from the internet to
build a large-scale text-conditioned image tuning benchmark. Through a sample-train-evaluate loop
based on reinforcement learning and maximizing rewards, we discovered that better tuning protocols
tend to inject Adapter-like module after the cross-attention block and add LoRa-like module for both
the cross-attention and FFN block. As shown in Figure 1, compared to the widely used LoRa, our
method reduces the parameter number by 18% while achieving a 2.88 decrease in FID score for
generation performance and demonstrating better visual quality. Compared to full fine-tuning, we
decrease the FID score by 2.77 while tuning only 1.29% of the full parameters. We also validate the
generalization and transferability of the discovered structures on a large number of data domains.

2 BACKGROUND

2.1 RELATED WORKS

2.1.1 PARAMETER-EFFICIENT FINE TUNING

The concept of parameter-efficient fine-tuning Houlsby et al. (2019); Hu et al. (2021); Li & Liang
(2021); Lester et al. (2021); Jia et al. (2022) was initially introduced by natural language process-
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ing. With the advent of super large-scale models Scao et al. (2022); Thoppilan et al. (2022) like
BERT Devlin et al. (2018) and GPT Brown et al. (2020); Radford et al. (2018), these models of-
ten possess a vast number of parameters, presenting challenges for downstream transfer learning.
Performing a full tuning requires substantial GPU memory and computational resources, leading to
extensive research efforts aimed at reducing the cost. These efforts primarily focus on two types of
methods.

Some methods involve introducing new structures, such as Adapter Houlsby et al. (2019) and
LoRa Hu et al. (2021). Adapter are commonly inserted between transformer layers and comprise
a down-projection layer, a non-linear activation function, and an up-projection layer. While LoRa
emphasizes low-rankness. And some works Hyeon-Woo et al. (2021); Valipour et al. (2022); Liu
et al. (2022) improve the architecture of LoRa. Other methods are known as prefix tuning Li &
Liang (2021); Lester et al. (2021); Jia et al. (2022), which add learnable parameters before inputs or
activations while maintaining the original model structure.

Parameter-efficient fine-tuning has achieved remarkable success in NLP and has also become the
popular approach for tuning large-scale vision models Sung et al. (2022); Chen et al. (2022).

2.1.2 TEXT-TO-IMAGE DIFFUSION MODEL

In recent years, text-to-image has made significant progress. Early work mostly relied on
GANs Crowson et al. (2022); Esser et al. (2021); Reed et al. (2016); Tao et al. (2022) to gener-
ate images, while the diffusion model Ho et al. (2020); Nichol & Dhariwal (2021) has been recently
proposed. The diffusion model relies on training a denoising autoencoder to learn the inverse of a
Markovian diffusion process. A large number of diffusion-based models Mou et al. (2023); Zhang &
Agrawala (2023) such as Dalle Ramesh et al. (2021),Imagen Saharia et al. (2022) and Stable Diffu-
sion Rombach et al. (2022) have greatly improved the effectiveness of text-to-image generation. The
most widely used model is Stable Diffusion, which includes a CLIP text encoder, a VAE structure
for compressing images into a latent space, and a conditional UNet for learning the diffusion process
from noise to image. However, the parameter of Stable Diffusion is huge, and transferring it to the
downstream domain will introduce huge computation costs. Dreambooth Ruiz et al. (2023) uses
full tuning. While applying LoRa which is supported by open-source WebUI is the most common
paradigm. In addition, evaluating the quality of generated images is also an important problem in
text-to-image generation. Recently, Wu et al. (2023) proposed an approach that provides a scoring
model for automated evaluation of text-conditioned image generation by mimicking human prefer-
ence.

2.2 CONDITIONAL DIFFUSION MODEL

Let’s begin by briefly exploring the diffusion model. Diffusion models involve applying Gaussian
noise to the initial data x0 through a series of data corruptions. The corruption process can be defined
as follows, for a given timestep t = 1, . . . , T , where T indicates the number of noise levels and βt

represents the noise scale:

q(xt|x0) = N (
√
ᾱtx0, (1− ᾱt)I) (1)

In the above equation, ᾱt is a hyperparameter derived from the βt values, calculated as ᾱt =∏t
s=1 αs. The main goal of diffusion models is to recover the original data x0 from the corrupted

data xT by reversing the corruption process. DDPM Ho et al. (2020) proposes a Markov chain to
gradually denoise xT...1 through transitions: pθ(xt−1|xt) = N (µθ(xt, t),Σθ(xt, t)). The covari-
ance Σθ(xt, t) is fixed as hyperparameters and in DDPM, while the µθ is parameterized as a noise
prediction network ϵθ. The training objective of Ho et al. (2020) can be represented by :

L = Ex0,ϵ,t

[
|ϵ− ϵθ(xt(x0, ϵ), t; C)|22

]
(2)

Here, C represents the conditioning inputs. Currently, the most popular diffusion model is Stable
Diffusion Rombach et al. (2022), which applies a diffusion process in latent space.
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Figure 2: Illustration of the overall architecture of Stable Diffusion UNet and our search space. The
top shows the architecture of Stable Diffusion UNet, which consists of a stack of residual blocks and
transformer blocks, as well as many stages including downsampling, bottomneck, and upsampling.
The below shows possible positions for us to inject plug-in tuning modules. Blue circles indicate
potential input/output positions for the Adapter-like module and red triangles represent locations
where LoRa-like module can be added.

3 METHOD

To conduct the automatic design of parameter-efficient tuning architecture for Stable Diffusion, there
are three main components for searching: search space, search objective, and search algorithm. In
section 3.1, we will first introduce our carefully designed search space for efficient tuning protocol.
Then, in section 3.2, we will demonstrate our search objective through a comprehensive evaluation
and our search algorithm using reinforcement learning.

3.1 PARAMETER-EFFICIENT TUNING SEARCH SPACE

In our work, we mainly focus on designing new plug-in structures for parameter-efficient tuning for
Stable Diffusion UNet. We follow two types of designs, namely Adapter Houlsby et al. (2019) and
LoRa. We will also investigate where they should be inserted.

General architecture for Stable Diffusion UNet. As shown in the Figure 2, the Stable Diffusion
UNet consist of many sub-modules. It has three stages, including downsampling, bottleneck block,
and upsampling. Each stage has a stack of blocks, consisting of residual blocks and transformer
blocks. The transformer block includes self-attention, cross-attention, and feedforward network
(FFN). The U-Net has a total of 26 layers, and different layers are generally believed to be respon-
sible for modeling different levels of detail Zhang & Agrawala (2023); Mou et al. (2023). Thus we
want not only to search for how to design optimal Adapter-like or LoRa-like plug-in modules but
also determine where they should be injected.

Search space for Adapter-like module. For Adapter, they are often injected between specific
layers of the network and consist of a down-projection layer, a non-linear activation function, and an
up-projection layer. To inject Adapter into the UNet, we carefully explore their input position and
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Figure 4: The overall search pipeline of our re-
inforcement learning-based search pipeline. We
search for the best parameter-efficient tuning pro-
tocol in a sample-eval-update loop.

output position. As shown in Figure 2, each connection (denoted as blue points) can serve as the
input position or output position of Adapter-like module. There are over 20 possible combinations
for different in/out positions. For the structure design of the Adapter-like module, as shown in
Figure 3, we focus on the choice of activation functions, including ReLU, sigmoid, Swish, Silu, and
identity, as well as scale factors s within the module and projection intermediate dimensions d.

Search space for LoRa-like module. Unlike Adapter, LoRa adds bypasses to weights and performs
dimension reduction and expansion operations to simulate full fine-tuning. Its structure is shown in
Figure 3. To apply LoRa, we mainly study which modules it should be added to in the UNet. As
shown in Figure 2, all red triangular represent possible added modules. In the original LoRa, it could
only be added to linear layers. In our work, we also consider whether to add it to convolutional layers
as part of the search space. For the architecture design, the rank dimension r of LoRa plays a critical
role in its effectiveness, as a larger dimension introduces more parameters but often leads to better
tuning results. Thus we search for different ranks for different modules among different stages.

Considering the above design aspects, including structure design and proper inject or add position,
the size of our search space is approximately 1012, posing great challenges for traditional methods
such as grid search. Therefore, an efficient search method is necessary to explore the parameter-
efficient tuning protocol.

3.2 SEARCH OBJECTIVE AND ALGORITHM

We propose to use reinforcement learning-based search algorithms to search for the best protocol
for parameter-efficient tuning with the search space defined in Section 3.1. The Recurrent Neural
Network (RNN) is adopted as the controller Tan et al. (2019), generating the search parameters
from our search space. Through a sample-evaluate-update loop, the parameters of the RNN are
optimized to maximize the search reward. The overall search process is illustrated in Figure 4. We
consider two metrics as our optimization targets: evaluation performance and the number of tuned
parameters. Our goal is to achieve good tuning results while makes the tuning computation cost
affordable. The final reward function is formulated as follows,

R(C) = Eval(C)×
[
Param(C)

TAR

]α
(3)

,

where C represents the sampled combination of designs for tuning, Eval(C) denotes the evalua-
tion performance of the tuned Stable Diffusion on the target domain. In our search, we apply a
comprehensive evaluation metric, which is a combination of FID Heusel et al. (2017) and human
preference score Wu et al. (2023). For specific domains, we will also add domain-specific evaluation
metrics, such as cosine similarity between training and generated face images for tuning on faces.
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Param(C) is the tuning parameter number of the combination. TAR is the target tuning parameter
count for searching. In our search, we set it to the trainable parameter numbers of traditional LoRa
(with rank of 32). We want to achieve good performance while keeping similar same tuning cost.
As for α, it is the weight factor.

We use Proximal Policy Optimization (PPO) to optimize the RNN controller for finding Pareto
optimal solutions. For each sampled combination in the search space, we map it to a list of tokens,
which are determined by a sequence of actions a1:T from the RL agent with policy πθ. The overall
objective is to maximize the expected reward:

J = EP(a1:T ;m)R(C) (4)

Along with the sample-evaluate-update loop, the evaluation result of the searched tuning protocol
tends to converge and we finally get the optimal tuning protocol for Stable Diffusion.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Base model. We search for the best tuning protocol for Stable Diffusion Rombach et al. (2022),
which is currently the most widely used text-to-image diffusion model. We used the official release
of sd-v1-5 as our base model. The input size for images is 512 × 512. To evaluate the general-
ization of the searched tuning protocol, we also conducted validation on community models such as
Chilloutmix.

Tasks. We consider two tasks, namely the Dreambooth task and the fine-tuning task. The Dream-
booth task aims to personalize the model with few images. It consists of two types of data: per-
sonalization data and regularization data. The personalization data usually contains specific objects
that the user wants to embed, typically only a few images. Its input prompt is “a photo of [V]
Cclass” where [V] represents the rare token and Cclass represents the class word. As for the reg-
ularization data, it consists of photos generated by the model for regularization purposes, and its
prompt is “a photo of Cclass.” The fine-tuning task involves tuning the model on a small number of
text-image pairs. We select a wide range of fine-grained recognition datasets, including Oxford 102
Flower Nilsback & Zisserman (2008), Food101 Bossard et al. (2014), SUN397 Xiao et al. (2010),
Caltech101 Li et al. (2022), CUB-200 Wah et al. (2011), ArtBench Liao et al. (2022), and Stanford
Cars Krause et al. (2013). We sample 50 images from each sub-class for these fine-grained datasets.
Additionally, we also collected 20 styles of anime-style photos from the internet, with 50 photos per
style. To evaluate the performance of fine-tuning on faces, we also collected 10 identities from the
CelebA dataset, with 50 face images per identity. Totally, we get a large-scale text-to-image tuning
dataset, which consists of over 13000 images from 250 sub-classes.

Tuning and sampling. We used AdamW as our optimizer and set the learning rate to 1e-5. For each
domain’s data, we train for 2.5k iterations. As for the comparison baseline LoRa, we set its rank to
32. It accounts for 1.58% of the total parameters. After model tuning, we adopt DPM-Solver++ Lu
et al. (2022) as the sampling algorithm. The number of sampling steps is set to 50, and the cfg Ho &
Salimans (2022) scale is set to 7.0. We keep the text encoder of Stable Diffusion fixed when tuning.
For the searching process, we search for 1000 samples.

Evaluation. We use four metrics for evaluation: FID, human preference score, CLIP similarity
score, and face similarity. FID Heusel et al. (2017) measures the feature distribution distance be-
tween generated images and original images, which is the most widely used metric for evaluating
generated images. However, it cannot solve the overfitting problem. Human preference score Wu
et al. (2023) evaluates the results by making a ResNet model mimicking human preferences, which
is more in line with human tastes. We also use CLIP similarity scores to evaluate the Dreambooth
task. We calculate the cosine similarity of CLIP features between generated images and personal-
ized datasets. For the tuning on face data, we directly extract face features using a face recognition
model Deng et al. (2019) and calculate the average cosine distance between the sampled face im-
ages and the training images. In the search phase, we set the relative weights of FID and human
performance score to 2:1 as the Eval(C) in Eq. 3
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Figure 5: The average FID score along the search
process. As the search progresses, FID decreases
and gradually converges. The yellow line repre-
sents the moving average.
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Figure 6: Tuning results comparison with our
searched protocol and LoRa on Dreambooth
tasks. We measure the CLIP similarity score
for generated images and training personaliza-
tion data.

Method Food101 CUB-200 ArtBench Flowers102 Anime Average FID Params(M) Training Time

Full-tuning 10.13 7.06 51.47 26.01 51.24 29.18 861.03 (100%) 1×
Adapter 10.78 7.69 59.27 26.88 62.42 33.40 19.85 (2.31%) 0.49×
LoRa 12.01 8.21 47.69 29.69 48.87 29.29 13.57 (1.58%) 0.52×

Ours 9.51 6.63 43.87 25.34 46.72 26.41 11.13 (1.29%) 0.47×

Table 1: Comparsion on fine-tuning tasks with our searched tuning protocol and existing parameter-
efficient tuning methods for downstream datasets. FID score, trainable parameter, and training time
are reported.

4.2 RESULTS

4.2.1 SEARCH PROCESS AND OPTIMAL PROTOCOL

In Figure 5, we show the changes in FID along with our search. As the search progresses, FID grad-
ually decreases and ultimately converges, showing the effectiveness of our reinforcement learning-
based search approach.

Throughout the search process, we found that the optimal tuning protocol tends to add an Adapter-
like module after the cross-attention layer and utilize silu as the activation function. Furthermore,
the optimal tuning protocol applies the LoRa-like module to cross-attention layers and FFN layers.
We also observe that superior tuning results tend to add higher-rank LoRa in the upsampling stage.
This is because, in contrast to the preceding two stages, namely downsampling and the bottleneck,
the upsampling stage better captures object details, and thus needs a higher-rank LoRa-like module
for fitting.

4.2.2 QUANTITATIVE RESULTS

We first present the results of Dreambooth tasks. We compare our searched protocol with LoRa. For
each Dreambooth task, we measure the average CLIP feature similarity between generated images
and personalization data. As shown in Figure 6, our searched method outperforms existing LoRa on
most tasks, with a decrease in trainable parameters for 18%.

In Table 1, we compare our searched protocol with current popular parameter-efficient tuning meth-
ods on fine-tuning tasks. We select several domains from our evaluation benchmark and report the
FID score. From the results, we can see that our method consistently outperforms competitors across
all tasks. Remarkably, our approach achieves a lower FID than full tuning while only introducing
1.29% trainable parameters. We also reduced the tuning time to 47% of that required for full tuning.
When compared to the widely adopted Adapter and LoRa methods, our method not only reduces
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HPS score Cosine Similarity

Method Animation Art Photo Average Face

Full tuning 27.66 27.15 27.64 27.48 0.901
Adapter 27.57 26.96 27.59 27.37 0.882
LoRa 27.76 27.31 27.53 27.53 0.896

Ours 27.83 27.37 27.69 27.63 0.914

Table 2: Comparsion with our searched tuning protocol with the existing parameter-efficient tuning
methods with human preference score Wu et al. (2023). We merge all fine-grained datasets into
’Photo’ to align with the original HPS setting. As for tuning on the face, we report the average
feature cosine similarity for generated face images and training sets for 20 identities.

Searched with Base model FID HPS

sd-v1-5 sd-v1-5 26.41 27.63
Chilloutmix sd-v1-5 26.83 27.60

LoRa sd-v1-5 28.29 27.53

(a) Transfer results on base model searched with. We
transfer the best tuning protocol searched with Chill-
outmix to sd-v1-5. The FID and HPS are averaged
among all domains of our evaluation benchmark.

Searched on Target domain FID

Flowers Flowers 25.34
CUB-200 Birds Flowers 25.62

LoRa Flowers 29.69

(b) Transfer results on domain data searched on.
We transfer the best tuning protocol searched on
CUB-200-Birds to Flowers. The FID is reported
in Flowers.

Table 3: Results of transferability. We validate the transferability for our searched tuning protocol
on both search data and base model. The last line for both substables means raw LoRa with rank 32
as the baseline method for comparison.

FID significantly but also decreases the trainable parameters hugely. By comparing different tuning
methods, we find that the Adapter-like inject module performs better in realistic scenarios, while the
LoRa-like added module performs better in artistic and abstract styles.

Furthermore, we also report the results of our searched protocol compared to other tuning methods
in terms of human preference scores, as shown in Table 2. Our method consistently scores higher,
indicating a better alignment with human preferences. For face generation tasks, we present cosine
similarity scores in Table 2. We achieve an improvement of 0.018 compared to LoRa. This improve-
ment suggests that our searched tuning protocol better captures facial identity features and possesses
better generalization ability.

4.2.3 TRANSFERABILITY RESULTS

To validate the transferability of the searched protocol, we conduct experiments on data domain
transfer and base model transfer. To avoid a strong coupling between the searched protocol and
the data domain, we validate the best protocol obtained from searching with CUB-200-Birds on
Oxford 102 Flowers. Furthermore, to avoid overfitting the tuning protocol to the base model, we
also transfer the best protocol obtained from searched with Chilloutmix to sd-v1-5. As shown
in Table 3, the transferred protocol still achieves better tuning performance compared to LoRa,
demonstrating the good generalization of our searched protocol. Compared to the original domain
or base model searched with, there is a slight performance drop due to differences in distributions
between different models or data domain. However, compared to re-executing the search for each
new base model or domain, transferring the existing searched protocol is the most cost-effective
approach.

4.3 VISUALIZATION

In Figure 7, we present the image generation results obtained by Stable Diffusion using our searched
parameter efficient tuning protocol. We showcase highly realistic details and diversity. Additional
visual results are available in the appendix for a comprehensive overview.
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Figure 7: Visualization of image samples generated with Stable Diffusion tuned by our searched
parameter-efficient protocol. We select six classes, black-capped vireo, chicken curry, ovenbird,
peruvian lily, pink primrose, and red legged kittiwake. The text prompt is “a photo of Cclass ”. The
sampler is DPM++ with 50 steps, and the CFG scale is 7.

5 CONCLUSION

This paper investigates automatic neural architecture design for parameter-efficient tuning of Stable
Diffusion for text-to-image generation. Through a reinforcement learning-based search, we discover
a novel tuning structure that reduces parameter count by 18% while decreasing the FID score to 2.88
compared to LoRa. This approach achieves significant efficiency gains, tuning only 1.29% of model
parameters. We also demonstrate the generalization of these structures across various data domains,
offering valuable insights for the research community and advancing the field of large-scale diffusion
model tuning in generative tasks. In future work, we will apply the search-based methods to find the
optimal tuning protocol for other works, like NLP or audio.
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parameter open-access multilingual language model. arXiv preprint arXiv:2211.05100, 2022.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
open large-scale dataset for training next generation image-text models. Advances in Neural
Information Processing Systems, 35:25278–25294, 2022.

Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. Vl-adapter: Parameter-efficient transfer learning for
vision-and-language tasks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 5227–5237, 2022.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 2820–2828, 2019.

Ming Tao, Hao Tang, Fei Wu, Xiao-Yuan Jing, Bing-Kun Bao, and Changsheng Xu. Df-gan: A
simple and effective baseline for text-to-image synthesis. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 16515–16525, 2022.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for dialog
applications. arXiv preprint arXiv:2201.08239, 2022.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter effi-
cient tuning of pre-trained models using dynamic search-free low-rank adaptation. arXiv preprint
arXiv:2210.07558, 2022.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
Human preference score v2: A solid benchmark for evaluating human preferences of text-to-
image synthesis. arXiv preprint arXiv:2306.09341, 2023.

Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
Large-scale scene recognition from abbey to zoo. In 2010 IEEE computer society conference on
computer vision and pattern recognition, pp. 3485–3492. IEEE, 2010.

Shaoan Xie, Zhifei Zhang, Zhe Lin, Tobias Hinz, and Kun Zhang. Smartbrush: Text and shape
guided object inpainting with diffusion model. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 22428–22437, 2023.

Jiale Xu, Xintao Wang, Weihao Cheng, Yan-Pei Cao, Ying Shan, Xiaohu Qie, and Shenghua Gao.
Dream3d: Zero-shot text-to-3d synthesis using 3d shape prior and text-to-image diffusion models.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
20908–20918, 2023.

Lvmin Zhang and Maneesh Agrawala. Adding conditional control to text-to-image diffusion models.
arXiv preprint arXiv:2302.05543, 2023.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

12



Under review as a conference paper at ICLR 2024

A APPENDIX

In the appendix, we provide more generation visualization results of our searched protocol.

Figure 8: Visualization of image generation results on “canna lily” and “filet mignon”. Steps: 50,
Sampler: DPM++, CFG scale: 7.

13



Under review as a conference paper at ICLR 2024

Figure 9: Visualization of image generation results on “frozen yogurt” and “hooded warbler”. Steps:
50, Sampler: DPM++, CFG scale: 7.
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Figure 10: Visualization of image generation results on “tuna tartare” and “waffles”. Steps: 50,
Sampler: DPM++, CFG scale: 7.
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