
Learning Large Graph Property Prediction via Graph Segment Training

Kaidi Cao 1 * Phitchaya Mangpo Phothilimthana 2 Sami Abu-El-Haija 2 Dustin Zelle 2 Yanqi Zhou 2

Charith Mendis 3 * Jure Leskovec 1 Bryan Perozzi 2

Abstract
Learning to predict properties of a large graph is
challenging because each prediction requires the
knowledge of an entire graph, while the amount
of memory available during training is bounded.
Here we propose Graph Segment Training (GST),
a general framework that utilizes a divide-and-
conquer approach to allow learning large graph
property prediction with a constant memory foot-
print. GST first divides a large graph into seg-
ments and then backpropagates through only a
few segments sampled per training iteration. We
refine the GST paradigm by introducing a histori-
cal embedding table to efficiently obtain embed-
dings for segments not sampled for backpropaga-
tion. To mitigate the staleness of historical em-
beddings, we design two novel techniques. First,
we finetune the prediction head to fix the input
distribution shift. Second, we introduce Stale Em-
bedding Dropout to drop some stale embeddings
during training to reduce bias. We evaluate our
complete method GST+EFD (with all the tech-
niques together) on large graph property predic-
tion benchmark MalNet. Our experiments show
that GST+EFD is both memory-efficient and fast,
while offering a slight boost on test accuracy over
a typical full graph training regime.

1. Introduction
The popular graph property prediction tasks deal with rela-
tively small graphs, so the scalability issue arises only from
a large number of (small) graphs. However, graph prop-
erty prediction tasks also face another scalability challenge,
which arises due to the large size of each individual graph,
as some graphs can have millions or even billions of nodes

* Work partially done while at Google. 1Stanford University,
California, USA 2Google, California, USA 3UIUC, Illinois, USA.
Correspondence to: Kaidi Cao <kaidicao@cs.stanford.edu>.

Proceedings of the 2nd Annual Workshop on Topology, Algebra,
and Geometry in Machine Learning (TAG-ML) at the 40 th In-
ternational Conference on Machine Learning, Honolulu, Hawaii,
USA. 2023. Copyright 2023 by the author(s).

and edges (Freitas et al., 2021). Training typical Graph
Neural Networks (GNNs) to classify such large graphs can
be computationally infeasible, as the memory needed scales
at least linearly with the size of the graph (Zhang et al.,
2022). This presents a challenge as even most powerful
GPUs, which are optimized for handling large amounts of
data, only have a limited amount of memory available.

In this paper, we address the problem of property predic-
tion of large graphs. We propose Graph Segment Training
(GST), which is able to train on large graphs with constant
(GPU) memory footprint. Our approach partitions each
large graph into smaller segments with a controlled size in
the pre-processing phase. During the training process, a
random subset of segments is selected to update the model
at each step, rather than using the entire graph. This way,
we need to maintain intermediate activations for only a few
segments for backpropagation; embeddings for the remain-
ing segments are created without saving their intermediate
activations. The embeddings of all segments are then com-
bined to generate an embedding for the original large graph,
which is used for prediction. Therefore, each large graph
has an upper bound on memory consumption during train-
ing regardless of its original size. This allows us to train
the model on large graphs without running into an out-of-
memory (OOM) issue, even with limited computational
resources.

To accelerate the training process further, we introduce a his-
torical embedding table to efficiently produce embeddings
for graph segments that do not require gradients, as histori-
cal embeddings eliminate additional computation on such
segments. However, the historical embeddings induce stale-
ness issues during training, so we design two techniques to
mitigate such issues in practice. First, we characterize the
input distribution mismatch issue between training and test
stages of the prediction head, and propose to finetune only
the prediction head at the end of training to close the input
distribution gap. Second, we identify bias in the loss func-
tion due to stale historical embeddings, and introduce Stale
Embedding Dropout to drop some stale embeddings during
training to reduce this bias. Our final proposed method,
called GST+EFD, is both memory-efficient and fast.

We evaluate our method on the following datasets: MalNet-

1

Learning Large Graph Property Prediction via Graph Segment Training

Feature Extractor

Prediction Head

(a) Full Graph Training (b) Our Work: Graph Segment Training

𝑭′

𝑭

𝑭′

Produce Embeddings

Data Flow

Gradient Flow

Graph Embedding

𝓖

𝒚$

𝒉

𝒚$

𝑭

Figure 1. (a) Full Graph Training: Classically, models are trained using the entire graph, meaning all nodes and edges of the graph are
used to compute gradients. For large graphs, this might be computationally infeasible. (b) Graph Segment Training: Our solution is
to partition each large graph into smaller segments and select a random subset of segments to update the model; embeddings for the
remaining segments are produced without saving their intermediate activations. The embeddings of all segments are combined to generate
an embedding for the original large graph, which is then used for prediction.

Tiny, MalNet-Large. A typical full graph training pipeline
(Full Graph Training) can only train on MalNet-Tiny, and
unavoidably reaches OOM on MalNet-Large. On the con-
trary, we empirically show that the proposed GST frame-
work successfully trains on arbitrarily large graphs using
a single NVIDIA-V100 GPU with only 16GB of memory
for MalNet-Large, while maintaining comparable perfor-
mance with Full Graph Training. We finally demonstrate
that our complete method GST+EFD slightly outperforms
GST by another 1-2% in terms of final evaluation metric,
and simultaneously being 3x faster in terms of training time.

2. Our Method: GST+EFD
2.1. Graph Segment Training (GST)

Given a training graph dataset Dtrain = {(G(i), y(i))}ni=1, a
common SGD update step requires calculating the gradient:

∇θ

∑
(G(i),y(i))∈B

L((F ′ ◦ F)(G(i)), y(i))

where θ is trainable weights in F ′ ◦ F , and B is a sampled
minibatch. Graphs can differ in size (the number of nodes
|V(i)|), with some being too large to fit into the device’s
memory. This is because the memory required to store all
intermediate activations for computing gradients is propor-
tional to the number of nodes and edges in the graph.

To address the above issue, we propose to partition each
original input graph into a collection of graph segments, i.e.,

G(i) ≈
⊕
G(i)j for j ∈ {1, 2, . . . , J (i)}

The approximation ≈ is due to removal of inter-
segment edges. An example of a partition algorithm
is METIS (Karypis & Kumar, 1997). This prepro-
cessing step will result in a training set Dtrain =

{(
⊕

j≤J(i) G(i)j , y(i))}ni=1. Number of partitions J (i) can
vary across graphs, but the size of each graph segment can
be bounded by a controlled size (|V(i)

j | < mGST,∀(i, j)) so
that a batch of a fixed number of graph segments can always
fit within the device’s memory.

When processing graph segment G(i)j , we can obtain its seg-

ment embedding through the backbone: h
(i)
j = F (G(i)j).

The prediction head F ′ requires information from the whole
graph to make the prediction, thus we propose to aggregate
all segment embeddings to recover the full graph embed-
ding: h(i) =

⊕
h
(i)
j . A simple realization of this aggre-

gation is mean pooling. Note that naı̈vely applying the
prediction head F ′ on the aggregated graph embedding —
ŷ(i) = F ′(

⊕
h
(i)
j) — would not provide any reduction in

peak memory consumption, as we need to keep track of the
activations of all graph segments {G(i)j }j∈J(i) to perform
backpropagation.

Thus, we propose to perform backpropagation on only a few
randomly sampled graph segments S(i) ⊆ {1, . . . , J (i)}
and generate embeddings without requiring gradients for
the rest. We hereby denote hs and h̄j as segment em-
beddings that require and do not require gradient, re-
spectively. An entire graph embedding is then: h(i) ≈
{h(i)

s }s∈S(i)

⊕
{h̄(i)

j }j /∈S(i) ≜ h
(i)
s

⊕
h̄
(i)
j . We name this

general pipeline as GST and summarize it in Algorithm 1.

2

Learning Large Graph Property Prediction via Graph Segment Training

Algorithm 1 General Framework of GST
Require: A preprocessed training graph dataset Dtrain =

{(
⊕
G(i)j , y(i))}ni=1. A parameterized backbone F and

a prediction head F ′.
1: for t = 1 to T0 do
2: B ← SampleMiniBatch(Dtrain)
3: for (G(i), ŷ(i)) in B do
4: {G(i)s }s∈S(i) ← SampleGraphSegments(G(i))
5: h̄

(i)
j ← ProduceEmbedding(G(i)j) for j /∈ S(i)

6: h
(i)
s ← F (G(i)s) for s ∈ S(i)

7: end for
8: SGD on loss← 1

|B|
∑

i L
(
F ′(h

(i)
s
⊕

h̄
(i)
j), ŷ(i)

)
9: end for

One implementation of ProduceEmbedding(·) in Algo-
rithm 1 is to use the same feature encoder F to forward
all the segments in {G(i)j }j /∈S(i) without storing any inter-
mediate activation (by stopping gradient).

2.2. GST with Historical Embedding Table

Calculating h̄j by stopping gradient guarantees an upper
bound on peak memory consumption. However, since
we do not need gradients for segments {G(i)j }j /∈S(i) , com-
puting forward pass on these segments can be avoided
to make training faster. To achieve this, we use histor-
ical embeddings acquired in previous training iterations
h̃
(i)
j = T (i, j). With an embedding table T , one can imple-

ment ProduceEmbedding(·) by fetching the corresponding
embedding from the table without any computation. We
update the embedding table after conducting the forward
pass on a graph segment. We optimize the following loss
L(F ′(h

(i)
s
⊕

h̃
(i)
j), y(i)) during training. We name the em-

bedding version of our algorithm as GST+E.

2.3. Prediction Head Finetuning

Let’s compare the input-output distribution of the prediction
head F ′ during the training and inference stage. We have
training distribution Ptrain(h, y) = P(hs

⊕
h̃j , y) and test

distribution Ptest(h, y) = P(
⊕

hj , y). Regardless of the
innate distribution shift between the training and test stage
of the dataset, we note that stale historical embeddings can
further widen the gap between the training and test distribu-
tions. In this case, the minimizer of the expected training
loss does not minimize the expected test loss. To mitigate
the distribution misalignment, we introduce the Prediction
Head Finetuning technique. Concretely, at the end of train-
ing, we update each embedding h

(i)
j in the embedding table

T by forwarding each graph segment in the training set
with the most current feature encoder F . We then finetune
only the prediction head F ′ with all the input embeddings

up-to-date. We use GST+EF to denote GST+E refined with
the Prediction Head Finetuning technique.

2.4. Stale Embedding Dropout

The staleness introduces an additional source of bias and
variance to the stochastic optimization; the loss function cal-
culated with historical embeddings is no longer an unbiased
estimation of its true value. To mitigate the negative impact
of historical embeddings on loss function estimation, we
propose the second technique, Stale Embedding Dropout
(SED). Unlike a standard Dropout, which uniformly drops
elements and weighs up the rest, we propose to drop only
stale segment embeddings and weigh up only segment em-
beddings that are up-to-date. Concretely, assume with the
keep probability p, the weight η for each segment is defined
as:

η(i) =

p+ (1− p)J

(i)

S(i) for G(i)s

0 for G(i)j , with prob. (1− p)

1 for G(i)j , with prob. p
(1)

Please refer to the theoretical analysis in the appendix. By
combining the two proposed techniques, we denote our final
algorithm as GST+EFD.

3. Experiments
3.1. Empirical Results on MalNet

To demonstrate the general applicability of our proposed
GST framework, we consider three backbones, namely,
GCN (Kipf & Welling, 2016), SAGE (Hamilton et al., 2017),
and GraphGPS (Rampášek et al., 2022). GCN and SAGE
are two popular GNN architectures. GraphGPS is a Graph
Transformer that recently achieves state-of-the-art perfor-
mance on many graph-level tasks, but is well-known for
its issue on scalability. We report the top-1 test accuracy
of various methods on MalNet-Tiny and MalNet-Large in
Table 1. We include MalNet-Tiny in this study because its
graphs are relatively small so that it is still possible to run
Full Graph Training.

Notably, we observe that GST slightly outperforms Full
Graph Training in terms of test accuracy on MalNet-Tiny.
GST has exactly the same number of weight parameters
with Full Graph Training. This implies that GST potentially
has a better hierarchical graph pooling mechanism that leads
to better generalization. As we step from MalNet-Tiny to
MalNet-Large, Full Graph Training strategy can no longer
fit the large graphs on a GPU, so we report OOM in the
table. GST’s estimation on graph segment embeddings h̄(i)

j

that do not require gradients is accurate, and thus does not
suffer from staleness issues. Therefore, we use GST as an

3

Learning Large Graph Property Prediction via Graph Segment Training

Table 1. Test accuracy on MalNet-Tiny and MalNet-Large. We report the standard deviation over five runs. GST+EFD achieves better
accuracy than Full Graph Training, and GST, while being much more memory efficient and computationally faster.

Dataset MalNet-Tiny MalNet-Large
Backbone GCN SAGE GraphGPS GCN SAGE GraphGPS

Full Graph Training 87.84±1.37 88.08±1.68 90.82±0.59 OOM OOM OOM
GST 88.26±0.80 88.42±1.03 91.03±0.81 88.35±1.14 88.62±0.82 91.39±0.85

GST-One 71.62±3.85 72.64± 4.73 77.63±3.15 60.41±6.29 57.13±7.36 66.82±4.71
GST+E 86.53±1.18 86.82±0.93 89.75±0.89 48.42±6.61 43.28±7.01 62.47±3.19

GST+EF 87.67±0.78 87.83±0.81 90.52±0.71 84.83±0.96 85.26±0.87 91.33±0.65
GST+ED 88.18±0.48 88.50±0.74 90.96±0.68 82.17±4.74 71.83±6.31 89.46±1.36

GST+EFD 88.78±0.45 89.24±0.53 92.46± 0.66 89.67±0.71 89.78±0.68 92.52±0.58

estimation for the performance of Full Graph Training on
MalNet-Large.

Naı̈vely training on only one graph segment (GST-One)
yields inferior performance than Full Graph Training and
GST, showing that it is essential to aggregate embeddings
from all graph segments. Solely introducing the historical
embedding table (GST+E) significantly deteriorates the op-
timization due to the staleness issue. Each of the proposed
techniques (Prediction Head Finetuning and SED) individ-
ually is beneficial in combating the staleness issue. The
combination of our two techniques (GST+EFD) achieves
the best performance, slightly outperforming GST by an-
other 1-2% in terms of final evaluation metric.

3.2. Runtime Analysis

Next, we empirically compare runtime of different variants
under the proposed GST framework. We summarize an
average time for one forward-backward pass during training
on MalNet-Large dataset in Table 2. Since GST runs infer-
ence for the graph segments that do not require gradients,
the runtime of GST is significantly higher than others’. We
also found that GST+E’s and GST+EFD’s runtime are very
close to GST-One’s; this means the overhead of fetching
embeddings from the embedding table T is minimal. More-
over, GST+EFD’s runtime is slightly lower than GST+E’s
because in the implementation, we can skip the fetching
process if an embedding is set to be dropped. This result
demonstrates that our proposed GST+EFD not only is ef-
ficient in terms of memory usage but also reduces training
time significantly.

Table 2. Runtime analysis (average training time per iteration in
ms) on MalNet-Large dataset.

GCN SAGE GraphGPS

GST 720.8 706.3 1285.7
GST-One 242.2 239.6 441.4
GST+E 258.4 253.6 451.9

GST+EFD 247.9 244.7 448.2

References
Freitas, S., Dong, Y., Neil, J., and Chau, D. H. A large-scale

database for graph representation learning. In Thirty-fifth
Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 1), 2021.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. Advances in neural
information processing systems, 30, 2017.

Karypis, G. and Kumar, V. Metis: A software package
for partitioning unstructured graphs, partitioning meshes,
and computing fill-reducing orderings of sparse matrices.
1997.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. 2016.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. arXiv preprint arXiv:1711.05101, 2017.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in pytorch. 2017.

Rampášek, L., Galkin, M., Dwivedi, V. P., Luu, A. T., Wolf,
G., and Beaini, D. Recipe for a general, powerful, scal-
able graph transformer. arXiv preprint arXiv:2205.12454,
2022.

Wei, C., Kakade, S., and Ma, T. The implicit and explicit
regularization effects of dropout. In International con-
ference on machine learning, pp. 10181–10192. PMLR,
2020.

You, J., Ying, Z., and Leskovec, J. Design space for graph
neural networks. Advances in Neural Information Pro-
cessing Systems, 33:17009–17021, 2020.

Zhang, H., Yu, Z., Dai, G., Huang, G., Ding, Y., Xie, Y.,
and Wang, Y. Understanding gnn computational graph:
A coordinated computation, io, and memory perspective.
Proceedings of Machine Learning and Systems, 4:467–
484, 2022.

4

Learning Large Graph Property Prediction via Graph Segment Training

A. Proofs and Derivations
Theorem A.1. Under proper a condition that W · h̃(i)

j ≈ 0 and W · h(i)
j ≈ 0, where W is the first linear transformation

in F ′, SED with a keep ratio p ensures to reduce bias term introduced by historical embeddings by a factor of p, while
introducing another regularization term.

Proof. Let δ(i) ≜ h
(i)
s
⊕

h̃
(i)
j −

⊕
h
(i)
j be the perturbation on the graph embedding. We use ET to denote using the

embedding table without applying SED. For GST+E, we have

δ
(i)ET

j =

{
0 with prob. S(i)

J(i)

h̃
(i)
j − h

(i)
j with prob. J(i)−S(i)

J(i)

The randomness above comes from the fact that each segment G(i)j is selected for backpropagation with probability S(i)

J(i) .

For SED, there are two folds of randomness when training on graph G(i): randomly selecting S(i) segments to train and
randomly select stale embedding h̃

(i)
j to drop. Thus we can rewrite δ

(i)
j as

δ
(i)SED

j =

(1−p)(J(i)−S(i))

S(i) h
(i)
j with prob. S(i)

J(i)

−h(i)
j with prob. (1−p)(J(i)−S(i))

J(i)

h̃
(i)
j − h

(i)
j with prob. p(J(i)−S(i))

J(i)

We apply Taylor expansion around δ
(i)
j = 0 on the final loss to analyze the effect of this perturbation. In Section A.2 of Wei

et al. (2020), when W · h̃(i)
j ≈ 0 and W · h(i)

j ≈ 0, the perturbation of δ(i) to the loss function might not be too large, so it
supports the use of Taylor Expansion.

L(F ′(h(i)
s

⊕
h̃
(i)
j))− L(F ′(

⊕
h
(i)
j))

=L(F ′(
⊕

(h
(i)
j + δ

(i)
j)))− L(F ′(

⊕
h
(i)
j))

≈
∑
j

D
h

(i)
j
(L ◦ F ′)[h

(i)
j]δ

(i)
j +

1

2
δ
(i)
j

⊤
(D2

h
(i)
j

(L ◦ F ′)[h
(i)
j])δ

(i)
j

Note that we randomly select segments with index s during training, we can then derive an approximation of the expected
difference during training as

EsL(F ′(h(i)
s

⊕
h̃
(i)
j))− L(F ′(

⊕
h
(i)
j)) (2)

≈
∑
j

E
δ
(i)
j

D
h

(i)
j
(L ◦ F ′)[h

(i)
j]δ

(i)
j︸ ︷︷ ︸

B

+
1

2
δ
(i)
j

⊤
(D2

h
(i)
j

(L ◦ F ′)[h
(i)
j])δ

(i)
j︸ ︷︷ ︸

R

We can then compare the effect of SED by substituting the two versions of δ(i)j into Eq. 2.

So for the first term, we have

E
δ
(i)ET
j

[B] = ⟨D
h

(i)
j
(L ◦ F ′)[h

(i)
j],Eδ(i)j ⟩

= ⟨D
h

(i)
j
(L ◦ F ′)[h

(i)
j],

J (i) − S(i)

J (i)
E(h̃(i)

j − h
(i)
j)⟩

E
δ
(i)SED
j

[B] = ⟨D
h

(i)
j
(L ◦ F ′)[h

(i)
j],Eδ(i)j ⟩

= ⟨D
h

(i)
j
(L ◦ F ′)[h

(i)
j],

J (i) − S(i)

J (i)
E(h̃(i)

j − h
(i)
j) ∗ p⟩

5

Learning Large Graph Property Prediction via Graph Segment Training

whereas for the second term, we have

E
δ
(i)ET
j

[R] =⟨D2

h
(i)
j

(L ◦ F ′)[h
(i)
j],

Eδ(i)j δ
(i)⊤

j

2
⟩

=⟨D2

h
(i)
j

(L ◦ F ′)[h
(i)
j],

J (i) − S(i)

2J (i)
(h̃

(i)
j − h

(i)
j)

⊙
2⟩

E
δ
(i)SED
j

[R] = ⟨D2

h
(i)
j

(L ◦ F ′)[h
(i)
j],

Eδ(i)j δ
(i)⊤

j

2
⟩

=⟨D2

h
(i)
j

(L ◦ F ′)[h
(i)
j], (

(J (i) − S(i))p

2J (i)
(h̃

(i)
j − h

(i)
j)

⊙
2

+
(J (i) − S(i))(1− p)(J (i) − pJ (i) + pS(i))

2J (i)S(i)
h
(i)
j

⊙
2
)⟩

It is easy to check that the statement satisfies given the value calculated.

B. Implementation Details

Datasets. MalNet (Freitas et al., 2021) is a large-scale graph representation learning dataset, with the goal to predict the
category of a function call graph. MalNet is the largest public graph database constructed to date in terms of average
graph size. Its widely-used split is called MalNet-Tiny, containing 5,000 graphs across balanced 5 types, with each graph
containing at most 5,000 nodes. To evaluate our approach on the regime where the graph size is large, we construct an
alternative split from the original MalNet dataset, which we named MalNet-Large. MalNet-Large also contains 5,000 graphs
across balanced 5 types. MalNet-Large’s average graph size reaches 47k with the largest graph containing 541k nodes. We
will release our experimental split for MalNet-Large to promote future research.

Methods. We test combinations of the following proposed techniques and some baselines. (1) Full Graph Training: we
train on all graphs in their original scale without applying any partitioning beforehand. (2) GST-One: we partition the
original graph into a collection of graph segments G(i) ≈

⊕
G(i)j , but we randomly select only one segment G(i)j for

each graph to train every iteration. (3) GST: following the general GST framework described in Algorithm 1, we replace
ProduceEmedding(·) by using the same feature encoder F to forward all the segments in {G(i)j }j /∈S(⟩) without storing any

intermediate activation. We set S(i) = 1 in our experiments. (4) E: we introduce an embedding table h̃(i)
j = T (i, j) to store

the historical embedding of each graph segment, and we fetch the embedding from T if we do not need to calculate gradient
for the corresponding segment. (5) F: in addition to introducing the embedding table T , we finetune the prediction head F ′

with all up-to-date segment embeddings at the end of training. (6) D: we apply SED defined in Eq. 1 during training.

When these techniques are combined, we concatenate the acronyms with a “+” to GST as an abbreviation. We conduct
all the experiments on MalNet with a single NVIDIA-V100 GPU with 16GB of memory. Please refer to Appendix B for
additional implementation details.

Table 3. Overview of the graph datasets used in this study.

Avg. # nodes Min. # nodes Max. # nodes Avg. # edges Min. # edges Max. # edges

MalNet-Tiny 1,410 5 4,994 2,860 4 20,096
MalNet-Large 47,838 3,374 541,571 225,474 20,597 3,278,318

We follow GraphGym (You et al., 2020) to represent design spaces of GNN as (message passing layer type, number of
pre-process layers, number of message passing layers, number of post-process layers, activation, aggregation). Our code is
implemented in PyTorch (Paszke et al., 2017). We will make source code public at the time of publication.

Implementation details for MalNet-Large. We consider three model variations for the MalNet-Large dataset. Please
refer to their hyperparameters in Table 4. We use Adam optimizer (Kingma & Ba, 2014) with the base learning rate of 0.01
for GCN and SAGE. For GraphGPS, we use AdamW optimizer (Loshchilov & Hutter, 2017) with the cosine scheduler

6

Learning Large Graph Property Prediction via Graph Segment Training

0 200 400 600
Epoch

20

30

40

50

60

70

80

90

A
cc

ur
ac

y

Train
Test

Figure 2. Accuracy curve on MalNet-Large
of GST+EFD with SAGE backbone. We
start Prediction Head Finetuning at epoch
600.

0.0 0.25 0.5 0.75 1.0
p

60

65

70

75

80

85

90

95

100

A
cc

ur
ac

y
Figure 3. Ablation study on the keep ra-
tio p in SED. We report test accuracy
of GST+EFD with SAGE backbone on
MalNet-Large for 5 runs.

1000 3000 5000 7000 9000
Max Segment Size

60

65

70

75

80

85

90

95

100

A
cc

ur
ac

y

Figure 4. Ablation study on maximum seg-
ment size. We report test accuracy
of GST+EFD with SAGE backbone on
MalNet-Large for 5 runs.

and the base learning rate of 0.0005. We use L2 regularization with a weight decay of 1e-4. We train for 600 epochs until
convergence. For Prediction Head Finetuning, we finetune for another 100 epochs. We limit the maximum segment size to
5,000 nodes, and use a keep probability p = 0.5 if not otherwise specified. We train with CrossEntropy loss.

Table 4. Detailed GNN/Graph Transformer designs used in MalNet-Tiny and MalNet-Large.

model GCN SAGE GraphGPS

message passing layer type GCNConv SAGEConv GatedGCN+Performer
pre-process layer num. 1 1 0
message passing layer num. 2 2 5
post-process layer num. 1 1 3
hidden dimension 300 300 64
activation PReLU PReLU ReLU
aggregation mean mean mean

Implementation details for MalNet-Tiny. We use the same model architectures/training schedules as in the MalNet-Large
dataset. The only difference is that as graphs in MalNet-Tiny have no more than 5000 nodes, so we limit maximum segment
size to 500 here.

C. Additional Results
C.1. Ablation Studies

Effect of finetuning. We visualize the training/test accuracy curve of GST+EFD over time in Figure 2. The staleness
introduced by historical embeddings drastically hurts generalization, as shown for the first 600 epochs. We start finetuning
at epoch 600, and the gap between training and test accuracy decreases by a large margin instantly.

Ablation study on segment dropout ratio. To analyze the effect of the keep ratio p in SED, we vary its value from 0 to 1
and visualize the results in Figure 3. When p = 1, GST+EFD degrades back to using the historical embedding table without
SED, as the performance decreases due to staleness. When p = 0, GST+EFD becomes GST-One, where we drop all the
stale historical embeddings. This extreme case introduces too heavy regularization that impedes the model from fitting the
training data, leading to a decrease in test performance ultimately. We found that p = 0.5 achieves a satisfactory tradeoff
between fitting the training data and adding a proper amount of regularization.

Ablation study on segment size. We also alter the maximum segment size and visualize the results in Figure 4. A smaller
maximum segment size will result in much more number of segments. Interestingly, we found that the proposed GST+EFD

7

Learning Large Graph Property Prediction via Graph Segment Training

is very robust to the choice of the maximum segment size, as long as the segment size is reasonally large.

C.2. Runtime Analysis

Next, we empirically compare runtime of different variants under the proposed GST framework. We summarize an average
time for one forward-backward pass during training on MalNet-Large dataset in Table 2. Since GST runs inference for
the graph segments that do not require gradients, the runtime of GST is significantly higher than others’. We also found
that GST+E’s and GST+EFD’s runtime are very close to GST-One’s; this means the overhead of fetching embeddings
from the embedding table T is minimal. Moreover, GST+EFD’s runtime is slightly lower than GST+E’s because in the
implementation, we can skip the fetching process if an embedding is set to be dropped. This result demonstrates that our
proposed GST+EFD not only is efficient in terms of memory usage but also reduces training time significantly.

8

