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Abstract

Text-guided image editing has been allowing users to transform and synthesize
images through natural language instructions, offering considerable flexibility.
However, most existing image editing models naively attempt to follow all user in-
structions, even if those instructions are inherently infeasible or contradictory, often
resulting in nonsensical output. To address these challenges, we propose a context-
aware method for image editing named as CAMILA (Context-Aware Masking
for Image Editing with Language Alignment). CAMILA is designed to validate
the contextual coherence between instructions and the image, ensuring that only
relevant edits are applied to the designated regions while ignoring non-executable
instructions. For comprehensive evaluation of this new method, we constructed
datasets for both single- and multi-instruction image editing, incorporating the
presence of infeasible requests. Our method achieves better performance and higher
semantic alignment than state-of-the-art models, demonstrating its effectiveness in
handling complex instruction challenges while preserving image integrity.

1 Introduction

In recent years, the growing demand for visual content has made image editing essential across various
fields. With advancements in technology, text-guided image editing has emerged as a powerful tool,
enabling users to manipulate images using natural language instructions [4, (16} 10, 42} |11} [12]. This
innovation has streamlined the editing process, enabling users to perform sophisticated edits. Among
these advancements, diffusion-based models have particularly excelled in image generation [13] |38,
39,1301 48, 145, [3]] and editing tasks [18}, 18], [12} 4} 42, |48]]. However, models relying on simple text
encoders such as CLIP [35] struggle to achieve user-intended fine-grained edits. These difficulties
become more apparent when the editing prompt involves multi-step instructions with intricate details.

To address this limitation, recent research has introduced two notable improvements in model
design. First, the CLIP-like text encoder has been replaced by Multimodal Large Language Models
(MLLMs) [16,110]. These models effectively parse user instructions and interpret textual prompts,
improving the capabilities of natural language understanding. Second, regions requiring editing
within the image are identified and modified using various methods, such as cross-attention maps and
segmentation models, to align each edit prompt with its corresponding regions [[11,125]. Although the
region-based image editing model [[11] shows more effective results on multi-instruction tasks than
other state-of-the-art methods, its attention maps often fail to consistently align with intended editing
regions. This misalignment is especially pronounced when modifications involve spatial relationships
or regions not directly associated with primary instruction keywords.

*Work done during an internship at Samsung Semiconductor, USA.
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Figure 1: Three scenarios demonstrate how our method handles context-aware multi-instruction
editing across various combinations of feasible and infeasible prompts. By leveraging [MASK] and
[NEG] specialized tokens, it accurately identifies executable instructions.

These limitations become evident in multi-instruction scenarios containing challenging instructions
that cannot be directly applied to the current image. Such instructions may request alterations to
non-existent objects, logically inconsistent modifications, or edits that are incompatible with the
image’s content. Parsing and interpreting such inputs makes editing systems impractical, introducing
suboptimal edits or even unrealistic, incoherent images. Additionally, relying on pretrained Large
Language Models [32] to parse or reorganize these instructions introduces further complexity in the
editing pipeline and increases the potential for errors at intermediate steps. Any misinterpretation or
bias in LLM output may propagate downstream, leading to incorrect region selection or over-editing.

Despite the growing research interest in comprehensive image editing, most existing methods overlook
instruction executability, often leading to over-edited results. Our proposed approach addresses these
concerns by explicitly assessing the executability of the instruction throughout the editing process.
Building on pioneering research in this domain, we leverage the MLLM to jointly interpret both text
instructions and images, then we extend its capabilities to enable image editing with context awareness.
Here, context refers to the model’s ability to interpret the relevance of various instructions within a
given image, allowing it to focus on applicable regions while ignoring irrelevant areas. A key feature
of CAMILA is the use of specialized tokens and broadcast mechanism. Our model assigns [MASK]

tokens to editable regions and [NEG] tokens to suppress irrelevant edits. The following broadcasting
module then consistently aligns token assignments with user prompts. Overall, our context-aware
pipeline helps to validate the coherence of instructions, resulting in improved performance across all
image editing scenarios, including non-executable prompts.

To properly evaluate our approach, we extend the conventional single- and multi-instruction image
editing tasks by introducing the possibility of non-executable prompts. This results in new evaluation
scenarios: Context-Aware Image Editing that evaluate how the model handles the number of instruc-
tions and the presence of infeasible requests within the same sequence. We compare our method
against several state-of-the-art baselines, observing substantial improvements in editing accuracy,
particularly L1 and L2 distances, as well as enhanced performance on CLIP and DINO scores, with a
human preference-based evaluation also indicating strong performance.

Our main contributions to this work are as follows:

* We introduce a context-aware image editing model that precisely identifies prompt executability
and corresponding editing regions, allowing user-aligned and consistent modifications.

* We propose a new task setting: Context-Aware Image Editing. New datasets are created to evaluate
model behavior and context-awareness in challenging scenarios.

* Our model demonstrates significant improvements over existing methods in varying evaluation
scenarios, achieving lower pixel-level errors and higher semantic alignment, while also showing
qualitative superiority in effectively handling complex instructions.

Note that we formally define ‘non-executable instruction’ as any request that cannot be executed
given the visual constraints or inherent semantics of the image. Our source code is available at
https://github.com/hk-repo/CAMILA,

2 Related Works

Multimodal Large Language Models. Multimodal Large Language Models (MLLMs) [24, 27, 9]
411151} 26] integrate multiple modalities, such as images and text. Recent MLLMs have advanced to
handle complex tasks such as referring visual grounding [50, 23| [7] 43]], which aims to distinguish
specific objects based on context. Additionally, MLLMs have been applied to image editing task [16}
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Figure 2: The architecture of CAMILA begins by jointly processing the image @iy, and text
instructions . using an MLLM. Output tokens are classified as either [MASK] or [NEG], indicating
regions to modify or leave unchanged. These tokens are aligned with the text embeddings using the
Token Broadcaster, and the final binary mask is generated by the Token Decoder. The mask is then
applied in a diffusion model to produce the edited image.

10]. For instance, SmartEdit [16] improves instruction comprehension with bidirectional interactions
between image and text, while MGIE [10] jointly trains an MLLM and diffusion model to guide
editing tasks with visual-aware instructions. However, these models often lack context-awareness
and fail to distinguish between relevant and irrelevant prompts. We thus break new ground by being
the first to incorporate a context-aware MLLM specially for image editing. Unlike prior research,
we do not limit our scope to single instruction tasks, enabling our model to handle both multi and
context-aware instructions.

Image Editing by Diffusion Model. Diffusion models have become prominent in image editing [37,
1} 130 291 (18} 8 12} 142l 48| 149]. While text-guided image editing enable basic modifications,
instruction-based image editing offers more nuanced control by interpreting complex, user-directed
commands via natural language. InstructPix2Pix [4] introduced a dataset combining GPT-3-generated
texts [S] and Prompt2Prompt-based images [[12], which powers natural language-guided editing.
MGIE [10] utilizes an MLLM with visual-aware instructions for editing, and Fol [[11] uses cross-
attention maps for multi-instruction scenarios. However, these methods struggle with ambiguous or
incorrect instructions, as they lack mechanisms to interpret prompt feasibility. This limitation often
leads to unintended modifications when the model encounters unclear instructions.

3 Preliminary

We briefly introduce InstructPix2Pix (IP2P) [4]], a standard framework for instruction-guided image
editing and its cross-attention mechanism. This overview serves as the background for our work.

3.1 InstructPix2Pix

IP2P [4] is built upon Stable Diffusion [38] to modify images based on textual instructions. In this
framework, conditioning on both input image and text instructions is necessary for guiding diffusion
network to produce editing results aligned with user instruction. The input image xin, is first encoded
into a latent vector z by the encoder &£. At each time step ¢, the noisy latent vector z; is progressively
denoised by the score network. Then, the denoised latent vector z is decoded into the output image.

To achieve conditional generation, diffusion models often employ classifier-free guidance [[14], which
eliminates the need for an external classifier. In their score network, two conditioning factors are
introduced for use during inference: the image conditioning c; and the text instruction conditioning
cr. cr and cr are the encoded outputs from the image encoder & and the text encoder &, respectively.
The final score estimation €y(z;, ¢r, cr) is computed as follows:

€~9(Zt, Cr, CT) = 69(2t7 9, Q) +sr- (Gg(zh Cr, Q) - eQ(Zta g, Q))

ey
+ s - (eo(2t, cr, er) — eg(zi, 1, 9)).

In this equation, eg(z;, &, &) represents the base score prediction without any conditioning applied.

The second term modulates the score with image conditioning c;, where s; modulates how much

the model preserves the characteristics of the input image. Similarly, the last term incorporates text

conditioning cr, with sz controls the degree of adherence to the edit instruction provided.



3.2 Cross Attention in Stable Diffusion

IP2P employs cross-attention network modulation within the denoising U-Net architecture of the
Stable Diffusion network. A key component is the cross-attention layer, which generates attention
maps A € R"™*"*™ where r is the spatial size and m is the number of text tokens. Several
studies [2 16} [11]] have shown that cross-attention maps with » = 16 capture the most significant
semantic information, compared to maps at other spatial resolutions. Thus, by modulating the
computation of these cross-attention layers, it is possible to alter the image, as adjustments in the
attention maps guide the model’s focus on specific aspects of the text and image content [8}, i44].

4 Methods

We build our framework upon a pretrained MLLM [27]] and diffusion model [38], but our key
contribution lies in explicitly assessing the executability of instructions and leveraging specialized
tokens to guide editing process in diffusion model. A key feature of our approach is its ability to
validate the contextual coherence between instructions and the image, ensuring that only relevant
edits are applied to designated regions while ignoring non-executable instructions. This context-aware
mechanism distinguishes our method from existing MLLM-based approaches [[10,16], establishing
executability filtering and context-awareness as new modeling objectives for MLLM-based image
editing.

4.1 Architecture

The architecture of CAMILA is shown in Figure@ Given an image Tjmg and text instructions T,
both inputs are jointly processed by the MLLM JF. The model is designed to encode and combine the
visual and textual inputs, enabling it to capture the relationships between the textual instructions and
corresponding regions in the image. Specifically, the image is processed through a vision encoder,
while the text instructions are tokenized and processed by a language encoder. These representations
are then combined into a unified sequence within the MLLM architecture, which interprets the joint
context of the image and instructions. The output sequence O is generated from the image input Zimg
and text input x. Each output token O; in O = {01, Os, ..., O, }, where n denotes the number of
generated tokens, is classified as either a [MASK] or [NEG] token. The [MASK] tokens correspond to
regions of the image that are to be modified based on the text instructions, while the [NEG] tokens
indicate areas of the image that should remain unaffected.

By combining the visual and textual inputs, the
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4.2 Token Broadcaster and Token Decoder

Token Broadcaster. The output sequence O generated by the MLLM is processed by the Token
Broadcaster module to ensure that the [MASK] and [NEG] tokens align accurately with the corre-
sponding text embeddings. As illustrated in Figure 3] the text instructions z are embedded through
the text encoder &t of the diffusion model, resulting in a set of text embeddings cy. Using the
diffusion model’s text encoder &7 allows the model to ensure that the generated editing masks will
align precisely with cr, facilitating integration into the diffusion model.



The MLLM output tokens O and the text embeddings ¢ reside in different latent spaces, so we need
to align them into a single space. Many studies [20} 46] use cosine similarity-based alignment to
measure and organize relationships or similarities between different modalities. We project them into
a shared space for alignment by applying trainable transformations Wy and W to each, directly
within the similarity matrix:
_ _(O:Wo) - (er;Wr)
Sij = ) @
1@:Wo)llll(cr;Wr)|l
where each element S; ; represents the cosine similarity score between the i-th transformed output
token (O;Wo) and the j-th transformed text embedding (cr;Wr), indicating their compatibility in
the shared latent space.

To convert similarity scores into alignment probabilities, a softmax is applied along each column of
S. For each text embedding j, we then determine the index o; that maximizes this probability:

> €xp(Sk,j)

where m denotes the length of text embeddings. This alignment process ensures that each text
embedding maps to the output token best reflecting its semantic region within the image.

Q;j = arg max (

Token Decoder. The Token Decoder processes tokens differently based on their type: only tokens
labeled as [MASK] are converted into editing masks, while [NEG] tokens are directly replaced
with black masks, indicating regions where no modification is applied. Designed as a two-layer
Transformer decoder, the Token Decoder generates a set of binary masks My, Mo, ..., M, each
specifying regions of the image to be edited according to the text instructions.

In the first decoder layer, we employ a cross-attention mechanism between image and text embeddings.
This allows the model to extract contextually relevant features from the image that are aligned with
the text instructions. By attending to both modalities, the decoder effectively maps the semantic
content of the text to corresponding regions in the image. The second decoder layer further refines this
information by incorporating the [MASK] tokens into the key and value projections of the attention
mechanism. This enables the model to focus more precisely on the regions identified by each
[MASK] token. After the second decoder layer, these intermediate masks are passed through sigmoid
thresholding to produce the final 0-1 binary masks, denoted as M;. Through this process, Token
Decoder is able to generate the final binary mask M/;, with each mask serving as an editing mask for
the corresponding MLLM output tokens O;, defining the specific areas of the image to be modified.

4.3 Diffusion Model

For each text embedding j, the alignment index «v; determines the specific binary mask M, ; to be
used. The individual masks are concatenated to form a unified binary mask M, which is then used in
the diffusion model to guide the editing process:

M = concat(M,,, Moy, ..., M,,,). “)

This binary mask M ensures that each region is modified according to alignment indices from the
Token Broadcaster, enabling precise, context-aware edits that reflect the intended modifications.

We modulate the cross-attention layers of the diffusion model, focusing specifically on the 16-
sized cross-attention map, which captures the most semantically relevant features, as explained in
Section[3.2] The U-Net’s cross-attention map A is modulated using the following equation:

X@M+y®(1/\/l)>
Vd ’
where d is the latent projection dimension, X = Q; r K {T, and) = QoK IT - In this formulation,

Q1 and K r represent the query and key projections in eg (2, c1, er), respectively, while @ 1,9
and K & are the query and key projections in eg(z, cr, ).

A’ = softmax < Q)

This modulation approach leverages A to align each text embedding precisely with the regions
specified by the concatenated binary mask M, enhancing editing accuracy by concentrating on
the relevant areas as dictated by the instructions. Then, the binary mask M selectively applies the
text-conditioned attention map X to editable regions and ) to unaltered areas, ensuring that only the
specified areas are modified. By modulating the attention layer as in Equation (3], we generate the
final output image following the score estimation formulated in Equation (IJ.



4.4 Training Details

Training Loss Function. The training of our MLLM-based approach is optimized with four primary
loss components, each designed to target a specific aspect of model performance for accurate token
classification, alignment, and mask generation. The total loss L, is formulated as follows:

»Cmain = Alﬁgﬂéen + AZ ﬁ}éré)adcast + )\3£dice + )\4£BCE3 (6)
where A1, A2, A3, A4 are hyperparameters that balance the influence of each loss component.

The first element, token classification loss L1, applies cross-entropy (CE) loss to the MLLM
output tokens. The second element, broadcasting alignment loss £2224°*  also utilizes CE loss to
align MLLM output tokens with their respective text embeddings, ensuring precise correspondence
between instructions and image regions. For mask quality, the mask dice loss L4 measures overlap
between predicted and ground truth masks, encouraging accurate spatial targeting. Lastly, the binary
cross-entropy loss Lgcg enforces accuracy at the pixel level in the generated mask.

Trainable Parameters. To efficiently fine-tune the pre-trained MLLM while preserving its learned
knowledge, we adopt the Low-Rank Adaptation technique [[15]. In our training, we freeze the vision
backbone and text encoder of the MLLM, while the remaining parts of the model are fine-tuned.
Additionally, the Token Broadcaster and Token Decoder are also trained, ensuring that the model
aligns the output tokens with the text instructions and generates accurate masks for the diffusion
model. Training is more efficient since only the MLLM and lightweight modules are updated, unlike
other methods that jointly fine-tune both MLLM and diffusion model. All other training details are
provided in Section [A]

4.5 Surrogate Module Training for Enhanced Masking

To further improve the quality of the binary mask M provided to the diffusion model, we conduct
additional training beyond the initial MLLM training. Through empirical analysis, we found that
certain outputs misalign with the description of the goal image. To better align the generated image
with the intended modifications, we consider it useful to focus on improving CLIP-T score, which
measures the similarity between the global description and the generated image. By optimizing the
model for a higher CLIP-T score, we aim to generate higher quality binary masks, which lead to
improved quality in the final output image.

However, due to the inherent complexity and the large number of steps involved in the forward pass
of the diffusion model, directly backpropagating the loss from the final output image through the
diffusion model to the MLLM is infeasible. To address this limitation, we develop a lightweight
surrogate module that approximates the CLIP-T score based on the input image iy, the edit
instruction ', and the binary masks M. Designed as a single-layer transformer, the surrogate
module offers a streamlined alternative to the complex, multi-step diffusion model. It is trained using
a mean squared error (MSE) loss between the actual CLIP-T score and the predicted CLIP-T score.
During this training phase, all other parts of the model are kept frozen, and only the surrogate module
is updated. The overall loss function for training the surrogate module is formulated as:

[fsurrogate =E (CLIP‘Toutput - CLIP‘Tsurrogate)2 ; @)

where CLIP-Tqyput and CLIP-Tyogate denote the actual CLIP-T score of the target output and the
predicted score, respectively. This approach ensures that the surrogate module learns to accurately
estimate the CLIP-T score without requiring multi-step backpropagation of the diffusion model.

Refining Mask Generation via Surrogate Module. Once the surrogate module is fully trained, we
use estimated values to fine-tune the MLLM, Token Broadcaster, and Token Decoder. In this stage,
the surrogate module is kept frozen, and the focus is on improving mask generation to maximize the
predicted CLIP-T score. The objective is to modify the MLLM’s outputs to generate binary masks
with a higher CLIP-T score when processed by the diffusion model.

During training, the loss function is augmented to include both L, as well as the MSE loss between
the predicted CLIP-T score and the oracle CLIP-T score. The updated loss Lypgaied is defined as:

Lupdated = Lmain + A5 LMSE, 3

where Lysg is the MSE loss between the predicted and oracle CLIP-T score, and A5 is a hyperparam-
eter controlling the weight of the CLIP-T score loss.



Table 1: Quantitative comparison across multi-instruction and context-aware instruction tasks.
Our model demonstrates overall superior performance, especially excelling in the context-aware
instruction task. This highlights our method’s superb capability to handle context-aware instructions
with high precision, applying edits that closely align with the intended modifications without over-
editing. Bold and underlining indicates the best and the second-best performance for each metric.

Multi Instruction \ Context-Aware Instruction
Method L1} L2/ CLIP-If DINOtT CLIP-Tt \ L1 L2] CLIP-It DINOf CLIP-Tt
1P2P [4] 0.1402 0.0526 0.8327 0.7122 0.2977 | 0.1460 0.0514 0.7975 0.6429 0.2715

MGIE [10] 0.1639 0.0777 0.8205 0.6723  0.2787 | 0.1592 0.0750 0.8090 0.6519  0.2637
SmartEdit [16]  0.1295 0.0573 0.8630 0.7516  0.2971 | 0.1111 0.0495 0.8739 0.7726  0.2824
Fol [L1] 0.1054 0.0385 0.8811 0.8096 0.2941 | 0.0891 0.0284 0.8895 0.8190  0.2888
CAMILA (ours) 0.0945 0.0366 0.8980 0.8392 0.2984 | 0.0661 0.0222 0.9296 0.8932  0.3006

5 Evaluation

5.1 Task Categorization

For a comprehensive assessment, we evaluate our method on both single-instruction tasks aligned
with standard benchmarks, and multi-instruction image editing tasks that require multiple edit turns
in a single sequence. In a single-instruction scenario, a single directive is tested either in a single-turn
or multi-turn setting, whereas multi-instruction tasks involve multiple directives that must be applied
simultaneously. We further divide multi-instruction tasks into two types: Multi-instruction Image
Editing, which includes only applicable instructions, and Context-Aware Instruction Image Editing,
which includes a mix of applicable and non-applicable instructions.

5.2 Evaluation Settings

Datasets: For evaluating single instruction tasks, we use the MagicBrush [47]] dataset, which covers
both single-turn and multi-turn scenarios as detailed in Section[6] along with the EMU [40]] dataset.
However, the literature lacks dedicated benchmark datasets for multi-instruction or context-aware
instruction editing. To address this gap, we introduce two new tasks and curate corresponding
datasets: Multi-instruction Image Editing and Context-Aware Instruction Image Editing as detailed
in Section [5.3] In Multi-instruction Image Editing, we concatenate applicable instructions from
MagicBrush’s multi-turn dataset into a single instruction sequence. In the Context-Aware Instruction
Image Editing task, we introduce non-applicable instructions generated with ChatGPT-4V (ision) [32]
alongside images. More details on data creation are detailed in Section

Metrics: To evaluate our proposed method, we employ a diverse set of metrics, including L1/L.2,
CLIP-I, DINO, CLIP-T, CLIP-dir, and PickScore [22]. Detailed descriptions of these metrics are
provided in Section [B]

Baselines: We compare CAMILA with five different state-of-the-art image editing methods: IP2P [4],
EMILIE [17], MGIE [10], SmartEdit (SE) [16], and Fol [11].

5.3 Main Results

Quantitative Result. As illustrated in Table[I] CAMILA demonstrates state-of-the-art results across
both multi-instruction and context-aware instruction tasks, particularly excelling in metrics such as
CLIP-I, CLIP-T, and DINO similarity, and overall distance metrics (L1 and L2). This indicates that
our model aligns closely with human perception in maintaining fidelity to edited images.

The existing methods exhibit notable limitations. MGIE, which relies on a summarization approach
to compress instructions, proves to be vulnerable to non-applicable instructions, leading to potential
inaccuracies in execution. While SmartEdit shows improved understanding due to the integration
of MLLMs, it suffers from a lack of robustness by feeding all instructions into the diffusion model
simultaneously, which can lead to oversights in handling complex editing requests. Additionally, Fol
struggles with imprecise attention maps, which reduces its performance below CAMILA though
it is the most competitive baseline. In stark contrast, our approach effectively manages multi-
instruction editing tasks, demonstrating superior capability in processing context-aware instructions.
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Figure 4: Qualitative comparisons: Fol needs to extract keywords from each instruction using
pretrained GPT model before running the model. Furthermore, due to inaccuracies in the attention
map of diffusion model, Fol often fails to make precise modifications. In the case of context-aware
instructions, CAMILA accurately identifies applicable instructions by generating [MASK] and [NEG]
tokens from MLLM. We present the decoded mask results for each instruction of the [MASK] token.

This proficiency enables our model to execute edits with high precision, aligning closely with the
intended modifications while minimizing the risk of over-editing. Overall, our results underscore the
advantages of our method in navigating the complexities inherent to multi-instruction tasks.

In addition to distance-based metrics and similarity-based metrics, we further evaluate human
perceptual alignment using the PickScore metric across two editing tasks: Multi-instruction and
Context-Aware image editing. CAMILA outperforms the strongest baseline, Fol, by 18.1% and
24.0% in each setting, respectively. The advantage is more evident in the Context-Aware setting,
demonstrating our model’s ability to effectively filter non-applicable instructions. More detailed
results are presented in Section [E. ]

Qualitative Result. As shown in Figure[d] we present qualitative results and observe the following:
All models, except for Fol, frequently execute only a single instruction when multiple instructions
are provided. In (a), while Fol successfully performs the first instruction, it fails to generate an
accurate attention map for the keyword ‘river’, resulting in the incomplete application of the second
instruction. Similarly, in (b), the lack of a fine-grained attention map results in the hat being placed
incorrectly. The remaining models predominantly execute only one instruction and demonstrate a
tendency toward over-editing; for instance, IP2P and MGIE alter the background color in (a), and
SmartEdit generates an additional unicorn.

In (c) and (d), most models exhibit erroneous edits in response to non-applicable instructions. In (c),
despite the absence of a chair or table in the input image, the models add incorrect floral elements or
a table. Similarly, in (d), although the input image does not contain a pancake, it erroneously appears
due to the removal instruction, illustrating an inability to correctly handle the instruction. Especially
compared to Fol, our model demonstrates greater precision in mask extraction for areas requiring
modification, enabling more refined edits. Furthermore, CAMILA supports both localized object
edits and global transformations. The [MASK] tokens dynamically adjust their spatial coverage based
on each instruction, enabling edits that range from small regions to full-scene editings. Through the
use of [MASK] and [NEG] tokens, our proposed model facilitates robust, context-aware image editing.
Further qualitative results are provided in Section [E.4]



Table 2: Quantitative comparison on Table 3: Comparison of results before and after addi-
EMU dataset. Achieving the highest tional training with the surrogate module. We apply the
CLIP-dir score in the Context-Aware surrogate module to improve the CLIP-T score, which also
task shows that our model effectively enhances L1/L.2 losses, as well as CLIP-I and DINO scores.

distinguishes non-executable instruc- Task |Config| L1} L2, CLIP-If DINOf CLIP-T}
tions. Single | before | 0.0602 0.0194 0.9367 0.9067 0.3020
Task Single-inst Context-Aware Single | -Turn | after |0.0596 0.0191 0.9375 0.9069 0.3022
Method CLIP-Tt CLIP-dirf | CLIP-Tt CLIP-dirt Inst. [ Multi | before |0.0931 0.0339 0.8969 0.8357 03011
2P 02616 0075 | 0246 0062 -Turn | after |0.0782 0.0268 0.9127 0.8659 0.3019
MGIE 0.2680  0.082 | 0.2543  0.066 Muli | before [0.0957 0.0372 0.8961 0.8329  0.2975
SE 02680  0.094 | 02448  0.067 Multi after | 0.0945 0.0366 0.8980 0.8392 0.2984
Fol 02673  0.068 | 02651  0.054 Inst. [Context | before | 0.0673 0.0228 00284 0.8910 0.3002
ours  0.2687  0.092 | 0.2679  0.092 -Aware | after |0.0661 0.0222 0.9296 0.8932 0.3006

6 Ablation Study

Robustness of CAMILA. In our framework, distinguishing applicable from non-applicable instruc-
tions is critical to prevent unintended edits. Each input may contain multiple instructions, which
are classified by the MLLM into [MASK] and [NEG] tokens. On the Context-Aware Image Editing
dataset, our model achieves a token classification accuracy of 90.21%, highlighting the robustness
of CAMILA in filtering non-applicable instructions. Furthermore, we evaluate the alignment of
generated masks with ground-truth edited regions using standard segmentation metrics. For applicable
instructions, classified as [MASK] token, our model achieves an IoU of 0.3819 and a Dice score of
0.4986. As described in Equation (6], our model is trained with multiple loss objectives, not solely
for segmentation accuracy. The generated masks are designed as high-level guidance, reflecting our
focus on instruction fidelity and plausibility rather than strict spatial matching.

Evaluation on Instruction-Following Accuracy. We evaluate our method on the EMU dataset for
both single-instruction and context-aware instruction tasks. Since the EMU dataset does not provide
ground-truth target images, we utilize CLIP-T and CLIP-dir as evaluation metric. CLIP-dir measures
how accurately the generated image aligns with the intended semantic direction of the instructions.
As shown in Table[2] CAMILA achieves the highest CLIP-dir score in the context-aware instruction
task, demonstrating its effectiveness in handling non-executable instructions.

Table 4: Quantitative comparison on single instruction tasks. CAMILA excels in single instruc-
tion tasks by generating precise masks that accurately target modification areas.

Single-turn Instruction \ Multi-turn Instruction
Method L1} L2| CLIP-It DINOt CLIP-Tt| LI1{ L2} CLIP-It DINOt CLIP-Tt
IP2P [4] 0.1129 0.0373 0.8540 0.7423  0.2918 | 0.1538 0.0575 0.8103 0.6511 0.2866

EMILIE [17]  0.1129 0.0373 0.8540 0.7423  0.2918 | 0.1268 0.0509 0.8557 0.7591 0.2916
MGIE [10] 0.0931 0.0383 0.8853 0.8088 0.2935 |0.1312 0.0574 0.8571 0.7507 0.3013
SmartEdit [16]  0.0895 0.0353 0.9030 0.8308 0.3024 | 0.1333 0.0575 0.8567 0.7421  0.3021
Fol [L1] 0.0699 0.0206 0.9207 0.8779 0.2980 | 0.1084 0.0379 0.8681 0.7838  0.2935
CAMILA (ours) 0.0596 0.0191 0.9375 0.9069 0.3022 | 0.0782 0.0268 0.9127 0.8659 0.3019

Single-Instruction Task Performance. CAMILA, optimized for multi-instruction tasks, also
performs strongly on single-instruction tasks, as shown in Table @l CAMILA achieves strong
performance across most evaluation metrics. In contrast, SmartEdit shows a tendency toward over-
editing. This reflects CAMILA’s balanced approach, minimizing over-editing while maintaining
high fidelity. As shown in Figure[5] most models exhibit over-editing issues. Although Fol is designed
to minimize over-editing, it encounters specific issues as follows: inaccurate attention maps in (a)
prevent precise modifications to the ‘angry birds’ object, while in (b), additional frosting is incorrectly
applied to cupcakes. These cases show that CAMILA achieves accurate edits without over-editing.

Impact of Surrogate Module Training. We compare the results on the multi-instruction tasks and
single-instruction tasks before and after additional surrogate module training. As shown in Table [3]
we demonstrate that mask generation through this surrogate module improves model performance.
Interestingly, the improvement is not just for CLIP-T but also for the other metrics.



Table 5: Large-scale baseline compar-
ison on context-aware instruction task.
CAMILA outperforms larger diffusion-based
models by generating contextually aligned
and precise masks, highlighting that its
. ' context-aware design enhances editing quality
e e e B Bt without relying on increased model capacity.

7 (b) “A;id a ‘;trawbsr'rrry on top of the

cupcake with frosting”

. o . . . Method L1 L2} CLIP-It DINOT CLIP-TH
Figure 5: Qualitative comparisons for single in-

struction task. CAMILA demonstrates success-  StepIX-Edit 0.0830 0.0329 0.8096 0.8892  0.2934
ful editing even in the single instruction task. CAMILA 0.0661 0.0222 09296 0.8932 0.3006

Comparison with Large-Scale Baseline We additionally compare CAMILA with recent large-scale
model such as Step1X-Edit [28]], which use larger diffusion backbone [34] than Stable Diffusion [38]].
As shown in Table[5] CAMILA achieves better performance on the context-aware image editing
dataset despite its smaller diffusion model size. This implies that the context-aware design of
CAMILA effectively enhances editing fidelity without relying on large model capacity.

Additional ablation studies on the variation of the Token Decoder and the inference time comparison
are provided in Section[D.T]and Section[D.2] respectively.

7 Conclusion

In this paper, we addressed the limitations of current text-guided image editing models, particularly
their difficulty in handling fine-grained edits, multi-instruction edits, and distinguishing between
executable and non-executable instructions. Leveraging MLLMs, we generated specialized tokens
([MASK] and [NEG]) and designed token broadcaster to ensure the validity of the contextual coherence
between instructions and the image, so that only relevant edits can be applied to the designated regions
while ignoring non-executable instructions. For comprehensive evaluation, we created new datasets
that can evaluate Context-Aware Image Editing task, where our approach achieves superior results
across both qualitative and quantitative evaluations compared to state-of-the-art solutions.
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