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Abstract

With the growing size of data and models in Large Recommendation Models, the
time required for debugging has become increasingly prohibitive, underscoring
the urgent need for effective guidance in parameter configuration. The Scaling
Law (SL) offers analogous guidance in the Sequential Language domain, hav-
ing achieved significant success by predicting model loss when scaling model
size. However, the existing guidance from SL for Sequential Recommendation
(SR) remains qualitative, which is because quantitative analysis of SL on SR en-
counters challenges with quality measurement on redundant sequences along with
loss-performance discrepancy. In response, we introduce the Performance Law
(P-Law) for SR models, which predicts model performance across various settings,
intending to provide a quantitative framework for guiding the parameter optimiza-
tion of future models. Initially, Performance Law utilizes Real Entropy to measure
data quality, aiming to remove the low-quality influence of low-entropy redundant
sequences. Subsequently, Performance Law investigates a fitting decay term, which
facilitated the prediction of the major loss-performance discrepancy phenomena of
overfitting, ultimately achieving quantitative performance prediction. Extensive
experiment on various datasets demonstrates the effectiveness of Performance Law
by displaying exceptional quantitative prediction ability against the original and
modified qualitative SL. Additional application experiments on optimal parameter
prediction and model expansion potential prediction also demonstrated the broad
applicability of the Performance Law.

1 Introduction

Recently, billions of data points are generated daily across various application platforms for large
recommendation models(1). To effectively model this data, large-scale recommendation models have
been introduced due to their potential to enhance performance(2; 3). As larger recommendation
models are developed, optimizing the expensive parameters of these models(4) leads to high costs
and unpredictable performance during development. This challenge motivates researchers to explore
the Scaling Law (SL) to efficiently plan time and GPU consumption across various model sizes(5).
The concept of SL was initially investigated within the realm of Large Language Models (LLMs) (6).
The introduction of the Chinchilla model (7), which provides a quantitative framework for modeling
the final pre-training loss L(N,D) based on the number of model parameters N and the number of
tokens D, has led to the adoption of this principle in models such as LLaMA2 (8) and Mistral (9).
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As SL has made progress with LLMs, researchers are interested in extending these laws to large-scale
recommendation models, as they share similar Transformer architectures. Several large Sequential
Recommendation (SR) models, including HSTU(10) and Wukong(11), have developed qualitative
recommendation SL to assess model effectiveness under various scenarios. Research across several
domains has similarly reported performance enhancements due to large-scale models, evident in Click-
Through Rate (CTR) prediction(12), reranking(13), and retrieval (14). Nonetheless, current studies
primarily remain qualitative, highlighting the need for advancing toward a quantitative prediction of
model performance.

Collaboration difference
between LLM and SR Quality measure deficiency Real Entropy enhancement

Quality Measure Deficiency: Scaling Law ignores collaborative and structural properties.

Scaling Law guidance of model Expansion Overfitting phenomena Decay Modification

Loss-Performance Discrepancy: Scaling Law guides on expand indefinitely for reducing 

model loss, hindering prediction of overfitting.

Figure 1: Two challenges when expanding the origin
Scaling Law to quantitative predict SR performance:
Quality Measure Deficiency and Loss-Performance Dis-
crepancy, along with our approach: Real Entropy en-
hancement and Decay Modification.

Our work attempts to extend the Scaling
Law to enable quantitative prediction and
analysis of SR model performance. How-
ever, as illustrated in Figure 1, this ap-
proach faces the following two challenges:
(1) Quality Measure Deficiency. Cur-
rently, the analysis of data in SL is mea-
sured using token counts. While this is rel-
atively reasonable in language models, SR
often exhibits variable vocabulary sizes, re-
dundant user sequences, and random item
noise. This results in significant discrepan-
cies in the amount of information contained
within the same token count, necessitating
the introduction of quality metrics to refine
the SL. (2) Loss-Performance Discrep-
ancy. While SR systems prioritize model
performance, SL models focus on analyzing and predicting training loss. However, as overtrained SR
models frequently display overfitting (15; 16) behaviors, training loss does not necessarily correspond
to actual model performance. Thus, even with the enhancement of Quality Measures to quantitatively
analyze model scaling loss, a reduction in model loss does not always translate into significant
performance improvements. We term this dilemma the Loss-Performance Discrepancy challenge.

To address these challenges, we introduce a novel Performance Law that studies the SR system with
an entropy-enhanced performance analysis formula, thereby quantitatively predicting the performance
of SR models. Specifically, we first collected model performance data across a wide range of different
model parameters for analysis. Subsequently, in response to challenge (1), we define the Data Scale
as the minimum encoding length of datasets, aiming to minimize encoding redundancy on specific
datasets and thereby enable adaptive research across different encoding vocabularies. Next, we
introduce the concept of Real Entropy (17) Sreal as a novel measure of data quality. By calculating
the distributional differences in user interactions using Sreal, we propose a correction for the removal
of redundant low-entropy item sequences in SR, ultimately facilitating the transfer of SL from
LLMs to SR models. Toward challenge (2), we investigated the consistency between testing loss
and two metrics: normalized discounted cumulative gain (NDCG) and hit rate (HR), aiming to
address the inconsistency between loss and performance, facilitating quantitative modeling and
prediction of model performance. Subsequently, we introduce a decay term into the fitting formula
for SL, altering the previously predicted trend of monotonically increasing performance with model
size into a rise-then-fall pattern. This modification enables the quantitative prediction of model
overfitting phenomena, ultimately establishing the Performance Law for quantitative guidance on
model parameters and framework. Our contributions are summarized as follows:

• We developed Performance Law, the first quantitative approach to predict model performance
across various settings, intending to provide a more quantitative framework for anticipating the
effects of how both data and model parameters change will guide the optimization of future models.

• Performance Law innovatively utilizes minimum encoding length to measure data scale and Real
Entropy Sreal to remove low-quality influence of low-entropy redundant sequences, enhancing the
transfer of SL in SR. This approach enables quantitative analysis of data in SR.

• Performance Law further analyzes the difference between training loss and performance, enabling
quantitative analysis of model performance. This is accomplished through extending a fitting decay
term, which facilitates the quantitative prediction of overfitting.
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• Extensive experiment on various datasets demonstrates the effectiveness of Performance Law
by displaying exceptional quantitative prediction ability against qualitative SL. Experiments on
optimal model parameter prediction and model expansion potential further validate the applicability
and promise of the Performance Law.

2 Related Work
2.1 Sequential Recommendation

The focus of recommendation systems has undergone significant transformations. Among these,
sequential recommendation (18) is a technique that aims to delve into and understand users’ interest
patterns by analyzing their historical interactions (19; 20). Initially, statistical analysis techniques
such as Markov chains (21) and collaborate filtering (22) were employed in sequential recommenda-
tion (SR). However, with the emergence of neural networks, deep-learning approaches have been
developed for sequential recommendation tasks. Convolutional Neural Networks(CNN) (23), Graph
Neural Networks (GNN) (24) from GCE-GNN (25) to SR-GNN (26). However, the compatibility of
RNN (27) with sequences has ultimately garnered more attention. Early work like GRU4Rec (28)
and Caser (29) were introduced to improve recommendation accuracy. Another notable technique
in sequential recommendation is the attention mechanism. SASRec (30), for instance, utilizes self-
attention to independently learn the impact of each interaction on the target behavior. On the other
hand, BERT4Rec (31) incorporates bi-directional transformer layers after conducting pre-training
tasks. Since LLaMA4Rec (32) and HSTU (10) demonstrated improvements in SR performance
brought by large models and datasets, it is meaningful to study how the model performance would
change as the model scales up.

2.2 Scaling Law on Large Sequential Models

Scaling laws were first explored in the context of Large Language Models (6; 18). Specifically, since
the introduction of the Chinchilla scaling law, which models the final pre-training loss L(N,D)
as a function of the number of model parameters N and the number of training tokens D, models
such as LLaMA2 (8), Mistral (9), and Gemma (33) have applied this principle. Empirical evidence
indicates that model performance consistently improves with increased model size and training data
volume (6; 34; 35; 36) and in Sequential Recommendation (10; 11; 37; 38; 3). Extensive experiments
have explored neural scaling laws under various conditions, including constraints on computational
budget (39), data limitations (40), and regeneration (41), and instances of over-training (42). (43)
tailoring content to individual preferences towards expanding modules, while (44) further processing
has been done to refine SL’s description of model precision However, increasing the model size does
not necessarily lead to better performance. Some studies have observed a decline in performance due
to overfitting (45; 46). Following theoretical analysis, (47) and (48) empirically validated this point,
underscoring the necessity for an enhanced understanding of scaling laws. However, as mentioned in
the introduction, these methods are still qualitative analyses, while quantitative analyses are facing
challenges related to Quality Measure Deficiency and Loss-Performance Discrepancy, resulting in
only superficial and non-quantitative analysis for Sequential Recommendation.

3 Preliminary and Definition
3.1 Problem Definition

Definition1. (Scaling Law) Scaling Law indicates that model performance consistently improves
with increased model size and training data volume. These analyses employ a decomposition of

expected risk, resulting in the fit of L(N,D) =

[
NC

N

αN
αD + DC

D

]αD

, where L denotes the model

Loss, N is the number of parameters, D is the number of tokens in the dataset in SL, NC , DC , αN ,
and αD are parameters. In some works, the scaling law formula might be simplified to L′(N,D, θ) =

E + A
Nα + B

Dβ with parameter θ = {α, β}. The goal of SL is to minimize |L̂− L′| with θ, where L̂
represents the actual model training loss, making a more accurate prediction.

Definition2. (Performance Law) The only distinction between the Performance Law and the SL is
replacing the research target L(N,D) with P (N,D), where P represents the model’s performance.
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To delve further into model performance, we refine model parameter N into more granular compo-
nents with the number of layers H , the hidden layer dimension h, and the embedding dimension
demb. To ensure alignment between the input and output for model stacking, we set h = demb.
Consequently, the formula we ultimately aim to derive is P (H, demb, D, θ∗), where θ∗ denotes the
parameter set fitting the Performance Law. In contrast, the objective of the Performance Law is to
minimize |P̂ − P ′| with θ∗, where P̂ represents the actual model performance.

3.2 Preliminary

Real Entropy We introduce the Real Entropy (17) (Sreal) factor to enhance scaling laws in SR
further. Real entropy is a refined measure that captures user interaction distributions across patterns
of varying lengths. It is computed as: Sreal = −

∑
T ′⊂T P (T ′) log2[P (T ′)], where T represents

the complete sequence formed by concatenating all user interaction sequences in the dataset, P (T ′)
represents the probability of each subset of transitions T ′. By calculating the entropy of distributional
differences in user interactions, we make a correction for removing redundant low-entropy item
sequences in SR, ultimately addressing the quality measure deficiency in transferring SL from LLM
to SR. However, the complexity of calculating Sreal using the above definition is extremely high. To
reduce this complexity, we utilize the following lemma:

Lemma 3.1. LZ compression (49). For a user interaction sequence with length |Su|, its Real Entropy

Sreal is estimated by: Sreal =
(

1
|Su|

∑
j Λj

)−1

ln |Su|, , where Λj denotes the minimum length j

such that the subsequence starting from position i with length j does not appear as a continuous
sub-sequence of Su = [i1, i2, . . . , i|Su|].

From Lemma 3.1, it can be observed that Real Entropy Sreal has a positive correlation with the
model’s duplication rate, whereas conventional entropy tends to have a negative correlation with data
duplication rate. Therefore, although Sreal is referred to as entropy, its trend is opposite to traditional
entropy. To avoid confusion, we use S′real = 1/Sreal as the final measure of Real Entropy.

4 Methodology

4.1 Outline of Performance Law

Overall, we identify two main challenges in applying Scaling Laws: the deficiency of data quality
evaluation and the loss-performance discrepancy of model overfitting. To clearly illustrate the entire
process, we present the complete pipeline of the Performance Law in Figure 2. Specifically, as
shown in Part A, we first collected model performance data across a wide range of different model
parameters for analysis. Regarding challenge (1), we measure the data scale D′ utilizing the Minimum
Encoding Length Cmin with D′ = |U |Cmin, as it represents the minimal token pattern constraint
sufficient to encode the entire dataset sequence, accommodating the analytical needs of different
vocabularies across various datasets. We then offer a theoretical proof on the lower bound of data
scale in Theorem A.2, establishing that the data scale D′ is constrained by D′ ≥ #Tokens · S′real,
which is shown on Lemma 3.1 and illustrated in Part B Figure 2. For challenge (2), we incorporate a
decay term 1

· + log(·) when the model layer H , embedding dimension demb and data scale D are
scaled up, as demonstrated in Theorem A.4 and illustrated in Part C Figure 2. Building upon the
theorems outlined, we will complete the construction of the Performance Law.

4.2 Scaling Parameters

4.2.1 Scaling Model Parameters

We first construct the Scaling Transformer Framework to scale up the model-side parameters: the
number of layers H and the embedding dimension demb, which is shown in Part (A) in Figure 2.
Following the prior empirical study HSTU (10), for all experiments, we adopt the decoder-only
transformer models as the backbone. Specifically, for each user u, items in the user behavior sequence
Su = [i1, i2, . . . , i|Su|] are firstly encoded into embeddings, forming eu = [ei1 , ei2 , . . . , ei|Su| ] with
embedding dimension |ei| = demb. After the embedding layer, we stack multiple Transformer
decoder blocks. At each layer l ∈ {1, 2, . . . , H}, query Q, key K, and value V are projected from
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Step 1.1 Scaling Model Parameters

Step 1.2 Scaling Data Parameters

Step2 Model Performance Prediction

Model
Depth

  H    

Embedding
Dimension

Performance
Matrix (HR, NDCG)

 #Tokens
 #Tokens*Real Entropy

Minimum Encoding
Length Measurement

Combination

Various Vocabulary 
Table Size

Multi-source Different
Datasets

antitive
Data Measurement

Q K V

Gate Network
Aention

𝑑𝑒𝑚𝑏

𝑑𝑒𝑚𝑏

Origin
Scaling Law

antitive Performance Law Fiing

Overfiing
Decay

Data
Scale  D

 

D

H

H

D

D

Performance Law Fiing Formula

Performance
Law

Fiing 
Data

Real Entropy

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 ~ −
1

𝐷,𝐻,𝑑𝑒𝑚𝑏  
− log 𝐷,𝐻,𝑑𝑒𝑚𝑏

≥

𝐷ata 𝑆𝑐𝑎𝑙𝑒 𝐷 ∝ 𝑈 𝐶min ≥ Σu∈𝑈 𝑆𝑢 ∗ 𝑆′𝑟𝑒𝑎𝑙

𝑑𝑒𝑚𝑏

(A)

(B)

(C)

𝐷,𝐻,𝑑𝑒𝑚𝑏

Figure 2: Illustration of Performance Law. Parts A, B, and C in the figure correspond to Section 4.2.1,
Section 4.2.2, and Section 4.3 respectively.

the same input hidden representation matrix Rl. We modified the SiLU activation module and the
Rab positional encoding module within the transformer block to ensure effectiveness. Specifically,
the Spatial Aggregation Layer is defined as: Attnl(·)Vl = SiLU(QlK

T
l +Rabl)Vl. Upon deriving

matrices Q, K, and V , the spatial aggregation layer utilizes an attention mechanism to adjust value
V . This layer is distinguished by two key features: the SiLU activation function and a relative
attention bias, enriching the model with positional and temporal information, thus enhancing its
ability to discern contextual interrelations and capture dependencies within the data. Subsequently,
the Pointwise Transformation Layer is defined as follows: el+1 = Norm(Attnl(el)Vl ⊙Gatel(el)).
Following the spatial aggregation layer, the pointwise transformation layer independently transforms
each individual data point. Here, the gating weights Gatel(·) are combined with the normalized values
Norm(Attnl(·)Vl(·)) via a Hadamard product, effectively gating the transformed representations
and allowing the model to selectively emphasize relevant entries while weakening less significant
ones. The results are then transformed by a single-layer MLP. Finally, we then calculate the similarity
of this item e′

ik+1 with those in the entire item pool I , retrieving the most similar item and storing it
in the candidate set for each user as Iu. The loss function for the retrieval task is defined as:

Lu = − log
exp(⟨ei|Su|

H , ei|Su|⟩)
exp(⟨ei|Su|

H , ei|Su|⟩) +
∑

v−∈Neg−u
exp(⟨e′i|Su| ,v−⟩)

, (1)

where ⟨·, ·⟩ denotes the dot product, which measures similarity and negative samples Neg−u are
randomly drawn from the item pool I \ {i|Su|}, distinguishing the positive item from irrelevant ones.

After constructing the Scaling Transformer model, as shown in Part A, Figure 2, we investigated the
impact of varying model parameters on performance by adjusting the number of model layers, H ,
and the embedding dimension, demb. However, beyond model parameters, the scale and quality of
the data are also crucial factors influencing performance. In the following sections, we will detail the
construction methodology of the data parameter D and its quantitative analysis.

4.2.2 Scaling Data Parameters

To fit the Performance Law formula mentioned in Section 3.1, we have collected performance
data under different model parameters. However, we still face significant vocabulary differences
across datasets and issues of quality measure deficiency. First, we evaluate the Data Scale D using
the minimum encoding length D′ = |U |Cmin with user count |U |, aiming to minimize encoding
redundancy on specific datasets, enabling adaptive research across different encoding vocabularies.
We then assess data quality using the Real Entropy Sreal in Section 3.2. Through our analysis, these
two factors exhibit the following relationship:
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Theorem 4.1. Assuming that the user sequence can be modeled as a first-order aperiodic stationary
Markov chain (50). If the user sequence S = {Su, u ∈ U}, then the relationship between the sum of
minimum encoding length |U |Cmin and Real Entropy S

′real is given by:

D ∼ D′ = |U |Cmin ≥ (Σu|Su|) · S′real. (2)

The detailed proof of Theorem 4.1 is elaborated in Appendix A.1. At a high level, we establish our
results by proving the following two key equations:

|U |Cmin ≥
∑
∀Su

p(Su) log2
1

p(Su)
≥ 1

ln2

∑
∀Su

p(Su)
2(1− p(Su))

p(Su) + 1
≥ Σu|Su|(Σu|Su|+ 2)

4|U | lnΣu|Su|
. (3)

1

S′real
≥

(
1

Σu|Su|
∑
j

Λj

)−1

lnΣu|Su| ≥

 2

|U |Σu|Su|
∑
j/2

(
Σu|Su|

2
− j)

−1

lnΣu|Su|

=

(
Σu|Su|(Σu|Su|+ 2)

4|U |Σu|Su|

)−1

lnΣu|Su| =
4|U | lnΣu|Su|
(Σu|Su|+ 2)

,

(4)

The product of Inequality (3) and Inequality (4) completes the proof of the theorem, while the detailed
derivations are provided in Appendix A.1, Inequality (19) and Inequality (17).

Overall, the theory allows us to achieve adaptive adjustments for different vocabularies through
minimum encoding length Cmin and to introduce Real Entropy S

′real for analyzing the collaborative
distribution across different datasets. This, in turn, enables a more quantitative analysis of the data
scale D = |U |Cmin = (Σu|Su|) · S

′real in SR models, which is shown in Part (B) in Figure 2.
Ultimately, by integrating model depth H and embedding dimension demb from Section 4.2.1, we
obtained model loss and performance across various scaled parameters. This integration allows for a
quantitative measurement of Scaling Law L(H, demb, D) and Performance Law P (H, demb, D).

4.3 Model Performance Prediction

After obtaining the model’s loss and performance under different data and model parameters, we
need to construct a fitting function for the final model performance. Specifically, we introduce the
Squeeze Theorem of Performance Fitting to establish a function for understanding the relationship
between model configurations and performance. According to the definition of the Squeeze Theorem,
we will identify a reasonable fitting function for model performance evaluation. The whole process is
shown in Part (C) in Figure 2. Through our analysis, model performance P (H, demb, D) is squeezed
with the functions below:
Theorem 4.2. Squeeze Theorem of Performance Fitting There exist ŵ3, w

′
3, ŵ4, w

′
4 such that

log(dŵ3

embD
ŵ4) +

1

dŵ3

embD
ŵ4

+ logH +
1

H
− δ ≤ P (H, demb, D)

≤ log(d
w′

3

embD
w′

4) +
1

d
w′

3

embD
w′

4

+ logH +
1

H
+ δ,

(5)

where δ is a small constant shift. The detailed proof of Theorem4.2 is elaborated in Appendix A.2.
At a high level, we establish our results with Lemma A.3 and employing loss-metric consistency:

1 < P (H, demb, D) = logZt +
1

Zt
+ logH +

1

H
− ∆F√

∆ϕ

·
√

Φ(LMetirc)− Φ(Ltest)− δ, (6)

D ·ΨdIn
(
√

dIn

2πe )

exp(
√

dIn

2πe )
≤ Zt ≤ D ·ΨdIn

(

√
dIn
2πe

), (7)

where Ltest denotes testing loss, LMetirc denotes the specific metric (NDCG, HR) loss. ΨdIn
(r) =

π
dIn
2 rdIn/Γ(1 + dIn

2 ), dIn = |Su|max × demb is the dimension of input sequence. Building upon
the theorems outlined, the model’s performance is encapsulated in the following equation:
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Final Formula of Performance Law P (H, demb, D):

P (H, demb, D) ∼ w1(logH
w3 +

p1
Hw3

) + w2(log d
w4

emb +
p1

dw4

emb

) + logD +
p2
Dw5

.

D = Σu|Su| · S
′Real = #Tokens · S

′Real

(8)

Ultimately, we will collate the performance matrices obtained by altering various parameters in
Section 4.2.1. These matrices will be used to fit the performance model using the specified formula in
conjunction with the least squares method. Finally, we will compare the differences with the Scaling
Law fitting approach by evaluating their correlation coefficient R2 to determine the quantitative
effectiveness and accuracy of our method.

5 Experimental Evaluation
Datasets. To demonstrate the performance of our proposed approach across various kinds of
datasets, we conducted experiments on three publicly available datasets: MovieLens-1M (51) (ML-
1M), Amazon Books (52) (AMZ-Books), KuaiRand-Pure (53) (KR-Pure) and one private dataset
Industrial. The private industrial dataset is drawn from an online music platform that has impressions
of more than 400 million users, challenging existing scaling laws. The specific details of the dataset
are presented in Table 3 of Appendix A.3.

Baselines. Our primary baseline for comparison is the fitting formula of the Scaling Law, which
serves as the research paradigm for the majority of SR extension laws. Only the Precision Scaling
Law has introduced some modifications. The specific baseline is introduced as follows:

• Scaling Law (SL) (54) empirical SL for neural model performance, showing that cross-entropy
loss scales with model size, dataset size, and compute, guiding optimal compute budget allocation.
The majority of large recommendation models (10; 11; 37; 38; 3) utilize this formula for research.

• Precision Scaling Law (PcSL) (44): consider a small shift on low precision towards SL, enabling
predictions of loss and guiding compute-optimal strategies by accounting for precision effects on
model parameters and degradation.

We divide the comparison with the baseline into two parts to examine the effectiveness of our Quality
Measure Extension in Section 5.1.1 and Performance Fitting in Section 5.1.2. Since both baselines
measure data by token count, we do not differentiate them in the first part, and will then compare
them individually in the second part.

Experiment Settings. We adopt the leave-one-out strategy for evaluation, following prior re-
search (55; 56; 57). For each sequence, the most recent interaction is used for testing, the second for
validation, and the rest for training. We assess we evaluate the Top-K recommendation performance
using HR (58) and NDCG (59). The equipment, time, and specific parameter details used in our
model are illustrated in the Appendix A.4.

5.1 Overall Validation of Performance Law

5.1.1 Experiment Validation on Quality Measure Extension

To verify the rationale for using Real Entropy as a data quality metric, we need to evaluate if it
provides a more accurate analysis of data compared to token count #Tokens alone, as proposed
in the original Scaling Law. Specifically, we modified the data coefficient D, integrating it as a
parameter into both the standard Scaling Law formula (with fitting results shown in Figure 3, DLoss)
and our enhanced Performance Law formula (with fitting results shown in Figure 3, DHR and
DNDCG). A higher correlation coefficient R2 indicates a better predictive capability of the data
modeling. From the Figure 3, we can draw the following conclusions: (1). Whether in the fitting of
data parameters by the Scaling Law (left) or the Performance Law (right), Performance Law with
#Tokens · S′real measurement (blue or green) consistently provides a better fit than #Tokens in SL
(red or orange). This indicates that our proposed Real Entropy successfully enhances data quality,
effectively extending the Scaling Law to the more synergistic and structured task of recommendation.
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Figure 3: The linear correlation between parameter D and #Tokens · S′Real. The left figure
validates this relationship within the context of the SL Loss, while the right figure verifies it within
the Performance Law Metric, evaluated with a correlation coefficient R2.

Baseline: Scaling Law in Industrial

Our Work: Performance Law in Industrial
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Figure 4: The PL and SL function fitting between model performance (red points) and the prediction
(surface) of different kinds of functions: PL and the most authoritative baseline: SL. The plot includes
annotations of the correlation coefficients R2. All comparisons are statistically significant with
p < 0.01. Situations are the same as all other datasets and metrics in Appendix A.6.

(2). #Tokens · S′real offers a quantitative foundation on the data level for our subsequent analysis
of the Performance Fitting, as both HR and NDCG have a fitting R2 greater than 0.99, which is a
relatively high value in the context of the fitting. Additionally, despite the significant differences
between these two metrics, the curves obtained from fitting are remarkably similar. This further
demonstrates that our enhancement is valid across different metrics of Performance Fitting. The
specific numerical values presented in Figure 3 are detailed in Table 3, Appendix A.3.

5.1.2 Experiment Validation on Performance Fitting

To verify the resolution of Performance Law on quantitative performance prediction, we fit the
model’s performance on HR and NDCG and compare among Performance Law, SL, and PcSL with
the correlation coefficient R2. The results of Scaling Law Fitting and Performance Law Fitting
are depicted in Table 1. To formally demonstrate the improvements of the Performance Law over
the Scaling Law, we present the fitting surface of them in Figure 4. By comparing the results

Table 1: The Performance Law (PL) against SL and PcSL
function fitting between model performance with model and
data parameters, evaluated with correlation coefficient R2,
all results are statistically significant with p<0.01.

Metric R2 (HR@10) R2 (NDCG@10)
Dataset |Su| PL SL PcSL PL SL PcSL

KR-Pure
25 0.792 0.671 0.672 0.925 0.667 0.667
50 0.939 0.465 0.466 0.928 0.480 0.481

100 0.649 0.172 0.182 0.657 0.142 0.142

ML-1M
100 0.898 0.551 0.699 0.851 0.543 0.647
150 0.916 0.764 0.756 0.882 0.740 0.735
200 0.892 0.189 0.200 0.907 0.174 0.172

AMZ-Books 25 0.892 0.803 0.837 0.904 0.855 0.879
50 0.851 0.751 0.830 0.866 0.809 0.836

Industrial 25 0.939 0.855 0.856 0.913 0.850 0.851
50 0.951 0.803 0.767 0.938 0.800 0.750

of Table 1 between the SL fitting
and the Performance Law Fitting,
we draw the following conclusions:
(1). In smaller datasets (ML-1M,
KR-Pure), the Performance Law sig-
nificantly improves over the Scaling
Law. This indicates that our pro-
posed decay terms provide quantita-
tive predictions for model overfitting.
In ML-1M, when the maximum se-
quence length is 200, the improve-
ment can be as much as 345%. (2).
In larger datasets (AMZ-Books and
Industrial), the Performance Law still
demonstrates its strong capability in
modeling model performance. This
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Table 2: Verification of Performance Law’s Optimal Parameter Search Capability. The best parameter
marked as "Prediction" in the last row of each table is computed using the Performance Law. All
model performance is actual but not predicted. Results are statistically significant with p<0.05.

Global optimal solution Global optimal solution
H demb NDCG@10 NDCG@50 HR@10 HR@50 H demb NDCG@10 NDCG@50 HR@10 HR@50

Smallest 8 54 0.1831 0.2418 0.3265 0.5916 28 25 0.1732 0.2326 0.3101 0.5791
Dataset 12 54 0.1824 0.2409 0.3271 0.5913 28 50 0.1866 0.2437 0.3311 0.5917
ML-1M 16 54 0.1853 0.2434 0.3286 0.5903 28 75 0.1810 0.2408 0.3203 0.5882

32 54 0.1810 0.2387 0.3216 0.5837 28 100 0.1726 0.2307 0.3102 0.5741
Prediction 28 54 0.1878 0.2443 0.3322 0.5924 28 54 0.1878 0.2443 0.3322 0.5924

Optimal solution (with constraint H =64) Lptimal solution (with constraint H · demb ≃ 512 )
H demb NDCG@10 NDCG@50 HR@10 HR@50 H demb NDCG@10 NDCG@50 HR@10 HR@50

Largest 64 256 0.2019 0.2623 0.3481 0.6205 4 128 0.1758 0.2371 0.3111 0.5854
Dataset 64 370 0.2035 0.2639 0.3504 0.6226 8 64 0.1773 0.2381 0.3118 0.5858

Industrial 64 512 0.2032 0.2636 0.3502 0.6226 10 51 0.1758 0.2365 0.3092 0.5840
64 1024 0.1981 0.2590 0.3448 0.6195 16 32 0.1704 0.2305 0.3007 0.5732

Prediction 64 603 0.2040 0.2644 0.3512 0.6235 12 44 0.1777 0.2383 0.3121 0.5863

success is attributed to our direct analysis of model performance rather than model loss. In all
larger datasets, the correlation coefficient R2 exceeds 0.85. Moreover, compared to the Scaling
Law, it achieves at least a 2.8% improvement. This also demonstrates that the Performance Law can
effectively predict and guide parameter configuration for training as data scale increases. Beyond R2,
we also report results using two additional evaluation metrics: Mean Absolute Error (MAE) and Root
Mean Squared Error (RMSE) in Appendix D.

5.2 Applications of Performance Law

5.2.1 Application 1: Global and Local Optimal Parameter Search

A practical application of the Performance Law is to search best parameter by predicting the per-
formance gain from model expansion techniques. We divide the calculation of optimal parameters
into two parts: (1) global optimal parameter prediction and (2) optimal parameter prediction under
constraints. For the second part, we provide two constraints: one with a constant model depth H and
the other with a constant total number of parameters H · demb (as calculated from (10)). To determine
the optimal parameters of the model, we compute the best configuration by fitting the Performance
Law and compare it with other parameter configurations. The actual performance in different parame-
ter settings is presented in Table 2, with parameter configuration marked as "Prediction" in the last
row of each table computed using the Performance Law. From the results, we draw the following
conclusions: (1) The Performance Law exhibits high accuracy. This is evidenced by Performance
Law predicted parameters outperforming others in global optimal parameter prediction. This ensures
the high potential for application of the guidance on searching optimal parameter of the Performance
Law. (2) The Performance Law demonstrates robustness. This is evidenced by Performance Law
predicted parameters continuing to outperform others in local optimal parameter predictions under
both conditions. This ensures that the Performance Law can yield meaningful guidance on parameter
setting in a variety of practical application scenarios.

5.2.2 Application 2: Exploring Performance Law Potential Among Framework

Another application of the Performance Law is to assess potential performance gains when scaling up
the model. We conducted experiments and fitting analyses on three different frameworks (HSTU (10),
LLaMA2 (8), and SASRec (15)) evaluated at different precisions: float32 and bfloat16. Experiments
were performed on the smaller dataset (ML-1M) while larger values of w1 and w2 indicate a better
scaling-up potential for the model with analysis in Appendix A.5. The fitting results are presented in
Table 4 in Appendix A.5. From the table, we conclude that the model’s performance closely aligns
with the magnitude trend of w1 and w2, further underscoring the accuracy of our quantitative fitting.
This also demonstrates that the Performance Law can effectively guide model structure configuration,
thereby reducing memory and time when modifying frameworks.

5.3 Further Evaluation

After demonstrating the applicability of the Performance Law, we need to further validate our
Performance Law across a broader range of models and qualities. We approach the expansion of
Performance Law evaluation from the following two aspects
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5.3.1 Model Extension and Generalization

To further validate the universality and scalability of the proposed Performance Law, we extend our
experiments to several representative models and diverse recommendation scenarios:

LightGCN (60) is a highly efficient graph convolutional network tailored for collaborative filtering.
Mamba (61) is a recent architecture for sequence modeling leveraging state-space models for
high accuracy and scalability. Wukong (62) is a stacked factorization machine architecture with a
synergistic upscaling strategy, specifically designed to realize scaling laws in recommendation tasks.
DiffuRec (63) is a novel sequential recommendation framework that leverages diffusion models
for item representation construction and uncertainty injection. For long-tail recommendation, we
conduct analyses on the challenging Amazon Beauty2 dataset, where user-item interactions are sparse
and item distributions are highly skewed. Complete experimental results and metric comparisons
with Scaling Law and Precision Scaling Law baselines for these additional settings are presented in
Appendix B. Across all models and scenarios, Performance Law consistently yields higher R2 and
lower error metrics, evidencing its robust generalization and superior predictive precision under both
dense and sparse, as well as multimodal recommendation paradigms.

5.3.2 Comparison of Data Quality Evaluation Functions

Beyond Real Entropy, we explored a variety of data quality evaluation functions, including Approxi-
mate Entropy (64), Shannon Entropy (65), and Kolmogorov Complexity (66). Such alternatives have
been widely adopted to measure system complexity and randomness in different domains. To provide
a thorough comparison, we conducted experiments by replacing Real Entropy with each candidate
function in our framework. As shown in Table 6 in the Appendix C, Real Entropy consistently
demonstrates the superior fitting ability over the alternatives. This empirical finding further supports
the efficacy of Real Entropy as the preferred choice for characterizing data quality in recommendation
scaling law analysis.

6 Discussion

Limitation and Future Directions. Performance Law has currently been thoroughly tested in
the SR domain, but with suitable metrics, our theoretical framework remains applicable to other
recommendation tasks. For our future work, we aim to extend Performance Law to larger datasets
and a broader range of Recommendation tasks, such as ranking and retrieval.

Conclusion. In this paper, we have investigated a novel problem concerning a quantitative approach to
predicting SR model performance across various settings. To tackle this problem, we first introduced
Performance Law, introducing minimum encoding length and Real Entropy to remove the low-
quality influence of low-entropy redundant sequences, providing quantitative data analysis for SL.
Subsequently, we further analyzed the difference between training loss and performance by including
consistent metrics and a fitting decay term. This facilitated the prediction of overfitting and provided
a quantitative analysis of model performance. Performance Law displayed exceptional quantitative
prediction accuracy against the original qualitative Scaling Law, successful experiments on optimal
model parameter prediction and model expansion potential prediction also demonstrated the broad
applicability of the Performance Law.

Broader Impact. The Performance Law serves as a framework for quantitatively predicting and ana-
lyzing SR performance. While current tasks are limited to recommending items, future applications
might overlook fairness issues, leading to potential biases. Nevertheless, the Performance Law can
offer effective guidance for the optimal parameter configuration of models.
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A Appendix / supplemental material

A.1 Proof of Theorem 4.1

Entropy Inequality To facilitate our analysis of the Real Entropy, we need to introduce the
following entropy inequality:

Lemma A.1. (67) If xi, yi, i = 0, 1, ..., n, and Σn
i=1xi = 1 ≥ Σn

i=1yi, then

q∑
i=1

xi logr
1

xi
≤

q∑
i=1

xi logr
1

yi
. (9)

Based on this lemma, we will construct a proof of the inequality between the Data Scale D and Real
Entropy S

′real below:

Theorem A.2. Assuming that the user sequence can be modeled as a first-order aperiodic stationary
Markov chain (50). If the user sequence S = {Su, u ∈ U}, then the relationship between the sum of
minimum encoding length |U |Cmin and Real Entropy S

′real is given by:

D ∼ D′ = |U |Cmin ≥ (Σu|Su|) · S′real. (10)

Proof. From Lemma A.1, it follows that:

|U |Cmin =
∑

∀ΣuSu

p(ΣuSu)li =
∑

∀ΣuSu

p(ΣuSu)log2
1

2−li

≥ H2(ΣuSu) =
∑

∀ΣuSu

p(ΣuSu) log2
1

p(ΣuSu)
,

(11)
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where H2(Su) represents the entropy of the sequence in log-base 2, and Kraft’s inequality (68)∑n
i=1 2

−li ≤ 1, li is encoding length was utilized. Meanwhile, from Lemma 3.1 with Real Entropy
S

′real = 1/Sreal, it follows that:
Σu|Su|
Sreal

=
Σu|Su|(

1
Σu|Su|

∑
j Λj

)−1

lnΣu|Su|
, (12)

Combining Eq.(11) and Eq.(12), the Eq.(10) is equivalent to proving:∑
∀ΣuSu

p(ΣuSu) log2
1

p(ΣuSu)
≥ Σu|Su|(

1
Σu|Su|

∑
j Λj

)−1

lnΣu|Su|
, (13)

where it is necessary to ensure that interaction distribution p(ΣuSu) is minimal, which is more easily
satisfied in recommendations with a large recommendation item vocabulary. Combining the above
equations, we need to demonstrate that:∑

∀ΣuSu

p(ΣuSu) log2
1

p(ΣuSu)

(
1

Σu|Su|
ΣjΛj

)−1

lnΣu|Su| ≥ Σu|Su|. (14)

We decompose inequality (14) into the following two inequalities (15) and (16) for our final proof: 1

Σu|Su|
∑
j

Λj

−1

lnΣu|Su| ≥
4|U | lnΣu|Su|
(Σu|Su|+ 2)

, (15)

∑
∀ΣuSu

p(ΣuSu) log2
1

p(ΣuSu)
≥ Σu|Su|(Σu|Su|+ 2)

4|U | lnΣu|Su|
. (16)

Proof of Inequality (15) For the first inequality derived, since j is the subsequence starting from j
after concatenating all sequences, the minimum value of S

′real is achieved when all sequences in the
interaction are identical. In this case, a is a double arithmetic sequence increasing from 1 to |Su|/2
and then returning to 1 in each user |U|. It is formally expressed as follows: 1

Σu|Su|
∑
j

Λj

−1

lnΣu|Su| ≥

 2

|U |Σu|Su|
∑
j/2

(
Σu|Su|

2
− j)

−1

lnΣu|Su|

=

(
Σu|Su|(Σu|Su|+ 2)

4|U |Σu|Su|

)−1

lnΣu|Su| =
4|U | lnΣu|Su|
(Σu|Su|+ 2)

.

(17)

Here, it is assumed that ln(Σu|Su|)
Σu|Su|+2 > 1

|U | when ∀u, |Su| ≥ 4, which is reasonable in the context of
recommendation systems.

Proof of Inequality (16) On the other hand, as the generation probability distribution of most
sequences tends to be relatively uniform and considering all permutations of all user sequences, we
have: ∑

∀ΣuSu

p(ΣuSu) log2
1

p(ΣuSu)
∼ 1

p(ΣuSu)
p(ΣuSu) log2

1

p(ΣuSu)
∼ Σu|Su|

ln 2
ln |I| (18)

Due to the differing distributions across datasets, deriving conclusions without considering ac-
tual circumstances can be challenging. To address this, we introduce an empirical inequality:
5 ln |I| lnΣu|Su| ≥ |Su|max + 2. The left side of this inequality increases as the dataset grows larger,
whereas the right side remains a relatively small constant in typical recommendation tasks (maximum
of 500 in our datasets) (69). In our smallest dataset, Kuairand, the left side evaluates to 581, still
satisfying the inequality. Therefore, we can assert that this inequality will likely hold under the
Scaling Data condition. Under this inequality, we have:∑

∀ΣuSu

p(ΣuSu) log2
1

p(ΣuSu)
∼ Σu|Su|

ln 2
ln |I| = 5|U |Σu|Su| ln |I| lnΣu|Su|

5 ln 2|U | lnΣu|Su|

≥ (|U |(|Su|max + 2))Σu|Su|
5 ln 2|U | lnΣu|Su|

≥ (Σu|Su|+ 2)Σu|Su|
5 ln 2|U | lnΣu|Su|

≥ Σu|Su|(Σu|Su|+ 2)

4|U | lnΣu|Su|

(19)
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Overall, Inequality (17) proves Inequality (15), and Inequality (19) proves Inequality (16). Thus, we
have completed the proof of Inequality (14) and, ultimately, the proof of the theorem.

A.2 Proof of Theorem 4.2

After obtaining the model’s loss and performance under different data and model parameters, we
need to construct a fitting function for the final model performance. However, nearly all sequential
recommendation metrics (e.g., NDCG, HR, etc.) are discrete, making it difficult to establish their
relationship with the model directly. Therefore, We first select an appropriate metric by examining
the differences between performance and testing loss, choosing one with minimal discrepancy. We
then analyze the loss constraint inequality during testing. Due to the guarantee of consistency, this
inequality can be directly applied to Performance. Ultimately, we introduce the Squeeze Theorem of
Performance Fitting to establish a rigorous foundation for understanding the relationship between
model configurations and performance. According to the definition of the Squeeze Theorem, we will
identify a reasonable fitting function for model performance evaluation. The whole process is shown
in Part (C) in Figure 2. Since our analysis focuses on testing losses, our analytical approach still
addresses the overfitting challenges faced by the original Scaling Law.

A.2.1 Metric-Loss Consistency

We then need to discuss the consistency between testing loss and Performance. We chose NDCG and
HR as metrics in our experimental analysis to measure the model’s performance. Their consistency is
ensured by (70), respectively, and possesses the following properties:

|LNDCG − Ltest| ≤
∆F√
∆ϕ

·
√

Φ(LNDCG)− Φ(Ltest). (20)

Here, LNDCG represents an NDCG-like function, which is formalized as − 1
M

∑m
j=1

G(rj)
F (ω(j)) . By

replacing weight distribution ω(j) with the mean value, it becomes HR. Φ denotes a convex function,
while ∆F and ∆ϕ are parameters. The upper bound of this difference ensures the appropriateness of
our selected metrics, ensuring that in our subsequent analysis of model performance, the formulas for
performance and testing loss allow for interchangeable use.

A.2.2 Inequaly on Performance Decay

Subsequently, the testing loss, which can also be interpreted as performance due to consistency, is
constrained as follows:
Lemma A.3. (48) Suppose input sequence of each user eu = [ei1 , ei2 , . . . , ei|Su| ] ∈ RdIn , then
with a small offset δ we have

1 < Ltest(H, demb, D) = logZt +
1

Zt
+ logH +

1

H
− δ, (21)

D ·ΨdIn
(
√

dIn

2πe )

exp(
√

dIn

2πe )
≤ Zt ≤ D ·ΨdIn

(

√
dIn
2πe

), (22)

where Ltest denotes testing loss, ΨdIn
(r) = π

dIn
2 rdIn/Γ(1 + dIn

2 ), dIn = |Su|max × demb is the
dimension of input sequence.

we can utilize constraints provided by Lemma A.3 and Eq.(20), which can be formulated as:

1 < P (H, demb, D) = logZt +
1

Zt
+ logH +

1

H
− δ, (23)

where δ is a small offset including ∆F√
∆ϕ

·
√
Φ(LNDCG)− Φ(Ltest). Next, we will introduce the

Squeeze Theorem of Performance Fitting. Overall, we first introduce exponential parameters w3

and w4 for the model depth H and the embedding dimension demb, respectively. We then use the
properties of the Squeeze Theorem to prove the existence of these parameters w3 and w4 between
lower bounds ŵ3 and ŵ4, and upper bounds w′

3 and w′
4. Specifically, we have:
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Table 3: The basic information for different datasets, where |Su| denotes the sequence length, along
with the fitted data parameter D in different metrics (HR, NDCG, Loss). It’s relationship versus
1/#Tokens · (S′Real) and 1/#Tokens is illustrated in Figure 3. D becomes excessively large in
Industrial affecting the fitting process, we uniformly take the reciprocal, 1/·, for the analysis.

Dataset Details, #Tokens = Σu|Su| Dataset Parameter Fitting(*1E-07)
Dataset |Su|max #Tokens S

′Real 1/DHR 1/DNDCG 1/DLoss

KR-Pure User: 27,285
Item: 7,551

25 447,407 0.2998 0.9800 1.0531 0.0352
50 570,537 0.3153 0.8081 0.7080 0.0235
100 661,028 0.3544 0.5560 0.5669 0.0199

ML-1M User: 6,040
Item: 3,706

100 505,108 0.1864 1.3699 1.5003 0.0459
150 802,493 0.1856 0.8972 0.8130 0.0263
200 1,058,511 0.1854 0.7839 0.7039 0.0218

AMZ-Books User: 694,897
Item: 686,623

50 8,044,865 0.1130 0.2100 0.1693 0.0021
25 7,076,238 0.1129 0.2404 0.2093 0.0030

Industrial User: 19,252,028
Item: 234,488

50 513,878,761 0.3769 0.0142 0.0175 0.0001
25 327,509,107 0.4001 0.0197 0.0249 0.0001

Theorem A.4. Squeeze Theorem of Performance Fitting. There exist ŵ3, w
′
3, ŵ4, w

′
4 such that

log(dŵ3

embD
ŵ4) +

1

dŵ3

embD
ŵ4

+ logH +
1

H
− δ ≤ P (H, demb, D)

≤ log(d
w′

3

embD
w′

4) +
1

d
w′

3

embD
w′

4

+ logH +
1

H
+ δ.

(24)

Proof. The lower bound of A.4 is the utilize of the property of function 1
· +log(·), which is formulated

as:
log(D0d0emb) +

1

d0embD
0
= 1 ≤ log(Zt) +

1

Zt
. (25)

On the other side, the upper bound can be proven using the following inequalities:

Zt ≤ D ·Ψn(

√
dIn
2πe

) =

Dπ
dIn
2

(√
dIn

2πe

)dIn

Γ(dIn

2 + 1)
∼ k

D√
Smaxdemb

2 πe

log(Zt) +
1

Zt
≤ O(log(D · d−

1
2

emb) +
1

D · d−
1
2

emb

).

(26)

Here, we apply Stirling’s approximation Γ(z + 1) ∼
√
2πz

(
z
e

)z
as the proof of the rightmost

inequality. This requires Zt ≤ 1, which is common in the overfitting phenomenon when the model
studied in this paper increases rapidly, as evidenced by the u-shape images in the experiments. This
approach enables us to decompose the loss into the form 1

· + log(·), where 1
· and log(·) serve as

mutual decay terms, optimizing the fit for performance. Similar to (7; 71), We factorize the product
dw3

embD
w4 into dw3

emb and Dw4 adding extra parameter w1, w2 and w5 as the final structure of Eq.( 8),
which represents the ultimate form of our performance fitting model.

A.3 Details on Dataset and Data Parameter Fitting

We present the specific details of the dataset and the precise numerical values for the images shown
in Section 5.1.1 in Table 3.

A.4 Detailed Experiment Settings

Following previous works (55; 56; 57), we leverage the leave-one-out method to calculate the
recommendation performance. Besides, we adopt the whole item set as the candidate item set during
evaluation to avoid the sampling bias of the candidate selection (72). Then, we evaluate the Top-K
recommendation performance by Normalized Discounted Cumulative Gain (NDCG) (59) and Hit
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Figure 5: The PL function fitting between model performance (Z-axis, HR) and the number of layers
(x-axis, H), as well as the embedding dimensions (y-axis, demb), the plot includes annotations of the
correlation coefficients R2.

Rate (HR) (58). To effectively demonstrate the performance of models with varying parameters
across different datasets, we selected different parameters for fitting based on the size of each
dataset. Regarding model configurations, for the MovieLens-1M, KuaiRand-pure, and Amazon
Books datasets, we configured N ∈ {4, 8, 12, 16, 24, 32} and demb ∈ {25, 50, 75, 100}. For the
Industrial dataset, we set N ∈ {8, 16, 32, 64} and demb ∈ {128, 256, 512, 1024}. From a data
perspective, we selected the maximum sequence length for truncation based on the average length
of each dataset. In the MovieLens-1M dataset, we selected according to the maximum sequence
length Smax ∈ {100, 150, 200}. In the KuaiRand-Pure dataset, we set the maximum sequence length
Smax ∈ {25, 50, 100}. Finally, for the Amazon Books and Industrial datasets, we configured the
maximum sequence length Smax ∈ {25, 50}. The largest model we executed reached a model depth
of H = 64, an embedding dimension of demb = 1024, and a vocabulary size of |I| = 19, 252, 028.
We utilized 48 industrial GPUs to run this experiment, with the largest experiment taking 24 hours.
This truly allowed us to study model performance at extreme data and model scales.

A.5 Application 2: Exploring Performance Law Potential Among Framework

Table 4: Comparison of Model Parameters and Perfor-
mance Across Different Precisions in Movielens-1M
with NG denotes NDCG. All results are statistically
significant with p<0.05.

Precision Float32 Bfloat16
Model HSTU LLaMA2 SASRec HSTU LLaMA2 SASRec
w1 ↑ 0.009 0.036 0.007 0.003 0.015 -0.014
w2 ↑ 0.083 0.159 0.001 0.034 0.086 0.008

HR@10↑ 0.332 0.346 0.302 0.332 0.336 0.293
HR@50↑ 0.585 0.598 0.573 0.594 0.598 0.561
NG@10↑ 0.185 0.194 0.172 0.187 0.188 0.162
NG@50↑ 0.242 0.252 0.231 0.247 0.249 0.221

Another application of the Performance
Law is to assess potential performance
gains when scaling up the model. We con-
ducted experiments and fitting analyses on
three different frameworks (HSTU (10),
LLaMA2 (8), and SASRec (15)) evalu-
ated at different precisions: float32 and
bfloat16. Experiments were performed
on the smaller dataset (ML-1M) to enable
the models to more easily reach their op-
timal upper bounds. In the expressions
w1(log(H

w3)+ p1
Hw3

) and w2(log(d
w4

emb)+
p1

d
w4
emb

) in Eq.(8), the upper bound of log(Hw) + p1
Hw does not change with variations in w when p1

is fixed. Therefore, larger values of w1 and w2 indicate a better scaling-up potential for the model.
We tested several different types of models (HSTU, LLaMA, and SASRec) and different precisions
(Float32 and Bfloat16) to observe the relationship between optimal model performance and the fitted
parameters w1 and w2. The results are presented in Table 4. From the table, we conclude that the
model’s performance closely aligns with the magnitude trend of w1 and w2, further underscoring the
accuracy of our quantitative fitting. This also demonstrates that the Performance Law can effectively
guide model structure configuration, thereby reducing memory and time when modifying frameworks.
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Figure 6: The SL function fitting between model performance (Z-axis, HR) and the number of layers
(x-axis, H), as well as the embedding dimensions (y-axis, demb), the plot includes annotations of the
correlation coefficients R2.
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Figure 7: The PL function fitting between model performance (Z-axis, NDCG) and the number of
layers (x-axis, H), as well as the embedding dimensions (y-axis, demb), the plot includes annotations
of the correlation coefficients R2.

A.6 Result Illusion Extension

B Additional Model Extension Results

Detailed quantitative results for Performance Law, Scaling Law, and Precision Scaling Law on
additional advanced models and the Amazon Beauty long-tail scenario are presented below.

As shown, the Performance Law consistently surpasses conventional Scaling Law and Precision
Scaling Law in terms of both fitting quality (R2) and error measures (MAE, RMSE), demonstrating
its extensibility and robustness across graph-based, sequence-based, multimodal, diffusion-based,
and long-tail recommendation models.

C Experimental Results for Data Quality Evaluation Functions

We provide a detailed comparison of different data quality evaluation functions: Real Entropy, Token
Only, Approximate Entropy (64), Shannon Entropy, and Kolmogorov Complexity. The results across
three metrics (NG, HR, L) are presented in Table 6, where higher values indicate better fitting ability.

As shown above, Real Entropy achieves the best overall performance as a data quality metric,
outperforming Approximate Entropy (64), Shannon Entropy, and Kolmogorov Complexity.
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Figure 8: The PL function fitting between model performance (Z-axis, NDCG) and the number of
layers (x-axis, H), as well as the embedding dimensions (y-axis, demb), the plot includes annotations
of the correlation coefficients R2.

D Additional Evaluation Metrics: MAE and RMSE

W5: The evaluation metric is overly dependent on R2; additional metrics such as MAE/RMSE or
downstream utility of predicted parameters would strengthen the empirical support.

Answer: Thank you for your valuable suggestion. To address this concern, we have supplemented
the empirical analysis with corresponding MAE and RMSE results for each dataset and model size, in
addition to R2. Tables 7 and 8 below report the detailed MAE and RMSE comparisons. The results
demonstrate that Performance Law consistently achieves lower MAE and RMSE values than both
Scaling Law and Precision Scaling Law across all scenarios, supporting its robust predictive accuracy
beyond the R2 metric.
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Table 5: Performance comparison on LightGCN, Mamba, Wukong, DiffuRec, and Amazon Beauty
(long-tail).

Model Metric R2 ↑ MAE (x1e-3)↓ RMSE (x1e-3)↓
LightGCN

HR@10 Performance Law 0.879 4.665 5.806
Scaling Law 0.825 5.456 6.978
Precision Scaling Law 0.866 4.918 6.116

NDCG@10 Performance Law 0.850 5.423 6.744
Scaling Law 0.800 6.120 7.802
Precision Scaling Law 0.806 5.797 7.223

Mamba

HR@10 Performance Law 0.818 1.941 2.512
Scaling Law 0.532 3.342 4.021
Precision Scaling Law 0.551 3.169 3.805

NDCG@10 Performance Law 0.810 0.398 0.530
Scaling Law 0.663 0.553 0.705
Precision Scaling Law 0.663 0.532 0.701

Wukong

AUC Performance Law 0.528 0.624 0.868
Scaling Law 0.479 0.654 0.912
Precision Scaling Law 0.503 0.636 0.891

DiffuRec

HR@10 Performance Law 0.766 34.933 46.596
Scaling Law 0.608 50.277 60.358
Precision Scaling Law 0.652 46.882 56.908

NDCG@10 Performance Law 0.748 17.077 20.707
Scaling Law 0.617 21.006 25.505
Precision Scaling Law 0.666 19.339 23.818

Amazon Beauty (Long-tail Rec.)

HR@10 Performance Law 0.868 1.857 2.271
Scaling Law 0.335 4.265 5.092
Precision Scaling Law 0.334 4.267 5.094

NDCG@10 Performance Law 0.890 1.329 1.668
Scaling Law 0.513 2.956 3.509
Precision Scaling Law 0.513 2.957 3.510

Table 6: Comparison of data quality evaluation functions (R2).

Metric Real Entropy Token Only Approx. Entropy Shannon Entropy Kolmogorov Complexity

NDCG 0.9906 0.8160 0.9825 0.7982 0.8955
HR 0.9913 0.8259 0.9774 0.7998 0.8663
Loss 0.9881 0.8776 0.9471 0.8617 0.9374
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Table 7: MAE comparison for HR@10 and NDCG@10 across datasets and model sizes.

Dataset |Su| HR@10 (MAE ×10−3) NDCG@10 (MAE ×10−3)

Perf. Law Scaling Law Precision Law Perf. Law Scaling Law Precision Law

KR-Pure 25 2.111 2.793 2.800 0.768 1.655 1.658
50 1.027 3.269 3.273 0.619 1.921 1.922

100 1.871 2.587 2.588 0.958 1.458 1.459
ML-1M 100 2.990 6.064 6.086 1.928 3.927 3.934

150 2.013 2.716 2.725 2.013 2.716 2.725
200 1.645 4.844 4.846 1.645 4.844 4.846

AMZ-Books 25 2.704 3.495 3.462 1.633 2.271 2.252
50 2.719 2.725 2.720 1.662 1.715 1.712

Industrial 25 1.112 2.291 2.302 1.031 1.864 1.870
50 0.972 3.356 3.356 0.830 2.700 2.700

Table 8: RMSE comparison for HR@10 and NDCG@10 across datasets and model sizes.

Dataset |Su| HR@10 (RMSE ×10−3) NDCG@10 (RMSE ×10−3)

Perf. Law Scaling Law Precision Law Perf. Law Scaling Law Precision Law

KR-Pure 25 2.880 3.610 3.615 0.923 1.943 1.946
50 1.260 3.754 3.758 0.806 2.170 2.171

100 2.534 3.302 3.303 1.147 1.827 1.827
ML-1M 100 3.417 7.332 7.351 2.525 4.425 4.431

150 2.657 3.948 3.957 2.657 3.948 3.957
200 1.912 5.493 5.494 1.912 5.493 5.494

AMZ-Books 25 3.535 4.084 4.058 2.148 2.626 2.612
50 3.527 3.610 3.609 2.117 2.173 2.171

Industrial 25 1.294 2.676 2.693 1.186 2.223 2.232
50 1.341 3.857 3.865 1.140 3.108 3.111
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Justification: In the abstract and introduction section, the theoretical and
technical contributions have been illustrated, which match the experimental results. The
scope is clearly defined as the field of sequential recommendation systems
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations of this work are discussed in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The assumption and proof of the two proposed theory are provided in Section
4.2, Appendix A.1, and Appendix A.2.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The code is provided at https://anonymous.4open.science/r/Performance-Law-
DDE3/. The implementation details to reproduce the experimental results are provided in
Appendix A.4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is provided at https://anonymous.4open.science/r/Performance-Law-
DDE3/, along with sufficient instructions.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The implementation details to reproduce the experimental results are provided
in Section A.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have performed statistical significance analysis and provided the corre-
sponding p-value in Table 1, Table 2, and Table A.5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The compute resources are detailed in Section A.4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have carefully checked the NeurIPS Code of Ethics and the conducted
research conforms with it.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Both potential positive societal impacts and negative societal impacts have
been discussed in Section 6.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

27

https://neurips.cc/public/EthicsGuidelines


• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The proposed model does not have a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators of used code and data are credited in Section 4.2.1. We adhere to
licenses of use by including citations, version details, and relevant license information.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code repositories will provide comprehensive details for newly introduced
assets, ensuring that other researchers can effectively utilize these resources.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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