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Abstract

Accurate estimation of mutational effects on
protein-protein binding energies is an open prob-
lem with applications in structural biology and
therapeutic design. Several deep learning predic-
tors for this task have been proposed but, presum-
ably due to the scarcity of binding data, these
methods under-perform computationally expen-
sive estimates based on empirical force-fields. In
response, we propose a transfer-learning approach
that leverages advances in protein sequence mod-
eling and folding stability prediction for this task.
The key idea is to parameterize the binding energy
as the difference between the folding energy of
the protein complex and the sum of the folding
energies of its binding partners. We show that us-
ing a pre-trained inverse-folding model as a proxy
for folding energy provides strong zero-shot per-
formance, and can be fine-tuned with (1) copious
folding energy measurements and (2) more lim-
ited binding energy measurements. The resulting
predictor, STAB-DDG, is the first deep learning
predictor to match the accuracy of the state-of-the-
art empirical force-field method Flex ddG, while
offering an over 10,000x speed-up.

1. Introduction
Computation of mutational effects on binding energies is
of central importance in structural biology and protein en-
gineering. For example, three recent studies (Householder
et al., 2024; Liu et al., 2024a; Johansen et al., 2024) de-
signed proteins that bind to target proteins found on cancer
cells, but the therapeutic promise of these molecules de-
pends on their specificity; “off-target” binding to proteins
differing at only one or two positions could induce toxicity
to non-cancer cells (see Appendix A). In this setting and
others, accurate prediction of binding energies would sup-
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port in silico design of proteins with requisite specificity.
Given two interacting proteins and amino acid substitutions,
the goal is to predict the differences in the change in Gibbs
free energy upon binding (the “∆∆G” or “ddG”).

Despite enormous progress provided by deep-learning (DL)
methods on a variety of protein modeling and design prob-
lems (Dauparas et al., 2022; Watson et al., 2023; Abram-
son et al., 2024; Dieckhaus et al., 2024), they have so far
underperformed more classical methods based on empir-
ical force-fields on binding energy prediction. Notably,
Bushuiev et al. (2024) find that recent results suggesting
the superiority of DL predictors are confounded by dataset
contamination — extant DL predictors generalize poorly
when evaluated on interfaces not represented in the train-
ing set, and a Rosetta-based predictor Flex ddG provides
state-of-the-art performance (Barlow et al., 2018; Bushuiev
et al., 2024). Presumably, this underperformance of DL
methods owes in part to the scarcity of experimental ∆∆G
measurements used to fit such models, with binding interac-
tion measurements for fewer than 350 distinct interfaces in
the largest public curated dataset (Jankauskaitė et al., 2019).

In this work, we introduce a transfer learning approach that
helps address this data limitation by reducing binding en-
ergy prediction to predicting folding energies. Our approach
is based on two observations. First, as a consequence of
the state function property of free energy, the binding en-
ergy between two proteins A and B, ∆Gbind(A:B), can be
computed as

∆Gbind(A:B)=∆Gfold(A:B)−∆Gfold(A)−∆Gfold(B),
(1)

where ∆Gfold denotes the free energy difference between
folded and unfolded states of a protein monomer or com-
plex (Figure 1a). This observation will allow us to use both
folding stability and binding energy datasets in a supervised
learning approach.

The second observation is that protein sequences and struc-
ture data in the Protein Data Bank (PDB) can inform an ini-
tial predictor of protein folding energies. This observation
builds on the strong correlation between folding energies
and likelihoods predicted by probabilistic models of protein
sequences. Such correlations were first observed for Potts
models (Lapedes et al., 2012; Hopf et al., 2017), and then
later neural network models of sequence (Riesselman et al.,
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Figure 1. (a) Thermodynamic identity from the path independence of the free energy function (Equation (1)). (b) Schematic of STAB-DDG.
STAB-DDG takes as input the backbone structure, a wild type sequence, and a mutant sequence to predict ∆∆Gbind. STAB-DDG leverages
three sources of data: structure/sequence pairs from the PDB, a folding stability dataset, and a binding affinity dataset.

2018; Rives et al., 2021), as well as backbone structure con-
ditional sequence models (Hsu et al., 2022a; Notin et al.,
2023). We can leverage these correlations by using a pre-
trained sequence likelihood model as a zero-shot folding
energy predictor.

Built on these observations, we present Stability-to-Binding
delta delta G (STAB-DDG), a deep learning model to pre-
dict the mutation effects on protein-protein interaction en-
ergy using interface structure and sequence (Figure 1b). To
fit STAB-DDG, we use a pre-trained inverse folding model
ProteinMPNN (Dauparas et al., 2022) to initialize a zero-
shot binding ∆∆G predictor according to Equation (1), and
fine-tune on a combination of high-throughput folding en-
ergy measurements (Tsuboyama et al., 2023) and binding
energy measurements (Jankauskaitė et al., 2019).

We demonstrate that fine-tuning STAB-DDG on a folding
energy dataset improves binding energy predictions. Further
fine-tuning on binding energy data provides state-of-the-art
performance on a standard benchmark. Lastly, we evaluate
STAB-DDG on two difficult case study datasets that cor-
roborate these conclusions but illustrate that the problem
remains difficult.

2. Preliminaries
In this section, we outline relevant background on protein
thermodynamics and describe the notation used.

Protein binding, folding, and mutational effects. The
binding energy between two proteins A and B is the free
energy difference, ∆Gbind(A : B), between the bound and
unbound (but folded) states of the system. Our goal is to
predict the effect of mutations on binding energies. For a
reference (wild type) interaction A : B and mutant A′ : B,

we write the mutational effect as

∆∆Gbind(A:B → A′:B) =∆Gbind(A
′:B)−∆Gbind(A:B).

Our starting point is the observation in Equation (1) that
∆Gbind may be computed as a difference in folding stabili-
ties ∆Gfold as a consequence of the state function property
of free energies; the change in energy along a direct path
from the unbound to bound states is the same as the change
along the path that proceeds through the unfolded state (Fig-
ure 1a).

Using Equation (1), we can express ∆∆Gbind in terms of
folding energy as

∆∆Gbind(A:B → A′:B) =∆∆Gfold(A:B → A′:B)

−∆∆Gfold(A → A′).
(2)

Equation (2) underlies binding ∆∆G predictors based on
empirical force fields (e.g., Kastritis & Bonvin, 2013; Bar-
low et al., 2018). But to our knowledge this identity has not
previously been leveraged in a DL binding ∆∆G predictor.

Notation. We represent a protein by its amino acid se-
quence s = [s1, s2, ..., sL] where L is the length of the
sequence and each sl ∈ {1, · · · , 20} indicates the amino
acid type. For binding partners A and B, we write sA:B =
(sA, sB) to denote the protein complex. Mutations of se-
quences s are written as s′ and are assumed to be of the
same length.

3. Predicting mutational effects on protein
binding from folding energy

To incorporate labeled fine-tuning data with a pre-trained
sequence likelihood model, we first propose STAB-DDG, a
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binding energy predictor based on sequence log probabil-
ity. We show that STAB-DDG satisfies three properties we
argue are desirable of ∆∆G predictors but that are not sat-
isfied by previous predictors. Then, we present an objective
to fine-tune STAB-DDG on both folding stability and bind-
ing affinity datasets. Lastly, we discuss variance reduction
techniques to reduce prediction error at both training and
inference time.

3.1. The STAB-DDG predictor

To obtain a binding ∆∆G predictor we start with a pre-
trained sequence likelihood model to initialize a protein
stability (∆Gfold) predictor as

fθ(s) = log pθ(s), (3)

Where pθ(s) is a probability model on sequences. We take
the logarithm of pθ to agree with the close-to-linear rela-
tionship between log probabilities of protein sequences and
folding energies observed by Lapedes et al. (2012) and
corroborated by many others (Notin et al., 2023). We use
the ProteinMPNN inverse-folding model (Dauparas et al.,
2022) for fθ(s). ProteinMPNN depends additionally on a
reference backbone structure but we leave this dependence
implicit to simplify notation.

Then, using Equation 1, we can obtain a binding affinity
(∆Gbind(A : B)) predictor as

bθ(sA:B) = fθ(sA:B)− fθ(sA)− fθ(sB). (4)

We refer to Equation (4) as the StaB parameterization be-
cause it links a Stability to Binding. Finally, we can use
a difference of the predicted binding affinity between two
complexes as a ∆∆Gbind predictor as

∆bθ(s, s
′) = bθ(s

′)− bθ(s). (5)

We call the predictors with the form ∆bθ STAB-DDG pre-
dictors.

Computation of ∆bθ(s, s
′) involves computing fθ on up to

six systems; the complex and two binding partners for each
of s and s′. While in principle the backbone structures for
each term could vary, we use backbone structures derived
from a single complex for all 6 terms. This choice reflects
an assumption that the backbone changes little upon binding
and mutation.

The choice of ProteinMPNN. We choose ProteinMPNN
to initialize fθ and by extension bθ and ∆bθ. ProteinMPNN
offers two advantages over sensible alternatives. First, com-
pared to (even much larger) protein language models that
do not take as input a reference backbone structure, Protein-
MPNN provides stronger zero-shot folding stability predic-
tions (Notin et al., 2023). This fact presumably owes to that

mutational effects on binding are mediated through effects
on structure.

The second advantage is that ProteinMPNN can make pre-
dictions for multi-chain complexes and multiple mutations.
By contrast, most other folding stability predictors are imple-
mented only for monomers and single mutations (Dieckhaus
et al., 2024; Diaz et al., 2024). This complication, though
likely surmountable with heuristics such as glycine linkers
or residue gaps, is avoided with ProteinMPNN.

Properties of the StaB-ddG predictor. The form of ∆bθ
constructed in Equations (3) to (5) imparts properties desir-
able of a ∆∆Gbind predictor. We formalize these properties
in the following proposition.
Proposition 3.1. Consider the class of binding energy pre-
dictors B = {∆bθ}, with ∆bθ parameterized as in Equa-
tion (5) by pθ(s) that is an arbitrary 20L-simplex valued
function of s. The family of predictors B satisfies

1. Antisymmetry: for any ∆bθ in B,

∆bθ(s, s
′) = −∆bθ(s

′, s),

2. Mutational path independence: for any ∆bθ in B and
s, s′, s′′,

∆bθ(s, s
′) = ∆bθ(s, s

′′) + ∆bθ(s
′′, s′), and

3. Expressivity (Informal): for any dataset of binding free
energy measurements, there exists a ∆bθ in B that fits
the measurements exactly.

Proof: Properties 1 and 2 follow immediately from the
construction of ∆bθ as the difference of evaluations of bθ
defined in Equation (5). Appendix B provides a formal
statement of the expressivity property along with a proof.

Because ∆∆Gbind’s are differences by definition, they
necessarily satisfy Properties 1 and 2 of Proposition 3.1.
Though these properties are readily obtained in our predic-
tor by construction, they are nonetheless not satisfied by
other recent DL predictors (Table 1).

Property 3 requires pθ(s) to be able to take arbitrary values
on the simplex. In practice, pθ(·) is parametrized by Protein-
MPNN which, as an auto-regressive model parameterized
by a deep message-passing neural network, can approxi-
mate to arbitrary simplex-valued functions. This property
formalizes the ability of our predictor to model epistasis
and achieve zero training loss on the fine-tuning dataset.
In contrast, a predictor parameterized by a masked lan-
guage model (e.g., Bushuiev et al., 2024) cannot model non-
additive effects between multiple mutations (Appendix B)
and force field-based methods (e.g., Flex ddG) do not have
this property.
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Table 1. Thermodynamic properties of different ∆∆G predictors.
See Appendix B for detail.

Predictor Anti- Mut. Path Express-
symmetry Independence ivity

Flex ddG
√ √

×
Surface-VQMAE × ×

√

Prompt-DDG × ×
√

DiffAffinity × ×
√

ProMIM × ×
√

RDE-Net
√

×
√

PPIformer
√

× ×
STAB-DDG

√ √ √

3.2. Assimilation of folding and binding energy data

Though our goal is to predict binding, the number of binding
energy measurements available in the largest public curated
set is two orders of magnitude fewer than that in the largest
comparable set of folding stability measurements (Table 2).
As such, we adopt a sequential fine-tuning strategy, where
we first fine-tune on folding stability data and then fine-tune
on more limited binding affinity data.

Table 2. Dataset size comparison between PDB and the largest
available stability and binding datasets.

DATASET # OF STRUCTURES # OF MEASURED ∆∆G

PDB 230,744 —
STABILITY 412 776,298
BINDING 345 7,085

Fine-tuning to folding stability data. The Megascale
stability dataset is the largest publicly available dataset on
protein folding energy with 776,298 folding stability mea-
surements across 412 small monomeric proteins from a high
throughput assay (Tsuboyama et al., 2023). We follow the
same dataset preparation protocol as described by Dieck-
haus et al. (2024), but keep entries with multiple mutations.
We represent the Megascale stability dataset with N struc-
tures and Mn mutants associated with the nth structure as

Dfold = {(xn, sn,ref, yn,ref, {sn,m, yn,m}Mn
m=1)}Nn=1,

where sn,ref and yn,ref denote the reference sequence and
∆G, and xn is a predicted reference structure. We use
{sn,m, yn,m}Mn

m=1 to denote the a set of mutant sequences
and corresponding mutant ∆G values. A set of ∆∆G values
can then be computed by taking the difference between
mutant and reference ∆G.

To fine-tune θ on Dfold, we construct a ∆∆Gfold predictor
as

∆fθ(s, s
′) = fθ(s

′)− fθ(s), (6)

where we use the same structure xn to compute fθ(s
′) and

fθ(s). Then, we fine-tune by minimizing

Lfold(θ,Dfold) =
1

N

N∑
n

1

Mn

Mn∑
m

(
∆fθ(sn,ref, sn,m)

− (yn,m − yn,ref)
)2
,
(7)

where the 1
Mn

scaling ensures that each complex has equal
contribution to the loss.

Fine-tuning to binding affinity data. We use
SKEMPIv2.0, the largest publicly available binding
affinity dataset with 7,085 binding ∆∆G measurements
across 345 complexes, for fine-tuning STAB-DDG and
comparing it against other baseline methods (Jankauskaitė
et al., 2019). SKEMPIv2.0 contains errors from the manual
curation process, such as mislabelled entries or entries
with different ∆∆G values for the same mutation. Here,
we apply a filtering procedure to the dataset based on one
applied to SKEMPIv1.0 from previous work (Dourado &
Flores, 2014; Barlow et al., 2018). Further, conducting
comparisons on SKEMPIv2.0 fairly requires careful
consideration. Bushuiev et al. (2024) pointed out data
leakage based on homology in previous train/test splits
of the dataset. However, the held-out test set used by
Bushuiev et al. (2024) only contained five interface clusters.
To address these problems, we divide the dataset based
on the annotated structurally homologous clusters and
apply a random train/test split, with 121 complexes in the
fine-tuning dataset and 80 complexes in the held-out test
split. The filtering and splitting procedure is fully described
in Appendix C.

Analogously to the Megascale stability dataset,
SKEMPIv2.0 can be instantiated as

Dbind = {(xn, sn,ref, yn,ref, {sn,m, yn,m}Mn
m=1)}Nn=1

with the difference being yref,n and yn,m referring to bind-
ing ∆G instead of folding ∆G and xn representing crystal
structures instead of predicted structures. We fine-tune on
these data by minimizing

Lfold(θ,Dbind) =
1

N

N∑
n

1

Mn

Mn∑
m

(∆bθ(sn,ref, sn,m)

− (yn,m − yn,ref))
2.

(8)

3.3. Variance reduction by Monte Carlo ensembling and
antithetic variates

The choice to use ProteinMPNN as our parameterization of
fθ(s) introduces model-specific stochasticity in the form of
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a randomized decoding order and Gaussian noise to back-
bone coordinates. This stochasticity introduces variance
that contributes to the prediction error.

We make explicit the dependence of the model output on the
stochasticity as bθ(s|ϵ) for a random variable ϵ. Then, for
two sequences s and s′, and a measurement y = ∆∆Gbind,
we can decompose the expected prediction error into con-
tributions from squared bias and variance (see e.g., Hastie
et al., 2009, Chapter 7) as

E[(bθ(s′|ϵ′)− bθ(s|ϵ)− y)2] =

(E[bθ(s′|ϵ′)− bθ(s|ϵ)]− y︸ ︷︷ ︸
Bias

)2 +Var[bθ(s
′|ϵ′)− bθ(s|ϵ)]︸ ︷︷ ︸
Variance

,

where the randomness is taken over the stochasticity ϵ and
ϵ′. We reduce the variance in two ways.

Antithetic variates. The first way is an instance of the
antithetic variates method (Hammersley & Morton, 1956).
The key idea is that the decomposition

Var[bθ(s
′|ϵ′)− bθ(s|ϵ)] = Var[bθ(s

′|ϵ′)] + Var[bθ(s|ϵ)]
− 2Cov[bθ(s|ϵ), bθ(s′|ϵ′)]

reveals that the correlation of bθ(s|ϵ) with bθ(s
′|ϵ′) de-

creases the overall variance. So any coupling of ϵ and ϵ′ for
which Cov[bθ(s|ϵ), bθ(s′|ϵ′)] is positive will lead to lower
variance than if ϵ and ϵ′ were sampled independently. We
accomplish this by fixing ϵ′ = ϵ, which we implement by
using the same permutation order and backbone noise for
the wild type and mutant systems for each ∆∆G prediction.

Monte Carlo averaging. The second way is Monte Carlo
averaging. By replacing each prediction with its average
across M independently sampled permutation orders and
backbone noise samples, the variance is reduced by a factor
of M. Ensembling can be applied together with the antithetic
variates method by fixing ϵ′ = ϵ. Note that ensembling over
more samples increases the compute cost. We discuss the
effects of ensemble size in Section 5.

4. Related work on predicting mutational
effects on binding affinity

Existing approaches for predicting mutation effects on
binding ∆∆G can be categorized as empirical force field-
based methods and DL-based. Force field-based meth-
ods use energy functions to model inter-atomic interac-
tions (Schymkowitz et al., 2005; Park et al., 2016; Barlow
et al., 2018; Sampson et al., 2024). While these methods
have long dominated the field, they are often computation-
ally expensive and have limited accuracy. For example
Flex ddG (Barlow et al., 2018) — a Rosetta-based predic-
tor that is frequently considered to be state of the art in its

category (Bushuiev et al., 2024) — requires multiple CPU-
hours per mutation but typically produces estimates with
Pearson correlation to experimental ∆∆Gs no larger than
R ≈ 0.65 (Barlow et al., 2018).

Free-energy perturbation (FEP) defines a class of poten-
tially more accurate methods for estimating mutational ef-
fects (Zwanzig, 1954). Recent studies using FEP (Sergeeva
et al., 2023; Abramson et al., 2024) demonstrate small im-
provements over Flex ddG and related methods. However,
these studies rely on a closed-source software implementa-
tion, case-specific expert tuning, and are even more com-
putationally expensive. Consequently, we are unable to
meaningful assess accuracy of FEP methods.

Much recent work on ∆∆G prediction methodology has
focused DL approaches (Luo et al., 2023; Liu et al., 2024b;
Mo et al., 2024; Bushuiev et al., 2024; Wu & Li, 2024; Wu
et al., 2024). None of these approaches incorporate folding
stability data.

Jiao et al. (2024) propose an approach that decomposes
the ∆∆G computation into computing mutational effects
in bound and unbound states, resulting in a ProteinMPNN-
based predictor of the same form as STAB-DDG (but with-
out our variance reduction techniques). However, they do
not consider binding energy in terms of folding energy.

Several prior works on DL methods (Luo et al., 2023;
Liu et al., 2024b; Mo et al., 2024; Bushuiev et al., 2024;
Wu & Li, 2024; Wu et al., 2024) have claimed to de-
liver performance surpassing force field-based predictors
(e.g., Flex ddG) on the basis of performance on the
SKEMPIv2.0 (Jankauskaitė et al., 2019) benchmark dataset.
However, Bushuiev et al. (2024) find that the train/test splits
used to support these claims suffer data leakage; once this
data-leakage is corrected the performances of these deep
learning predictors lag Flex ddG.

5. Experiments
To evaluate STAB-DDG we first analyze the contributions
of different techniques that lead to an improvement in “zero-
shot” ∆∆Gbind prediction accuracy, without training on
∆∆Gbind data. Next, we introduce baseline methods and
show that STAB-DDG is the only DL approach to match
Flex ddG. Finally, we assess the out-of-distribution accuracy
of our approach by testing it on a yeast surface display
binding dataset and a T cell receptor (TCR) mimic binding
dataset that we curate.

In protein engineering applications, a ∆∆Gbind prediction
may be used to rank candidate sequence variants of an inter-
face of interest to select as subset for experimental screen-
ing. Therefore, we compute Spearman’s rank correlation
coefficient for mutational effects and predictions for each
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interface, and report the mean of this metric across com-
plexes, along with standard errors. We refer to this metric
as “per interface Spearman”. When we compute per in-
terface Spearman, we consider only complexes with 10 or
more mutants; below this threshold, this metric suffers high
variance (Appendix C).

Figure 2. Evaluation of zero-shot binding predictors on the binding
data training split. ProteinMPNN refers to using log-likelihoods
of entire complexes (∆fθ) from the pre-trained ProteinMPNN
weights. Asterisks (*) denote significance (one-sided paired t-test)
at p<0.05.

5.1. Contributions to zero-shot ∆∆Gbind accuracy.

We first examined the individual contributions of techniques
from our method that, starting from ProteinMPNN, lead to
a zero-shot binding energy predictor that incorporates infor-
mation from folding stability data (Figure 2). We evaluated
the binding energy prediction accuracy of different zero-
shot predictors on the binding data training split described
in Section 3.2.

Variance reduction. To reduce the error from the stochas-
ticity inherent to ProteinMPNN, we applied the variance
reduction techniques described in Section 3.3 and observed
improved accuracy. Specifically, reducing the variance of
the ProteinMPNN predictor by (1) fixing the decoding order
and backbone noise between the wild type and and mutant
sequences, and (2) ensembling over 20 predictions signif-
icantly improved zero-shot performance (Figure 2). We
found that fixing the decoding order and backbone noise
also led to better training dynamics, and provide empirical
validation for the choice of ensemble size in Appendix D.

STAB-DDG zero-shot. We applied the pre-trained
weights with variance reduction in the form of the
binding predictor ∆bθ(s, s

′). The resulting predictor,
STAB-DDG zero-shot, uses the same weights as Protein-
MPNN but achieved significantly better accuracy (Figure 2).

Fine-tuning on folding stability data. To validate
whether fine-tuning on additional folding stability data trans-
lates to improved binding energy prediction accuracy, we
fine-tuned STAB-DDG zero-shot on the folding stability
dataset (“Stability fine-tuned”). We found that including
these data further increased binding prediction accuracy
(Figure 2). A question that arises is whether the large
amount of folding stability data removes the need for un-
supervised pre-training. We found that training directly
on the folding stability dataset without inverse folding pre-
training led to significantly worse binding prediction accu-
racy (Appendix D). This result highlights the importance
of pre-training on a much more abundant and diverse set of
structures from the PDB.

We validated our approach of fine-tuning on folding sta-
bility data of Tsuboyama et al. (2023) by comparing to a
state-of-the-art folding stability predictor ThermoMPNN
(Dieckhaus et al., 2024). ThermoMPNN is also based on
ProteinMPNN but adds an additional transfer-learning mod-
ule to output predictions. We found that despite not intro-
ducing additional parameters to ProteinMPNN, our stability
fine-tuned model achieved performance not much lower than
ThermoMPNN; our predictor provided a Spearman (over all
domains) of 0.69 vs. 0.73 for ThermoMPNN (Appendix E).

We additionally explored different forms of the predictor
and training techniques that did not have a sizeable effect.
First, we tried fitting amino acid-specific offsets to the pre-
dictor in the form of a linear model to correct for the initial
scale mismatch between sequence log-likelihoods and free
energy, measured in kilocalories per mole. However adding
these terms did not have a significant effect on binding pre-
diction accuracy (Appendix D). Second, we experimented
with using AlphaFold3 (Abramson et al., 2024) predicted
structures to more accurately model the unbound (apo) struc-
tures of individual binders, instead of using the structure of
the bound conformation. While using predicted apo struc-
tures improved several other metrics, this modification did
not improve the per interface Spearman (Appendix D).

5.2. Comparison to existing methods

Using Stability fine-tuned as a starting point, we further fine-
tuned this model on the binding data train split described in
Section 3.2. We call the resulting predictor STAB-DDG.

We compared STAB-DDG to baseline methods on the bind-
ing data test split. Figure 3 presents per interface Spearman.
We find similar trends for other metrics considered in pre-
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Figure 3. Evaluation of accuracy on the binding ∆∆Gbind benchmark test split of SKEMPIv2. Left: STAB-DDG and its variations.
Middle: Previous deep learning methods. Right: Inverse Folding models. *: significance (one-sided paired t-test with STAB-DDG) at
p<0.05, n.s.: not significant.

vious works (Appendix E). We describe the baselines and
then results.

Baselines. Flex ddG is a state-of-the-art force field sim-
ulation method based on the Rosetta energy function. It
is an ML method owing to a key component being the
reweighting the terms of the empirical energy function
through a Generalized Additive Model (GAM) fitted onto
the SKEMPIv1.0 dataset. It is possible that the overlap be-
tween the data used to fit the GAM and our test split can
lead to inflated performance metrics for Flex ddG. Barlow
et al. (2018) showed that backrub sampling, despite its high
computational cost, is critical to the success of Flex ddG.
While prior efforts to benchmark Flex ddG omit the backrub
sampling steps to reduce computational cost (e.g., Bushuiev
et al., 2024), we ran Flex ddG with the default parameters
determined by Barlow et al. (2018), with the exception of
setting the number of models to 10, a number shown to be
near-optimal.

We compared to six supervised DL baselines, which we re-
trained on our train/test split. All six DL baselines leverage
pre-training on a larger unsupervised dataset before fine-
tuning on binding energy data. We did not compare to
Boltzmann Alignment (Jiao et al., 2024) as the parametric
form of the predictor is similar to STAB-DDG zero-shot.

We included inverse-folding models ESM-IF1 and
ProteinMPNN as unsupervised baselines (Dauparas et al.,
2022; Hsu et al., 2022b). Zero-shot predictions were com-
puted by subtracting the wild type complex sequence log-
likelihood from the mutant log-likelihood.

Results. When evaluated on the binding data test split,
STAB-DDG achieved the highest per structure Spearman
(0.45), outperforming previous DL methods (Figure 3). Sim-
ilar to Bushuiev et al. (2024), we found that the DL base-
lines underperform Flex ddG when evaluated on a interface
homology-based split. We found STAB-DDG zero-shot to
be surprisingly competitive, also outperforming previous
DL methods, despite using the same model weights as Pro-
teinMPNN. However, we did not find the difference between
STAB-DDG, STAB-DDG zero-shot, and Flex ddG to be sta-
tistically significant based on a one-sided t-test. In addition,
we found that the stability fine-tuned model achieved worse
performance on the test split, highlighting the performance
fluctuations owing to stochasticity from the random splits,
motivating additional validation on other datasets.

Experimental details. In summary, we fine-tuned on the
Megascale stability dataset using the ADAM optimizer with
learning rate 3e-5 for 70 epochs with a batch size of 25,000
amino acids. We fine-tuned on SKEMPIv2.0 using the
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ADAM optimizer with learning rate 1e-6 for 200 epochs
with a batch size of 25,000 amino acids. We release our
implementation of the method publicly1.

Running time. STAB-DDG is multiple orders of magni-
tude faster than Flex ddG, taking less than 0.1 seconds per
mutation using a H100 GPU. It took 10 and 5 hours respec-
tively to fine-tune STAB-DDG on the Megascale dataset
and the SKEMPIv2.0 training split on a single H100 GPU.
Flex ddG took 15 CPU hours per mutation with 10 models
and 35,000 backrub steps.

Stratification of performance. To understand how
STAB-DDG performs on different types of complexes, we
performed an analysis on different subsets of the binding
data test set. We stratified the test set according to inter-
face rigidity and complex size (Table 3). As a proxy for
interface rigidity, we computed the loop content at the in-
terface; specifically, we considered all residues within 10 Å
of an atom in another chain and computed the fraction of
these residues with secondary structure annotated as loop.
We found that STAB-DDG performed better for more rigid,
smaller complexes.

The better performance on rigid interfaces may be explained
by STAB-DDG’s use of a single static structure for predic-
tion of folding energy for both the complex and monomers;
flexible interfaces are more likely to change upon binding
and will be less well represented by a single structure.

The better performance on smaller complexes may be ex-
plained by the bias in the composition of the folding stabil-
ity data of Tsuboyama et al. (2023), which consists only of
small <80 residue domains.

Table 3. Performance of STAB-DDG across stratification of bind-
ing test set; Root Mean Squared Error (RMSE) in Kcal/mol for dif-
ferent interface loop content and complex size (number of residues)
thresholds.

Loop Content RMSE Complex Size RMSE
< 30% 1.12 < 150 0.94
< 40% 1.29 < 200 0.99
< 50% 1.46 < 400 1.28
< 60% 1.50 < 600 1.42
< 70% 1.48 < 800 1.38
< 80% 1.48 < 1000 1.50

5.3. Generalization of prediction performance on two
case study datasets.

Despite STAB-DDG having achieved state-of-the-art per-
formance on SKEMPIv2.0, the statistical power of the con-

1https://github.com/LDeng0205/
binding-ddG.

clusions drawn were limited by the size of the dataset and
experimental noise. Thus, it remains to be validated whether
our conclusions still hold and if current computational bind-
ing ∆∆G prediction tools are readily useful in settings not
represented in SKEMPIv2.0. We sought to address this
problem by evaluating STAB-DDG in two case studies, de
novo designed “mini-binder” yeast surface display binding
dataset and a curated TCR mimic dataset.

Yeast surface display case study. To validate the effects
of fine-tuning on folding stability data and further fine-
tuning on binding data, we compared STAB-DDG zero-shot,
Stability fine-tuned, and STAB-DDG on site saturation mu-
tagenesis data from Cao et al. (2022), which has been used
to perform retrospective evaluation of DL-based binder de-
sign methods (Bennett et al., 2023; Zambaldi et al., 2024).
The dataset contains sequence count information from yeast
surface display libraries of 28,293 single mutants across 33
complexes. The sequence counts are then used to estimate a
proxy for the dissociation constants for each binder which
we then relate to a ∆∆G estimate (Appendix E).

We found that both fine-tuning on folding stability and bind-
ing affinity improved binding prediction accuracy (Figure 4).
However, we found that the folding energy predictor for the
entire complex achieved a higher per interface Spearman
than our binding predictor parameterization. Appendix E
demonstrates this observation is explained through the exper-
imental readout confounding expression levels with binding
energy in the yeast-display based assay. In brief, the binding
energy proxy of a particular variant depends both on its
binding affinity and its expression, a quantity closely related
to folding stability.

TCRm case study. We curated a set of 30 ∆∆G mea-
surements from six TCR mimic structures determined by
surface plasmon resonance (SPR) by searching through
all TCR mimic structures in the TCR3d database (Ap-
pendix A) (Gowthaman & Pierce, 2019). To assess the
utility of STAB-DDG in the TCR mimic design task for can-
cer therapy, we next evaluated STAB-DDG and Flex ddG
on these data (Table 4). We found that STAB-DDG is not
conclusively useful based on the limited TCRm case study
set.

Table 4. Evaluation of ∆∆G prediction on the TCR mimic case
study dataset. Area Under the Receiver Characteristic (AUROC)
is computed on the binary classification task of whether a muta-
tion increases binding affinity (∆∆G < 0). Standard errors are
obtained from cluster-bootstrapping (see Appendix C).

SPEARMAN RMSE AUROC

FLEX DDG 0.15 ± 0.27 1.44 ± 0.30 0.49 ± 0.21
STAB-DDG 0.13 ± 0.39 1.26 ± 0.24 0.58 ± 0.25
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Figure 4. Comparison of STAB-DDG zero-shot, Stability fine-
tuned model, and STAB-DDG on the yeast surface display dataset.
* denotes significance (one-sided paired t-test) at p<0.05.

6. Discussion
Accurate computational prediction of the mutational effects
on protein interaction binding energies could significantly
improve the potency and specificity of protein therapeutics.
Despite years of interest in improving such predictions with
deep learning, success has been minimal. By achieving
performance comparable to Flex ddG, StaB-ddG marks an
important step in this direction.

Computational prediction of mutational effects on binding
energies remains a challenging open problem. Several areas
remain to be explored. First, STAB-DDG does not model
changes in the backbone upon a mutation; in general, mu-
tations on flexible regions of the binding site are likely to
introduce fluctuations in the backbone structure. A future
method incorporating such structural changes could improve
binding energy estimators like STAB-DDG. Furthermore,
the extent to which the scarcity of available binding data
and therefore, scaling laws, impacts the accuracy of current
models necessitates further investigation.
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A. Additional background on binding ∆∆G prediction and TCR mimic engineering
A.1. Background

Binding specificity. The binding specificity of a protein can be characterized by the difference in binding affinity between
the reference, or wild-type, interaction and off-target interactions, where binding affinity is the free energy difference (∆G)
between the bound and unbound states of a system of two proteins. More concretely, a binding affinity difference of ∆∆G
= 1 kcal/mol between a cancer target and its healthy analogue would translate to 10X higher binding affinity for the cancer
target. Thus, binding specificity can be expressed by a series of ∆∆G values between the wild type interaction and a known
list of off-targets.

TCR mimic specificity. TCR mimic antibodies hold significant promise for cancer-specific immunotherapy (Klebanoff
et al., 2023; Yang et al., 2023). These engineered molecules are designed to selectively bind to cancer-associated peptides
presented on major histocompatibility complexes (pMHCs) while avoiding recognition of off-target peptides displayed
on healthy cells. Given that these peptides are typically only 9–12 amino acids long, the challenge lies in distinguishing
cancer-associated pMHCs from normal pMHCs, which can sometimes differ by just a single amino acid (Rossjohn et al.,
2015). Achieving this level of specificity is critical, as even minor cross-reactivity could lead to severe dose-limiting
toxicities or fatal depletion of essential healthy cells (Linette et al., 2013). Predicting off-target toxicity is particularly
difficult because the potential peptide landscape is vast—ranging from approximately 209 to 2012 theoretical peptide
combinations. As a result, experimental screening alone is often insufficient to fully assess specificity (Birnbaum et al., 2014;
Holland et al., 2020). Computational approaches that refine TCR mimic binding to maximize selectivity could significantly
reduce toxicity risks while enhancing precision and the molecule’s therapeutic window. By improving specificity, such
strategies could accelerate the development of safer and more effective TCR mimic therapies, ultimately broadening their
clinical utility.

A.2. TCR mimic case study

To curate this case study, we searched the TCR3d Database for structures of TCR mimic antibodies bound to pMHC that
were deposited in the PDB and had associated surface plasmon resonance (SPR) data with mutations (Gowthaman & Pierce,
2019). We prioritized SPR data because it provides the most quantitatively accurate and sensitive measurements of binding
affinity changes, making it a reliable source of binding ∆∆G. TCR mimic antibodies contain flexible loops with many
degrees of freedom, making the effects of mutations on affinity and specificity particularly difficult to predict. In total,
we identified six TCR mimic complexes with available mutational and SPR data from the literature (PDB IDs: 3HAE,
6UJ9, 6W51, 7BH8, 7STF, 8EK5) (Stewart-Jones et al., 2009; Hwang et al., 2021; Hsiue et al., 2021; Li et al., 2022;
Wright et al., 2023; Sun et al., 2023). These complexes exhibited a diversity of mutation sites, including mutations on the
TCR mimic loops, the peptide, and the MHC, as well as a mix of single and multiple mutations. For each structure, we
calculated the ground truth ∆∆G based on changes in binding affinity from the wild-type to the mutant protein. In cases
where a mutation resulted in undetectable affinity by SPR, we estimated the mutant protein’s affinity to be 100,000 nM—a
conservative approximation given that true affinity values in such cases are often much weaker. This threshold effectively
reflects a significant loss of binding, as interactions with affinities above 100,000 nM are generally considered too weak for
physiological relevance (Table 5). Finally, we compared these experimental ∆∆G values to the predicted ∆∆G values
generated by ∆∆G, allowing us to assess the predictive accuracy of computational models for binding energy changes in
TCR mimic systems.
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Table 5. TCR mimic case study dataset.
Pdb Mutation(s) ∆∆G (kcal/mol) Notes

8ek5 EA59A 0.428314 HLA mutation; Figure 1J
8ek5 EA63A No binding HLA mutation; Figure 1J
8ek5 QA73A 2.427024 HLA mutation; Figure 1J
8ek5 TA74A 1.037010 HLA mutation; Figure 1J
8ek5 QA156A -0.185302 HLA mutation; Figure 1J
8ek5 TA164A 0.020049 HLA mutation; Figure 1J
8ek5 QC1A 0.151418 peptide mutation; Supp. Figure S16
8ek5 NC3A 1.900784 peptide mutation; Supp. Figure S16
8ek5 PC4A 0.218890 peptide mutation; Supp. Figure S16
8ek5 IC5A 1.853897 peptide mutation; Supp. Figure S16
8ek5 RC6A No binding peptide mutation; Supp. Figure S16
8ek5 TC7A 1.571367 peptide mutation; Supp. Figure S16
8ek5 TC8A 0.716476 peptide mutation; Supp. Figure S16
8ek5 IC5L 0.433947 peptide mutation; estimated Kd values
8ek5 IC5V 0.921828 peptide mutation; estimated Kd values
8ek5 IC5G 2.163521 peptide mutation; estimated Kd values
7stf VC12G No binding peptide mutation
7stf FL53W -0.299732 TCRm mutation
7stf VH104N 0.436337 TCRm mutation
7stf VH104R -0.421575 TCRm mutation
7stf VH104R,VC12G 1.431891 TCRm and peptide mutation
7bh8 YG97S,YG98A,GG99Q,SG100Y -1.394408 TCRm mutations (affinity maturation)
7bh8 YG97G,YG98A,GG99Q,SG100W -1.132139 TCRm mutations (affinity maturation)
6uj9 QC7R 0.760277 peptide mutation; residue faces inside HLA groove
6uj9 YH103H,QC7R No binding TCRm and peptide mutation
6uj9 YH103H 0.355047 TCRm mutation
6w51 HF8R No binding peptide mutation
3hae SL26E,SL96G -0.628096 T1 mutant vs. 3M4E5 TCR mimic
3hae SL26E,SL96G,VC9C -0.806352 T1 mutant with peptide anchor residue mutation
3hae VC9C 0.005531 peptide anchor residue mutation only
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B. Theoretical properties of a StaB-ddG and ∆∆Gbind predictors
In this section, we first provide a complete statement of Expressivity in Proposition 3.1. We then discuss all three properties
for each of the other predictors in Table 1. Our statement of relies on a dataset of binding ∆∆G measurements of the form
introduced in Section 3.2.

Proposition B.1 (Proposition 3.1, Expressivity (formal)). For any D, there exists ∆bθ ∈ B such that

∆bθ(sn,ref, sn,m) = yn,m

for all (xn, sn,ref, sn,m, yn,m) ∈ D.

B.1. Proof of Proposition 3.1

Expressivity. Consider a simplex-valued function that for each n = 1, . . . , N satisfies pθ(sn,ref|xn) ∝ exp{yn,ref} and for
each m = 1, . . . ,Mn, pθ(sn,m|xn) ∝ exp{yn,m}. Notice that log pθ(sn,ref|x) = yn,ref + c and log pθ(sn,m|x) = yn,m + c
where c is a constant. The corresponding function ∆bθ ∈ B therefore satisfies ∆bθ(sn,ref, sn,m|xn) = log pθ(sn,ref|x)−
log pθ(sn,ref|x) = yn,m − yn,ref.

B.2. Thermodynamic properties of other predictors

Flex ddG. The Flex ddG predictor uses the same thermodynamic identity in Equation 1 and Equation 2 to parametrize
binding ∆∆G, and uses the Rosetta energy function to predict the folding ∆G terms. As such, the Flex ddG predictor
satisfies Antisymmetry and Mutational path independence. However, the Expressivity of the predictor is fundamentally
limited by the parametric form of the empirical energy function, which cannot provide close approximations to arbitrary
functions.

RDE-Net. RDE-Net first creates neural network embeddings hwt and hmut for the wildtype and mutant respectively.
The embeddings are then used as input to another neural network, denoted by MLP. The final output is computed as
(MLP(hmut − hwt)− MLP(hwt − hmut))/2, which enforces Antisymmetry by construction. However, since MLP is in
general not a linear function, there is no guarantee on Mutational path independence. Lastly, using the same proof as above,
it can be shown that the neural network parametrization satisfies Expressivity.

PPIformer. PPIformer uses a masked language model to model sequence likelihood. The final predictor looks similar to
∆fθ:

∆̂∆G =
∑
i∈M

log p(ĉi = si | s\M )−
∑
i∈M

log p(ĉi = mi | s\M ).

In the above, M is a set of mutated positions, where si denotes the wildtype amino acid and mi denotes the mutant amino
acid for position i. The PPIformer predictor also satisfies Antisymmetry by construction. However, it does not satisfy
Mutational path independence as the conditioning information, c\M , depends on the difference between wildtype and the
mutant. As such, the conditioning information between two pairs of sequences will be different. Lastly, each mutated
position is predicted independently from the other mutated positions. As such, the predictor enforces the effects between
any set of mutations to be additive. The enforced additivity does not satisfy Expressivity as mutations generally involve
non-additive effects.

Other predictors. Surface-VQMAE, Prompt-DDG, DiffAffinity and ProMIM are parametrized by multilayer perceptrons
that take as input embeddings from another neural network, without any guarantees of Antisymmetry or Mutational path
independence. However, these predictors are expressive, treating neural networks as expressive functions.
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C. SKEMPIv2.0 filtering and metrics
In this section we outline the dataset filtering and splitting details and discuss the “per interface” metrics.

C.1. SKEMPIv2.0 filtering and splitting procedure

The original SKEMPIv2 dataset contains 7,085 mutant entries. We filter and split SKEMPIv2.0 according to the following
steps.

1. Remove 285 mutants with missing affinity measurements.

2. Remove 884 duplicate mutants with the same mutations on the same crystal structure.

3. Remove 1,029 mutants that only contain mutations at non-interface residues. We remove these because mutations at
non-interface residues do not have significant contributions to binding affinity changes (Dourado & Flores, 2014).

4. Remove 108 complexes with less than 3 mutants assayed. This reduces the bias and noise from different experimental
conditions.

5. Remove 4 complexes with more than 40% of the measured ∆∆G to be the same value. This removes 49 mutants.

6. Remove 8 complexes with unresolved residues in the crystal structure. This removes 162 mutants.

After these filtering steps, we have 201 complexes and 4,541 mutants. We cluster the complexes using the original
SKEMPIv2.0 clusters based on structural homology near the binding site, resulting in 64 disjoint clusters (Jankauskaitė
et al., 2019). Then, we perform a random splitting to obtain 20 clusters with 1,491 mutants across 81 complexes as our test
set. We report these clusters and split at https://github.com/LDeng0205/binding-ddG.

C.2. Additional metrics for evaluating binding prediction accuracy

We introduce additional metrics for assessing prediction accuracy: Pearson correlation, Root Mean Squared Error (RMSE),
and Area Under the Receiver Characteristic (AUROC). AUROC is computed on the binary classification task of whether
a mutation increases binding affinity (∆∆G < 0). We additionally compute the “overall” metrics for the entire set of
predictions that include different complexes. For each overall metric, we can compute a standard error as the standard
deviation of that metric on cluster-bootstrap resample of the test set where on each bootstrap sample we draw full complexes
from the test set complexes with replacement (Cameron & Miller, 2015). These standard errors approximate the variability
in the overall metrics owing to the choice of structures included in the test set.

The “per interface” metrics reported in Table 8 are obtained by computing each metric for each complex, then take the
average across complexes. For complexes that contain less than 10 mutants, the correlation values obtained are empirically
observed to be noisy (Figure 5). As such, we decide to report the mean of metrics for complexes with 10 or more mutants to
reduce the effect of noise. We examine the impact of the choice of such a threshold on the relative performance between
STAB-DDG andm Flex ddG (Figure 6). We find that the relative performance is robust to the choice of the threshold.
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Figure 5. Spearman correlation vs. Number of mutants. Each point represents a complex.

Figure 6. The relative performance of models for different thresholds when computing per interface spearman.
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D. Additional experiments on variations of STAB-DDG
D.1. Linear model initialization

Tsuboyama et al. (2023) proposed to use amino acid-specific offsets in a model relating sequence probabilities in protein
families to stability measurements. We experimented with a similar approach and introduce a linear model on top of our
folding ∆∆G predictor as

F (s, s′) = α∆fθ(s, s
′) + (

∑
a∈s

ϕa −
∑
a∈s′

ϕa) + ϕ0 (9)

where α is a scaling term to correct for the initial scale mismatch, ϕ0 is a global bias, and ϕa represents amino-acid
specific offsets. We fit the linear parameters first with the zero-shot predictor ∆fθ(s, s

′) before fine-tuning θ. This
procedure is inspired by the idea that fine-tuning the last layers of a neural network first could help improve generalization
performance (Kumar et al., 2022). We use a predictor of the following form

B(s, s′) = α∆bθ(s, s
′) + (

∑
a∈s

ϕa −
∑
a∈s′

ϕa) + ϕ0 (10)

which uses the same set of linear weights as F . Note that the linear model introduces asymmetry and the updated predictors
no longer satisfy the first two properties of Proposition 3.1.

We found that fitting the linear model and following the same fine-tuning procedure, with F and B as folding and binding
predictors, did not lead to a significant difference in prediction accuracy (Table 7).

We provide the fitted linear parameters α, ϕ0, and ϕa in Table 6. The learned ϕ0 is negative, indicating that most mutations
in the dataset are destabilizing. In addition, the offset for TRP, a bulky hydrophobic residue expected to have larger effects
on stability, is the second largest in magnitude and is negative (destabilizing).

Table 6. Linear parameter values.
α ϕ0 ALA CYS ASP GLU PHE GLY HIS ILE LYS LEU MET
0.24 -0.19 0.00 -0.80 0.04 0.10 -0.55 0.13 -0.20 -0.40 0.12 -0.33 -0.47

ASN PRO GLN ARG SER THR VAL TRP TYR
0.01 0.33 -0.01 -0.23 0.00 -0.07 -0.27 -0.68 -0.50

D.2. Using AlphaFold 3 predictions for apo structures

We experimented with using AlphaFold 3 (Abramson et al., 2024) predicted structures for individual binders instead of
obtaining them from the complex crystal structure. We hypothesized that this would more closely track the apo (unbound)
state of the structures for more accurate folding energy predictions. We found this to have not made a significant difference
in the Per interface Spearman metric, but have improved several other metrics (Table 7).

D.3. Normalizing complex loss with the number of mutants

In our fine-tuning objective (Equation (8)), we weight each complex n by the number of mutants assayed Mn. We
additionally experimented with weighting the loss by

√
Mn instead of Mn. However, we did not find a significant difference

between the two weighting schemes (Table 7).

D.4. Variance reduction

We evaluated the effects of antithetic variates and the number of Monte Carlo samples on reducing prediction error, measured
by RMSE (Figure 7). We found that the antithetic variates method significantly reduced prediction error, and Monte Carlo
ensembling further reduced the error. In addition to improving prediction accuracy at inference time, fixing the decoding
order and backbone noise also led to better training dynamics. In particular, under the same hyperparameters, a model trained
without fixing these additional parameters performed much worse than STAB-DDG (Table 7). In our other experiments, we
ensemble over 20 samples.
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D.5. Ablations

Fine-tuning on folding stability data without inverse-folding pre-training. We randomly initialized weights to our pre-
dictor and fine-tuned it on folding stability data. We found that the performance was much worse than STAB-DDG zero-shot,
suggesting that pre-training contributes significantly to model performance (Table 7).

Fine-tuning on binding affinity data from ProteinMPNN weights. We directly fine-tuned STAB-DDG zero-shot on
binding energy data without incorporating folding stability data. We found that though the per interface metrics remained
the same, the overall accuracy dropped (Table 7).

Table 7. Evaluation of prediction performance of variations of STAB-DDG on the test split of SKEMPIv2.0. Per interface metrics for
which the difference from STAB-DDG is not statistically significant are underlined. Statistical significance is determined by a paired,
one-sided t-test against STAB-DDG. Standard errors are also reported for per interface metrics.

Method Per Interface Overall
Pearson Spearman RMSE Pearson Spearman RMSE AUROC

StaB-ddG 0.49 ± 0.04 0.45 ± 0.04 1.41 ± 0.12 0.53 ± 0.06 0.53 ± 0.06 1.72 ± 0.11 0.73 ± 0.05
No folding 0.50 ± 0.04 0.46 ± 0.04 1.53 ± 0.13 0.47 ± 0.07 0.47 ± 0.05 1.92 ± 0.13 0.70 ± 0.04
No pre-train 0.12 ± 0.05 0.12 ± 0.05 2.04 ± 0.15 0.23 ± 0.07 0.17 ± 0.05 2.41 ± 0.14 0.61 ± 0.04
No ant. var. 0.30 ± 0.04 0.30 ± 0.04 1.96 ± 0.16 0.19 ± 0.08 0.17 ± 0.06 2.35 ± 0.17 0.58 ± 0.05
Linear model 0.47 ± 0.04 0.44 ± 0.04 1.52 ± 0.14 0.54 ± 0.05 0.49 ± 0.05 1.79 ± 0.11 0.72 ± 0.04
Pred. apo structures 0.45 ± 0.05 0.43 ± 0.04 1.43 ± 0.10 0.60 ± 0.05 0.56 ± 0.05 1.66 ± 0.09 0.76 ± 0.03
sqrt(M) weighting 0.49 ± 0.04 0.45 ± 0.04 1.40 ± 0.12 0.54 ± 0.06 0.54 ± 0.06 1.72 ± 0.12 0.74 ± 0.05

Figure 7. Overall RMSE vs. number of Monte Carlo samples evaluated using STAB-DDG parameters on the SKEMPIv2.0 test split.
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E. Additional details on the main text results
E.1. Binding prediction accuracy on SKEMPIv2.0

E.1.1. COMPARISON TO BASELINE METHODS ON MORE METRICS

Here, we provide a more complete set of metrics to compare with other methods (Table 8).

E.1.2. RMSE BY AMINO ACID TYPE

We provide the average RMSE by mutant amino acid type in Table 9. We found that STAB-DDG achieved lower RMSEs for
many bulky hydrophobic residues (PHE, TRP, TYR, MET).

Table 8. Evaluation of baseline ∆∆G prediction methods and STAB-DDG on the test split of the SKEMPIv2.0 dataset. The best approach
for each metric is in bold and per interface metrics for which the difference from the best is not statistically significant (P < 0.05) are
underlined. Statistical significance is determined by a paired, one-sided t-test to the best performing method. Standard errors for overall
metrics are computed through cluster-bootstrapping.

Method Per-Structure Overall
Pearson Spearman RMSE Pearson Spearman RMSE AUROC

RDE-Net 0.30 ± 0.05 0.28 ± 0.05 1.53 ± 0.12 0.40 ± 0.05 0.40 ± 0.05 1.81 ± 0.10 0.63 ± 0.03
Surface-VQMAE 0.35 ± 0.05 0.33 ± 0.05 1.48 ± 0.11 0.45 ± 0.04 0.44 ± 0.05 1.76 ± 0.09 0.65 ± 0.03
ProMIM 0.19 ± 0.06 0.15 ± 0.05 1.57 ± 0.12 0.35 ± 0.06 0.35 ± 0.06 1.85 ± 0.11 0.60 ± 0.03
Prompt-DDG 0.32 ± 0.04 0.27 ± 0.04 1.41 ± 0.12 0.33 ± 0.08 0.35 ± 0.07 1.81 ± 0.13 0.57 ± 0.05
DiffAffinity 0.26 ± 0.04 0.25 ± 0.04 1.55 ± 0.13 0.31 ± 0.05 0.33 ± 0.05 1.88 ± 0.11 0.64 ± 0.04
Flex ddG 0.45 ± 0.04 0.42 ± 0.04 1.93 ± 0.50 0.22 ± 0.17 0.54 ± 0.05 3.98 ± 1.65 0.74 ± 0.03
PPIformer 0.20 ± 0.04 0.20 ± 0.04 1.51 ± 0.10 0.46 ± 0.07 0.42 ± 0.06 1.77 ± 0.09 0.71 ± 0.05
ProteinMPNN 0.14 ± 0.04 0.13 ± 0.04 — 0.18 ± 0.07 0.18 ± 0.06 — 0.55 ± 0.04
ESM-IF1 0.24 ± 0.04 0.22 ± 0.04 — 0.15 ± 0.05 0.23 ± 0.08 — 0.54 ± 0.05

StaB-ddG zero-shot 0.45 ± 0.04 0.43 ± 0.04 — 0.44 ± 0.07 0.43 ± 0.06 — 0.68 ± 0.04
Stability fine-tuned 0.45 ± 0.04 0.40 ± 0.04 1.69 ± 0.15 0.44 ± 0.06 0.45 ± 0.06 2.00 ± 0.12 0.70 ± 0.04
StaB-ddG 0.49 ± 0.04 0.45 ± 0.04 1.41 ± 0.12 0.53 ± 0.06 0.53 ± 0.05 1.72 ± 0.11 0.73 ± 0.04

Table 9. RMSE for each mutant amino acid.
ALA CYS ASP GLU PHE GLY HIS ILE LYS LEU MET
1.32 3.19 2.96 1.96 0.94 1.33 2.06 1.90 1.61 1.67 1.58

ASN PRO GLN ARG SER THR VAL TRP TYR
1.37 0.99 1.93 1.78 0.81 1.04 1.14 0.82 1.44

E.2. Yeast surface display case study details

Estimation of a proxy for binding ∆∆G from sequence counts. We briefly summarize the procedure of estimating
∆∆G from yeast surface display sorts described fully in Cao et al. (2022). A midpoint concentration (SC50) is estimated as
a proxy for the binding dissociation constant KD used to compute ∆Gbind. The SC50,i for sequence i is estimated using
(Equation (1) Cao et al. (2022))

Fraction collectedi =
concentration

(concentration + SC50,i)
.

Here, Fraction collectedi is the fraction of bound sequences as determined by Fluorescence-Activated Cell Sorting (FACS)
and Next Generation Sequencing (NGS). A critical assumption in this procedure is that expression level is constant across
different sequences.

Binding confounded by expression. We found that our folding stability predictor was more accurate than our binding
energy predictor at predicting binding energy on the yeast surface display dataset (Figure 4). We reasoned that this effect
could be attributed to the sequence count readout from the yeast surface display experiment depended on both binding

20



Predicting mutational effects on protein binding from folding energy

affinity and expression, a quantity strongly correlated with folding stability (Cao et al., 2022). We validated this hypothesis
by experimenting with predictors of the form

bθ(sA:B) = fθ(sA:B)− β[fθ(sA) + fθ(sB)].

The case that β = 0 corresponds to the “complex” only predictions. And the case that β = 1 corresponds to STAB-DDG
parameterization. where β is a constant. We found that, indeed, setting β = 0.65 improved performance of all predic-
tors (Figure 8).

Figure 8. Spearman vs. different values of β on the yeast surface display dataset. β = 0 corresponds to the folding energy predictor ∆fθ ,
and β = 1 corresponds to the binding energy predictor ∆bθ.

Table 10. Evaluation of ∆∆G prediction on yeast surface display dataset.

Method Per-Structure Overall
Pearson Spearman RMSE Pearson Spearman RMSE AUROC

StaB-ddG zero-shot 0.157 ± 0.020 0.094 ± 0.015 1.43 ± 0.08 0.16 0.10 1.45 0.54
StaB-ddG zero-shot complex 0.282 ± 0.023 0.274 ± 0.025 3.02 ± 0.09 0.25 0.26 3.08 0.61
Stability fine-tuned 0.300 ± 0.022 0.268 ± 0.021 1.24 ± 0.10 0.28 0.26 1.30 0.61
Stability fine-tuned complex 0.366 ± 0.030 0.314 ± 0.030 1.26 ± 0.07 0.31 0.29 1.26 0.62
StaB-ddG 0.328 ± 0.025 0.296 ± 0.026 1.21 ± 0.09 0.32 0.28 1.25 0.62
StaB-ddG complex 0.372 ± 0.030 0.323 ± 0.031 1.35 ± 0.06 0.32 0.30 1.35 0.63

E.3. Comparison to ThermoMPNN

In this section we compare the performance of STAB-DDG on folding stability prediction with ThermoMPNN, a state-of-
the-art method for predicting the effects of single mutations on protein stability. ThermoMPNN is based on ProteinMPNN
and introduces an additional attention-based neural network for fine-tuning on the Megascale dataset. We use the same
training split as ThermoMPNN to fine-tune STAB-DDG. However, as STAB-DDG naturally generalizes to mutants with
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multiple mutations, we include such mutants for structures in the training set. We evaluate STAB-DDG on the same test set
as ThermoMPNN (Table 11). We report the metrics computed on the test set as a whole, rather than averaging performance
across domains. In addition to ThermoMPNN, we include the next best two baselines reported by Dieckhaus et al. (2024)
for reference. STAB-DDG achieves performance not much below that of ThermoMPNN and outperforms the next best
baseline (Dieckhaus et al., 2024). We also assess the performance on multiple mutations for our method (Table 12). We
found that though our method performed comparably to ThermoMPNN on single mutations, our stability predictor achieved
significantly lower accuracy on multiple mutations, presumably due to the limited amount of multiple mutation data.

Table 11. Performance on Megascale test set (single mutations).
METHOD PEARSON SPEARMAN RMSE

THERMOMPNN 0.75 0.73 0.71
STABILITY FINE-TUNED (OURS) 0.71 0.69 0.77
RASP 0.71 0.67 1.08
PROSTATA 0.64 0.59 0.83

Table 12. Performance on Megascale test set (multiple mutations).
METHOD PEARSON SPEARMAN RMSE

STABILITY FINE-TUNED (OURS) 0.38 0.42 1.41
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