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ABSTRACT

We revisit the classical problem of finding an approximately stationary point of the
average of n smooth and possibly nonconvex functions. The optimal complexity
of stochastic first-order methods in terms of the number of gradient evaluations of
individual functions is O

(
n+ n1/2ε−1

)
, attained by the optimal SGD methods

SPIDER (Fang et al., 2018) and PAGE (Li et al., 2021), for example, where ε is
the error tolerance. However, i) the big-O notation hides crucial dependencies on
the smoothness constants associated with the functions, and ii) the rates and theory
in these methods assume simplistic sampling mechanisms that do not offer any
flexibility. In this work we remedy the situation. First, we generalize the PAGE
algorithm so that it can provably work with virtually any (unbiased) sampling
mechanism. This is particularly useful in federated learning, as it allows us to
construct and better understand the impact of various combinations of client and
data sampling strategies. Second, our analysis is sharper as we make explicit
use of certain novel inequalities that capture the intricate interplay between the
smoothness constants and the sampling procedure. Indeed, our analysis is better
even for the simple sampling procedure analyzed in the PAGE paper. However, this
already improved bound can be further sharpened by a different sampling scheme
which we propose. In summary, we provide the most general and most accurate
analysis of optimal SGD in the smooth nonconvex regime. Finally, our theoretical
findings are supposed with carefully designed experiments.

1 INTRODUCTION

In this paper, we consider the minimization of the average of n smooth functions (1) in the nonconvex
setting in the regime when the number of functions n is very large. In this regime, calculation of the
exact gradient can be infeasible and the classical gradient descent method (GD) (Nesterov, 2018) can
not be applied. The structure of the problem is generic, and such problems arise in many applications,
including machine learning (Bishop & Nasrabadi, 2006) and computer vision (Goodfellow et al.,
2016). Problems of this form are the basis of empirical risk minimization (ERM), which is the
prevalent paradigm for training supervised machine learning models.

1.1 FINITE-SUM OPTIMIZATION IN THE SMOOTH NONCONVEX REGIME

We consider the finite-sum optimization problem

min
x∈Rd

{
f(x) := 1

n

n∑
i=1

fi(x)

}
, (1)

where fi : Rd → R is a smooth (and possibly nonconvex) function for all i ∈ [n] := {1, . . . , n}. We
are interested in randomized algorithms that find an ε-stationary point of (1) by returning a random
point x̂ such that E

[
‖∇f(x̂)‖2

]
≤ ε. The main efficiency metric of gradient-based algorithms for

finding such a point is the (expected) number of gradient evaluations∇fi; we will refer to it as the
complexity of an algorithm.
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1.2 RELATED WORK

The area of algorithmic research devoted to designing methods for solving the ERM problem (1) in the
smooth nonconvex regime is one of the most highly developed and most competitive in optimization.

The path to optimality. Let us provide a lightning-speed overview of recent progress. The complexity
of GD for solving (1) is O

(
nε−1

)
, but this was subsequently improved by more elaborate stochastic

methods, including SAGA, SVRG and SCSG (Defazio et al., 2014; Johnson & Zhang, 2013; Lei
et al., 2017; Horváth & Richtárik, 2019), which enjoy the better complexity O

(
n+ n2/3ε−1

)
.

Further progress was obtained by methods such as SNVRG and Geom-SARAH (Zhou et al., 2018;
Horváth et al., 2020), improving the complexity to Õ

(
n+ n1/2ε−1

)
. Finally, the methods SPIDER,

SpiderBoost, SARAH and PAGE (Fang et al., 2018; Wang et al., 2019; Nguyen et al., 2017; Li et al.,
2021), among others, shaved-off certain logarithmic factors and obtained the optimal complexity
O
(
n+ n1/2ε−1

)
, matching lower bounds (Li et al., 2021).

Optimal, but hiding a secret. While it may look that this is the end of the road, the starting point
of our work is the observation that the big-O notation in the above results hides important and
typically very large data-dependent constants. For instance, it is rarely noted that the more precise
complexity of GD is O

(
L−nε

−1
)
, while the complexity of the optimal methods, for instance PAGE,

is O
(
n+ L+n

1/2ε−1
)
, where L− ≤ L+ are different and often very large smoothness constants.

Moreover, it is easy to generate examples of problems (see Example 1) in which the ratio L+/L− is
as large one desires.

Client and data sampling in federated learning. Furthermore, several modern applications, notably
federated learning (Konečný et al., 2016; McMahan et al., 2017), depend on elaborate client and
data sampling mechanisms, which are not properly understood. However, optimal SGD methods
were considered in combination with very simple mechanisms only, such as sampling a random
function fi several times independently with replacement (Li et al., 2021). We thus believe that
an in-depth study of sampling mechanisms for optimal methods will be of interest to the federated
learning community. There exists prior work on analyzing non-optimal SGD variants with flexible
mechanisms For example, using the “arbitrary sampling” paradigm, originally proposed by Richtárik
& Takáč (2016) in the study of randomized coordinate descent methods, Horváth & Richtárik (2019)
and Qian et al. (2021) analyzed SVRG, SAGA, and SARAH methods, and showed that it is possible to
improve the dependence of these methods on the smoothness constants via carefully crafted sampling
strategies. Further, Zhao & Zhang (2014) investigated the stratified sampling, but only provided the
analysis for vanilla SGD, and in the convex case.

1.3 SUMMARY OF CONTRIBUTIONS

• Specifically, in the original paper (Li et al., 2021), the optimal (w.r.t.n and ε) optimization method
PAGE was analyzed with a simple uniform mini-batch sampling with replacement. We analyze PAGE
with virtually any (unbiased) sampling mechanism using a novel Assumption 4. Moreover, we show
that some samplings can improve the convergence rate O

(
n+ L+n

1/2ε−1
)

of PAGE (see Table 2).
•We improve the analysis of PAGE using a new quantity, the weighted Hessian Variance L± (or
L±,w), that is well-defined if the functions fi are Li–smooth. We show that, when the functions fi
are “similar” in the sense of the weighted Hessian Variance, PAGE enjoys faster convergence rates
(see Table 2). Also, unlike (Szlendak et al., 2021), we introduce weights wi that can play a crucial
role in some samplings. Moreover, the experiments in Sec 5 agree with our theoretical results.
• Our framework is flexible and can be generalized to the composition of samplings. These samplings
naturally emerge in federated learning (Konečný et al., 2016; McMahan et al., 2017), and we show
that our framework can be helpful in the analysis of problems from federated learning.

2 ASSUMPTIONS

We need the following standard assumptions from nonconvex optimization.

Assumption 1. There exists f∗ ∈ R such that f(x) ≥ f∗ for all x ∈ Rd.

Assumption 2. There exists L− ≥ 0 such that ‖∇f(x)−∇f(y)‖ ≤ L− ‖x− y‖ for all x, y ∈ Rd.
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Table 1: The constants A, B, wi and |S| that characterize the samplings in Assumption 4.

Sampling scheme A wi B |S| Reference

Uniform With Replacement 1/τ 1/n 1/τ ≤ τ Sec. E.3

Importance 1/τ qi 1/τ ≤ τ Sec. E.3

Nice n−τ
τ(n−1)

1/n n−τ
τ(n−1) τ Sec. E.1

Independent 1∑n
i=1

pi
1−pi

pi
1−pi∑n

i=1
pi

1−pi

0
∑n
i=1 pi Sec. E.2

Extended Nice n−τ
τ(n−1)

li∑n
i=1 li

n−τ
τ(n−1) ≤ τ Sec. E.4

Notation: n = # of data points; τ = batch size; qi = probability to sample ith data point in the multinomial distribution;
pi = probability to sample ith data point in the bernoulli distribution; li = # of times to repeat ith data point before
apply the Nice sampling.

Assumption 3. For all i ∈ [n], there existsa constant Li > 0 such that ‖∇fi(x)−∇fi(y)‖ ≤
Li ‖x− y‖ for all x, y ∈ Rd.

2.1 TIGHT VARIANCE CONTROL OF GENERAL SAMPLING ESTIMATORS

In Algorithm 1 (a generalization of PAGE), we form an estimator of the gradient∇f via subsampling.
In our search for achieving the combined goal of providing a general (in terms of the range of
sampling techniques we cater for) and refined (in terms of the sharpness of our results, even when
compared to known results using the same sampling technique) analysis of PAGE, we have identified
several powerful tools, the first of which is Assumption 4.

Let Sn := {(w1, . . . , wn) ∈ Rn |w1, . . . , wn ≥ 0,
∑n
i=1 wi = 1} be the standard simplex and

(Ω,F ,P) a probability space.
Assumption 4 (Weighted AB Inequality). Consider the random mapping S : Rd × · · · × Rd ×
Ω → Rd, which we will call “sampling”, such that E [S(a1, . . . , an;ω)] = 1

n

∑n
i=1 ai for all

a1, . . . , an ∈ Rd. Assume that there exist A,B ≥ 0 and weights (w1, . . . , wn) ∈ Sn such that

E

[∥∥∥∥S(a1, . . . , an;ω)− 1
n

n∑
i=1

ai

∥∥∥∥2
]
≤ A

n

n∑
i=1

1
nwi
‖ai‖2 −B

∥∥∥∥ 1
n

n∑
i=1

ai

∥∥∥∥2

, ∀a1, . . . , an ∈ Rd. (2)

For simplicity, we denote S ({ai}ni=1) := S(a1, . . . , an) := S(a1, . . . , an;ω). Further, the collection
of samplings satisfying Assumption 4 will be denotes as S(A,B, {wi}ni=1). The main purpose of
a sampling S ∈ S(A,B, {wi}ni=1) is to estimate the mean 1

n

∑n
i=1 ai using some random subsets

(possibly containing some elements more than once) of the set {a1, . . . , an}. Assumption 4 is the
only nonstandard assumption in our paper, and we refer to Table 1, where we provide examples of
samplings that satisfy this assumption. It represents a convenient framework to build the theory.

We now define the cardinality |S| of a sampling S ∈ S(A,B, {wi}ni=1).
Definition 1 (Cardinality of a Sampling). Let us take S ∈ S(A,B, {wi}ni=1), and define the function
Sω(a1, . . . , an) : Rd × · · · × Rd → Rd such that Sω(a1, . . . , an) := S(a1, . . . , an;ω). If the
function Sω(a1, . . . , an) depends only on a subset A(ω) of the arguments (a1, . . . , an), where
A(ω) : Ω→ 2{a1,...,an}, we define |S| := E [|A(ω)|] .

Assumption 4 is most closely related to two independent works: (Horváth & Richtárik, 2019) and
(Szlendak et al., 2021). Horváth & Richtárik (2019) analyzed several non-optimal SGD methods
for “arbitrary samplings”; these are random set-valued mappings S with values being the subsets of
[n]. The distribution of a such a sampling is uniquely determined by assigning probabilities to all 2n

subsets of [n]. In particular, they show that Assumption 4 holds with S(a1, . . . , an) = 1
n

∑
i∈S

ai
pi
,

pi := Prob(i ∈ S), |S| = |S|, some A ≥ 0, w1, . . . , wn ≥ 0 and B = 0. Recently, Szlendak
et al. (2021) studied a similar inequality, but in the context of communication-efficient distributed
training with randomized gradient compression operators. They explicitly set out to study correlated
compressors, and for this reason introduced the second term in the right hand side; i.e., they considered
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Table 2: The complexity of methods and samplings from Table 1 and Sec 4.

Sampling scheme Complexity Comment

Independent (Horváth & Richtárik, 2019) Θ

(
n+

n2/3
(

1
n

∑n
i=1 Li

)
ε

) SVRG method
pi ∝ Li

Uniform With Replacement (Li et al., 2021) Θ

(
n+

√
nL+
ε

)
—

Uniform With Replacement (new) Θ

(
n+

max{
√

nL±,L−}
ε

)
—

Importance Θ

(
n+

√
n
(

1
n

∑n
i=1 Li

)
ε

)
qi =

Li∑
i=1 Li

Stratified Θ

n+
max

{
√

n

√
1
g

∑g
i=1

L2
i,±,gL−

}
ε

 The functions fi
are splitted into g groups

Notation: n = # of data points; ε = error tolerance; L−, Li, L±, L+ and Li,± are smoothness constants such that
L− ≤ 1

n

∑n
i=1 Li, L− ≤ L+ and L± ≤ L+; g = # of groups in the Stratified sampling.

the possibility of B being nonzero, as in this way they obtain a tighter inequality, which they can use
in their analysis. However, their inequality only involves uniform weights {wi}. Our Assumption 4
offers the tightest known way to control of the variance of the sampling estimator, and our analysis
can take advantage of it. See Table 1 for an overview of several samplings and the values A,B and
{wi} for which Assumption 4 is satisfied.

2.2 SAMPLING-DEPENDENT SMOOTHNESS CONSTANTS

We now define two smoothness constants that depend on the weights {wi}ni=1 of a sampling S and
on the functions fi.

Definition 2. Given a sampling S ∈ S(A,B, {wi}ni=1), let L+,w be a constant for which

1
n

n∑
i=1

1
nwi
‖∇fi(x)−∇fi(y)‖2 ≤ L2

+,w ‖x− y‖
2
, ∀x, y ∈ Rd.

For (w1, . . . , wn) = (1/n, . . . , 1/n), we define L+ := L+,w.

Definition 3. Given a sampling S ∈ S(A,B, {wi}ni=1), let L±,w be a constant for which

1
n

n∑
i=1

1
nwi
‖∇fi(x)−∇fi(y)‖2 − ‖∇f(x)−∇f(y)‖2 ≤ L2

±,w ‖x− y‖
2
, ∀x, y ∈ Rd.

For (w1, . . . , wn) = (1/n, . . . , 1/n), we define L± := L±,w.

One can interpret Definition 2 as weighted mean-squared smoothness property (Arjevani et al., 2019),
and Definition 3 as weighted Hessian variance (Szlendak et al., 2021) that captures the similarity
between the functions fi. The constants L+,w and L±,w help us better to understand the structure of
the optimization problem (1) in connection with a particular choice of a sampling scheme. Note that
Definitions 2, 3 and Assumption 4 are connected with the weights {wi}ni=1.

The next result states that L2
+,w and L2

±,w are finite provided the functions fi are Li–smooth for all
i ∈ [n].

Theorem 4. If Assumption 3 holds, then L2
+,w = L2

±,w = 1
n

∑n
i=1

1
nwi

L2
i satisfy Def. 2 and 3.

Indeed, from Assumption 3 and the inequality ‖∇f(x)−∇f(y)‖2 ≥ 0 we get

1
n

n∑
i=1

1
nwi
‖∇fi(x)−∇fi(y)‖2 − ‖∇f(x)−∇f(y)‖2 ≤

(
1
n

n∑
i=1

1
nwi

L2
i

)
‖x− y‖2 ,

thus we can take L2
±,w = 1

n

∑n
i=1

1
nwi

L2
i . The proof for L2

+,w is the same.

From the proof, one can see that we ignore ‖∇f(x)−∇f(y)‖2 when estimating L2
±,w. However, by

doing that, the obtained result is not tight.
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Algorithm 1 PAGE

1: Input: initial point x0 ∈ Rd, stepsize γ > 0, probability p ∈ (0, 1]
2: g0 = ∇f(x0)
3: for t = 0, 1, . . . , T do
4: xt+1 = xt − γgt
5: Generate a random sampling function St

6: gt+1 =

{
∇f(xt+1) with probability p
gt + St

(
{∇fi(xt+1)−∇fi(xt)}ni=1

)
with probability 1− p

7: end for

3 A GENERAL AND REFINED THEORETICAL ANALYSIS OF PAGE

In the Algorithm 1, we provide the description of the PAGE method. The choice of PAGE as the base
method is driven by the simplicity of the proof in the original paper. However, we believe that other
methods, including SPIDER and SARAH, can also admit samplings from Assumption 4.

In this section, we provide theoretical results for Algorithm 1. Let us define ∆0 := f(x0)− f∗.
Theorem 5. Suppose that Assumptions 1, 2, 3 hold and the samplings St ∈ S(A,B, {wi}ni=1).

Then Algorithm 1 (PAGE) has the convergence rate E
[∥∥∇f(x̂T )

∥∥2
]
≤ 2∆0

γT , where γ ≤(
L− +

√
1−p
p

(
(A−B)L2

+,w +BL2
±,w
))−1

.

To reach an ε-stationary point, it is enough to do

T := 2∆0

ε

(
L− +

√
1−p
p

(
(A−B)L2

+,w +BL2
±,w
))

(3)

iterations of Algorithm 1. To deduce the gradient complexity, we provide the following corollary.

Corollary 1. Suppose that the assumptions of Thm 5 hold. Let us take p = |S|
|S|+n . Then the complexity

(the expected number of gradient calculations∇fi) of Algorithm 1 equals

N := Θ (n+ |S|T ) = Θ
(
n+ ∆0

ε |S|
(
L− +

√
n
|S|
(
(A−B)L2

+,w +BL2
±,w
)))

.

Proof. At each iteration, the expected # gradient calculations equals pn+ (1− p)|S| ≤ 2|S|. Thus
the total expected number of gradient calculations equals n+ 2|S|T to get an ε-stationary point.

The original result from (Li et al., 2021) states that the complexity of PAGE with batch size τ is

Norig := Θ
(
n+ ∆0

ε τ
(
L− +

√
n
τ L+

))
≥ Θ

(
n+ ∆0

√
nL+

ε

)
(4)

for all τ ∈ {1, 2, . . . , n}.

3.1 Uniform With Replacement SAMPLING

Let us do a sanity check and substitute the parameters of the sampling that the original paper uses.
We take the Uniform With Replacement sampling (see Sec E.3) with batch size τ (note that τ ≥ |S|),
A = B = 1/τ and wi = 1/n for all i ∈ [n] (see Table 1) and get the complexity Nuniform =

Θ
(
n+ ∆0

ε τ
(
L− +

√
n
τ L±

))
for all τ ∈ {1, 2, . . . , n}. Next, let us fix τ ≤ max

{√
nL±
L−

, 1
}
, and,

finally, obtain thatNuniform = Θ
(
n+ ∆0 max{

√
nL±,L−}
ε

)
. Let us compare it with (4). With the same

sampling, our analysis provides better complexity; indeed, note that max{
√
nL±, L−} ≤

√
nL+

(see Lemma 2 in Szlendak et al. (2021)). Moreover, Szlendak et al. (2021) provides examples of the
optimization problems when L± is small and L+ is large, so the difference can be arbitrary large.
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3.2 Nice SAMPLING

Next, we consider the Nice sampling (see Sec E.1) and get that the complexity Nnice =

Θ
(
n+ ∆0

ε τ
(
L− + 1

τ

√
n(n−τ)
(n−1) L±

))
. Unlike the Uniform With Replacement sampling, for ε small

enough, the Nice sampling recovers the complexity of GD for τ = n, which is equal to Θ
(

∆0nL−
ε

)
.

3.3 Importance SAMPLING

Let us consider the Importance sampling (see Sec E.3) that justifies the introduction of the
weights wi. We can get the complexity Nimportance = Θ

(
n+ ∆0

ε τ
(
L− +

√
n
τ L±,w

))
≤

Θ
(
n+

∆0 max{
√
nL±,w,L−}
ε

)
for τ ≤ max

{√
nL±,w

L−
, 1
}
. Now, we take qi = wi = Li∑

i=1 Li

and use the results from Sec F to obtain Nimportance = Θ

(
n+

∆0
√
n( 1

n

∑n
i=1 Li)

ε

)
≤ Norig (See

Sec G). In Example 2, we consider the optimization task where 1
n

∑n
i=1 Li is

√
n times smaller than

L+. Thus the complexity Nimportance can be at least
√
n times smaller that the complexity Norig.

3.4 THE POWER OF B > 0

In all previous examples, the constant A = B > 0. If A = B, then the complexity N =

Θ
(
n+ ∆0

ε |S|
(
L− +

√
n
|S|BL

2
±,w

))
, thus the complexity N does not depend on L2

+,w, which

greater of equal to L2
±,w. This is the first analysis of optimal SGD, which uses B > 0.

3.5 ANALYSIS UNDER PŁ CONDITION

The previous results can be extended to the optimization problems that satisfy the Polyak-Łojasiewicz
condition. Under this assumption, Algorithm 1 enjoys a linear convergence rate.
Assumption 5. There exists µ > 0 such that the function f satisfy (Polyak-Łojasiewicz) PŁ-condition:

‖∇f(x)‖2 ≥ 2µ(f(x)− f∗) ∀x ∈ R,

where f∗ = infx∈Rd f(x) > −∞.

Using Assumption 5, we can improve the convergence rate of PAGE.
Theorem 6. Suppose that Assumptions 1, 2, 3, 5 and the samplings St ∈ S(A,B, {wi}ni=1).
Then Algorithm 1 (PAGE) has the convergence rate E

[
f(xT )

]
− f∗ ≤ (1 − γµ)T∆0, where

γ ≤ min

{(
L− +

√
2(1−p)
p

(
(A−B)L2

+,w +BL2
±,w
))−1

, p2µ

}
.

4 COMPOSITION OF SAMPLINGS: APPLICATION TO FEDERATED LEARNING

In Sec 3, we analyze the PAGE method with samplings that satisfy Assumption 4. Now, let us
assume that the functions fi have the finite-sum form, i.e., fi(x) := 1

mi

∑mi

j=1 fij(x), thus we an
optimization problem

min
x∈Rd

{
f(x) := 1

n

n∑
i=1

1
mi

mi∑
j=1

fij(x)

}
, (5)

Another way to get the problem is to assume that we split the functions fi into groups of sizes mi.
All in all, let us consider (5) instead of (1).

The problem (5) occurs in many applications, including distributed optimization and federated
learning (Konečný et al., 2016; McMahan et al., 2017). In federated learning, many devices and
machines (nodes) store local datasets that they do not share with other nodes. The local datasets
are represented by functions fi, and all nodes solve the common optimization problem (5). Due to

6
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Algorithm 2 PAGE with composition of samplings

1: Input: initial point x0 ∈ Rd, stepsize γ > 0, probability p ∈ (0, 1], g0 = ∇f(x0)
2: for t = 0, 1, . . . , T do
3: xt+1 = xt − γgt

4: ct+1 =

{
1 with probability p
0 with probability 1− p

5: if ct+1 = 1 then
6: gt+1 = ∇f(xt+1)

/* FL Interpretation: Calculate the full gradients∇fi on the nodes and collect them */
7: else
8: Generate samplings Sti for all i ∈ [n]
9: ht+1

i = Sti
(
{∇fij(xt+1)−∇fij(xt)}mi

j=1

)
for all i ∈ [n]

/* FL Interpretation: Calculate the mini-batches ht+1
i on the nodes */

10: Generate a sampling St and set gt+1 = gt + St
(
{ht+1

i }ni=1

)
/* FL Interpretation: Collect ht+1

i only from the sampled nodes */
11: end if
12: end for

privacy reasons and communication bottlenecks (Kairouz et al., 2021), it is infeasible to store and
compute the functions fi locally in one machine.

In general, when we solve (1) in one machine, we have the freedom of choosing a sampling S for the
functions fi, which we have shown in Sec 3. However, in federated learning, a sampling of nodes or
the functions fi is dictated by hardware limits or network quality (Kairouz et al., 2021). Still, each ith
node can choose sampling Si to sample the functions fij . As a result, we have a composition of the
sampling S and the samplings Si (see Algorithm 2).

Assumption 6. For all j ∈ [mi], i ∈ [n], there exists a Lipschitz constant Lij such that
‖∇fij(x)−∇fij(y)‖ ≤ Lij ‖x− y‖ for all x, y ∈ Rd.

We now introduce the counterpart of Definitions 2 and 3.

Definition 7. For all i ∈ [n] and any sampling Si ∈ S(Ai, Bi, {wij}mi
j=1), define constant Li,+,wi

such that

1
mi

mi∑
j=1

1
miwij

‖∇fij(x)−∇fij(y)‖2 ≤ L2
i,+,wi

‖x− y‖2 ∀x, y ∈ Rd.

Definition 8. For all i ∈ [n] and any sampling Si ∈ S(Ai, Bi, {wij}mi
j=1), define constant Li,±,wi

such that

1
mi

mi∑
j=1

1
miwij

‖∇fij(x)−∇fij(y)‖2 − ‖∇fi(x)−∇fi(y)‖2 ≤ L2
i,±,wi

‖x− y‖2 ∀x, y ∈ Rd.

Let us provide the counterpart of Thm 5 for Algorithm 2.

Theorem 9. Suppose that Assumptions 1, 2, 3, 6 hold and the samplings St ∈
S(A,B, {wi}ni=1) and the samplings Sti ∈ S(Ai, Bi, {wij}mi

j=1) for all i ∈ [n]. More-

over, B ≤ 1. Then Algorithm 2 has the convergence rate E
[∥∥∇f(x̂T )

∥∥2
]
≤ 2∆0

γT , where

γ ≤

L− +

√√√√1− p
p

(
1

n

n∑
i=1

(
A

nwi
+

(1−B)

n

)(
(Ai −Bi)L2

i,+,wi
+BiL2

i,±,wi

)
+ (A−B)L2

+,w +BL2
±,w

)−1

.

The obtained theorem provides a general framework that helps analyze the convergence rates of the
composition of samplings that satisfy Assumption 4. We discuss the obtained result in different
contexts.

7
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4.1 FEDERATED LEARNING

For simplicity, let us assume that the samplings St and Sti are Uniform With Replacement sam-
plings with batch sizes τ and τi for all i ∈ n, accordingly, then to get ε-stationary point, it

is enough to do T := Θ

(
∆0

ε

(
L− +

√
1−p
pτ

(
1
n

∑n
i=1

1
τi
L2
i,± + L2

±

)))
iterations. Note that

T ≥ Θ
(

∆0

ε

(
L− +

√
1−p
pτ L

2
±

))
for all τi ≥ 1 for all i ∈ [n]. It means that after some point, there

is no benefit in increasing batch sizes τi. In order to balance 1
n

∑n
i=1

1
τi
L2
i,± and L2

±, one can take
τi = Θ

(
L2

i,±/L2
±

)
. The constant L2

i,± captures the intra-variance inside ith node, while L2
± captures

the inter-variance between nodes. If the intra-variance is small with respect to the inter-variance,
then our theory suggests taking small batch sizes and vice versa.

4.2 Stratified SAMPLING

Let us provide another example that is closely related to (Zhao & Zhang, 2014). Let us
consider (1) and use a variation of the Stratified sampling (Zhao & Zhang, 2014): we split
the functions fi into g = n/m groups, where m is the number of functions in each group.
Thus we get the problem (5) with f(x) = 1

g

∑g
i=1

1
m

∑m
j=1 fij(x). Let us assume that we al-

ways sample all groups, thus A = B = 0, and the sampling Sti are Nice samplings with
batch sizes τ1 for all i ∈ [n]. Applying Thm 9, we get the convergence rate Tgroup :=

Θ

(
∆0

ε

(
L− +

√
1−p
pgτ1

(
1
g

∑g
i=1 L

2
i,±

)))
. At each iteration, the algorithm calculates gτ1 gra-

dients, thus we should take p = gτ1
gτ1+n to get the complexity Ngroup := Θ (n+ gτ1T ) =

Θ
(
n+ ∆0

ε

(
gτ1L− +

√
n
√

1
g

∑g
i=1 L

2
i,±

))
. Let us take τ1 ≤ max

{√
n
√

1
g

∑g
i=1 L

2
i,±

gL−
, 1

}
to ob-

tain the complexity Ngroup = Θ

(
n+

∆0 max
{√

n
√

1
g

∑g
i=1 L

2
i,±,gL−

}
ε

)
. Comparing the complexity

Ngroup with the complexity Nuniform from Sec 3, one can see that if split the functions fi in a “right
way”, such that Li,± is small for i ∈ [n] (see Example 3), then we can get at least

√
n/√g times

improvement with the Stratified sampling.

5 EXPERIMENTS

We now provide experiments1 with synthetic quadratic optimization tasks, where the functions fi,
in general, are nonconvex quadratic functions. Note that our goal here is to check whether the
dependencies that our theory predicts are correct for the problem (1). The procedures that generate
synthetic quadratic optimization tasks give us control over the choice of smoothness constants. All
parameters, including the step sizes, are chosen as suggested by the corresponding theory. In the plots,
we represent the relation between the norm of gradients and the number of gradient calculations∇fi.

5.1 QUADRATIC OPTIMIZATION TASKS WITH VARIOUS HESSIAN VARIANCES L±

Using Algorithm 3 (see Appendix), we generated various quadratic optimization tasks with different
smoothness constants L± ∈ [0, 1.0] and fixed L− ≈ 1.0 (see Fig. 1). We choose d = 10, n = 1000,
regularization λ = 0.001, and the noise scale s ∈ {0, 0.1, 0.5, 1}. According to Sec 3 and Table 2,
the gradient complexity of original PAGE method (“Vanilla PAGE” in Fig. 1) is proportional to L+.
While the gradient complexity of the new analysis with the Uniform With Replacement sampling
(“Uniform With Replacement” in Fig. 1) is proportional to L±, which is always less or equal L+. In
Fig. 1, one can see that the smaller L± with respect to L+, the better the performance of “Uniform
With Replacement.” Moreover, we provide experiments with the Importance sampling (“Importance”
in Fig. 1) with qi = Li∑n

i=1 Li
for all i ∈ [n]. This sampling has the best performance in all regimes.

1Our code: https://github.com/mysteryresearcher/sampling-in-optimal-sgd
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Figure 1: Comparison of samplings and methods on quadratic optimization tasks with various L±.

5.2 QUADRATIC OPTIMIZATION TASKS WITH VARIOUS LOCAL LIPSCHITZ CONSTATNS Li

Using Algorithm 4 (see Appendix), we synthesized various quadratic optimization tasks with different
smoothness constants Li (see Fig. 2). We choose d = 10, n = 1000, the regularization λ = 0.001,
and the noise scale s ∈ {0, 0.1, 0.5, 10.0}.We generated tasks in such way that the difference between
maxi Li and mini Li increases. First, one can see that the Uniform With Replacement sampling with
the new analysis (“Uniform With Replacement” in Fig. 2) has better performance even in the cases of
significant variations of Li. Next, we see the stability of the Importance sampling (“Importance” in
Fig. 2) with respect to this variations.
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Figure 2: Comparison of samplings and methods on quadratic optimization tasks with various Li.

5.3 NONCONVEX CLASSIFICATION PROBLEM WITH LIBSVM DATASETS

We now solve nonconvex machine learning tasks and compare samplings on LIBSVM datasets
(Chang & Lin, 2011) (see details in Sec A.2). As in previous sections, PAGE with the Importance
sampling performs better, especially in the australian dataset where the variation of Li is large.
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Figure 3: Comparison of samplings on nonconvex machine learning tasks with LIBSVM datasets.
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A EXTRA EXPERIMENTS AND DETAILS

A.1 QUADRATIC OPTIMIZATION TASKS WITH VARIOUS BATCH SIZES.

In this section, we consider the same setup as in Sec 5.1. In Figure 4, we fix L±, and show that the
Importance sampling has better convergence rates with different batch sizes. Note that with large
batches, the competitors reduce to the GD method, and the difference is not significant.
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Figure 4: Comparison of samplings and methods with various batch sizes.

A.2 DETAILS ON EXPERIMENTS WITH LIBSVM DATASETS

We compare the samplings on practical machine learnings with LIBSVM datasets (Chang & Lin,
2011) (under the 3-clause BSD license). Parameters of Algorithm 1 are chosen as suggested in Thm 5
and Cor 1. We take the parameters for Uniform With Replacement and Importance samplings from
Table 1 with qi = Li∑n

i=1 Li
. We consider the logistic regression task with a nonconvex regularization

(Wang et al., 2019)

f(x1, x2) :=
1

n

n∑
i=1

− log

(
exp

(
a>i xyi

)∑
y∈{1,2} exp

(
a>i xy

))+ λ
∑

y∈{1,2}

d∑
k=1

{xy}2k
1 + {xy}2k

→ min
x1,x2∈Rd

,

where {·}k is an indexing operation, ai ∈ Rd is the feature of a ith sample, yi ∈ {1, 2} is the label of
a ith sample, constant λ = 0.001. We fix batch size τ = 1 and take w8a dataset (dimension d = 300,
number of samples n = 49,749) and australian dataset (dimension d = 14, number of samples
n = 690) from LIBSVM. For the logistic regression, the Lipschitz constants Li can be estimated.
The distribution of Lipschitz constants Li across datapoints for that two datasets is presented in Fig. 5.
We use Thm 4 to obtain L2

+,w and L2
±,w.
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Figure 5: The distribution of Lipschitz constants Li
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(a) τclients = 1, #clients n = 10
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(b) τclients = 3, #clients n = 10
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(c) τclients = 6, #clients n = 10
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Figure 6: Comparison of methods on australian dataset from LIBSVM

A.3 FEDERATED LEARNING EXPERIMENTS WITH LIBSVM DATASET

In this experiment2, we compare the Uniform With Replacement sampling and the Importance
sampling on the logistic regression task from Sec. A.2 in a distributed environment. The training of
the models is carried on australian dataset from LIBSVM. The dataset is reshuffled with uniform
distribution, and then it is split across n = 10 clients. In all experiments, we use Algorithm 2
with theoretical stepsizes according to Theorem 9. We take the parameters of the Uniform With
Replacement and Importance samplings from Table 1 with qi = Li∑n

i=1 Li
.

According to Algorithm 2, we have the samplings St that sample clients, and the samplings Sti that
sample data from the local datasets of clients. Algorithm 2 allows mixed sampling strategies that
satisfy Assumption 4. For simplicity, we consider that the samplings St and Sti are of the same type.

For the logistic regression, the Lipschitz constants Li and Lij of the gradients of functions fi(x) and
fij(x) can be estimated. As in Sec A.2, we use Thm 4 to obtain the constants L2

i,+,w, L
2
i,±,w, L

2
+,w

and L2
±,w. The results of experiments are provided in Fig. 6. We denote by τpoints the batch size of

the samplings Sti for all i ∈ [n], and by τclients the batch size of the sampling St. The number of
gradient calculations in Fig. 6 stands for the total number of gradient calculations in all clients.

We demonstrate results for different values of the batch sizes τclients and τpoints. As in previous
experiments, the Importance sampling has better empirical performance than the Uniform With
Replacement sampling. In addition to it, we observe that plots with small batch sizes τpoints converge
faster.

A.4 COMPUTING ENVIRONMENT

The code was written in Python 3.6.8 using PyTorch 1.9 (Paszke et al., 2019) and optimization
research simulator FL PyTorch (Burlachenko et al., 2021). The distributed environment was emulated
on a machine with Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz and 64 cores.

2Our code: https://github.com/mysteryresearcher/page_ab_fl_experiment_a3
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B AUXILIARY FACTS

We use the following auxiliary fact in out proofs:

1. Let us take a random vector ξ ∈ Rd, then

E
[
‖ξ‖2

]
= E

[
‖ξ − E [ξ]‖2

]
+ ‖E [ξ]‖2 . (6)

C EXAMPLES OF OPTIMIZATION PROBLEMS

Example 1. For simplicity, let us assume that n is even. Let us consider the optimization problem (1)
with fi(x) = a

2x
2 + b

2x
2 for i ∈ {1, · · · , n/2} and fi(x) = −a2x

2 + b
2x

2 for i ∈ {n/2 + 1, · · · , n},
where x ∈ R and b ≥ 0. Then f(x) = b

2x
2 and

L2
− = sup

x 6=y

‖∇f(x)−∇f(y)‖2

‖x− y‖2
= b2.

Moreover,

L2
+ = sup

x 6=y

1
n

∑n
i=1 ‖∇fi(x)−∇fi(y)‖2

‖x− y‖2
=

1

2

(
(a+ b)2 + (a− b)2

)
,

and we can take a arbitrary large.
Example 2. Let us assume that n ≥ 2 and consider the optimization problem (1) with f1(x) = b

2x
2

and fi(x) = 0 for i ∈ {2, · · · , n}, where x ∈ R and b ≥ 0. Then f(x) = b
2nx

2,

L− = sup
x 6=y

‖∇f(x)−∇f(y)‖
‖x− y‖

=
b

n
,

1

n

n∑
i=1

Li =
1

n
sup
x 6=y

‖∇f1(x)−∇f1(y)‖2

‖x− y‖2
=
b

n
,

and

L+ =

√
sup
x 6=y

1
n

∑n
i=1 ‖∇fi(x)−∇fi(y)‖2

‖x− y‖2
=

b√
n
.

Example 3. Let us consider the optimization problem (5) with f(x) = 1
g

∑g
i=1

1
m

∑m
j=1 fij(x) and

fij(x) = bi
2 x

2 for all i ∈ [g] and j ∈ [m], where x ∈ R and b1 ≥ 0 and bi = 0 for all i ∈ {2, . . . , g}.
Then f(x) = b1

2gx
2,

L− = sup
x 6=y

‖∇f(x)−∇f(y)‖
‖x− y‖

=
b1
g
,

L2
± = sup

x6=y

1
gm

∑g
i=1

∑m
j=1 ‖∇fij(x)−∇fij(y)‖2 − ‖∇f(x)−∇f(y)‖2

‖x− y‖2
=

(
1

g
− 1

g2

)
b21,

and

L2
i,± = sup

x6=y

1
m

∑n
j=m ‖∇fij(x)−∇fij(y)‖2 − ‖∇fi(x)−∇fi(y)‖2

‖x− y‖2
= 0 ∀i ∈ [n].

Substituting the smoothness constants to the complexity Nuniform from Sec 3 and Nuniform from Sec 4,
one can show that

Nuniform = Θ

(
n+

∆0 max{
√
nL±, L−}
ε

)
= Θ

(
n+

∆0
√
nb1

ε
√
g

)
and

Ngroup = Θ

n+
∆0 max

{√
n
√

1
g

∑g
i=1 L

2
i,±, gL−

}
ε

 = Θ

(
n+

∆0b1
ε

)
.

The complexity Ngroup is
√
n/√g times better than the complexity Nuniform.
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D MISSING PROOFS

Lemma 1. Suppose that Assumption 2 holds and let xt+1 = xt − γgt. Then for any gt ∈ Rd and
γ > 0, we have

f(xt+1) ≤ f(xt)− γ

2

∥∥∇f(xt)
∥∥2 −

(
1

2γ
− L−

2

)∥∥xt+1 − xt
∥∥2

+
γ

2

∥∥gt −∇f(xt)
∥∥2
. (7)

Proof. Using Assumption 2, we have

f(xt+1) ≤ f(xt) +
〈
∇f(xt), xt+1 − xt

〉
+
L−
2

∥∥xt+1 − xt
∥∥2

= f(xt)− γ
〈
∇f(xt), gt

〉
+
L−
2

∥∥xt+1 − xt
∥∥2
.

Next, due to −〈x, y〉 = 1
2 ‖x− y‖

2 − 1
2 ‖x‖

2 − 1
2 ‖y‖

2
, we obtain

f(xt+1) ≤ f(xt)− γ

2

∥∥∇f(xt)
∥∥2 −

(
1

2γ
− L−

2

)∥∥xt+1 − xt
∥∥2

+
γ

2

∥∥gt −∇f(xt)
∥∥2
.

Theorem 5. Suppose that Assumptions 1, 2, 3 hold and the samplings St ∈ S(A,B, {wi}ni=1).

Then Algorithm 1 (PAGE) has the convergence rate E
[∥∥∇f(x̂T )

∥∥2
]
≤ 2∆0

γT , where γ ≤(
L− +

√
1−p
p

(
(A−B)L2

+,w +BL2
±,w
))−1

.

Proof. We start with the estimation of the variance of the noise:

E
[∥∥gt+1 −∇f(xt+1)

∥∥2
]

= (1− p)E
[∥∥gt + St

(
{∇fi(xt+1)−∇fi(xt)}ni=1

)
−∇f(xt+1)

∥∥2
]

= (1− p)
∥∥St ({∇fi(xt+1)−∇fi(xt)}ni=1

)
−
(
∇f(xt+1)−∇f(xt)

)∥∥2
+ (1− p)

∥∥gt −∇f(xt)
∥∥2
,

where we used the unbiasedness of the sampling. Using Assumption 4, we have

E
[∥∥gt+1 −∇f(xt+1)

∥∥2
]

≤ (1− p)

(
A

n∑
i=1

1

n2wi

∥∥∇fi(xt+1)−∇fi(xt)
∥∥2 −B

∥∥∇f(xt+1)−∇f(xt)
∥∥2

)
+ (1− p)

∥∥gt −∇f(xt)
∥∥2
.

Using the definition of L+,w and L±,w, we get

E
[∥∥gt+1 −∇f(xt+1)

∥∥2
]

≤ (1− p)

(
A

n∑
i=1

1

n2wi

∥∥∇fi(xt+1)−∇fi(xt)
∥∥2 −B

∥∥∇f(xt+1)−∇f(xt)
∥∥2

)
+ (1− p)

∥∥gt −∇f(xt)
∥∥2

= (1− p)

(
(A−B)

(
n∑
i=1

1

n2wi

∥∥∇fi(xt+1)−∇fi(xt)
∥∥2

)

+B

(
n∑
i=1

1

n2wi

∥∥∇fi(xt+1)−∇fi(xt)
∥∥2 −

∥∥∇f(xt+1)−∇f(xt)
∥∥2

))
+ (1− p)

∥∥gt −∇f(xt)
∥∥2

≤ (1− p)
(
(A−B)L2

+,w +BL2
±,w
) ∥∥xt+1 − xt

∥∥2
+ (1− p)

∥∥gt −∇f(xt)
∥∥2
.

(8)
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We now continue the proof using Lemma 1. We add (7) with γ
2p× (8), and take expectation to get

E

[
f(xt+1)− f∗ +

γ

2p

∥∥gt+1 −∇f(xt+1)
∥∥2
]

≤ E

[
f
(
xt
)
− f∗ − γ

2

∥∥∇f (xt)∥∥2 −
(

1

2γ
− L−

2

)∥∥xt+1 − xt
∥∥2

+
γ

2

∥∥gt −∇f (xt)∥∥2
]

+
γ

2p
E
[
(1− p)

∥∥gt −∇f (xt)∥∥2
+ (1− p)

(
(A−B)L2

+,w +BL2
±,w
) ∥∥xt+1 − xt

∥∥2
]

= E

[
f
(
xt
)
− f∗ +

γ

2p

∥∥gt −∇f (xt)∥∥2 − γ

2

∥∥∇f (xt)∥∥2

−
(

1

2γ
− L−

2
− (1− p)γ

2p

(
(A−B)L2

+,w +BL2
±,w
))∥∥xt+1 − xt

∥∥2
]

≤ E

[
f
(
xt
)
− f∗ +

γ

2p

∥∥gt −∇f (xt)∥∥2 − γ

2

∥∥∇f (xt)∥∥2
]
,

(9)

where the last inequality holds due to 1
2γ −

L−
2 −

(1−p)γ
2p

(
(A−B)L2

+,w +BL2
±,w
)
≥ 0 by choosing

stepsize

γ ≤
(
L− +

√
1− p
p

(
(A−B)L2

+,w +BL2
±,w
))−1

.

Now, if we define Φt := f (xt)− f∗ + γ
2p ‖g

t −∇f (xt)‖2, then (9) can be written in the form

E [Φt+1] ≤ E [Φt]−
γ

2
E
[∥∥∇f (xt)∥∥2

]
.

Summing up from t = 0 to T − 1, we get

E [ΦT ] ≤ E [Φ0]− γ

2

T−1∑
t=0

E
[∥∥∇f (xt)∥∥2

]
.

Then according to the output of the algorithm, i.e., x̂T is randomly chosen from {xt}t∈[T ] and

Φ0 = f
(
x0
)
− f∗ + γ

2p‖g
0− ∇f

(
x0
)
‖2 = f

(
x0
)
− f∗ def

= ∆0, we have

E
[
‖∇f (x̂T )‖2

]
≤ 2∆0

γT
.

Theorem 6. Suppose that Assumptions 1, 2, 3, 5 and the samplings St ∈ S(A,B, {wi}ni=1).
Then Algorithm 1 (PAGE) has the convergence rate E

[
f(xT )

]
− f∗ ≤ (1 − γµ)T∆0, where

γ ≤ min

{(
L− +

√
2(1−p)
p

(
(A−B)L2

+,w +BL2
±,w
))−1

, p2µ

}
.

Proof. From the proof of Thm 5, we know that

E
[∥∥gt+1 −∇f(xt+1)

∥∥2
]

≤ (1− p)
(
(A−B)L2

+,w +BL2
±,w
) ∥∥xt+1 − xt

∥∥2
+ (1− p)

∥∥gt −∇f(xt)
∥∥2
. (10)
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Using Lemma 1, we add (7) with γ
p× (10), and take expectation to get

E

[
f(xt+1)− f∗ +

γ

p

∥∥gt+1 −∇f(xt+1)
∥∥2
]

≤ E

[
f
(
xt
)
− f∗ − γ

2

∥∥∇f (xt)∥∥2 −
(

1

2γ
− L−

2

)∥∥xt+1 − xt
∥∥2

+
γ

2

∥∥gt −∇f (xt)∥∥2
]

+
γ

p
E
[
(1− p)

∥∥gt −∇f (xt)∥∥2
+ (1− p)

(
(A−B)L2

+,w +BL2
±,w
) ∥∥xt+1 − xt

∥∥2
]

= E

[
f
(
xt
)
− f∗ +

(
1− p

2

) γ
p

∥∥gt −∇f (xt)∥∥2 − γ

2

∥∥∇f (xt)∥∥2

−
(

1

2γ
− L−

2
− (1− p)γ

p

(
(A−B)L2

+,w +BL2
±,w
))∥∥xt+1 − xt

∥∥2
]

≤ E

[
f
(
xt
)
− f∗ +

(
1− p

2

) γ
p

∥∥gt −∇f (xt)∥∥2 − γ

2

∥∥∇f (xt)∥∥2
]
,

where the last inequality holds due to 1
2γ −

L−
2 −

(1−p)γ
p

(
(A−B)L2

+,w +BL2
±,w
)
≥ 0 by choosing

stepsize

γ ≤

(
L− +

√
2(1− p)

p

(
(A−B)L2

+,w +BL2
±,w
))−1

.

Next, using Assumption 5 and γ ≤ p
2µ , we have

E

[
f(xt+1)− f∗ +

γ

p

∥∥gt+1 −∇f(xt+1)
∥∥2
]

≤ (1− γµ) E

[
f
(
xt
)
− f∗ +

γ

p

∥∥gt −∇f (xt)∥∥2
]
.

Unrolling the recursion and considering that g0 = ∇f(x0), we can complete the proof of theorem.

E DERIVATIONS OF THE PARAMETERS FOR THE SAMPLINGS

E.1 Nice SAMPLING

Let S be a random subset uniformly chosen from [n] with a fixed cardinality τ . Let us fix a1, . . . , an ∈
Rd. A sampling S(a1, . . . , an) := 1

n

∑
i∈S

ai
pi

is called the Nice sampling, where pi := Prob(i ∈
S).

Let us bound E
[∥∥S(a1, . . . , an)− 1

n

∑n
i=1 ai

∥∥2
]

and find parameters from Assumption 4. Note
that |S| = |S| = τ. We introduce auxiliary random variables

χi :=

{
1 i ∈ S
0 otherwise.

.
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Due to pi = Prob (i ∈ S) = τ
n , we have

E

∥∥∥∥∥ 1

n

∑
i∈S

ai
pi

∥∥∥∥∥
2
 = E

∥∥∥∥∥1

τ

n∑
i=1

χiai

∥∥∥∥∥
2


=
1

τ2

n∑
i=1

E
[
‖χiai‖2

]
+

1

τ2

∑
i6=j

E [〈χiai, χjaj〉]

=
1

τ2

n∑
i=1

E [χi] ‖ai‖2 +
1

τ2

∑
i6=j

E [〈χi, χj〉] 〈ai, aj〉

=
1

nτ

n∑
i=1

‖ai‖2 +
τ − 1

n(n− 1)τ

∑
i 6=j

〈ai, aj〉

=
1

nτ

n∑
i=1

‖ai‖2 +
τ − 1

n(n− 1)τ

∥∥∥∥∥
n∑
i=1

ai

∥∥∥∥∥
2

−
n∑
i=1

‖ai‖2


=
n− τ
τ(n− 1)

1

n

n∑
i=1

‖ai‖2 +
τ − 1

n(n− 1)τ

∥∥∥∥∥
n∑
i=1

ai

∥∥∥∥∥
2

,

where we use E
[
χ2
i

]
= E [χi] = τ

n and E [χiχj ] = τ(τ−1)
n(n−1) , when i 6= j.

Finally, we have

E

∥∥∥∥∥ 1

n

∑
i∈S

ai
pi
− 1

n

n∑
i=1

ai

∥∥∥∥∥
2
 = E

∥∥∥∥∥ 1

n

∑
i∈S

ai
pi

∥∥∥∥∥
2
− ∥∥∥∥∥ 1

n

n∑
i=1

ai

∥∥∥∥∥
2

=
n− τ
τ(n− 1)

1

n

n∑
i=1

‖ai‖2 +
τ − 1

n(n− 1)τ

∥∥∥∥∥
n∑
i=1

ai

∥∥∥∥∥
2

−

∥∥∥∥∥ 1

n

n∑
i=1

ai

∥∥∥∥∥
2

=
n− τ
τ(n− 1)

 1

n

n∑
i=1

‖ai‖2 −

∥∥∥∥∥ 1

n

n∑
i=1

ai

∥∥∥∥∥
2
 .

Thus we have A = B = n−τ
τ(n−1) and wi = 1

n for all i ∈ [n].

E.2 Independent SAMPLING

Let us define i.i.d. random variables

χi =

{
1 with probability pi
0 with probability 1− pi,

.

for all i ∈ [n] and take S := {i ∈ [n] |χi = 1}. We now fix a1, . . . , an ∈ Rd. A sampling
S(a1, . . . , an) := 1

n

∑
i∈S

ai
pi

is called the Independent sampling, where pi := Prob(i ∈ S).
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We get

E

∥∥∥∥∥ 1

n

∑
i∈S

ai
pi
− 1

n

n∑
i=1

ai

∥∥∥∥∥
2
 = E

∥∥∥∥∥ 1

n

n∑
i=1

1

pi
χiai

∥∥∥∥∥
2
− ∥∥∥∥∥ 1

n

n∑
i=1

ai

∥∥∥∥∥
2

=

n∑
i=1

E [χi]

n2p2
i

‖ai‖2 +
∑
i 6=j

E [χi] E [χj ]

n2pipj
〈ai, aj〉 −

∥∥∥∥∥ 1

n

n∑
i=1

ai

∥∥∥∥∥
2

=

n∑
i=1

1

n2pi
‖ai‖2 +

1

n2

∥∥∥∥∥
n∑
i=1

ai

∥∥∥∥∥
2

−
n∑
i=1

‖ai‖2
− ∥∥∥∥∥ 1

n

n∑
i=1

ai

∥∥∥∥∥
2

=
1

n2

n∑
i=1

(
1

pi
− 1

)
‖ai‖2 .

Thus we have A = 1∑n
i=1

pi
1−pi

, B = 0 and wi =
pi

1−pi∑n
i=1

pi
1−pi

for all i ∈ [n].

E.3 Importance AND Uniform With Replacement SAMPLING

Let us fix τ > 0. For all k ∈ [τ ], we define i.i.d. random variables

χk =


1 with probability q1

2 with probability q2

...
n with probability qn,

where (q1, . . . , qn) ∈ Sn (simple simplex). A sampling

S(a1, . . . , an) :=
1

τ

τ∑
k=1

aχk

nqχk

is called the Importance sampling. The Importance sampling reduces to the Uniform With Replace-
ment sampling when qi = 1/n for all i ∈ [n]. Note that |S| ≤ τ.
Let us bound the variance

E

∥∥∥∥∥1

τ

τ∑
k=1

aχk

nqχk

− 1

n

n∑
i=1

ai

∥∥∥∥∥
2


=
1

τ2

τ∑
k=1

E

∥∥∥∥∥ aχk

nqχk

− 1

n

n∑
i=1

ai

∥∥∥∥∥
2
+

1

τ2

∑
k 6=k′

E

[〈
aχk

nqχk

− 1

n

n∑
i=1

ai,
aχk′

nqχk′

− 1

n

n∑
i=1

ai

〉]
.

Using the independents and unbiasedness of the random variables, the last term vanishes and we get

E

∥∥∥∥∥1

τ

τ∑
k=1

aχk

nqχk

− 1

n

n∑
i=1

ai

∥∥∥∥∥
2
 =

1

τ2

τ∑
k=1

E

∥∥∥∥∥ aχk

nqχk

− 1

n

n∑
i=1

ai

∥∥∥∥∥
2


(6)
=

1

τ2

τ∑
k=1

E

[∥∥∥∥ aχk

nqχk

∥∥∥∥2
]
− 1

τ

∥∥∥∥∥ 1

n

n∑
i=1

ai

∥∥∥∥∥
2

=
1

τ

n∑
i=1

qi

∥∥∥∥ ainqi
∥∥∥∥2

− 1

τ

∥∥∥∥∥ 1

n

n∑
i=1

ai

∥∥∥∥∥
2

=
1

τ

 1

n

n∑
i=1

1

nqi
‖ai‖2 −

∥∥∥∥∥ 1

n

n∑
i=1

ai

∥∥∥∥∥
2
 .

Thus we have A = B = 1
τ , and wi = qi for all i ∈ [n].
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E.4 Extended Nice SAMPLING

In this section, we analyze the extension of Nice sampling. First, we li times repeat each vector ai,
then we use the Nice sampling. We define

ãi :=



∑n
j=1 lj

nl1
a1 1 ≤ i ≤ l1∑n

j=1 lj

nl2
a2 l1 + 1 ≤ i ≤ l1 + l2

...∑n
j=1 lj

nln
an

∑n−1
j=1 lj ≤ i ≤

∑n
j=1 lj ,

,

where ai ∈ Rd and li ≥ 1 for all i ∈ [n]. Then we have

1

n

n∑
i=1

ai(x) =
1

N

N∑
i=1

ãi(x),

where N :=
∑n
j=1 lj . Also, we denote Nk :=

∑k
j=1 lj .

For some τ > 0, we apply the Nice sampling method:

S(a1, . . . , an) :=
1

N

∑
i∈S

ãi
pi

=

N∑
i=1

1

τ
χiãi,

where

χi =

{
1 i ∈ S
0 otherwise

, pi = Prob (i ∈ S) ,

and S is a random set with cardinality τ from [N ]. The sampling S(a1, . . . , an) is called the Extended
Nice sampling.

We now ready to bound the variance. Using the results for the Nice sampling, we obtain

E

∥∥∥∥∥S(a1, . . . , an)− 1

n

n∑
i=1

ai(x)

∥∥∥∥∥
2


= E

∥∥∥∥∥S(a1, . . . , an)− 1

N

N∑
i=1

ãi(x)

∥∥∥∥∥
2


=
n− τ
τ(n− 1)

1

N

N∑
i=1

‖ãi‖2 −
n− τ
τ(n− 1)

∥∥∥∥∥ 1

N

N∑
i=1

ãi

∥∥∥∥∥
2

=
n− τ
τ(n− 1)

(
1

N

(
N

nl1

)2 N1∑
i=1

‖a1‖2 +
1

N

(
N

nl2

)2 N2∑
i=N1+1

‖a2‖2

+ · · ·+ 1

N

(
N

nln

)2 N∑
i=Nn−1+1

‖an‖2
− n− τ

τ(n− 1)

∥∥∥∥∥ 1

n

n∑
i=1

ai

∥∥∥∥∥
2

=
n− τ
τ(n− 1)

(
N

nl1

1

n
‖a1‖2 +

N

nl2

1

n
‖a2‖2 + · · ·+ N

nln

1

n
‖an‖2

)
− n− τ
τ(n− 1)

∥∥∥∥∥ 1

n

n∑
i=1

ai

∥∥∥∥∥
2

=
n− τ
τ(n− 1)

(
n∑
i=1

1

n2wi
‖ai‖2

)
− n− τ
τ(n− 1)

∥∥∥∥∥ 1

n

n∑
i=1

ai

∥∥∥∥∥
2

where wi = li
N . Thus we have A = B = n−τ

τ(n−1) and wi = li
N for i ∈ [n].
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F THE OPTIMAL CHOICE OF wi

Let us consider L2
+,w and L2

±,w. In Sec 2, we show that one can take L2
+,w = L2

±,w =
1
n

∑n
i=1

1
nwi

L2
i . Let us minimize 1

n

∑n
i=1

1
nwi

L2
i with respect to the weights wi such that

w1, . . . , wn ≥ 0 and
∑n
i=1 wi = 1. Using the method of Lagrange multipliers, we can construct a

Lagrangian

L(w, λ) :=
1

n

n∑
i=1

1

nwi
L2
i − λ

(
n∑
i=1

wi − 1

)
.

Next, we calculate partial derivatives

∂L
∂wi

= − 1

n2w2
i

L2
i − λ = 0∀i ∈ [n]

and get

w2
i = − L2

i

n2λ
.

Using
∑n
i=1 wi = 1, we can show that the weights w∗i = Li∑n

i=1 Li
are the solutions of the minimiza-

tion problem. Moreover,

L2
±,w∗ =

1

n

n∑
i=1

1

nw∗i
L2
i =

(
1

n

n∑
i=1

Li

)2

.

G THE COMPLEXITY OF ALGORITHM 1 WITH THE Importance SAMPLING

The expected number of gradient calculations ∇fi of Algorithm 1 with the Importance sampling, the
optimal wi∗ from Sec. F, and τ ≤ max

{√
nL±,w

L−
, 1
}

equals

Nimportance = O

n+
∆0

ε
τ

L− +

√
n

τ

√√√√ 1

n

n∑
i=1

1

nwi∗
L2
i


= O

(
n+

∆0

ε
τ

(
L− +

√
n

τ

1

n

n∑
i=1

Li

))

= O

(
n+

∆0

ε

√
nL±,w∗ +

∆0
√
n
(

1
n

∑n
i=1 Li

)
ε

)

= O

(
n+

∆0
√
n
(

1
n

∑n
i=1 Li

)
ε

)
.

H MISSING PROOFS: THE COMPOSITION OF SAMPLINGS

Lemma 2. Let us assume that a random sampling function S satisfies Assumption 4 with some A,B
and weights wi, and a random sampling function Si satisfy Assumption 4 with some Ai, Bi and
weights wij for all i ∈ [n]. Moreover, B ≤ 1. Then

E


∥∥∥∥∥∥S (S1 (a11, . . . , a1m1

) , . . . ,Sn (an1, . . . , anmn
))− 1

n

n∑
i=1

 1

mi

mi∑
j=1

aij

∥∥∥∥∥∥
2


≤ 1

n

n∑
i=1

(
A

nwi
+

(1−B)

n

)Ai
mi

mi∑
j=1

1

miwij
‖aij‖2 −Bi

∥∥∥∥∥∥ 1

mi

mi∑
j=1

aij

∥∥∥∥∥∥
2

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+
A

n

n∑
i=1

1

nwi

∥∥∥∥∥∥ 1

mi

mi∑
j=1

aij

∥∥∥∥∥∥
2

−B

∥∥∥∥∥∥ 1

n

n∑
i=1

 1

mi

mi∑
j=1

aij

∥∥∥∥∥∥
2

,

where aij ∈ Rd for all j ∈ [mi] and i ∈ [n].

Proof. We denote âi := Si (ai1, . . . , aimi) and ai := 1
mi

∑mi

j=1 aij . Using (6), we have

E

∥∥∥∥∥S (â1, . . . , ân)− 1

n

n∑
i=1

ai

∥∥∥∥∥
2


= E

ES

∥∥∥∥∥S (â1, . . . , ân)− 1

n

n∑
i=1

ai

∥∥∥∥∥
2


= E

ES

∥∥∥∥∥S (â1, . . . , ân)− 1

n

n∑
i=1

âi

∥∥∥∥∥
2
+ E

∥∥∥∥∥ 1

n

n∑
i=1

âi −
1

n

n∑
i=1

ai

∥∥∥∥∥
2
 .

Next, using Assumption 4 for the sampling S, we get

E

∥∥∥∥∥S (â1, . . . , ân)− 1

n

n∑
i=1

ai

∥∥∥∥∥
2


≤ A 1

n

n∑
i=1

1

nwi
E
[
‖âi‖2

]
−BE

∥∥∥∥∥ 1

n

n∑
i=1

âi

∥∥∥∥∥
2


+ E

∥∥∥∥∥ 1

n

n∑
i=1

âi −
1

n

n∑
i=1

ai

∥∥∥∥∥
2
 .

Due to (6), we obtain

E

∥∥∥∥∥S (â1, . . . , ân)− 1

n

n∑
i=1

ai

∥∥∥∥∥
2


≤ A 1

n

n∑
i=1

1

nwi
E
[
‖âi − ai‖2

]
+A

1

n

n∑
i=1

1

nwi
‖ai‖2

−BE

∥∥∥∥∥ 1

n

n∑
i=1

âi −
1

n

n∑
i=1

ai

∥∥∥∥∥
2
−B ∥∥∥∥∥ 1

n

n∑
i=1

ai

∥∥∥∥∥
2

+ E

∥∥∥∥∥ 1

n

n∑
i=1

âi −
1

n

n∑
i=1

ai

∥∥∥∥∥
2


= A
1

n

n∑
i=1

1

nwi
E
[
‖âi − ai‖2

]
+A

1

n

n∑
i=1

1

nwi
‖ai‖2

+ (1−B)E

∥∥∥∥∥ 1

n

n∑
i=1

âi −
1

n

n∑
i=1

ai

∥∥∥∥∥
2
−B ∥∥∥∥∥ 1

n

n∑
i=1

ai

∥∥∥∥∥
2

= A
1

n

n∑
i=1

1

nwi
E
[
‖âi − ai‖2

]
+A

1

n

n∑
i=1

1

nwi
‖ai‖2

+
(1−B)

n2

n∑
i=1

E
[
‖âi − ai‖2

]
−B

∥∥∥∥∥ 1

n

n∑
i=1

ai

∥∥∥∥∥
2
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=
1

n

n∑
i=1

(
A

nwi
+

(1−B)

n

)
E
[
‖âi − ai‖2

]
+A

1

n

n∑
i=1

1

nwi
‖ai‖2 −B

∥∥∥∥∥ 1

n

n∑
i=1

ai

∥∥∥∥∥
2

.

Using Assumption 4 for the samplings Si, we have

E

∥∥∥∥∥S (â1, . . . , ân)− 1

n

n∑
i=1

ai

∥∥∥∥∥
2


≤ 1

n

n∑
i=1

(
A

nwi
+

(1−B)

n

)Ai 1

mi

mi∑
j=1

1

miwij
‖aij‖2 −Bi ‖ai‖2


+A

1

n

n∑
i=1

1

nwi
‖ai‖2 −B

∥∥∥∥∥ 1

n

n∑
i=1

ai

∥∥∥∥∥
2

.

Theorem 9. Suppose that Assumptions 1, 2, 3, 6 hold and the samplings St ∈
S(A,B, {wi}ni=1) and the samplings Sti ∈ S(Ai, Bi, {wij}mi

j=1) for all i ∈ [n]. More-

over, B ≤ 1. Then Algorithm 2 has the convergence rate E
[∥∥∇f(x̂T )

∥∥2
]
≤ 2∆0

γT , where

γ ≤

L− +

√√√√1− p
p

(
1

n

n∑
i=1

(
A

nwi
+

(1−B)

n

)(
(Ai −Bi)L2

i,+,wi
+BiL2

i,±,wi

)
+ (A−B)L2

+,w +BL2
±,w

)−1

.

Proof. We start with the estimation of the variance of the noise:

E
[∥∥gt+1 −∇f(xt+1)

∥∥2
]

= (1− p)E
[∥∥∥gt + S

({
Si
(
{∇fij(xt+1)−∇fij(xt)}mi

j=1

)}n
i=1

)
−∇f(xt+1)

∥∥∥2
]

= (1− p)
∥∥∥S({Si ({∇fij(xt+1)−∇fij(xt)}mi

j=1

)}n
i=1

)
−
(
∇f(xt+1)−∇f(xt)

)∥∥∥2

+ (1− p)
∥∥gt −∇f(xt)

∥∥2
,

where we used the unbiasedness of the composition of samplings. Using Lemma 2, we have

E
[∥∥gt+1 −∇f(xt+1)

∥∥2
]

≤ (1− p)

 1

n

n∑
i=1

(
A

nwi
+

(1−B)

n

)Ai
mi

mi∑
j=1

1

miwij

∥∥∇fij(xt+1)−∇fij(xt)
∥∥2 −Bi

∥∥∇fi(xt+1)−∇fi(xt)
∥∥2


+
A

n

n∑
i=1

1

nwi

∥∥∇fi(xt+1)−∇fi(xt)
∥∥2 −B

∥∥∇f(xt+1)−∇f(xt)
∥∥2

)
+ (1− p)

∥∥gt −∇f(xt)
∥∥2
.

Using Definitions 2, 3, 7 and 8, we get

E
[∥∥gt+1 −∇f(xt+1)

∥∥2
]

≤ (1− p)

 1

n

n∑
i=1

(
A

nwi
+

(1−B)

n

)Ai −Bi
mi

mi∑
j=1

1

miwij

∥∥∇fij(xt+1)−∇fij(xt)
∥∥2

+ Bi

 1

mi

mi∑
j=1

1

miwij

∥∥∇fij(xt+1)−∇fij(xt)
∥∥2 −

∥∥∇fi(xt+1)−∇fi(xt)
∥∥2


+
A−B
n

n∑
i=1

1

nwi

∥∥∇fi(xt+1)−∇fi(xt)
∥∥2
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+B

(
1

n

n∑
i=1

1

nwi

∥∥∇fi(xt+1)−∇fi(xt)
∥∥2 −

∥∥∇f(xt+1)−∇f(xt)
∥∥2

))
+ (1− p)

∥∥gt −∇f(xt)
∥∥2

≤ (1− p)

(
1

n

n∑
i=1

(
A

nwi
+

(1−B)

n

)(
(Ai −Bi)L2

i,+,wi
+BiL

2
i,±,wi

)
+ (A−B)L2

+,w +BL2
±,w

)∥∥xt+1 − xt
∥∥2

+ (1− p)
∥∥gt −∇f(xt)

∥∥2
.

From this point the proof of theorem repeats the proof of Thm 5 with

1

n

n∑
i=1

(
A

nwi
+

(1−B)

n

)(
(Ai −Bi)L2

i,+,wi
+BiL

2
i,±,wi

)
+ (A−B)L2

+,w +BL2
±,w

instead of
(A−B)L2

+,w +BL2
±,w.
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I ARTIFICIAL QUADRATIC OPTIMIZATION TASKS

In this section, we provide algorithms that we use to generate artificial optimization tasks for
experiments. Algorithm 3 and Algorithm 4 allow us to control the smoothness constants L± and Li,
accordingly, via the noise scales.

Algorithm 3 Generate quadratic optimization task with controlled L± (homogeneity)

1: Parameters: number nodes n, dimension d, regularizer λ, and noise scale s.
2: for i = 1, . . . , n do
3: Generate random noises νsi = 1 + sξsi and νbi = sξbi , i.i.d. ξsi , ξ

b
i ∼ NormalDistribution(0, 1)

4: Take vector bi =
νs
i

4 (−1 + νbi , 0, · · · , 0) ∈ Rd
5: Take the initial tridiagonal matrix

Ai =
νsi
4


2 −1 0

−1
. . . . . .
. . . . . . −1

0 −1 2

 ∈ Rd×d

6: end for
7: Take the mean of matrices A = 1

n

∑n
i=1 Ai

8: Find the minimum eigenvalue λmin(A)
9: for i = 1, . . . , n do

10: Update matrix Ai = Ai + (λ− λmin(A))I
11: end for
12: Take starting point x0 = (

√
d, 0, · · · , 0)

13: Output: matrices A1, · · · ,An, vectors b1, · · · , bn, starting point x0

Algorithm 4 Generate quadratic optimization task with controlled Li
1: Parameters: number nodes n, dimension d, regularizer λ, and noise scale s.
2: for i = 1, . . . , n do
3: Generate random noises νsi = 1 + sξsi , where i.i.d. ξsi ∼ ExponentialfDistribution(1.0)
4: Generate random noises νbi = sξbi , i.i.d. ξbi ∼ NormalDistribution(0, 1)
5: Take vector bi = (− 1

4 + νbi , 0, · · · , 0) ∈ Rd
6: Take the initial tridiagonal matrix

Ai =
νsi
4


2 −1 0

−1
. . . . . .
. . . . . . −1

0 −1 2

 ∈ Rd×d

7: end for
8: Take starting point x0 = (

√
d, 0, · · · , 0)

9: Output: matrices A1, · · · ,An, vectors b1, · · · , bn, starting point x0
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