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Abstract

Text-guided image editing has been allowing users to transform and synthesize
images through natural language instructions, offering considerable flexibility.
However, most existing image editing models naively attempt to follow all user in-
structions, even if those instructions are inherently infeasible or contradictory, often
resulting in nonsensical output. To address these challenges, we propose a context-
aware method for image editing named as CAMILA (Context-Aware Masking
for Image Editing with Language Alignment). CAMILA is designed to validate
the contextual coherence between instructions and the image, ensuring that only
relevant edits are applied to the designated regions while ignoring non-executable
instructions. For comprehensive evaluation of this new method, we constructed
datasets for both single- and multi-instruction image editing, incorporating the
presence of infeasible requests. Our method achieves better performance and higher
semantic alignment than state-of-the-art models, demonstrating its effectiveness in
handling complex instruction challenges while preserving image integrity.

1 Introduction

In recent years, the growing demand for visual content has made image editing essential across various
fields. With advancements in technology, text-guided image editing has emerged as a powerful tool,
enabling users to manipulate images using natural language instructions [4, 16, 10, 42, 11, 12]. This
innovation has streamlined the editing process, enabling users to perform sophisticated edits. Among
these advancements, diffusion-based models have particularly excelled in image generation [13, 38,
39, 30, 48, 45, 3] and editing tasks [18, 8, 12, 4, 42, 48]. However, models relying on simple text
encoders such as CLIP [35] struggle to achieve user-intended fine-grained edits. These difficulties
become more apparent when the editing prompt involves multi-step instructions with intricate details.

To address this limitation, recent research has introduced two notable improvements in model
design. First, the CLIP-like text encoder has been replaced by Multimodal Large Language Models
(MLLMs) [16, 10]. These models effectively parse user instructions and interpret textual prompts,
improving the capabilities of natural language understanding. Second, regions requiring editing
within the image are identified and modified using various methods, such as cross-attention maps and
segmentation models, to align each edit prompt with its corresponding regions [11, 25]. Although the
region-based image editing model [11] shows more effective results on multi-instruction tasks than
other state-of-the-art methods, its attention maps often fail to consistently align with intended editing
regions. This misalignment is especially pronounced when modifications involve spatial relationships
or regions not directly associated with primary instruction keywords.
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Figure 1: Three scenarios demonstrate how our method handles context-aware multi-instruction
editing across various combinations of feasible and infeasible prompts. By leveraging [MASK] and
[NEG] specialized tokens, it accurately identifies executable instructions.

These limitations become evident in multi-instruction scenarios containing challenging instructions
that cannot be directly applied to the current image. Such instructions may request alterations to
non-existent objects, logically inconsistent modifications, or edits that are incompatible with the
image’s content. Parsing and interpreting such inputs makes editing systems impractical, introducing
suboptimal edits or even unrealistic, incoherent images. Additionally, relying on pretrained Large
Language Models [32] to parse or reorganize these instructions introduces further complexity in the
editing pipeline and increases the potential for errors at intermediate steps. Any misinterpretation or
bias in LLM output may propagate downstream, leading to incorrect region selection or over-editing.

Despite the growing research interest in comprehensive image editing, most existing methods overlook
instruction executability, often leading to over-edited results. Our proposed approach addresses these
concerns by explicitly assessing the executability of the instruction throughout the editing process.
Building on pioneering research in this domain, we leverage the MLLM to jointly interpret both text
instructions and images, then we extend its capabilities to enable image editing with context awareness.
Here, context refers to the model’s ability to interpret the relevance of various instructions within a
given image, allowing it to focus on applicable regions while ignoring irrelevant areas. A key feature
of CAMILA is the use of specialized tokens and broadcast mechanism. Our model assigns [MASK]
tokens to editable regions and [NEG] tokens to suppress irrelevant edits. The following broadcasting
module then consistently aligns token assignments with user prompts. Overall, our context-aware
pipeline helps to validate the coherence of instructions, resulting in improved performance across all
image editing scenarios, including non-executable prompts.

To properly evaluate our approach, we extend the conventional single- and multi-instruction image
editing tasks by introducing the possibility of non-executable prompts. This results in new evaluation
scenarios: Context-Aware Image Editing that evaluate how the model handles the number of instruc-
tions and the presence of infeasible requests within the same sequence. We compare our method
against several state-of-the-art baselines, observing substantial improvements in editing accuracy,
particularly L1 and L2 distances, as well as enhanced performance on CLIP and DINO scores, with a
human preference-based evaluation also indicating strong performance.

Our main contributions to this work are as follows:

• We introduce a context-aware image editing model that precisely identifies prompt executability
and corresponding editing regions, allowing user-aligned and consistent modifications.

• We propose a new task setting: Context-Aware Image Editing. New datasets are created to evaluate
model behavior and context-awareness in challenging scenarios.

• Our model demonstrates significant improvements over existing methods in varying evaluation
scenarios, achieving lower pixel-level errors and higher semantic alignment, while also showing
qualitative superiority in effectively handling complex instructions.

Note that we formally define ‘non-executable instruction’ as any request that cannot be executed
given the visual constraints or inherent semantics of the image. Our source code is available at
https://github.com/hk-repo/CAMILA.

2 Related Works

Multimodal Large Language Models. Multimodal Large Language Models (MLLMs) [24, 27, 9,
41, 51, 26] integrate multiple modalities, such as images and text. Recent MLLMs have advanced to
handle complex tasks such as referring visual grounding [50, 23, 7, 43], which aims to distinguish
specific objects based on context. Additionally, MLLMs have been applied to image editing task [16,
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Figure 2: The architecture of CAMILA begins by jointly processing the image ximg and text
instructions xtxt using an MLLM. Output tokens are classified as either [MASK] or [NEG], indicating
regions to modify or leave unchanged. These tokens are aligned with the text embeddings using the
Token Broadcaster, and the final binary mask is generated by the Token Decoder. The mask is then
applied in a diffusion model to produce the edited image.

10]. For instance, SmartEdit [16] improves instruction comprehension with bidirectional interactions
between image and text, while MGIE [10] jointly trains an MLLM and diffusion model to guide
editing tasks with visual-aware instructions. However, these models often lack context-awareness
and fail to distinguish between relevant and irrelevant prompts. We thus break new ground by being
the first to incorporate a context-aware MLLM specially for image editing. Unlike prior research,
we do not limit our scope to single instruction tasks, enabling our model to handle both multi and
context-aware instructions.

Image Editing by Diffusion Model. Diffusion models have become prominent in image editing [37,
1, 30, 29, 18, 8, 12, 42, 48, 49]. While text-guided image editing enable basic modifications,
instruction-based image editing offers more nuanced control by interpreting complex, user-directed
commands via natural language. InstructPix2Pix [4] introduced a dataset combining GPT-3-generated
texts [5] and Prompt2Prompt-based images [12], which powers natural language-guided editing.
MGIE [10] utilizes an MLLM with visual-aware instructions for editing, and FoI [11] uses cross-
attention maps for multi-instruction scenarios. However, these methods struggle with ambiguous or
incorrect instructions, as they lack mechanisms to interpret prompt feasibility. This limitation often
leads to unintended modifications when the model encounters unclear instructions.

3 Preliminary

We briefly introduce InstructPix2Pix (IP2P) [4], a standard framework for instruction-guided image
editing and its cross-attention mechanism. This overview serves as the background for our work.

3.1 InstructPix2Pix

IP2P [4] is built upon Stable Diffusion [38] to modify images based on textual instructions. In this
framework, conditioning on both input image and text instructions is necessary for guiding diffusion
network to produce editing results aligned with user instruction. The input image ximg is first encoded
into a latent vector z by the encoder EI. At each time step t, the noisy latent vector zt is progressively
denoised by the score network. Then, the denoised latent vector z is decoded into the output image.

To achieve conditional generation, diffusion models often employ classifier-free guidance [14], which
eliminates the need for an external classifier. In their score network, two conditioning factors are
introduced for use during inference: the image conditioning cI and the text instruction conditioning
cT . cI and cT are the encoded outputs from the image encoder EI and the text encoder ET, respectively.
The final score estimation ẽθ(zt, cI , cT ) is computed as follows:

ẽθ(zt, cI , cT ) = eθ(zt,∅,∅) + sI · (eθ(zt, cI ,∅)− eθ(zt,∅,∅))

+ sT · (eθ(zt, cI , cT )− eθ(zt, cI ,∅)).
(1)

In this equation, eθ(zt,∅,∅) represents the base score prediction without any conditioning applied.
The second term modulates the score with image conditioning cI , where sI modulates how much
the model preserves the characteristics of the input image. Similarly, the last term incorporates text
conditioning cT , with sT controls the degree of adherence to the edit instruction provided.
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3.2 Cross Attention in Stable Diffusion

IP2P employs cross-attention network modulation within the denoising U-Net architecture of the
Stable Diffusion network. A key component is the cross-attention layer, which generates attention
maps A ∈ Rr×r×m, where r is the spatial size and m is the number of text tokens. Several
studies [2, 6, 11] have shown that cross-attention maps with r = 16 capture the most significant
semantic information, compared to maps at other spatial resolutions. Thus, by modulating the
computation of these cross-attention layers, it is possible to alter the image, as adjustments in the
attention maps guide the model’s focus on specific aspects of the text and image content [8, 44].

4 Methods
We build our framework upon a pretrained MLLM [27] and diffusion model [38], but our key
contribution lies in explicitly assessing the executability of instructions and leveraging specialized
tokens to guide editing process in diffusion model. A key feature of our approach is its ability to
validate the contextual coherence between instructions and the image, ensuring that only relevant
edits are applied to designated regions while ignoring non-executable instructions. This context-aware
mechanism distinguishes our method from existing MLLM-based approaches [10, 16], establishing
executability filtering and context-awareness as new modeling objectives for MLLM-based image
editing.

4.1 Architecture

The architecture of CAMILA is shown in Figure 2. Given an image ximg and text instructions xtxt,
both inputs are jointly processed by the MLLM F . The model is designed to encode and combine the
visual and textual inputs, enabling it to capture the relationships between the textual instructions and
corresponding regions in the image. Specifically, the image is processed through a vision encoder,
while the text instructions are tokenized and processed by a language encoder. These representations
are then combined into a unified sequence within the MLLM architecture, which interprets the joint
context of the image and instructions. The output sequence O is generated from the image input ximg
and text input xtxt. Each output token Oi in O = {O1,O2, . . . ,On}, where n denotes the number of
generated tokens, is classified as either a [MASK] or [NEG] token. The [MASK] tokens correspond to
regions of the image that are to be modified based on the text instructions, while the [NEG] tokens
indicate areas of the image that should remain unaffected.

Figure 3: Architecture of the Token Broad-
caster. It calculates similarity between
MLLM output tokens and encoded text fea-
tures, assigning each output token to the text
embedding that best matches its correspond-
ing semantic region.

By combining the visual and textual inputs, the
MLLM is able to determine the relevance of each
instruction to specific regions in the image, ensur-
ing that only applicable edits are applied. This joint
processing aligns each generated output token, either
[MASK] or [NEG], with specific instructions. The
[MASK] tokens are decoded, resulting in masks that
accurately highlight the regions in the image that
require modification according to the instructions.
This targeted approach improves the precision of the
editing process by ensuring that modifications are
applied solely to relevant areas. The following con-
tent will elaborate on how [MASK] and [NEG] tokens
are aligned with instructions by Token Broadcaster
and how [MASK] tokens are decoded into the actual
editing mask by Token Decoder.

4.2 Token Broadcaster and Token Decoder

Token Broadcaster. The output sequence O generated by the MLLM is processed by the Token
Broadcaster module to ensure that the [MASK] and [NEG] tokens align accurately with the corre-
sponding text embeddings. As illustrated in Figure 3, the text instructions xtxt are embedded through
the text encoder ET of the diffusion model, resulting in a set of text embeddings cT . Using the
diffusion model’s text encoder ET allows the model to ensure that the generated editing masks will
align precisely with cT , facilitating integration into the diffusion model.
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The MLLM output tokens O and the text embeddings cT reside in different latent spaces, so we need
to align them into a single space. Many studies [20, 46] use cosine similarity-based alignment to
measure and organize relationships or similarities between different modalities. We project them into
a shared space for alignment by applying trainable transformations WO and WT to each, directly
within the similarity matrix:

Si,j =
(OiWO) · (cTjWT )

∥(OiWO)∥∥(cTjWT )∥
, (2)

where each element Si,j represents the cosine similarity score between the i-th transformed output
token (OiWO) and the j-th transformed text embedding (cTjWT ), indicating their compatibility in
the shared latent space.

To convert similarity scores into alignment probabilities, a softmax is applied along each column of
S. For each text embedding j, we then determine the index αj that maximizes this probability:

αj = argmax
i

(
exp(Si,j)∑
k exp(Sk,j)

)
, ∀j ∈ {1, 2, . . . ,m}, (3)

where m denotes the length of text embeddings. This alignment process ensures that each text
embedding maps to the output token best reflecting its semantic region within the image.

Token Decoder. The Token Decoder processes tokens differently based on their type: only tokens
labeled as [MASK] are converted into editing masks, while [NEG] tokens are directly replaced
with black masks, indicating regions where no modification is applied. Designed as a two-layer
Transformer decoder, the Token Decoder generates a set of binary masks M1,M2, . . . ,Mn, each
specifying regions of the image to be edited according to the text instructions.

In the first decoder layer, we employ a cross-attention mechanism between image and text embeddings.
This allows the model to extract contextually relevant features from the image that are aligned with
the text instructions. By attending to both modalities, the decoder effectively maps the semantic
content of the text to corresponding regions in the image. The second decoder layer further refines this
information by incorporating the [MASK] tokens into the key and value projections of the attention
mechanism. This enables the model to focus more precisely on the regions identified by each
[MASK] token. After the second decoder layer, these intermediate masks are passed through sigmoid
thresholding to produce the final 0-1 binary masks, denoted as Mi. Through this process, Token
Decoder is able to generate the final binary mask Mi, with each mask serving as an editing mask for
the corresponding MLLM output tokens Oi, defining the specific areas of the image to be modified.

4.3 Diffusion Model

For each text embedding j, the alignment index αj determines the specific binary mask Mαj
to be

used. The individual masks are concatenated to form a unified binary mask M, which is then used in
the diffusion model to guide the editing process:

M = concat(Mα1 ,Mα2 , . . . ,Mαm). (4)
This binary mask M ensures that each region is modified according to alignment indices from the
Token Broadcaster, enabling precise, context-aware edits that reflect the intended modifications.

We modulate the cross-attention layers of the diffusion model, focusing specifically on the 16-
sized cross-attention map, which captures the most semantically relevant features, as explained in
Section 3.2. The U-Net’s cross-attention map A is modulated using the following equation:

A′ = softmax
(
X ⊙M+ Y ⊙ (1−M)√

d

)
, (5)

where d is the latent projection dimension, X = QI,TK
T
I,T , and Y = QI,∅K

T
I,∅. In this formulation,

QI,T and KI,T represent the query and key projections in eθ(zt, cI , cT ), respectively, while QI,∅
and KI,∅ are the query and key projections in eθ(zt, cI ,∅).

This modulation approach leverages A to align each text embedding precisely with the regions
specified by the concatenated binary mask M, enhancing editing accuracy by concentrating on
the relevant areas as dictated by the instructions. Then, the binary mask M selectively applies the
text-conditioned attention map X to editable regions and Y to unaltered areas, ensuring that only the
specified areas are modified. By modulating the attention layer as in Equation (5), we generate the
final output image following the score estimation formulated in Equation (1).
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4.4 Training Details

Training Loss Function. The training of our MLLM-based approach is optimized with four primary
loss components, each designed to target a specific aspect of model performance for accurate token
classification, alignment, and mask generation. The total loss Lmain is formulated as follows:

Lmain = λ1Ltoken
CE + λ2Lbroadcast

CE + λ3Ldice + λ4LBCE, (6)

where λ1, λ2, λ3, λ4 are hyperparameters that balance the influence of each loss component.

The first element, token classification loss Ltoken
CE , applies cross-entropy (CE) loss to the MLLM

output tokens. The second element, broadcasting alignment loss Lbroadcast
CE , also utilizes CE loss to

align MLLM output tokens with their respective text embeddings, ensuring precise correspondence
between instructions and image regions. For mask quality, the mask dice loss Ldice measures overlap
between predicted and ground truth masks, encouraging accurate spatial targeting. Lastly, the binary
cross-entropy loss LBCE enforces accuracy at the pixel level in the generated mask.

Trainable Parameters. To efficiently fine-tune the pre-trained MLLM while preserving its learned
knowledge, we adopt the Low-Rank Adaptation technique [15]. In our training, we freeze the vision
backbone and text encoder of the MLLM, while the remaining parts of the model are fine-tuned.
Additionally, the Token Broadcaster and Token Decoder are also trained, ensuring that the model
aligns the output tokens with the text instructions and generates accurate masks for the diffusion
model. Training is more efficient since only the MLLM and lightweight modules are updated, unlike
other methods that jointly fine-tune both MLLM and diffusion model. All other training details are
provided in Section A.

4.5 Surrogate Module Training for Enhanced Masking

To further improve the quality of the binary mask M provided to the diffusion model, we conduct
additional training beyond the initial MLLM training. Through empirical analysis, we found that
certain outputs misalign with the description of the goal image. To better align the generated image
with the intended modifications, we consider it useful to focus on improving CLIP-T score, which
measures the similarity between the global description and the generated image. By optimizing the
model for a higher CLIP-T score, we aim to generate higher quality binary masks, which lead to
improved quality in the final output image.

However, due to the inherent complexity and the large number of steps involved in the forward pass
of the diffusion model, directly backpropagating the loss from the final output image through the
diffusion model to the MLLM is infeasible. To address this limitation, we develop a lightweight
surrogate module that approximates the CLIP-T score based on the input image ximg, the edit
instruction xtxt, and the binary masks M. Designed as a single-layer transformer, the surrogate
module offers a streamlined alternative to the complex, multi-step diffusion model. It is trained using
a mean squared error (MSE) loss between the actual CLIP-T score and the predicted CLIP-T score.
During this training phase, all other parts of the model are kept frozen, and only the surrogate module
is updated. The overall loss function for training the surrogate module is formulated as:

Lsurrogate = E
[
(CLIP-Toutput − CLIP-Tsurrogate)

2
]
, (7)

where CLIP-Toutput and CLIP-Tsurrogate denote the actual CLIP-T score of the target output and the
predicted score, respectively. This approach ensures that the surrogate module learns to accurately
estimate the CLIP-T score without requiring multi-step backpropagation of the diffusion model.

Refining Mask Generation via Surrogate Module. Once the surrogate module is fully trained, we
use estimated values to fine-tune the MLLM, Token Broadcaster, and Token Decoder. In this stage,
the surrogate module is kept frozen, and the focus is on improving mask generation to maximize the
predicted CLIP-T score. The objective is to modify the MLLM’s outputs to generate binary masks
with a higher CLIP-T score when processed by the diffusion model.

During training, the loss function is augmented to include both Lmain as well as the MSE loss between
the predicted CLIP-T score and the oracle CLIP-T score. The updated loss Lupdated is defined as:

Lupdated = Lmain + λ5LMSE, (8)

where LMSE is the MSE loss between the predicted and oracle CLIP-T score, and λ5 is a hyperparam-
eter controlling the weight of the CLIP-T score loss.
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Table 1: Quantitative comparison across multi-instruction and context-aware instruction tasks.
Our model demonstrates overall superior performance, especially excelling in the context-aware
instruction task. This highlights our method’s superb capability to handle context-aware instructions
with high precision, applying edits that closely align with the intended modifications without over-
editing. Bold and underlining indicates the best and the second-best performance for each metric.

Multi Instruction Context-Aware Instruction

Method L1↓ L2↓ CLIP-I↑ DINO↑ CLIP-T↑ L1↓ L2↓ CLIP-I↑ DINO↑ CLIP-T↑
IP2P [4] 0.1402 0.0526 0.8327 0.7122 0.2977 0.1460 0.0514 0.7975 0.6429 0.2715

MGIE [10] 0.1639 0.0777 0.8205 0.6723 0.2787 0.1592 0.0750 0.8090 0.6519 0.2637
SmartEdit [16] 0.1295 0.0573 0.8630 0.7516 0.2971 0.1111 0.0495 0.8739 0.7726 0.2824

FoI [11] 0.1054 0.0385 0.8811 0.8096 0.2941 0.0891 0.0284 0.8895 0.8190 0.2888
CAMILA (ours) 0.0945 0.0366 0.8980 0.8392 0.2984 0.0661 0.0222 0.9296 0.8932 0.3006

5 Evaluation

5.1 Task Categorization

For a comprehensive assessment, we evaluate our method on both single-instruction tasks aligned
with standard benchmarks, and multi-instruction image editing tasks that require multiple edit turns
in a single sequence. In a single-instruction scenario, a single directive is tested either in a single-turn
or multi-turn setting, whereas multi-instruction tasks involve multiple directives that must be applied
simultaneously. We further divide multi-instruction tasks into two types: Multi-instruction Image
Editing, which includes only applicable instructions, and Context-Aware Instruction Image Editing,
which includes a mix of applicable and non-applicable instructions.

5.2 Evaluation Settings

Datasets: For evaluating single instruction tasks, we use the MagicBrush [47] dataset, which covers
both single-turn and multi-turn scenarios as detailed in Section 6, along with the EMU [40] dataset.
However, the literature lacks dedicated benchmark datasets for multi-instruction or context-aware
instruction editing. To address this gap, we introduce two new tasks and curate corresponding
datasets: Multi-instruction Image Editing and Context-Aware Instruction Image Editing as detailed
in Section 5.3. In Multi-instruction Image Editing, we concatenate applicable instructions from
MagicBrush’s multi-turn dataset into a single instruction sequence. In the Context-Aware Instruction
Image Editing task, we introduce non-applicable instructions generated with ChatGPT-4V(ision) [32]
alongside images. More details on data creation are detailed in Section C.

Metrics: To evaluate our proposed method, we employ a diverse set of metrics, including L1/L2,
CLIP-I, DINO, CLIP-T, CLIP-dir, and PickScore [22]. Detailed descriptions of these metrics are
provided in Section B.

Baselines: We compare CAMILA with five different state-of-the-art image editing methods: IP2P [4],
EMILIE [17], MGIE [10], SmartEdit (SE) [16], and FoI [11].

5.3 Main Results

Quantitative Result. As illustrated in Table 1, CAMILA demonstrates state-of-the-art results across
both multi-instruction and context-aware instruction tasks, particularly excelling in metrics such as
CLIP-I, CLIP-T, and DINO similarity, and overall distance metrics (L1 and L2). This indicates that
our model aligns closely with human perception in maintaining fidelity to edited images.

The existing methods exhibit notable limitations. MGIE, which relies on a summarization approach
to compress instructions, proves to be vulnerable to non-applicable instructions, leading to potential
inaccuracies in execution. While SmartEdit shows improved understanding due to the integration
of MLLMs, it suffers from a lack of robustness by feeding all instructions into the diffusion model
simultaneously, which can lead to oversights in handling complex editing requests. Additionally, FoI
struggles with imprecise attention maps, which reduces its performance below CAMILA though
it is the most competitive baseline. In stark contrast, our approach effectively manages multi-
instruction editing tasks, demonstrating superior capability in processing context-aware instructions.
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Input Image IP2P [4] MGIE [10] SmartEdit [16] FoI [11] CAMILA (Ours)

[MASK]

[MASK]
(a) Edit instruction: “Turn the brown horse into a pink unicorn, and put a river nearby.”

[MASK]

[MASK]
(b) Edit instruction: “Give the man a cowboy hat, and put a witch hat in the woman.”

[NEG]

[MASK]
(c) Edit instruction: “Put a flower vase on the table next to the chair.

On top of that, have the man be wearing a yellow sweatshirt.”

[NEG]

[MASK]
(d) Edit instruction: “Remove the stack of pancakes from the plate and put the food on a plate.”

Figure 4: Qualitative comparisons: FoI needs to extract keywords from each instruction using
pretrained GPT model before running the model. Furthermore, due to inaccuracies in the attention
map of diffusion model, FoI often fails to make precise modifications. In the case of context-aware
instructions, CAMILA accurately identifies applicable instructions by generating [MASK] and [NEG]
tokens from MLLM. We present the decoded mask results for each instruction of the [MASK] token.

This proficiency enables our model to execute edits with high precision, aligning closely with the
intended modifications while minimizing the risk of over-editing. Overall, our results underscore the
advantages of our method in navigating the complexities inherent to multi-instruction tasks.

In addition to distance-based metrics and similarity-based metrics, we further evaluate human
perceptual alignment using the PickScore metric across two editing tasks: Multi-instruction and
Context-Aware image editing. CAMILA outperforms the strongest baseline, FoI, by 18.1% and
24.0% in each setting, respectively. The advantage is more evident in the Context-Aware setting,
demonstrating our model’s ability to effectively filter non-applicable instructions. More detailed
results are presented in Section E.1.

Qualitative Result. As shown in Figure 4, we present qualitative results and observe the following:
All models, except for FoI, frequently execute only a single instruction when multiple instructions
are provided. In (a), while FoI successfully performs the first instruction, it fails to generate an
accurate attention map for the keyword ‘river’, resulting in the incomplete application of the second
instruction. Similarly, in (b), the lack of a fine-grained attention map results in the hat being placed
incorrectly. The remaining models predominantly execute only one instruction and demonstrate a
tendency toward over-editing; for instance, IP2P and MGIE alter the background color in (a), and
SmartEdit generates an additional unicorn.

In (c) and (d), most models exhibit erroneous edits in response to non-applicable instructions. In (c),
despite the absence of a chair or table in the input image, the models add incorrect floral elements or
a table. Similarly, in (d), although the input image does not contain a pancake, it erroneously appears
due to the removal instruction, illustrating an inability to correctly handle the instruction. Especially
compared to FoI, our model demonstrates greater precision in mask extraction for areas requiring
modification, enabling more refined edits. Furthermore, CAMILA supports both localized object
edits and global transformations. The [MASK] tokens dynamically adjust their spatial coverage based
on each instruction, enabling edits that range from small regions to full-scene editings. Through the
use of [MASK] and [NEG] tokens, our proposed model facilitates robust, context-aware image editing.
Further qualitative results are provided in Section E.4.
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Table 2: Quantitative comparison on
EMU dataset. Achieving the highest
CLIP-dir score in the Context-Aware
task shows that our model effectively
distinguishes non-executable instruc-
tions.

Task Single-inst Context-Aware
Method CLIP-T↑ CLIP-dir↑ CLIP-T↑ CLIP-dir↑

IP2P 0.2616 0.075 0.2446 0.064
MGIE 0.2680 0.082 0.2543 0.066

SE 0.2680 0.094 0.2448 0.067
FoI 0.2673 0.068 0.2651 0.054

ours 0.2687 0.092 0.2679 0.092

Table 3: Comparison of results before and after addi-
tional training with the surrogate module. We apply the
surrogate module to improve the CLIP-T score, which also
enhances L1/L2 losses, as well as CLIP-I and DINO scores.

Task Config L1↓ L2↓ CLIP-I↑ DINO↑ CLIP-T↑

Single
Inst.

Single
-Turn

before 0.0602 0.0194 0.9367 0.9067 0.3020
after 0.0596 0.0191 0.9375 0.9069 0.3022

Multi
-Turn

before 0.0931 0.0339 0.8969 0.8357 0.3011
after 0.0782 0.0268 0.9127 0.8659 0.3019

Multi
Inst.

Multi before 0.0957 0.0372 0.8961 0.8329 0.2975
after 0.0945 0.0366 0.8980 0.8392 0.2984

Context
-Aware

before 0.0673 0.0228 0.9284 0.8910 0.3002
after 0.0661 0.0222 0.9296 0.8932 0.3006

6 Ablation Study

Robustness of CAMILA. In our framework, distinguishing applicable from non-applicable instruc-
tions is critical to prevent unintended edits. Each input may contain multiple instructions, which
are classified by the MLLM into [MASK] and [NEG] tokens. On the Context-Aware Image Editing
dataset, our model achieves a token classification accuracy of 90.21%, highlighting the robustness
of CAMILA in filtering non-applicable instructions. Furthermore, we evaluate the alignment of
generated masks with ground-truth edited regions using standard segmentation metrics. For applicable
instructions, classified as [MASK] token, our model achieves an IoU of 0.3819 and a Dice score of
0.4986. As described in Equation (6), our model is trained with multiple loss objectives, not solely
for segmentation accuracy. The generated masks are designed as high-level guidance, reflecting our
focus on instruction fidelity and plausibility rather than strict spatial matching.

Evaluation on Instruction-Following Accuracy. We evaluate our method on the EMU dataset for
both single-instruction and context-aware instruction tasks. Since the EMU dataset does not provide
ground-truth target images, we utilize CLIP-T and CLIP-dir as evaluation metric. CLIP-dir measures
how accurately the generated image aligns with the intended semantic direction of the instructions.
As shown in Table 2, CAMILA achieves the highest CLIP-dir score in the context-aware instruction
task, demonstrating its effectiveness in handling non-executable instructions.

Table 4: Quantitative comparison on single instruction tasks. CAMILA excels in single instruc-
tion tasks by generating precise masks that accurately target modification areas.

Single-turn Instruction Multi-turn Instruction

Method L1↓ L2↓ CLIP-I↑ DINO↑ CLIP-T↑ L1↓ L2↓ CLIP-I↑ DINO↑ CLIP-T↑
IP2P [4] 0.1129 0.0373 0.8540 0.7423 0.2918 0.1538 0.0575 0.8103 0.6511 0.2866

EMILIE [17] 0.1129 0.0373 0.8540 0.7423 0.2918 0.1268 0.0509 0.8557 0.7591 0.2916
MGIE [10] 0.0931 0.0383 0.8853 0.8088 0.2935 0.1312 0.0574 0.8571 0.7507 0.3013

SmartEdit [16] 0.0895 0.0353 0.9030 0.8308 0.3024 0.1333 0.0575 0.8567 0.7421 0.3021
FoI [11] 0.0699 0.0206 0.9207 0.8779 0.2980 0.1084 0.0379 0.8681 0.7838 0.2935

CAMILA (ours) 0.0596 0.0191 0.9375 0.9069 0.3022 0.0782 0.0268 0.9127 0.8659 0.3019

Single-Instruction Task Performance. CAMILA, optimized for multi-instruction tasks, also
performs strongly on single-instruction tasks, as shown in Table 4. CAMILA achieves strong
performance across most evaluation metrics. In contrast, SmartEdit shows a tendency toward over-
editing. This reflects CAMILA’s balanced approach, minimizing over-editing while maintaining
high fidelity. As shown in Figure 5, most models exhibit over-editing issues. Although FoI is designed
to minimize over-editing, it encounters specific issues as follows: inaccurate attention maps in (a)
prevent precise modifications to the ‘angry birds’ object, while in (b), additional frosting is incorrectly
applied to cupcakes. These cases show that CAMILA achieves accurate edits without over-editing.

Impact of Surrogate Module Training. We compare the results on the multi-instruction tasks and
single-instruction tasks before and after additional surrogate module training. As shown in Table 3,
we demonstrate that mask generation through this surrogate module improves model performance.
Interestingly, the improvement is not just for CLIP-T but also for the other metrics.
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Input IP2P MGIE SmartEdit FoI CAMILA

(a) Edit instruction: “Replace the angry birds with flowers”

(b) “Add a strawberry on top of the cupcake with frosting”

Figure 5: Qualitative comparisons for single in-
struction task. CAMILA demonstrates success-
ful editing even in the single instruction task.

Table 5: Large-scale baseline compar-
ison on context-aware instruction task.
CAMILA outperforms larger diffusion-based
models by generating contextually aligned
and precise masks, highlighting that its
context-aware design enhances editing quality
without relying on increased model capacity.

Method L1↓ L2↓ CLIP-I↑ DINO↑ CLIP-T↑

Step1X-Edit 0.0830 0.0329 0.8096 0.8892 0.2984
CAMILA 0.0661 0.0222 0.9296 0.8932 0.3006

Comparison with Large-Scale Baseline We additionally compare CAMILA with recent large-scale
model such as Step1X-Edit [28], which use larger diffusion backbone [34] than Stable Diffusion [38].
As shown in Table 5, CAMILA achieves better performance on the context-aware image editing
dataset despite its smaller diffusion model size. This implies that the context-aware design of
CAMILA effectively enhances editing fidelity without relying on large model capacity.

Additional ablation studies on the variation of the Token Decoder and the inference time comparison
are provided in Section D.1 and Section D.2, respectively.

7 Conclusion

In this paper, we addressed the limitations of current text-guided image editing models, particularly
their difficulty in handling fine-grained edits, multi-instruction edits, and distinguishing between
executable and non-executable instructions. Leveraging MLLMs, we generated specialized tokens
([MASK] and [NEG]) and designed token broadcaster to ensure the validity of the contextual coherence
between instructions and the image, so that only relevant edits can be applied to the designated regions
while ignoring non-executable instructions. For comprehensive evaluation, we created new datasets
that can evaluate Context-Aware Image Editing task, where our approach achieves superior results
across both qualitative and quantitative evaluations compared to state-of-the-art solutions.
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made in the paper.
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• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
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are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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• The answer NA means that the paper has no limitation while the answer No means that
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only tested on a few datasets or with a few runs. In general, empirical results often
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.
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4. Experimental result reproducibility
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all the training details to reproduce the main experimental results
in various sections including Section 4, Section 5.2, and Section A.
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whether the code and data are provided or not.
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to make their results reproducible or verifiable.
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be necessary to either make it possible for others to replicate the model with the same
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We describe how we generated the new dataset in Section C.1. The code and
dataset will be made publicly available after the paper is accepted for publication.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all the training details to reproduce the main experimental results
in various sections including Section 4, Section 5.2, and Section A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We do not report error bars as our evaluation relies on deterministic metrics
that yield consistent values across runs. Since the outputs are fixed given the same inputs,
statistical variance is not applicable in this setting.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The inference time for image generation is reported in Section D.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
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NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our work conforms with the NeurIPS Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification: Although we fine-tune a pretrained LLM, our method does not introduce
additional misuse risks beyond those associated with the base model. No safeguards were
added beyond those provided by the original pretrained model.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We address this in Section G for further details.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release any new assets in this paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve human subjects, and therefore does not require the
details mentioned in this point.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work does not involve human subjects and does not require an IRB
approval or equivalent.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method of CAMILA was developed without the involvement of
LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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