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Abstract. Obtaining labeled data from medical images is very expen-
sive and labor intensive. At the same time, the large number of existing
publicly available medical image datasets are usually labeled with only
some of the organs as target regions, while other organs in the image are
ignored. It is a challenge to train a neural network to segment all labeled
categories using only partially labeled data. We design a compound loss,
the selected partially cross entropy and dice loss, that allows the neural
network to learn specific categories from partially labeled data. In addi-
tion, we improve the inference and training process of nnU-Net to reduce
computational resources and accelerate inference. Experiments demon-
strate that our method achieves the average Dice Similarity Coefficient
of 0.8514 and 0.1514 on 13 abdominal organ and tumor segmentation
tasks, and enables the network to efficiently segment specific categories
from partially labeled data. Moreover, it significantly improves the infer-
ence speed, with an average running time of 21.8 seconds, and uses only
an average of 2531 MB of maximum GPU memory.

Keywords: Partially labeled learning · Accelerate inference · Lightweight
network.

1 Introduction

Medical image segmentation aims to extract and quantify regions of interest
in biological tissue or organ images. The results of target organ segmentation
have many important clinical applications, such as organ quantification, surgi-
cal planning, and disease diagnosis. In recent years, deep learning-based methods
have been widely used to automatically segment abdominal organs. Among these
methods, nnU-Net [11] is a popular and robust framework that has won a number
of organ segmentation challenges. Although it is convenient for fully supervised
organ segmentation tasks and provides a solid baseline result by automatically
setting network hyperparameters, this approach does not support weakly super-
vised segmentation and the inference process is computationally expensive and
time consuming. Numerous studies have shown that the methodological perfor-
mance of deep neural networks often relies heavily on the availability of large,
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high-quality labeled datasets for organ segmentation tasks. In order to learn ro-
bust data representations for robust and efficient medical image segmentation,
we need large datasets with thousands of labeled or unlabeled data for super-
vised, weakly supervised, and self-supervised learning. But, the annotation of 3D
medical images is a difficult and laborious task. Thus, depending on the task,
only a bare minimum of images and target structures is usually annotated. This
results in a situation where a zoo of partially labeled datasets is available to
the community. In this context, the organizer of FLARE2023 build a large-scale
and diverse abdomen CT dataset, including 40000 CT scans from servel medical
datasets. There are 2200 labeled data and 1800 unlabeled data available. Com-
pared with FLARE 2021-2022 [17,18], the challenge for FLARE 2023 is how to
leverage the large amount of partial labels and unlabeled data to improve the
segmentation performance while taking into account efficient inference.

In recent years, there has been a rapid evolution of semi-supervised and
self-supervised learning methods [31,24]. These techniques typically learn bet-
ter representations by utilizing unlabeled data, ultimately improving segmenta-
tion performance. On the one hand, one frequently employed approach in semi-
supervised learning is pseudo-labeling. This method pairs the segmentation re-
sults of the network on unlabeled data as pseudo-labels, adds them to the training
set, and repeats the process over several iterations. On the other hand, integrat-
ing potentially valuable additional information from different datasets, which
are partially labeled, can provide more information about different anatomi-
cal target structures or related details, as well as different types of pathology.
Therefore, recent advances in weak supervision explore how partially annotated
datasets can train a model to segment all annotated categories [12]. Early meth-
ods considered unlabeled organs as background [21,4] and imposed penalties
for overlapping predictions based on mutual exclusivity of organs [22,5]. [26]
transforms the cross-entropy loss and dice loss by assigning unlabeled data from
partially labeled data to the background class. [3,30,13] predict just one struc-
ture of concern per forward pass through the integration of category information
at various network stages. [14] use of partial cross entropy and intraclass gray
regular terms allows segmentation under weak supervision. [25] ignores the chan-
nels where unlabeled categories are located, designs a loss function that mixes
binary cross-entropy and dice loss, and can handle the task of category over-
lap in partial labeling learning. However, there is a lack of methods that utilize
both pseudo-labeled data and partially labeled learning techniques to handle
organ, tumor segmentation tasks like FLARE23 that contain partially labeled
and unlabeled data.

In this paper, we present a framework that utilizes both pseudo-labeled and
partially labeled learning by designing a selected partially loss. We also im-
prove nnU-Net for efficient inference and less computational resource respec-
tively. Specifically, we choose to merge 13 organ classes of pseudo-labels and
partial labels, while leaving the remaining classes unchanged, resulting in a par-
tial labeling of the tumor. The selected partially loss, which is a combination
of cross-entropy loss and dice loss, introduces a selected class mask to deter-
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mine whether the class loss will compute and backward gradient. Otherwise, we
find that the resampling process in the inference is time-consuming. To address
this issue, we have rewritten the implementation of the resampling method and
utilized a smaller network and lower resolution to minimize the computational
requirements during inference.

Our main contributions are summarized as follows:

– We present a new approach, selected partially loss, which enables the use of
both pseudo label and partial label data, thereby expanding the potential
applications of current segmentation models.

– We optimize the time-consuming components of the resampling code in nnU-
Net.

– The experiment shows that our method improves the detectability of the
segmentation network for the selected class. This outperforms the baseline
by 5 percentage points for the Dice Similarity Coefficient (DSC).

2 Method

Fig. 1. Overview of our framework. Our framework consists of three parts. Firstly, we
construct a training set by combining pseudo-labels. Secondly, we reduce computation
costs by using a small nnU-Net. Lastly, we train nnU-Net by a selected-partially-loss
so that it can learn from both unlabeled and partially-labeled data.

2.1 Preprocessing

For image prepossessing, all of our settings follow the default nnU-NetV2.

– Statistical analysis is conducted on data pertaining to volume spacing and
foreground intensity.

– CT images are clipped at the 0.5 and 99.5 percentiles of foreground voxels.
– All images are normalized through the subtraction of the mean and division

by the standard deviation.
– The volume is then resampled to a target spacing of (2.42,1.95,1.95).
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2.2 Proposed Method

In Figure 1 we present an overview of our framework, which consists of three
components. We filter the data by pseudo and select 300 cases as the training
set. We then train a small nnU-Net using a compound partially loss on lower
resolution. And our compound partially loss main refer to [25,26,14].

Fusion of pseudo-labels and partial-labels We use two pseudo-labels gen-
erated by [10,27], consisting of 13 organ categories for all 4000 cases. First, We
calculate the DSC of the two pseudo-labels, evaluate their differences, and filter
out the samples with DSC greater than 0.85. we sort them by their ID numbers.
Subsequently, we select first 200 cases from partially labeled CT volumes and
first 100 cases from unlabeled CT volumes to construct the training set. Then,
the pseudo-labels are merged with the selected cases that do not contain the
ground truth annotation of the class. Therefore, for the 300 cases, there are 13
organ labels (ground truth or pseudo) and tumor is partially labeled. All of our
results use the pseudo-labels generated by the two FLARE 2022 methods.

Problem definition We begin with a dataset D, with N image and label
pairs D = {(x, y)1, ..., (x, y)N}. In the dataset, every image voxel xi, i ∈ [1, I], is
assigned to one class c ∈ C, where C is the label set associated to dataset D.
Since the tumor is included in some organs commonly, but the pseudo label does
not annotate the tumor. This implies that the network must predict multiple
classes for one voxel to account for the inconsistent class definitions. To resolve
the issue of label inconsistency, we separate the segmentation results for each
class by applying a sigmoid activation function to replace the softmax activation
function on the dataset.

Partially loss for selected categories We employ the binary cross-entropy
(BCE) loss and the dice loss for each class over all B, b ∈ [1, B], images in a
batch:

Lc =
1

B × I

∑
b,i

BCE(ŷi,b,c, yi,b,c)−
2
∑

b,i ŷi,b,c yi,b,c∑
b,i ŷi,b,c +

∑
b,i yi,b,c

(1)

We modify the loss function to be calculated only for classes that are annotated
in the corresponding partially labeled dataset [21,4]. This partially loss formalize
as follow:

L =
1∑

b,c 1
(h)
b,c

∑
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1, otherwise,
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where c ∈ S is the selected class set, we set S = {tumor}, h is false if the
ground truth data does not include the class c, otherwise it is true. The loss
use the summation between dice loss and binary cross entropy loss because
compound loss functions have been proved to be robust in various medical image
segmentation tasks [15].

Table 1. Network architecture and inference process.

Channels in the first stage 16
Convolution number per stage 2
Patch size 128×128×128
Downsampling times 4
inference process (Sigmoid, Threshold, Resample)
Deep supervision True

Speeding inference In order to improve inference speed and reduce resource
consumption, we use a small-size network structure in reference [10]. And we
change the default resampling function and order, which effectively speeds up
the inference. The setup of network architecture and inference process are pre-
sented in Table 1. Comparison of different strategy settings in Table 2 . The
default is full resolution setting of nnU-Net and the small is low resolution mod-
ified. The tiny is the first stage of the cascade network that we design to have
a lower resolution. However, we do not use the cascade network as the final
docker submission because it does not improve the accuracy and speed of the
segmentation results.

Table 2. Comparison of different strategy settings. The order of axes of input patch
size and spacing is (z,y,x).

Settings Default Small Tiny
Channels in the first stage 32 16 8
Convolution number per stage 2 2 2
Patch size 56×192×160 128×128×128 80×96×96
Downsampling times 5 4 4
Input spacing (2.5, 0.8, 0.8) (2.42, 1.95, 1.95) (5, 3.9, 3.9)

2.3 Post-processing

We do not perform any post-processing, such as connected component analysis
or testing time augmentation, during our inference.
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3 Experiments

3.1 Dataset and evaluation measures

The FLARE 2023 challenge is an extension of the FLARE 2021-2022 [17][18],
aiming to aim to promote the development of foundation models in abdominal
disease analysis. The segmentation targets cover 13 organs and various abdom-
inal lesions. The training dataset is curated from more than 30 medical centers
under the license permission, including TCIA [2], LiTS [1], MSD [23], KiTS [8,9],
autoPET [7,6], TotalSegmentator [28], and AbdomenCT-1K [19]. The training
set includes 4000 abdomen CT scans where 2200 CT scans with partial labels and
1800 CT scans without labels. The validation and testing sets include 100 and
400 CT scans, respectively, which cover various abdominal cancer types, such as
liver cancer, kidney cancer, pancreas cancer, colon cancer, gastric cancer, and
so on. The organ annotation process used ITK-SNAP [29], nnU-Net [11], and
MedSAM [16].

The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside two efficiency
measures—running time and area under the GPU memory-time curve. These
metrics collectively contribute to the ranking computation. Furthermore, the
running time and GPU memory consumption are considered within tolerances
of 15 seconds and 4 GB, respectively.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 3.

Table 3. Development environments and requirements.

System Ubuntu 20.04.5 LTS
CPU Intel(R) Xeon(R) Gold 6354 CPU @ 3.00GHz
RAM 16×4GB; 1600MT/s
GPU (number and type) 1 × NVIDIA A100 40G
CUDA version 11.7
Programming language Python 3.10.11
Deep learning framework Pytorch 2.0.0, torchvision 0.2.2
Specific dependencies nnU-Net 2.0
Code https://github.com/orangeqqq/FLARE23

Training protocols The training protocols of the small nnU-Net are listed in
Table 4. For the unlabeled images, we select 100 cases with the pseudo label to
train the network. For partial labels, we use the partial cross-entropy and dice

https://github.com/orangeqqq/FLARE23
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Table 4. Training protocols.

Network initialization “He” normal initialization
Batch size 4
Patch size 128×128×128
Total epochs 1000
Optimizer SGD with nesterov momentum (µ =0.99)
Initial learning rate (lr) 0.01
Lr decay schedule Poly learning rate policy: (1− epoch/1000)0.9

Training time 10 hours
Loss function Cross entropy loss and dice loss
Number of model parameters 5.22M1

Number of flops 121G2

CO2eq 11.2 Kg3

loss in the training stage. the pseudo labels generated by the FLARE22 win-
ning algorithm [10] and the best-accuracy-algorithm [27]. We employ the same
data augmentation as the default setting of nnU-Net, which includes additive
brightness, gamma, rotation, scaling, and elastic deformation on the fly during
training. During inference, the model does not perform test time augmentation
(TTA) of flipping. The patch sampling strategy is foreground over-sampling. Fi-
nally, we choose the model that obtains the fast and best accuracy on the online
validation.

4 Results and discussion

Table 5. Quantitative evaluation results in terms of DSC(%) and NSD(%).

Target Public Validation Online Validation Testing
DSC NSD DSC NSD DSC NSD

Liver 95.54 ± 2.53 96.86 ± 5.34 95.62 97.12 94 95.75
Right Kidney 87.89 ± 19.54 88.35 ± 20.41 89.35 90.01 90.64 90.44
Spleen 93.06 ± 3.77 93.55 ± 8.12 93.18 93.86 95.23 93.1
Pancreas 82.05 ± 5.93 95.41 ± 4.86 80.72 94.5 82.34 95.29
Aorta 93.05 ± 2.06 97.64 ± 3.19 93.35 97.98 93.03 98.25
Inferior vena cava 88.05 ± 5.56 90.98 ± 6.52 88.06 90.7 88.84 92.31
Right adrenal gland 74.67 ± 12.86 91.33 ± 13.74 75.24 92.12 72.30 90.79
Left adrenal gland 71.41 ± 13.29 88.43 ± 14.0 72.83 89.22 70.88 88.32
Gallbladder 82.06 ± 19.92 81.27 ± 21.06 82.52 81.86 74.83 74.85
Esophagus 78.46 ± 14.01 91.15 ± 14.41 79.12 92.15 81.91 94.91
Stomach 90.23 ± 6.08 95.25 ± 6.71 90.6 95.07 89.59 94.53
Duodenum 78.06 ± 8.28 93.96 ± 5.57 78.25 93.53 79.30 94.42
Left kidney 86.96 ± 16.61 87.77 ± 17.72 87.96 88.78 89.12 89.19
Tumor 18.21 ± 23.28 10.27 ± 15.24 15.14 8.72 17.61 8.32
Average 79.98 ± 10.98 85.87 ± 11.21 80.14 86.12 79.97 85.75
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4.1 Quantitative results on validation set

In Table 5, we report the DSC and NSD of the final docker commit results. The
average of the 50 public validation and the 100 online validation are the same,
both achieving a DSC of about 0.80 and an NSD of 0.86. In general, large organs
like the liver, spleen, kidney, and stomach have high accuracy. However, accurate
identification of small and complex objects, such as tumors, adrenal glands,
and the duodenum, presents significant challenges. It requires more attention,
especially when dealing with extremely small and indistinct boundaries.

Case #FLARE23Ts_0038(slice #287)

Case #FLARE23Ts_0043(slice #113)

Case #FLARE23Ts_0057(slice #56)

Case #FLARE23Ts_0067(slice #79)

Image Label w/o unlabel data w/ unlabel data

Fig. 2. Qualitative results on two easy cases (Case #FLARE23Ts_0038 with DSC
of 0.89 and Case #FLARE23Ts_0043 with DSC of 0.84) and two hard cases (Case
#FLARE23Ts_0057 with DSC of 0.66 and Case #FLARE23Ts_0067 with DSC of
0.74).

We report the online validation results of the model without unlabelled data,
normal inference processes, and cascade networks in Table 7. The model us-
ing unlabelled data resulted in an increase of the DSC from 0.7925 to 0.8013.
Specifically, in tumor regions, it increased the DSC by 0.045. Additionally, nor-
mal inference alone increased the DSC by approximately 0.04. However, the
cascade network, P-Cascade and N-Cascade, which added a network training in
a lower resolution setup with twice the spacing of the original, did not achieve
higher DSC and NSD results. P-Cascade is the results of partially compound
loss and N-Cascade is the the results of normal compound loss. Comparing the
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two, we find that the model trained by partially labeled loss has better results
for tumor segmentation, with an improvement in DSC value of 0.05.

Case #FLARE23Ts_0038(slice #287)

Case #FLARE23Ts_0043(slice #113)

Case #FLARE23Ts_0057(slice #56)

Case #FLARE23Ts_0067(slice #79)

Image Label w/o unlabel data w/ unlabel data

Fig. 3. 3D visualization on two easy cases (Case #FLARE23Ts_0038 with DSC of
0.89 and Case #FLARE23Ts_0043 with DSC of 0.84) and two hard cases (Case
#FLARE23Ts_0057 with DSC of 0.66 and Case #FLARE23Ts_0067 with DSC of
0.74).

4.2 Qualitative results on validation set

Figure 2 presents easy and difficult validation set examples for segmentation,
along with a 3D visualization in Figure 3. Promising results were observed for
Case #FLARE23Ts_0038 and Case #FLARE23Ts_43, but the segmentation
of Case #FLARE23Ts_57 and Case #FLARE23Ts_67 was poor due to a large
tumor that caused the network to make classification errors.

4.3 Segmentation efficiency results on validation set

In Table 6, we observe a set of cases that increase in size from (512,512,55) to
(512,512,554). The efficiency evaluation results are reported from official tests.
It is seen that the average max GPU is 2531MB, and run time increase twice
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for the biggest case #0029 than the smallest case #0001. This demonstrates the
effectiveness of our inference strategy.

Table 6. Quantitative evaluation of segmentation efficiency in terms of the running
time and GPU memory consumption. Total GPU denotes the area under GPU Memory-
Time curve. Evaluation GPU platform: NVIDIA QUADRO RTX5000 (16G).

Case ID Image Size Running Time (s) Max GPU (MB) Total GPU (MB)
0001 (512, 512, 55) 19.61 2426 10028
0051 (512, 512, 100) 17.83 2590 12296
0017 (512, 512, 150) 30.86 2634 15949
0019 (512, 512, 215) 22.72 2486 12401
0099 (512, 512, 334) 27.94 2586 15394
0063 (512, 512, 448) 33.50 2630 17508
0048 (512, 512, 499) 35.22 2614 18610
0029 (512, 512, 554) 42.53 2744 22299

4.4 Results on final testing set

In table 5, we report the DSC and NSD of the final testing set. The average
values are comparable to those of the 50 public validations and the 100 online
validations, with both achieving a DSC of about 0.80 and a NSD of about 0.86.
In general, the low accuracy of segmenting small and complex shaped objects
such as tumors, adrenal glands and duodenums Their accurate segmentation still
faces great challenges and needs more attention, especially when dealing with
extremely small and unclear boundaries.

4.5 Limitation and future work

There are many ways to improve the network inference process, such as a more
efficient sliding window. The challenge provided 4,000 CT cases, but we only
utilized 300 cases and did not adequately utilize the data. For the challenging
task of tumor segmentation, pseudo-labeling is a simple and effective way to
improve model performance, and we will continue to explore methods that utilize
both pseudo-labeling and partial labeling learning in the future.

5 Conclusion

In this paper, we present a framework that combines partial labeling learning
and pseudo-labeling, which is effective and flexible for a variety of situations. In
addition, we use a small nnU-Net and improve the inference process, effectively
reducing its required computational resources and inference time. Because the
amount of data used in training is small, performance on the full data will be
explored in the future. The approach in this paper will be a good baseline result
for exploring partial labeling learning and pseudo-labeling.
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Table 7. Ablation studies of online validation quantitative evaluation results in terms
of DSC(%) and NSD(%). P-Cascade is the results of partially compound loss and
N-Cascade is the the results of normal compound loss.

Target w/o unlabeled data Normal inference N-Cascade P-Cascade
DSC NSD DSC NSD DSC NSD DSC NSD

Liver 95.77 97.09 97.34 97.46 95.63 97.63 95.9 97.5
Right Kidney 89.93 90.49 92.18 91.46 90.27 91.27 89.9 91.28
Spleen 93.57 94.46 97 97.58 91.34 92.01 92.68 93.44
Pancreas 79.66 93.5 84.22 94.82 79.74 93.78 79.79 93.6
Aorta 92.29 96.86 96.57 99.03 92.59 97.42 93.23 97.79
Inferior vena cava 87.24 89.84 91.06 91.43 86.38 88.25 87.06 89.12
Right adrenal gland 74.24 91.78 85.51 95.48 72.75 90.19 73.35 90.59
Left adrenal gland 71.19 87.59 83.27 93.27 72.47 89.09 72.33 88.76
Gallbladder 80.34 79.38 86.09 86.55 77.9 77.05 80.54 79.83
Esophagus 78.13 90.88 83.09 93.4 78.57 91.89 79.05 92.26
Stomach 90.52 94.52 93.12 95.51 89.95 94.58 90.37 94.91
Duodenum 77.31 93.19 81.45 93.43 78.42 94.19 78.25 93.97
Left kidney 88.69 88.97 91.06 90.65 88.23 89.43 87.67 86.93
Tumor 10.64 5.92 15.17 8.42 10.25 6.99 15.88 10.43
Average 79.25 85.32 84.08 87.75 78.89 85.27 79.71 85.74
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