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Abstract

Accurate estimation of mutational effects on
protein-protein binding energies is an open prob-
lem with applications in structural biology and
therapeutic design. Several deep learning predic-
tors for this task have been proposed, but, pre-
sumably due to the scarcity of binding data, these
methods underperform computationally expen-
sive estimates based on empirical force fields. In
response, we propose a transfer-learning approach
that leverages advances in protein sequence mod-
eling and folding stability prediction for this task.
The key idea is to parameterize the binding energy
as the difference between the folding energy of
the protein complex and the sum of the folding
energies of its binding partners. We show that us-
ing a pre-trained inverse-folding model as a proxy
for folding energy provides strong zero-shot per-
formance, and can be fine-tuned with (1) copious
folding energy measurements and (2) more lim-
ited binding energy measurements. The resulting
predictor, STAB-DDG, is the first deep learning
predictor to match the accuracy of the state-of-
the-art empirical force-field method FoldX, while
offering an over 1,000x speed-up.'

1. Introduction

Computation of mutational effects on binding energies is
of central importance in structural biology and protein en-
gineering. For example, three recent studies (Householder
et al., 2024; Liu et al., 2024a; Johansen et al., 2024) de-
signed proteins that bind to target proteins found on cancer
cells, but the therapeutic promise of these molecules de-
pends on their specificity; “off-target” binding to proteins
differing at only one or two positions could induce toxicity
to non-cancer cells (see Appendix A). In this setting and
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others, accurate prediction of binding energies would sup-
port in silico design of proteins with requisite specificity.
Given two interacting proteins and amino acid substitutions,
the goal is to predict the differences in the change in Gibbs
free energy upon binding (the “AAG” or “ddG”).

Deep-learning (DL) methods have so far underperformed
more classical methods based on empirical force fields in
binding energy prediction. Notably, Bushuiev et al. (2024)
find that recent results suggesting the superiority of DL
predictors are confounded by dataset contamination — ex-
tant DL predictors generalize poorly when evaluated on
interfaces not represented in the training set, and a Rosetta-
based predictor Flex ddG provides state-of-the-art perfor-
mance (Barlow et al., 2018; Bushuiev et al., 2024). Presum-
ably, this underperformance of DL methods owes in part
to the scarcity of training data, with experimental AAG
measurements for fewer than 350 distinct interfaces in the
largest public curated dataset (Jankauskaité et al., 2019).

In this work, we introduce a transfer learning approach that
helps address this data limitation by reducing binding en-
ergy prediction to predicting folding energies. Our approach
is based on two observations. First, as a consequence of
the state function property of free energy, the binding en-
ergy between two proteins A and B, AGyina(A:B), can be
computed as

AGhind(A:B)=AGk1d(A:B)—AGioid(A)— AGsoa (B),
ey
where AGyoq denotes the free energy difference between
folded and unfolded states of a protein monomer or com-
plex (Figure 1a). This observation will allow us to use both
folding stability and binding energy datasets in a supervised
learning approach.

The second observation is that protein sequences and struc-
ture data in the Protein Data Bank (PDB) can inform an ini-
tial predictor of protein folding energies. This observation
builds on the strong correlation between folding energies
and likelihoods predicted by probabilistic models of protein
sequences. Such correlations were first observed for Potts
models (Lapedes et al., 2012; Hopf et al., 2017), and then
later neural network models of sequence (Riesselman et al.,
2018; Rives et al., 2021), as well as backbone structure con-
ditional sequence models (Hsu et al., 2022a; Notin et al.,
2023). We can leverage these correlations by using a pre-
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Figure 1. (a) Thermodynamic identity from the path independence of the free energy function (Equation (1)). (b) Schematic of STAB-DDG.
STAB-DDG takes as input the backbone structure, a wild type sequence, and a mutant sequence to predict AAGhing. STAB-DDG leverages
three sources of data: structure/sequence pairs from the PDB, a folding stability dataset, and a binding affinity dataset.

trained sequence likelihood model as a zero-shot folding
energy predictor.

Built on these observations, we present Stability-to-Binding
delta delta G (STAB-DDG), a deep learning model to pre-
dict the mutation effects on protein-protein interaction en-
ergy using interface structure and sequence (Figure 1b). To
fit STAB-DDG, we use a pre-trained inverse folding model
ProteinMPNN (Dauparas et al., 2022) to initialize a zero-
shot binding AAG predictor according to Equation (1), and
fine-tune on a combination of high-throughput folding en-
ergy measurements (Tsuboyama et al., 2023) and binding
energy measurements (Jankauskaité et al., 2019).

We demonstrate that fine-tuning STAB-DDG on a folding
energy dataset improves binding energy predictions. Further
fine-tuning on binding energy data provides state-of-the-art
performance on a standard benchmark. Lastly, we evaluate
STAB-DDG on two difficult case study datasets that cor-
roborate these conclusions but illustrate that the problem
remains difficult.

2. Preliminaries

In this section, we outline relevant background on protein
thermodynamics and describe the notation used.

Protein binding, folding, and mutational effects. The
binding energy between two proteins A and B is the free
energy difference, AGpina(A : B), between the bound and
unbound (but folded) states of the system. Our goal is to
predict the effect of mutations on binding energies. For a
reference (wild type) interaction A : B and mutant A’ : B
we write the mutational effect as

AAGbind(AZB — A/ZB)

:AGbmd(A/ZB) - AGbind(AiB) .

Our starting point is the observation in Equation (1) that
AGhing may be computed as a difference in folding stabili-
ties AGiolq as a consequence of the state function property
of free energies; the change in energy along a direct path
from the unbound to bound states is the same as the change
along the path that proceeds through the unfolded state (Fig-
ure la).

Using Equation (1), we can express AAGhyq in terms of
folding energy as

AAGbind(AZB — A/ZB) :AAGfold(AZB — A/ZB)

— AAGfold(A — A/) @
Equation (2) underlies binding AAG predictors based on
empirical force fields (e.g., Guerois et al., 2002; Kastritis &
Bonvin, 2013; Barlow et al., 2018). But to our knowledge
this identity has not previously been leveraged in a DL
binding AAG predictor.

Notation. We represent a protein by its amino acid se-
quence s = [s!,s?,...,s¥] where L is the length of the
sequence and each s' € {1,---,20} indicates the amino
acid type. For binding partners A and B, we write s4.p =
(sa, sp) to denote the protein complex. Mutations of se-
quences s are written as s’ and are assumed to be of the

same length.

3. Predicting mutational effects on protein
binding from folding energy

To incorporate labeled fine-tuning data with a pre-trained
sequence likelihood model, we first propose STAB-DDG, a
binding energy predictor based on sequence log probability.
We show that STAB-DDG satisfies three properties we ar-
gue are desirable of AAG predictors that are not satisfied
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by previous predictors. Then, we present an objective to
fine-tune STAB-DDG on both folding stability and bind-
ing affinity datasets. Lastly, we discuss variance reduction
techniques to reduce prediction error at both training and
inference time.

3.1. The STAB-DDG predictor

To obtain a binding AAG predictor we start with a pre-
trained sequence likelihood model to initialize a protein
stability (AGfyolq) predictor as

fo(s) = logpe(s), (3)

where py(s) is a probability model on sequences. We take
the logarithm of py to agree with the close-to-linear rela-
tionship between log probabilities of protein sequences and
folding energies observed by Lapedes et al. (2012) and
corroborated by many others (Notin et al., 2023). We use
the ProteinMPNN inverse-folding model (Dauparas et al.,
2022) for fy(s). ProteinMPNN depends additionally on a
reference backbone structure, but we leave this dependence
implicit to simplify notation.

Then, using Equation 1, we can obtain a binding affinity
(AGhina(A : B)) predictor as

bo(sa:) = fo(sa:B) — fo(sa) — fo(sB). 4)

We refer to Equation (4) as the StaB parameterization be-
cause it links a Stability to Binding. Finally, we can use
a difference of the predicted binding affinity between two
complexes as a AAGhing predictor:

Aby(s,s") = bg(s") — be(s). 5)

We call the predictors with the form Aby STAB-DDG pre-
dictors.

Computation of Aby(s, s’) involves computing fy on up to
six systems; the complex and two binding partners for each
of s and s’. While in principle the backbone structures for
each term could vary, we use backbone structures derived
from a single complex for all 6 terms. This choice reflects
an assumption that the backbone changes little upon binding
and mutation.

The choice of ProteinMPNN. We choose ProteinMPNN
to initialize fy and by extension by and Aby. ProteinMPNN
offers two advantages over sensible alternatives. First, com-
pared to (even much larger) protein language models that
do not take as input a reference backbone structure, Protein-
MPNN provides stronger zero-shot folding stability predic-
tions (Notin et al., 2023). ProteinMPNN’s stronger perfor-
mance presumably owes to the fact that mutational effects
on binding are mediated through effects on structure.

The second advantage is that ProteinMPNN can make pre-
dictions for multi-chain complexes and multiple mutations.
By contrast, most other folding stability predictors are imple-
mented only for monomers and single mutations (Dieckhaus
et al., 2024; Diaz et al., 2024). This complication, though
likely surmountable with heuristics such as glycine linkers
or residue gaps, is avoided with ProteinMPNN.

Properties of the StaB-ddG predictor. The form of Aby
constructed in Equations (3) to (5) imparts properties desir-
able of a AAGy;yg predictor. We formalize these properties
in the following proposition.

Proposition 3.1. Consider the class of binding energy pre-
dictors B = {Abg}, with Abg parameterized as in Equa-
tion (5) by pe(s) that is an arbitrary 20" -simplex valued
Sfunction of s. The family of predictors B satisfies

1. Antisymmetry: for any Abg in B,

Abg(s,s') = —Abg(s', s),

2. Mutational path independence: for any Aby in B and
s, Sl, s,

Abg(s,s") = Aby(s,s") + Abg(s",5"),and

3. Expressivity (Informal): for any dataset of binding free
energy measurements, there exists a Aby in B that fits
the measurements exactly.

Proof: Properties 1 and 2 follow immediately from the
construction of Aby as the difference of evaluations of by
defined in Equation (5). Appendix B provides a formal
statement of the expressivity property along with a proof.

Because AAGyyg’s are differences by definition they sat-
isfy Properties 1 and 2 of Proposition 3.1. Though these
properties are readily obtained in our predictor by construc-
tion, they are nonetheless not satisfied by other recent DL,
predictors (Table 1).

Property 3 requires py(s) to be able to take arbitrary val-
ues on the simplex. In practice, py(-) is parametrized by
ProteinMPNN which, as an auto-regressive model parame-
terized by a deep message-passing neural network, can ap-
proximate to arbitrary simplex-valued functions. This prop-
erty formalizes the ability of our predictor to model epistasis
and achieve zero training loss on the fine-tuning dataset.
In contrast, a predictor parameterized by a masked lan-
guage model (e.g., Bushuiev et al., 2024) cannot model non-
additive effects between multiple mutations (Appendix B),
and force field-based methods (e.g., FoldX) do not have this

property.
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Table 1. Thermodynamic properties of different AAG predictors.
See Appendix B for details.

Predictor Anti- Mut. Path Express-
symmetry Independence ivity
FoldX Vv v X
Flex ddG Vv Vv X
Surface-VQMAE X X Vv
Prompt-DDG X X Vv
DiffAffinity X X Vv
ProMIM X X Vv
RDE-Net Vv X Vv
PPIformer Vv X X
STAB-DDG V4 4 4

3.2. Assimilation of folding and binding energy data

Though our goal is to predict binding, the number of binding
energy measurements available in the largest public curated
set is two orders of magnitude fewer than that in the largest
comparable set of folding stability measurements (Table 2).
As such, we adopt a sequential fine-tuning strategy, where
we first fine-tune on folding stability data and then fine-tune
on more limited binding affinity data.

Table 2. Dataset size comparison between PDB and the largest
available stability and binding datasets.

DATASET # OF STRUCTURES  # OF MEASURED AAG
PDB 230,744 —
STABILITY 412 776,298
BINDING 345 7,085

Fine-tuning to folding stability data. The Megascale
stability dataset is the largest publicly available dataset on
protein folding energy, with 776,298 folding stability mea-
surements across 412 small monomeric proteins from a
high-throughput assay (Tsuboyama et al., 2023). We follow
the same dataset preparation protocol as described by Dieck-
haus et al. (2024), but keep entries with multiple mutations.
We represent the Megascale stability dataset with IV struc-
tures and M,, mutants associated with the nth structure as

Drola = {({,Cn, Sn,refy Yn,ref, {sn,m7 yn,m}%ll)}rzy:p

where s, f and y,, r denote the reference sequence and
AG, and x, is a predicted reference structure. We use
{Sn.m>Yn,m} %21 to denote the set of mutant sequences and
corresponding mutant AG values. A set of AAG values can
then be computed by taking the difference between mutant
and reference AG.

To fine-tune 6 on Dyyq, we construct a AAGgyy predictor
as

Af9(878/) = f&(sl) - fg(S), (6)

where we use the same structure x,, to compute fy(s’) and
fo(s). Then, we fine-tune by minimizing

1 N 1 M,
Lfold(97 Dfold) = N Z ﬁ Z(AfO (Sn,refv Sn,m)

2
- (yn,m - yn,ref)) 5
@)

where the ﬁ scaling ensures that each complex has equal
contribution to the loss.

Fine-tuning to binding affinity data. We use
SKEMPIv2.0, the largest publicly available binding
affinity dataset with 7,085 binding AAG measurements
across 345 complexes, for fine-tuning STAB-DDG and
comparing it against other baseline methods (Jankauskaité
et al., 2019). SKEMPIv2.0 contains errors from the manual
curation process, such as mislabelled entries or entries
with different AAG values for the same mutation. Here,
we apply a filtering procedure to the dataset based on one
applied to SKEMPIv1.0 from previous work (Dourado &
Flores, 2014; Barlow et al., 2018). Further, conducting
comparisons on SKEMPIv2.0 fairly requires careful
consideration. Bushuiev et al. (2024) pointed out data
leakage based on homology in previous train/test splits
of the dataset. However, the held-out test set used by
Bushuiev et al. (2024) only contained five interface clusters.
To address these problems, we divide the dataset based
on the annotated structurally homologous clusters and
apply a random train/test split, with 121 complexes in the
fine-tuning dataset and 80 complexes in the held-out test
split. The filtering and splitting procedure is fully described
in Appendix C.

Analogously to the Megascale
SKEMPIv2.0 can be instantiated as

stability ~ dataset,

Dhind = {(xn; Sn,refy Yn,ref, {Sn,ma yn,m}%lO}g:l

with the difference being yref,», and yy, ., referring to bind-
ing AG instead of folding AG and x,, representing crystal
structures instead of predicted structures. We fine-tune on
these data by minimizing

LN M
Lis1a(0, Dpina) = N Z U Z(Ab9<5n,ref; Sp,m)

n

- (yn,m - yn,ref))2~
(®)

3.3. Variance reduction by Monte Carlo ensembling and
antithetic variates

The choice to use ProteinMPNN as our parameterization of
fo(s) introduces model-specific stochasticity in the form of
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a randomized decoding order and Gaussian noise to back-
bone coordinates. This stochasticity introduces variance
that contributes to the prediction error.

We make explicit the dependence of the model output on the
stochasticity as by(s|e) for a random variable e. Then, for
two sequences s and s’, and a measurement y = AAGhing,
we can decompose the expected prediction error into con-
tributions from squared bias and variance (see e.g., Hastie
et al., 2009, Chapter 7) as

E[(bg(s'|e") — ba(sle) — y)*] =
(Efbo(s'|€") — ba(s]€)] — y)* + Var[bg(s'|¢") — ba(s]e)],

Bias Variance

where the randomness is taken over the stochasticity € and
€’. We reduce the variance in two ways.

Antithetic variates. The first way is an instance of the
antithetic variates method (Hammersley & Morton, 1956).
The key idea is that the decomposition

Var[bg(s'|€) — bg(s|e)] = Var[bg(s'|€')] + Var[by(s|e)]
— 2Cov|bg(sle), b (s'|€")]

reveals that the correlation of by(s|e) with by(s'|€') de-
creases the overall variance. So any coupling of € and €’ for
which Cov[bg(s|e), bo(s'|€")] is positive will lead to lower
variance than if € and ¢’ were sampled independently. We
accomplish this by fixing € = ¢, which we implement by
using the same permutation order and backbone noise for
the wild type and mutant systems for each AAG prediction.

Monte Carlo averaging. The second way is Monte Carlo
averaging. By replacing each prediction with its average
across M independently sampled permutation orders and
backbone noise samples, the variance is reduced by a factor
of M. Ensembling can be applied together with the antithetic
variates method by fixing ¢ = ¢. Note that ensembling over
more samples increases the compute cost. We discuss the
effects of ensemble size in Section 5.

4. Related work on predicting mutational
effects on binding affinity

Existing approaches for predicting mutation effects on bind-
ing AAG can be categorized as empirical force field-based
methods and DL-based. Force field-based methods use en-
ergy functions to model inter-atomic interactions (Guerois
et al., 2002; Park et al., 2016; Barlow et al., 2018; Sampson
et al., 2024). While these methods have long dominated
the field, they are often computationally expensive and have
limited accuracy. For example, Flex ddG (Barlow et al.,
2018) — a predictor based on Rosetta (Alford et al., 2017)
— requires multiple CPU-hours per mutation but typically

produces estimates with Pearson correlation to experimental
AAGSs no larger than R ~ 0.65 (Barlow et al., 2018).

Free-energy perturbation (FEP) defines a class of poten-
tially more accurate methods for estimating mutational ef-
fects (Zwanzig, 1954). Recent studies using FEP (Sergeeva
et al., 2023) demonstrate small improvements over Flex
ddG and related methods. However, these studies rely on
a closed-source software implementation and case-specific
expert tuning (see e.g. Sampson et al., 2024), and are even
more computationally expensive. Consequently, we are
unable to assess the accuracy of FEP methods.

Much recent work on AAG prediction methodology has
focused DL approaches. Several prior works on DL meth-
ods (Luo et al., 2023; Liu et al., 2024b; Mo et al., 2024,
Bushuiev et al., 2024; Wu & Li, 2024; Wu et al., 2024)
have claimed to deliver performance surpassing force field-
based predictors (e.g., FoldX and Flex ddG) based on per-
formance on the SKEMPIv2.0 (Jankauskaité et al., 2019)
benchmark dataset. However, Bushuiev et al. (2024) find
that the train/test splits used to support these claims suffer
from data leakage; once this data leakage is corrected the
performance of these deep learning predictors lag Flex ddG.

Jiao et al. (2024) decompose AAG computation into muta-
tional effects on bound and unbound states. The resulting
predictor has the same form as STAB-DDG (though with-
out variance reduction), but the authors do not provide an
interpretation of the in terms of folding energy that enables
fitting to folding stability data. Frellsen et al. (2025) study
the relationship between inverse folding models and folding
energies and suggest this interpretation of the results of Jiao
et al. (2024), but their empirical studies do not consider
binding energies.

Gong et al. (2023) proposes an approach that leverages a
pre-trained folding stability model, but does not leverage the
thermodynamic identity to parameterize binding energies as
folding energies.

Other recent work considers zero-shot AAG predictions
from 3D structure models (e.g. Jin et al., 2023), but does not
achieve performance comparable to FoldX (Appendix E.3).

S. Experiments

To evaluate STAB-DDG, we first analyze the contributions
of different techniques that lead to an improvement in “zero-
shot” AAGhy,g prediction accuracy, without training on
AAGy;nq data. Next, we introduce baseline methods and
show that STAB-DDG is the only DL approach to match
FoldX and Flex ddG; an ensemble constructed by averag-
ing FoldX and STAB-DDG provides state-of-the-art perfor-
mance. Finally, we evaluate out-of-distribution accuracy of
our approach on two additional binding strength datasets:
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one consisting of de novo designed small protein binders,
and a second consisting of T cell receptor (TCR) mimic
proteins we curate.

In protein engineering applications, a AAGy;ng prediction
may be used to rank candidate sequence variants of an in-
terface of interest to select as a subset for experimental
screening. Therefore, we compute Spearman’s rank corre-
lation coefficient for mutational effects and predictions for
each interface, and report the mean of this metric across
complexes, along with standard errors. We refer to this
metric as “per interface Spearman”. When we compute per
interface Spearman, we consider only complexes with 10 or
more mutants; below this threshold, this metric suffers from
high variance (Appendix C).
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Figure 2. Evaluation of zero-shot binding predictors on the binding
data training split. ProteinMPNN refers to using log-likelihoods
of entire complexes (A fy) from the pre-trained ProteinMPNN
weights. Asterisks (*) denote significance (one-sided paired t-test)
at p<0.05.

5.1. Contributions to zero-shot AAGyng accuracy.

We first examined the individual contributions of techniques
from our method that, starting from ProteinMPNN, led to a
zero-shot binding energy predictor that incorporates infor-
mation from folding stability data (Figure 2). We evaluated
the binding energy prediction accuracy of different zero-
shot predictors on the binding data training split described
in Section 3.2.

Variance reduction. To reduce the error from the stochas-
ticity inherent to ProteinMPNN, we applied the variance

reduction techniques described in Section 3.3 and observed
improved accuracy. Specifically, reducing the variance of
the ProteinMPNN predictor by (1) fixing the decoding or-
der and backbone noise between the wild type and mutant
sequences, and (2) ensembling over 20 predictions signif-
icantly improved zero-shot performance (Figure 2). We
found that fixing the decoding order and backbone noise
also led to better training dynamics, and provided empirical
validation for the choice of ensemble size in Appendix D.

STAB-DDG zero-shot. We applied the pre-trained
weights with variance reduction in the form of the
binding predictor Aby(s,s’). The resulting predictor,
STAB-DDG zero-shot, uses the same weights as Protein-
MPNN but achieved significantly better accuracy (Figure 2).

Fine-tuning on folding stability data. To test whether
fine-tuning on additional folding stability data translates
to improved binding energy prediction accuracy, we fine-
tuned STAB-DDG zero-shot on the folding stability dataset
(“Stability fine-tuned”). We found that including these data
further increased binding prediction accuracy (Figure 2).

We next wondered whether the folding stability data were
sufficient to remove the need for unsupervised pre-training.
We found that training directly on the folding stability
dataset without inverse folding pre-training led to signif-
icantly worse binding prediction accuracy (Appendix D).

We validated our approach of fine-tuning on folding sta-
bility data of Tsuboyama et al. (2023) by comparing to a
state-of-the-art folding stability predictor ThermoMPNN
(Dieckhaus et al., 2024). ThermoMPNN is also based on
ProteinMPNN but adds a transfer-learning module to output
predictions. We found that despite not introducing addi-
tional parameters to ProteinMPNN, our stability fine-tuned
model achieved performance not much lower than Ther-
moMPNN; our predictor provided a Spearman (over all
domains) of 0.69 vs. 0.73 for ThermoMPNN (Appendix E).

We additionally explored different forms of the predictor
and training techniques that did not have a sizeable effect.
First, we tried fitting amino-acid-specific offsets to the pre-
dictor in the form of a linear model to correct for the initial
scale mismatch between sequence log-likelihoods and free
energy, measured in kilocalories per mole. However, adding
these terms did not have a significant effect on binding pre-
diction accuracy (Appendix D). Second, we experimented
with using AlphaFold3 (Abramson et al., 2024) predicted
structures to more accurately model the unbound (apo) struc-
tures of individual binders, instead of using the structure of
the bound conformation. While using predicted apo struc-
tures improved several other metrics, this modification did
not improve the per interface Spearman (Appendix D).
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Figure 3. Evaluation of accuracy on the binding AAGhing benchmark test split of SKEMPIv2. Left: STAB-DDG and its variations.
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p<0.05, n.s.: not significant.

5.2. Comparison to existing methods

Using Stability fine-tuned as a starting point, we further fine-
tuned this model on the binding data train split described in
Section 3.2. We call the resulting predictor STAB-DDG.

We compared STAB-DDG to baseline methods on the bind-
ing data test split. Figure 3 presents per interface Spearman.
We find similar trends for other metrics considered in pre-
vious works (Appendix E). We describe the baselines and
then the results.

Baselines. We compare StaB-ddG to 10 baseline predic-
tors. These comprise methods based on empirical force
fields, supervised deep learning methods, and “zero-shot”
inverse-folding methods.

FoldX (Guerois et al., 2002) and Flex ddG (Barlow et al.,
2018) provide AAGhing predictions based on approximate
energy functions. For both predictors, the parameters of
the energy functions are fit to agree with empirical data;
for FoldX weights on the components of a bespoke energy
function are fit by a grid search and for Flex ddG nonlinear
scalings of the component terms of the Rosetta energy func-
tion (Alford et al., 2017) are fit using a generalized additive
model (Hastie & Tibshirani, 1986).

Both FoldX and Flex ddG have hyperparameters that must
be chosen to make a prediction. We found that the choices
of these parameters have a significant impact on the quality
of their predictions. For Flex ddG, Barlow et al. (2018)
shows that using many backbone conformations generated
by “backrub” sampling significantly increases accuracy and
(in their public code) recommends using the average pre-
diction across several runs; we use Rosetta version 3.8 with
35,000 backrub steps and average predictions across 10 mod-
els. For FoldX, a variable number of Repair steps can be
made before predictions. These steps make small changes
to the coordinates of input crystal structures to which the
energy function is extremely sensitive, and without which
we found AAGhig bind predictions to be meaningless. Fol-
lowing Sergeeva et al. (2020), we perform 5 Repair steps
before scoring. We use FoldX version 4.1.

We suspect that suboptimal choices of the parameters of
these methods have led their accuracy to be underestimated
by recent papers proposing deep learning AAGying predic-
tion methods. For example, (Bushuiev et al., 2024) runs
Flex ddG without backrub steps (presumably due to com-
pute cost) and (Jin et al., 2023) runs FoldX with only one
Repair step.

We compared to six supervised DL baselines: Surface-
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VQMAE (Wu & Li, 2024), RDE-Net (Luo et al., 2023),
Prompt-DDG (Wu et al., 2024), DiffAffinity (Liu et al.,
2024b), PPIformer (Bushuiev et al., 2024), and ProMIM
(Mo et al., 2024). Each of these methods involves first pre-
training on protein sequence or structure data and then fine-
tuning on binding energy data. We repeat the fine-tuning
stage of each method using our train/test split. We did not
compare to Boltzmann Alignment (Jiao et al., 2024) as the
parametric form of the predictor is similar to STAB-DDG
zero-shot.

We included inverse-folding models ESM-IF1 and
ProteinMPNN as unsupervised baselines (Dauparas et al.,
2022; Hsu et al., 2022b). Zero-shot predictions were com-
puted by subtracting the wild type complex sequence log-
likelihood from the mutant log-likelihood.

Results. When evaluated on the binding data test split,
STAB-DDG achieved higher per interface Spearman (0.45),
outperforming previous DL methods (Figure 3 and Table 7).
Similar to Bushuiev et al. (2024), we found that the DL base-
lines underperform FoldX and Flex ddG when evaluated on
an interface homology-based split. We found STAB-DDG
zero-shot to be surprisingly competitive, also outperforming
previous DL methods, despite using the same model weights
as ProteinMPNN. However, we did not find the difference
between STAB-DDG, STAB-DDG zero-shot, FoldX, and
Flex ddG to be statistically significant based on a two-sided
t-test.

In contrast to the result on the training split, we observe
lower accuracy for the stability fine-tuned model as com-
pared to StaB-ddG zero shot on our test split. We attribute
this inversion to the small number of clusters in the test split.

To obtain a state-of-the-art predictive model, we found
that averaging the predictions from STAB-DDG and FoldX
achieved a higher accuracy than any previous method (Per
Interface Spearman 0.53) (Appendix E).

Stratification of performance. To understand how
STAB-DDG performs on different types of complexes, we
performed an analysis on different subsets of the binding
data test set. We stratified the test set according to inter-
face rigidity and complex size (Table 3). As a proxy for
interface rigidity, we computed the loop content at the in-
terface; specifically, we considered all residues within 10 A
of an atom in another chain and computed the fraction of
these residues with secondary structure annotated as loop.
We found that STAB-DDG performed better for more rigid,
smaller complexes.

The better performance on rigid interfaces may be explained
by STAB-DDG’s use of a single static structure for predic-
tion of folding energy for both the complex and monomers;
flexible interfaces are more likely to change upon binding

Table 3. Performance of STAB-DDG across stratification of bind-
ing test set; Root Mean Squared Error (RMSE) in Kcal/mol for dif-
ferent interface loop content and complex size (number of residues)
thresholds.

Loop Content RMSE | Complex Size RMSE
< 30% 1.12 | <150 0.94
< 40% 1.29 | <200 0.99
< 50% 146 | <400 1.28
< 60% 1.50 | <600 1.42
< 70% 148 | <800 1.38
< 80% 1.48 | <1000 1.50

and will be less well represented by a single structure.

The better performance on smaller complexes may be ex-
plained by the bias in the composition of the folding stabil-
ity data of Tsuboyama et al. (2023), which consists only of
small <80 residue domains.

Experimental details. In summary, we fine-tuned on the
Megascale stability dataset using the ADAM optimizer with
a learning rate of 3e-5 for 70 epochs with a batch size
of 25,000 amino acids. We fine-tuned on SKEMPIv2.0
using the ADAM optimizer with learning rate 1e-6 for 200
epochs with a batch size of 25,000 amino acids. We provide
training and inference code at https://github.com/
LDeng0205/StaB-ddG.

Running time. STAB-DDG is orders of magnitude faster
than Flex ddG and FoldX by benefiting from GPU paral-
lelism. Flex ddG is the most computationally expensive of
the three, requiring roughly 15 CPU hours per mutation. For
FoldX, initial “repair” steps are computed on the wild-type
interface PDB followed by scoring of individual mutants.
On our filtered SKEMPI binding dataset, the total compute
time was roughly 260 CPU hours for 4451 mutants (210 sec-
onds per mutation). For StaB-ddG, by contrast, predictions
on the same dataset took 13 NVIDIA-5090 GPU-minutes
with batched computation (0.2 seconds per mutation). This
runtime corresponds to a 1000x speedup over FoldX on a
single device.

Model finetuning of STAB-DDG took 10 hours and 5 hours
on the Megascale stability dataset and the SKEMPIv2.0
training split on a single H100 GPU.

5.3. Generalization of prediction performance on two
case study datasets.

Despite STAB-DDG having achieved state-of-the-art per-
formance on SKEMPIv2.0, the statistical power of the con-
clusions drawn was limited by the size of the dataset and
experimental noise. Thus, it remains to be validated whether
our conclusions still hold and if current computational bind-
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Figure 4. Comparison of STAB-DDG zero-shot, Stability fine-
tuned model, and STAB-DDG on the yeast surface display dataset.
* denotes significance (one-sided paired t-test) at p<0.05.

ing AAG prediction tools are readily useful in settings not
represented in SKEMPIv2.0. We sought to address this
problem by evaluating STAB-DDG in two case studies, de
novo designed “mini-binder” yeast surface display binding
dataset and a curated TCR mimic dataset.

Yeast surface display case study. To validate the effects
of fine-tuning on folding stability data and further fine-
tuning on binding data, we compared STAB-DDG zero-shot,
Stability fine-tuned, and STAB-DDG on site saturation mu-
tagenesis data from Cao et al. (2022), which has been used
to perform retrospective evaluation of DL-based binder de-
sign methods (Bennett et al., 2023). The dataset contains
sequence count information from yeast surface display li-
braries of 28,293 single mutants across 33 interfaces of
Rosetta-designed small protein binders with various natural
targets. The sequence counts are then used to estimate a
proxy for the dissociation constants of each binder, which
we relate to a AAG estimate (Appendix E).

We found that both fine-tuning on folding stability and bind-
ing affinity improved binding prediction accuracy (Figure 4).
However, we found that the folding energy predictor for the
entire complex achieved a higher per interface Spearman
than our binding predictor parameterization. Appendix E
demonstrates that this observation is explained through the
experimental readout confounding expression levels with
binding energy in the yeast-display based assay. In brief,
the binding energy proxy of a particular variant depends
on both its binding affinity and its expression, a quantity
closely related to folding stability.

TCRm case study. We curated a set of 30 AAG mea-
surements from six TCR mimic antibody structures deter-
mined by surface plasmon resonance (SPR) by searching
through all TCR mimic structures in the TCR3d database
(Appendix A) (Gowthaman & Pierce, 2019). We next evalu-
ated STAB-DDG on these data and found an overall Spear-
man correlation of 0.13 + 0.39 (with standard error com-
puted with a cluster bootstrap, see Appendix C.2), and so
are unable to conclude whether or not STAB-DDG is pre-
dictive in this setting. This negative result is likely due to a
combination of a small sample size and the greater difficulty
of predicting AAGhing for loopy antibody residues.

6. Discussion

Accurate computational prediction of the mutational effects
on protein interaction binding energies could significantly
improve the potency and specificity of protein therapeutics.
Despite years of interest in improving such predictions with
deep learning, success has been minimal. By achieving
performance comparable to FoldX, STAB-DDG marks an
important step in this direction.

Computational prediction of mutational effects on binding
energies remains a challenging open problem. Several areas
remain to be explored. First, STAB-DDG does not model
changes in the backbone upon a mutation; in general, mu-
tations on flexible regions of the binding site are likely
to introduce fluctuations in the backbone structure. Sec-
ond, while the capacity to improve StaB-ddG by including
larger and more diverse binding and folding energy datasets
presents an advantage relative to empirical force-field-based
predictors, the rate of improvement as a function of these in-
gredients and how best to assimilate these data into a single
predictor requires further investigation.
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A. Additional background on binding AAG prediction and TCR mimic engineering
A.1. Background

Binding specificity. The binding specificity of a protein can be characterized by the difference in binding affinity between
the reference, or wild-type, interaction and off-target interactions, where binding affinity is the free energy difference (AG)
between the bound and unbound states of a system of two proteins. More concretely, a binding affinity difference of AAG
=1 kcal/mol between a cancer target and its healthy analogue would translate to 10X higher binding affinity for the cancer
target. Thus, binding specificity can be expressed by a series of AAG values between the wild type interaction and a known
list of off-targets.

TCR mimic specificity. TCR mimic antibodies hold significant promise for cancer-specific immunotherapy (Klebanoff
et al., 2023; Yang et al., 2023). These engineered molecules are designed to selectively bind to cancer-associated peptides
presented on major histocompatibility complexes (pMHCs) while avoiding recognition of off-target peptides displayed
on healthy cells. Given that these peptides are typically only 9-12 amino acids long, the challenge lies in distinguishing
cancer-associated pMHCs from normal pMHCs, which can sometimes differ by just a single amino acid (Rossjohn et al.,
2015). Achieving this level of specificity is critical, as even minor cross-reactivity could lead to severe dose-limiting
toxicities or fatal depletion of essential healthy cells (Linette et al., 2013). Predicting off-target toxicity is particularly
difficult because the potential peptide landscape is vast—ranging from approximately 20° to 20'2 theoretical peptide
combinations. As a result, experimental screening alone is often insufficient to fully assess specificity (Birnbaum et al., 2014;
Holland et al., 2020). Computational approaches that refine TCR mimic binding to maximize selectivity could significantly
reduce toxicity risks while enhancing precision and the molecule’s therapeutic window. By improving specificity, such
strategies could accelerate the development of safer and more effective TCR mimic therapies, ultimately broadening their
clinical utility.

A.2. TCR mimic case study

To curate this case study, we searched the TCR3d Database for structures of TCR mimic antibodies bound to pMHC that
were deposited in the PDB and had associated surface plasmon resonance (SPR) data with mutations (Gowthaman & Pierce,
2019). We prioritized SPR data because it provides the most quantitatively accurate and sensitive measurements of binding
affinity changes, making it a reliable source of binding AAG. TCR mimic antibodies contain flexible loops with many
degrees of freedom, making the effects of mutations on affinity and specificity particularly difficult to predict. In total,
we identified six TCR mimic complexes with available mutational and SPR data from the literature (PDB IDs: 3HAE,
6UJ9, 6W51, 7BHS, 7STF, 8EKS) (Stewart-Jones et al., 2009; Hwang et al., 2021; Hsiue et al., 2021; Li et al., 2022;
Wright et al., 2023; Sun et al., 2023). These complexes exhibited a diversity of mutation sites, including mutations on the
TCR mimic loops, the peptide, and the MHC, as well as a mix of single and multiple mutations. For each structure, we
calculated the ground truth AAG based on changes in binding affinity from the wild-type to the mutant protein. In cases
where a mutation resulted in undetectable affinity by SPR, we estimated the mutant protein’s affinity to be 100,000 nM—a
conservative approximation given that true affinity values in such cases are often much weaker. This threshold effectively
reflects a significant loss of binding, as interactions with affinities above 100,000 nM are generally considered too weak for
physiological relevance (Table 4). Finally, we compared these experimental AAG values to the predicted AAG values
generated by AAG, allowing us to assess the predictive accuracy of computational models for binding energy changes in
TCR mimic systems.
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Table 4. TCR mimic case study dataset.

Pdb Mutation(s) AAG (kcal/mol)  Notes

8ek5 EAS9A 0.428314 HLA mutation; Figure 1J

8ek5 EA63A No binding HLA mutation; Figure 1J

8ek5 QAT3A 2.427024 HLA mutation; Figure 1J

8ek5 TAT4A 1.037010 HLA mutation; Figure 1J

8ek5 QA156A -0.185302 HLA mutation; Figure 1J

8ekS5 TAIl164A 0.020049 HLA mutation; Figure 1J

8ek5 QCl1A 0.151418 peptide mutation; Supp. Figure S16
8ek5 NC3A 1.900784 peptide mutation; Supp. Figure S16
8ek5  PC4A 0.218890 peptide mutation; Supp. Figure S16
8ek5 ICS5A 1.853897 peptide mutation; Supp. Figure S16
8ek5 RC6A No binding peptide mutation; Supp. Figure S16
8ek5 TCTA 1.571367 peptide mutation; Supp. Figure S16
8ek5 TC8A 0.716476 peptide mutation; Supp. Figure S16
8ek5 ICSL 0.433947 peptide mutation; estimated Kd values
8ek5 IC5V 0.921828 peptide mutation; estimated Kd values
8ek5 IC5G 2.163521 peptide mutation; estimated Kd values
Tstf VCI12G No binding peptide mutation

Tstf FL53W -0.299732 TCRm mutation

Tstf VH104N 0.436337 TCRm mutation

Tstf VHI104R -0.421575 TCRm mutation

Tstf VH104R,VC12G 1.431891 TCRm and peptide mutation

7bh8  YGI97S,YGI98A,GG99Q,.SG100Y  -1.394408 TCRm mutations (affinity maturation)
7bh8  YGI97G,YG98A,GG99Q,SG100W  -1.132139 TCRm mutations (affinity maturation)
6uj9 QC7R 0.760277 peptide mutation; residue faces inside HLA groove
6uj9  YH103H,QC7R No binding TCRm and peptide mutation

6uj9  YHIO3H 0.355047 TCRm mutation

6w51 HF8R No binding peptide mutation

3hae  SL26E,SL96G -0.628096 T1 mutant vs. 3M4ES TCR mimic
3hae  SL26E,SL96G,VCIC -0.806352 T1 mutant with peptide anchor residue mutation
3hae  VCOC 0.005531 peptide anchor residue mutation only
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B. Theoretical properties of a StaB-ddG and A AG)nq predictors

In this section, we first provide a complete statement of Expressivity in Proposition 3.1. We then discuss all three properties
for each of the other predictors in Table 1. Our statement of relies on a dataset of binding AAG measurements of the form
introduced in Section 3.2.

Proposition B.1 (Proposition 3.1, Expressivity (formal)). For any D, there exists Aby € B such that
Ab@(sn,refa Sn,m) = Yn,m
fOl’ all (x’ru 5n7refa Sn,m> yn,m) eD.

B.1. Proof of Proposition 3.1

Expressivity. Consider a simplex-valued function that for each n = 1,..., N satisfies pg(Sp ref|Tn) X eXp{¥n rer} and for
eachm =1,..., M, po(Sn.m|Tn) X exp{Yn,m }. Notice that 10g pg(Sn ref|Z) = Yn ref + ¢ and 10g P (S5 m|2) = Yn,m + ¢
where c is a constant. The corresponding function Aby € B therefore satisfies Abg(Sp refy Sn,m|Tn) = 108 Do (Sn ref|T) —
1ng9 (Sn,ref|$) = Yn,m — Yn,ref-

B.2. Thermodynamic properties of other predictors

Flex ddG and FoldX. The Flex ddG and FoldX predictors use the same thermodynamic identity in Equation 1 and
Equation 2 to parametrize binding AAG, and use empirical energy functions to predict the folding AG terms. As such,
they satisfy Antisymmetry and Mutational path independence. However, the Expressivity of the predictors is fundamentally
limited by the parametric form of the empirical energy function, which cannot provide close approximations to arbitrary
functions.

RDE-Net. RDE-Net first creates neural network embeddings h,,; and h,,,; for the wildtype and mutant respectively.
The embeddings are then used as input to another neural network, denoted by MLP. The final output is computed as
(MLP(Rpnut — hat) — MLP (Rt — hiumat))/2, which enforces Antisymmetry by construction. However, since MLP is in
general not a linear function, there is no guarantee on Mutational path independence. Lastly, using the same proof as above,
it can be shown that the neural network parametrization satisfies Expressivity.

PPIformer. PPIformer uses a masked language model to model sequence likelihood. The final predictor looks similar to
Afg: -
AAG = Z log p(&; = s | s\ar) — Z log p(é; = my | s\ar)-
ieM ieM

In the above, M is a set of mutated positions, where s; denotes the wildtype amino acid and m; denotes the mutant amino
acid for position i. The PPIformer predictor also satisfies Antisymmetry by construction. However, it does not satisfy
Mutational path independence as the conditioning information, c\ 37, depends on the difference between wildtype and the
mutant. As such, the conditioning information between two pairs of sequences will be different. Lastly, each mutated
position is predicted independently from the other mutated positions. As such, the predictor enforces the effects between
any set of mutations to be additive. The enforced additivity does not satisfy Expressivity as mutations generally involve
non-additive effects.

Other predictors. Surface-VQMAE, Prompt-DDG, DiffAffinity and ProMIM are parametrized by multilayer perceptrons

that take as input embeddings from another neural network, without any guarantees of Antisymmetry or Mutational path
independence. However, these predictors are expressive, treating neural networks as expressive functions.
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C. SKEMPIv2.0 filtering and metrics

In this section we outline the dataset filtering and splitting details and discuss the “per interface” metrics.

C.1. SKEMPIv2.0 filtering and splitting procedure

The original SKEMPIv2 dataset contains 7,085 mutant entries. We filter and split SKEMPIv2.0 according to the following
steps.

1. Remove 285 mutants with missing affinity measurements.
2. Remove 884 duplicate mutants with the same mutations on the same crystal structure.

3. Remove 1,029 mutants that only contain mutations at non-interface residues. We remove these because mutations at
non-interface residues do not have significant contributions to binding affinity changes (Dourado & Flores, 2014).

4. Remove 108 complexes with less than 3 mutants assayed. This reduces the bias and noise from different experimental
conditions.

5. Remove 4 complexes with more than 40% of the measured AAG to be the same value. This removes 49 mutants.

6. Remove 8 complexes with unresolved residues in the crystal structure. This removes 162 mutants.

After these filtering steps, we have 201 complexes and 4,541 mutants. We cluster the complexes using the original
SKEMPIv2.0 clusters based on structural homology near the binding site, resulting in 64 disjoint clusters (Jankauskaité
et al., 2019). Then, we perform a random splitting to obtain 20 clusters with 1,491 mutants across 81 complexes as our test
set. We report these clusters and split at https://github.com/LDeng0205/StaB-ddG/blob/main/data/
SKEMPI/train_clusters.txt and https://github.com/LDeng0205/StaB-ddG/blob/main/data/
SKEMPI/test_clusters.txt.

C.2. Additional metrics for evaluating binding prediction accuracy and cluster bootstrap intervals

We introduce additional metrics for assessing prediction accuracy: Pearson correlation, Root Mean Squared Error (RMSE),
and Area Under the Receiver Characteristic (AUROC). AUROC is computed on the binary classification task of whether
a mutation increases binding affinity (AAG < 0). We additionally compute the “overall” metrics for the entire set of
predictions that include different complexes.

For overall metric on the SKEMPI dataset and the TCR mimic and yeast-display datasets we compute approximate standard
errors as the standard deviation of that metric on cluster-bootstrap resamples of the test set where on each bootstrap sample
we draw full complexes from the test set complexes with replacement (Cameron & Miller, 2015). These standard errors
approximate the variability in the overall metrics owing to the choice of structures included in the test set.

The “per interface” metrics reported in Table 7 are obtained by computing each metric for each complex, then take the
average across complexes. For complexes that contain less than 10 mutants, the correlation values obtained are empirically
observed to be noisy (Figure 5). As such, we decide to report the mean of metrics for complexes with 10 or more mutants to
reduce the effect of noise. We examine the impact of the choice of such a threshold on the relative performance between
STAB-DDG andm Flex ddG (Figure 6). We find that the relative performance is robust to the choice of the threshold.
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D. Additional experiments on variations of STAB-DDG
D.1. Linear model initialization

Tsuboyama et al. (2023) proposed to use amino acid-specific offsets in a model relating sequence probabilities in protein
families to stability measurements. We experimented with a similar approach and introduce a linear model on top of our
folding AAG predictor as

F(s,s") = alfo(s,s) + (O da— Y da) + do ©)

acs a€cs’

where « is a scaling term to correct for the initial scale mismatch, ¢q is a global bias, and ¢, represents amino-acid
specific offsets. We fit the linear parameters first with the zero-shot predictor Afy(s, s’) before fine-tuning 6. This
procedure is inspired by the idea that fine-tuning the last layers of a neural network first could help improve generalization
performance (Kumar et al., 2022). We use a predictor of the following form

B(s,s') = alby(s,s') + (Y da— D da) + 0 (10)

acs a€s’

which uses the same set of linear weights as F'. Note that the linear model introduces asymmetry and the updated predictors
no longer satisfy the first two properties of Proposition 3.1.

We found that fitting the linear model and following the same fine-tuning procedure, with F' and B as folding and binding
predictors, did not lead to a significant difference in prediction accuracy (Table 6).

We provide the fitted linear parameters «, ¢, and ¢, in Table 5. The learned ¢ is negative, indicating that most mutations
in the dataset are destabilizing. In addition, the offset for TRP, a bulky hydrophobic residue expected to have larger effects
on stability, is the second largest in magnitude and is negative (destabilizing).

Table 5. Linear parameter values.
o oo ALA CYS ASP GLU PHE GLY HIS ILE LYS LEU MET
024 -0.19 0.00 -0.80 0.04 0.10 -0.55 0.13 -020 -040 0.12 -0.33 -047

ASN PRO GLN ARG SER THR VAL TRP TYR
0.01 033 -001 -023 0.00 -0.07 -027 -0.68 -0.50

D.2. Using AlphaFold 3 predictions for apo structures

We experimented with using AlphaFold 3 (Abramson et al., 2024) predicted structures for individual binders instead of
obtaining them from the complex crystal structure. We hypothesized that this would more closely track the apo (unbound)
state of the structures for more accurate folding energy predictions. We found this to have not made a significant difference
in the Per interface Spearman metric, but have improved several other metrics (Table 6).

D.3. Normalizing complex loss with the number of mutants

In our fine-tuning objective (Equation (8)), we weight each complex n by the number of mutants assayed M,,. We
additionally experimented with weighting the loss by /M, instead of M,,. However, we did not find a significant difference
between the two weighting schemes (Table 6).

D.4. Variance reduction

We evaluated the effects of antithetic variates and the number of Monte Carlo samples on reducing prediction error, measured
by RMSE (Figure 7). We found that the antithetic variates method significantly reduced prediction error, and Monte Carlo
ensembling further reduced the error. In addition to improving prediction accuracy at inference time, fixing the decoding
order and backbone noise also led to better training dynamics. In particular, under the same hyperparameters, a model trained
without fixing these additional parameters performed much worse than STAB-DDG (Table 6). In our other experiments, we
ensemble over 20 samples.
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D.5. Ablations

Fine-tuning on folding stability data without inverse-folding pre-training. We randomly initialized weights to our pre-
dictor and fine-tuned it on folding stability data. We found that the performance was much worse than STAB-DDG zero-shot,

suggesting that pre-training contributes significantly to model performance (Table 6).

Fine-tuning on binding affinity data from ProteinMPNN weights.
binding energy data without incorporating folding stability data. We found that though the per interface metrics remained

the same, the overall accuracy dropped (Table 6).

Table 6. Evaluation of prediction performance of variations of STAB-DDG on the test split of SKEMPIv2.0. Per interface metrics for
which the difference from STAB-DDG is not statistically significant are underlined. Statistical significance is determined by a paired,

one-sided t-test against STAB-DDG. Standard errors are also reported for per interface metrics.

We directly fine-tuned STAB-DDG zero-shot on

Method Per Interface Overall
Pearson Spearman RMSE Pearson Spearman RMSE AUROC

StaB-ddG 049 £0.04 0454+0.04 141+£0.12 | 053+£006 0.53+0.06 1.72+£0.11 0.73+0.05
No folding 0.50+0.04 0464004 1.534+0.13 | 047£0.07 047+£0.05 192+£0.13 0.70+0.04
No pre-train 0.12£0.05 0.124+0.05 2.04+£0.15 | 023£0.07 0.17+0.05 241+£0.14 0.61 +£0.04
No ant. var. 0.30+0.04 030+0.04 196+0.16 | 0.19£0.08 0.17£0.06 2.35+0.17 0.58 +0.05
Linear model 047 £0.04 0444+0.04 152+£0.14 | 054£005 0494+0.05 1.79+£0.11 0.724+0.04
Pred. apo structures | 0.45£0.05 043 +£0.04 143+£0.10 | 0.60+0.05 056=+0.05 1.66=+0.09 0.76=£0.03
sqrt(M) weighting 049 £0.04 0454+0.04 140+£0.12 | 0.54£0.06 0.54+0.06 1.72+£0.12 0.74+0.05

RMSE
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Figure 7. Overall RMSE vs. number of Monte Carlo samples evaluated using STAB-DDG parameters on the SKEMPIv2.0 test split.
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E. Additional details on the main text results
E.1. Binding prediction accuracy on SKEMPIv2.0
E.1.1. COMPARISON TO BASELINE METHODS ON MORE METRICS

Here, we provide a more complete set of metrics to compare with other methods (Table 7). In addition, we include the result
for the averaged predictions of STAB-DDG and FoldX (StaB-ddG + FoldX).

E.1.2. RMSE BY AMINO ACID TYPE

We provide the average RMSE by mutant amino acid type in Table 8. We found that STAB-DDG achieved lower RMSEs for
many bulky hydrophobic residues (PHE, TRP, TYR, MET).

Table 7. Evaluation of baseline AAG prediction methods and STAB-DDG on the test split of the SKEMPIv2.0 dataset. With the exception
of the ensemble model (StaB-ddG + FoldX), the best approach for each metric is in bold and per interface metrics for which the difference
from the best is not statistically significant (P < 0.05) are underlined. Statistical significance is determined by a paired, one-sided t-test
to the best performing method. Standard errors for overall metrics are computed through cluster-bootstrapping.

Method Per Interface Overall
Pearson Spearman RMSE Pearson Spearman RMSE AUROC

RDE-Net 030+0.05 028+0.05 153+0.12 | 0.40+0.05 040+0.05 1.81+0.10 0.63+0.03
Surface-VQMAE 035+0.05 033+005 148+0.11 | 045+£0.04 044+005 1.76+0.09 0.65=+0.03
ProMIM 0.19+0.06 0.15+0.05 157+0.12 | 0.35+£0.06 035+0.06 1.85+0.11 0.60=+0.03
Prompt-DDG 0.32+0.04 027+004 141+0.12 | 0.33+0.08 035+0.07 1.81+0.13 0.57=+0.05
DiffAffinity 026 +£0.04 025+0.04 155+0.13 | 031 £0.05 033£0.05 188=+£0.11 0.64=£0.04
PPIformer 0.20+0.04 020+0.04 151+0.10 | 046 +0.07 0424+0.06 1.77+0.09 0.71 £0.05
ProteinMPNN 0.14 £0.04 0.13 £0.04 — 0.18 £0.07 0.18 £0.06 — 0.55 £ 0.04
ESM-IF1 0.24 £0.04 0.22+£0.04 — 0.15£0.05 0.23 £0.08 — 0.54 £ 0.05
Flex ddG 045+0.04 042+0.04 1934+050 | 022+0.17 054+0.05 398+1.65 0.74=+0.03
FoldX 049 +0.03 048+0.03 1.63+£0.12 | 0.54+0.05 0.56+0.05 1924+0.12 0.77 £+ 0.04
StaB-ddG zero-shot | 0.45 £ 0.04 0.43 £ 0.04 — 044 £0.07 043 +£0.06 — 0.68 + 0.04
Stability fine-tuned | 0.45+0.04 040+0.04 1.69+£0.15 | 044 +£0.06 045+0.06 2.00+0.12 0.70=+0.04
StaB-ddG 049 +0.04 045+004 141+£012 | 053+£006 053+005 1.72+0.11 0.73+0.04

StaB-ddG + FoldX | 0.56 £0.04 0.534+0.03 13240.12 | 059 +0.05 0.61+0.05 1.62+0.11 0.78 +0.04

Table 8. RMSE for each mutant amino acid.
ALA CYS ASP GLU PHE GLY HIS ILE LYS LEU MET

132 319 29 196 094 133 206 190 1.61 1.67 1.58

ASN PRO GLN ARG SER THR VAL TRP TYR
.37 099 193 178 081 1.04 1.14 082 1.44

E.2. Yeast surface display case study details

Estimation of a proxy for binding AAG from sequence counts. We briefly summarize the procedure of estimating
AAG from yeast surface display sorts described fully in Cao et al. (2022). A midpoint concentration (SCs) is estimated as
a proxy for the binding dissociation constant K p used to compute AGying. The SCs ; for sequence ¢ is estimated using
(Equation (1) Cao et al. (2022))

. concentration
Fraction_collected; =

(concentration + SCsq.;)

Here, Fraction_collected; is the fraction of bound sequences as determined by Fluorescence-Activated Cell Sorting (FACS)
and Next Generation Sequencing (NGS). A critical assumption in this procedure is that expression level is constant across
different sequences.
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Binding confounded by expression.

We found that our folding stability predictor was more accurate than our binding

energy predictor at predicting binding energy on the yeast surface display dataset (Figure 4). We reasoned that this effect
could be attributed to the sequence count readout from the yeast surface display experiment depended on both binding
affinity and expression, a quantity strongly correlated with folding stability (Cao et al., 2022). We validated this hypothesis
by experimenting with predictors of the form

bo(sa:) = fo(sa:s) — Blfo(sa) + fo(sm)]-

The case that 5 = 0 corresponds to the “complex” only predictions. And the case that 5 = 1 corresponds to STAB-DDG
parameterization. where [ is a constant. We found that, indeed, setting 5 = 0.65 improved performance of all predic-

tors (Figure 8).
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Figure 8. Spearman vs. different values of 3 on the yeast surface display dataset. 5 = 0 corresponds to the folding energy predictor A fy,
and 8 = 1 corresponds to the binding energy predictor Aby.

Table 9. Evaluation of AAG prediction on yeast surface display dataset.

Method Per Interface Overall
Pearson Spearman RMSE Pearson Spearman RMSE AUROC

StaB-ddG zero-shot 0.157 £0.020  0.094 £0.015 1.43 £0.08 0.16 0.10 1.45 0.54
StaB-ddG zero-shot complex | 0.282 +0.023  0.274 £ 0.025 3.02 £ 0.09 0.25 0.26 3.08 0.61
Stability fine-tuned 0.300 £0.022 0.268 £0.021 1.24 £0.10 0.28 0.26 1.30 0.61
Stability fine-tuned complex | 0.366 +0.030 0.314 +0.030 1.26 £ 0.07 0.31 0.29 1.26 0.62
StaB-ddG 0.328 £0.025 0.296 £0.026 1.21 £0.09 0.32 0.28 1.25 0.62
StaB-ddG complex 0.372 £ 0.030 0.323 £0.031 1.35£0.06 0.32 0.30 1.35 0.63

E.3. Relative performance of DSMbind

Jin et al. (2023) have previously demonstrated strong zero-shot AAGhing prediction on the SKEMPI dataset. They report an
overall (rather than average per-interface) Spearman correlation of 0.42 (Jin, 2025). This result is comparable to the best
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performing supervised deep-learning baselines Surface-VQMAE and PPIformer, but is significantly below that of FoldX
and Stab-ddG (Table 7). While Jin et al. (2023) remark that DSMBind performs comparably to FoldX, we suspect this
discrepancy with our results owes to a difference in running settings of FoldX, in particular the number of FoldX repair
step before prediction. We were unsuccessful in an attempt to make a more direct comparison to DSMbind; multiple attempts
to run the public code (we tried different versions of dependencies for which the required releases were not specified) led to
crashes or NaN predictions.

E.4. Comparison to ThermoMPNN

In this section we compare the performance of STAB-DDG on folding stability prediction with ThermoMPNN, a state-of-
the-art method for predicting the effects of single mutations on protein stability. ThermoMPNN is based on ProteinMPNN
and introduces an additional attention-based neural network for fine-tuning on the Megascale dataset. We use the same
training split as ThermoMPNN to fine-tune STAB-DDG. However, as STAB-DDG naturally generalizes to mutants with
multiple mutations, we include such mutants for structures in the training set. We evaluate STAB-DDG on the same test set
as ThermoMPNN (Table 10). We report the metrics computed on the test set as a whole, rather than averaging performance
across domains. In addition to ThermoMPNN, we include the next best two baselines reported by Dieckhaus et al. (2024)
for reference. STAB-DDG achieves performance not much below that of ThermoMPNN and outperforms the next best
baseline (Dieckhaus et al., 2024). We also assess the performance on multiple mutations for our method (Table 11). We
found that though our method performed comparably to ThermoMPNN on single mutations, our stability predictor achieved
significantly lower accuracy on multiple mutations, presumably due to the limited amount of multiple mutation data.

Table 10. Performance on Megascale test set (single mutations).

METHOD PEARSON SPEARMAN RMSE
THERMOMPNN 0.75 0.73 0.71
STABILITY FINE-TUNED (OURS) 0.71 0.69 0.77
RASP 0.71 0.67 1.08
PROSTATA 0.64 0.59 0.83

Table 11. Performance on Megascale test set (multiple mutations).
METHOD PEARSON SPEARMAN RMSE

STABILITY FINE-TUNED (OURS) 0.38 0.42 1.41
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