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ABSTRACT

Deep neural networks trained on labeled source-domain samples often experience
significant performance drops when used on target domains with different data
distributions. Some unsupervised domain adaptation methods (UDA) address this
by explicitly aligning the source and target feature distributions; however, enforc-
ing full alignment without target labels can misalign class semantics. We propose
Source Knowledge Anchored Regularization (SKAR) for UDA. This unified end-
to-end framework transfers discriminative source knowledge via a composite loss
on the network outputs, without explicitly enforcing distributional alignment. Our
loss comprises of: (1) an adaptation-loss minimizing the entropy on target pre-
dictions to boost model confidence by leveraging source domain knowledge; (2)
a regularization-loss for penalizing the model when its predictions falls under a
few classes, thereby preventing class collapse; (3) a self-supervised-loss enforc-
ing agreement between two strong augmentations of each target sample; and (4)
a fidelity loss for anchors learning the source labels while mitigating overfitting.
A curriculum learning schedule is applied to gradually shift the optimization fo-
cus from source fidelity to target-oriented objectives. Our main contribution is to
couple the adaptation and regularization terms; we demonstrate theoretically (via
gradient analysis) and empirically (via ablation and hyperparameter studies, and t-
SNE visualizations) that these terms interact synergistically. On the Office-Home,
Office-31, and VisDA benchmarks, SKAR achieves state-of-the-art performance,
while requiring no auxiliary networks.

1 INTRODUCTION

The performance of deep neural networks often degrades when there is a distribution shift between
the training (source) and test (target) domains. Examples in computer vision include but are not
limited to differences in illumination condition, sensor and modality, pose and viewpoint, and image
resolution and quality Patel et al. (2015). This phenomenon, commonly referred to as domain shift,
violates the i.i.d. assumption and poses a significant challenge to practical deployment in real-
world settings, where collecting and annotating large-scale labeled data for every new target domain
is infeasible, even though substantial labeled data are available from related domains with different
input distributions Wang & Deng (2018). Directly training on the target domain is mostly considered
infeasible in practice due to the lack of labels and the scarcity of data. Instead, we need to leverage
labeled source data alongside unlabeled target data to learn a model that generalizes to the target
domain. However, the domain gap between source and target inputs continues to pose a challenge.
Unsupervised domain adaptation (UDA) addresses this setting by leveraging labeled source data
with unlabeled target data to train models that generalize to the target domain.

Conventional UDA methods often seek domain-invariant representations, inspired by domain gen-
eralization literature. Many approaches, e.g., Ganin et al. (2016); Tzeng et al. (2017), align source
and target distributions in the feature space; however, shifts in the input distribution are often het-
erogeneous across classes, so a single global alignment can distort class boundaries and increase
inter-class confusion. Intra-class variability in the target domain can increase substantially, while
inter-class separation can shrink, yielding overlapping feature supports. Models trained on the
source often rely on domain-specific or spurious correlations that are unstable across domains, so
cues that were predictive in the source may be non-predictive or misleading in the target. To address
these issues, some approaches, such as Pei et al. (2018), perform class-aware alignment using esti-
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mated target labels (pseudo-labels). However, training with pseudo-labels without regularization is
prone to a degenerate local minimum, which we call class collapse, where the model assigns most
target samples to a small subset of classes and the class-conditional distributions become misaligned.

To avoid class collapse and more effectively leverage source knowledge, we propose an augmented
loss that harnesses the model’s predictive distribution on unlabeled target data and regularizes it
with prior knowledge that every class appears in the target domain. In this paper, we introduce two
key components of our augmented loss: Adaptation Loss and Regularization Loss. Adaptation Loss
reduces the entropy of the predictive distribution on unlabeled target data, sharpening the model’s
target predictions. Regularization Loss counters collapse by encouraging high entropy over class-
mean probabilities, penalizing the concentration of target predictions into a small subset of classes,
and preserving class diversity. We analyze the two proposed loss terms, both mathematically and
experimentally, to demonstrate their synergistic behavior; we then tune hyperparameters to balance
the loss terms and conduct an ablation study to quantify each component’s contribution. We evaluate
the full setup on standard unsupervised domain adaptation benchmarks. SKAR achieves an average
accuracy of 72% on Office-Home, matching the state of the art, and 90% on Office-31 and 82.2%
on VisDA, both surpassing existing methods.

2 RELATED WORKS

Many UDA methods focus on domain alignment. Ganin et al. (2016) used a domain discrimina-
tor and an adversarial setting to make domains indistinguishable. Pei et al. (2018) used the idea
of adversarial trainingGanin et al. (2016) and created a discriminator for each class to accomplish a
better domain alignment by reducing class-specific domain discrepancy. Tzeng et al. (2017) propose
ADDA, which employs discriminative modeling with untied source and target encoders and a GAN
loss to adversarially align target features to a fixed source feature space. Long et al. (2015) introduce
the Deep Adaptation Network (DAN), which learns domain-invariant features by embedding latent
source and target representations into a reproducing kernel Hilbert space (RKHS) and aligning their
mean embeddings via a multi-kernel maximum mean discrepancy (MMD) criterion Gretton et al.
(2012). DAN then optimizes the kernel weights through quadratic programming and integrates a
linear-time, unbiased MMD estimator into stochastic gradient descent (SGD). Sun et al. (2016) pro-
pose CORAL, aligning source and target distributions by computing their covariance matrices and
applying a closed-form whitening and re-coloring transformation to match second-order statistics;
Sun & Saenko (2016) adapt this to deep networks with Deep CORAL, which incorporates a differen-
tiable loss on feature covariances to encourage domain-invariant representations. Kang et al. (2019)
introduce Contrastive Domain Discrepancy (CDD), a class-aware MMD extension that minimizes
intra-class and maximizes inter-class divergence across domains. Their Contrastive Adaptation Net-
work (CAN) framework alternates between clustering unlabeled target features for pseudo-labels
and minimizing CDD via class-aware sampling. Li et al. (2018) assumed that the batch normal-
ization layers Ioffe & Szegedy (2015) could capture the distribution shift between domains; conse-
quently, they mitigated the gap between domains by utilizing different batch normalization layers
for each domain. Also, Maria Carlucci et al. (2017) used a similar idea and proposed domain align-
ment layers for UDA. Tang et al. (2020) used the idea of balanced pseudo-label assignment inspired
by Dizaji et al. (2017) to avoid assigning most of the data into a few classes, and other classes have
fewer data points. Also, they use the idea of learnable class centers, which are learned simultane-
ously through backpropagation. Zhang et al. (2023) propose an upper bound for the target error that
incorporates joint error. They minimize this upper bound to learn domain-invariant features while
addressing joint distribution mismatches. Also, Zou et al. (2019) introduce a confidence-regularized
approach that relies on pseudo-labels in the loss.

3 METHODOLOGY

Suppose the source domain dataset is denoted as Ds = {(xs
i , y

s
i )}Ni=1, comprising N sample-label

pairs, where xs
i represents an input image from the source domain and ysi its corresponding ground-

truth label. Conversely, the target domain dataset is defined as Dt = {xt
j}Mj=1, consisting of M

unlabeled samples, where xt
j denotes an input image from the target domain. Let f : X → P be the

full model with a final softmax, where P =
{
p ∈ [0, 1]K

∣∣∣ ∑K
k=1 pk = 1

}
. For any input x, f(x)
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Figure 1: Training overview. In early epochs, λ is low, so Ls
fid (Eq. 5) dominates while target-

oriented terms are present but down-weighted. As λ increases, target losses become prominent
and contribute significantly: Lt

adapt (Eq. 2), Lt
reg (Eq. 3), and Lt

ss (Eq. 4) receive larger weights
(λi = aiλ, i ∈ {1, 2, 3}), guiding adaptation while preserving source fidelity.

returns a K-dimensional probability vector, where K is the number of classes. For target and source
samples we set pti = f(xt

i), pti,k = [f(xt
i)]k and psi = f(xs

i ), psi,k = [f(xs
i )]k, respectively.

Here, pti and psi are the K-dimensional probability vectors for the i-th target and source images,
respectively, and pti,k, p

s
i,k are their k-th components, representing the predicted probability that

the i-th target image and the i-th source image in, respectively, belong to class k. Consequently,
P t = [ pt1 ; . . . ; p

t
nt ] ∈ Rnt×K , where nt is the number of target samples in the current mini-batch;

thus, P t stacks the batch’s probability vectors (one per row).

3.1 SOURCE KNOWLEDGE ANCHORED REGULARIZATION LOSS

Our method employs a four-term loss function, where each term addresses a specific objective;
collectively, these terms promote the model to adapt its knowledge from source to target. The ap-
proach operates in an end-to-end manner, relying solely on the model’s outputs, thereby facilitating
integration with diverse architectures. The overall training objective is defined as

L = λ1 L
t
adapt + λ2 L

t
reg + λ3 L

t
ss + Ls

fid, λi = ai λ, i ∈ {1, 2, 3}. (1)

Substituting λi = ai λ into 1 and factoring out λ yields L = λ(a1 L
t
adapt+a2 L

t
reg+a3 L

t
ss)+Ls

fid.
A detailed description of the hyperparameter search for {ai} is given in Section 3.3 and Appendix
B. In all reported experiments, we fix a1 = a2 = a3 = 0.5. An overview of the training flow and
loss weighting is shown in Fig. 1. We initialize λ at 0 and increase it during training according to the
schedule described in Section 4.2. This biases training in the early epochs toward the source-domain
fidelity term, with Ls

fid dominating, so the network first learns from labeled source data. As λ grows,
more weight is placed on the target-oriented terms in Eq. 1. The entropy-minimization term Lt

adapt

encourages confident predictions on target samples, while the regularization term Lt
reg suppresses

degenerate solutions where the model assigns the majority of target instances to only a few classes.

Adaptation Loss. Since target-domain labels are unavailable, we exploit knowledge learned from
the source domain. During the initial epochs the model is trained primarily on labeled source data
(as discussed above). In later epochs the model makes predictions on target data based on the
source-domain knowledge. We then adapt by minimizing the entropy of those predictions. Specifi-
cally, we add the entropy of the target predictive distribution to the loss:

Lt
adapt = H(P t) = − 1

nt

nt∑
i=1

K∑
k=1

pti,k log pti,k (2)

Minimizing Lt
adapt increases the confidence of the model’s predictions on target samples.

3
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Regularization Loss. Applying a source-trained model to target data can collapse predictions onto
a few classes, leaving others sparsely populated. To counter this, we regularize model predictions.

Lt
reg = −H(gt) = −

K∑
k=1

gtk log gtk, gt = (gt1, . . . , g
t
K)⊤, gtk =

1

nt

nt∑
i=1

pti,k. (3)

where gt is the mean class-probability vector over a target mini-batch of K.

In the collapsed scenario, a few classes have larger gtk values, while others have smaller ones. Even
in this collapsed regime, the outputs still carry source information. For example, the top-1 prediction
may be incorrect due to the collapse, yet the correct label can appear among the next most probable
classes. To tackle this problem, we introduce a term based on the model predictions to penalize the
output mostly when the model predicts the majority of batch data points as a few classes. In other
words, this loss term is informed by our prior knowledge that the target labels are not confined to a
small subset of classes. Minimizing Lt

reg, thus maximizes the entropy of gt, encourages the model
to distribute assignments among classes and to spread probability mass over multiple top-ranked
hypotheses, as demonstrated by the gradient analysis in section 3.2. This, in turn, steers optimization
away from suboptimal local minima associated with class collapse (i.e., predictions concentrated in
a few classes) and enables the model to exploit the richer supervisory signal encoded in the full
ranking of class scores for each data point. Our experiments across multiple UDA benchmarks,
including imbalanced settings, show that the regularization term is robust to class imbalance.

Self-Supervised Loss. This term is a self-supervised loss that ensures the model learns a robust
representation, making it invariant to image noise Chen et al. (2020); Caron et al. (2021).

Lt
ss = KL(P t ∥P t,Aug2) =

1

nt

nt∑
i=1

KL(pti, p
t,Aug2
i ) =

1

nt

nt∑
i=1

K∑
k=1

pti,k log
( pti,k

pt,Aug2
i,k

)
(4)

where, P t,Aug2 is the stack of probability vectors obtained from the same batch of target images
as P t but processed with the second augmentation, whereas P t uses the base augmentation; their
discrepancy is measured by the Kullback-Leibler (KL) divergence.

By minimizing the KL divergence between the model’s outputs on each base-augmented image and
its grayscale-augmented counterpart, we encourage the network to leverage both sketch-like and
color-based cues. Sketch-like patterns offer simplicity and greater generalization, while color-based
patterns carry richer information and are more like the source data. This dual focus combines the
robustness of structural features with the discriminative strength of color variations, leading to more
accurate predictions. For the digit datasets, which are already grayscale and sensitive to horizontal
flipping, we employ a different augmentation strategy described in the Appendix C.

Fidelity Loss. This loss is cross-entropy with label smoothing and relates to the source domain.

Ls
fid= − 1

ns

ns∑
i=1

K∑
k=1

[
(1− ϵ) · I[k = ysi ]+

ϵ

K

]
log psi,k (5)

where I is the indicator function. Experiments have shown that cross-entropy with label smoothing
can improve generalization and prevent overfitting Szegedy et al. (2016); Müller et al. (2019). We
use ϵ = 0.2 to improve domain generalization, consequently improving UDA accuracy. In the early
epochs of the training, the model learn the labeled source domain using this term and does not overfit
to the source domain. During other epochs, this term maintains high source-domain accuracy and
ensures that the entire training process converges to a local minimum faithful to the labeled source
knowledge; this matters because only the source domain has ground-truth labels.

3.2 GRADIENTS ANALYSIS

To analyze the effect of Lt
adapt and Lt

reg and show their synergistic behavior, we compute the partial
derivatives of each with respect to the logits zti,k and examine their individual and combined effects:

4
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∂Lt
adapt

∂zti,k
= −

pti,k
N

[
log pti,k +H

(
pti
)]

(6)
∂Lt

reg

∂zti,k
=

pti,k
N

[
log gtk +H

(
pti, g

t
)]

(7)

Gradient of Lt
adapt + Lt

reg w.r.t. logits zti,k:
∂(Lt

adapt + Lt
reg)

∂zti,k
=
pti,k
N

[
log

gtk
pti,k

+KL
(
pti ∥ gt

)]
(8)

Detailed calculations of the derivatives of Eqs. 6, 7 and 8 are provided in Appendix A. In Fig. 2 we
plot the gradient of Lt

adapt + Lt
reg w.r.t. logits zti,k (Eq. 6), as a function of the predicted probability

of class 1 for the first data point in the batch (pt1,1) in a five-class task. The remaining probability
mass (1 − pt1,1) is equally shared among the other four classes of the first data point. Each panel
uses a different mean-class-probability vector gt: (a) Uniform: gtk = 0.2 for all k; (b) Class-1
dominant: gt1 = 0.6, gtk ̸=1 = 0.1; (c) Class-1 submissive: gt1 = 0.1, gtk ̸=1 = 0.225.
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Figure 2: Gradients of Lt
adapt, L

t
reg, and their sum with respect to the logits zti,k are shown on the

y-axis, plotted against the predicted probability of class 1 for the first data point in the batch, pt1,1,
on the x-axis. The plots correspond to a five-class task. Results are shown for three mean-class-
probability vectors gt: (a) uniform, (b) class-1 dominant, and (c) class-1 submissive.

In all three scenarios, the gradient of the adaptation loss is identical (since it does not depend on gt);
the differences between panels arise solely from the regularization gradient.

Fig. 2(a) corresponds to the uniform scenario. Here pt1,1 = 0.2 exactly satisfies the regularization
term, and when pt1,1 ̸= 0.2 the regularization term’s effect is negligible (because probability masses
of other data points are distributed evenly among all of the classes). Consequently, the total gradient
reduces to the adaptation term alone: for pt1,1 < 0.2 the total gradient is positive (decreasing zt1,1),
and for pt1,1 > 0.2 it is negative (increasing zt1,1). The same logic applies to each zt1,k for k ̸= 1.

Fig. 2(b) illustrates the class-1 dominant case (gt1 = 0.6, gtk ̸=1 = 0.1). The zero of the summation
of the gradient shifts to pt1,1 = 0.6, raising the threshold at which the total gradient changes sign. As
a result, only data points with pt1,1 > 0.6 receive a negative total gradient (increasing zt1,1), whereas
those with pt1,1 < 0.6 receive a positive total gradient (decreasing zt1,1), making it harder for class 1
to accumulate assignments that are not high-confidence during training.

Fig. 2(c) shows the class-1 submissive case (gt1 = 0.1, gtk ̸=1 = 0.225). Here the zero-crossing
threshold moves down to pt1,1 = 0.1, so the total gradient is positive for pt1,1 < 0.1 (decreasing zt1,1)
and negative for pt1,1 > 0.1 (increasing zt1,1). This lower threshold makes it easier for the submissive
class to gain assignments during training. It means even moderately confident assignments (pt1,1 >
0.1) are reinforced, provided they are not strongly predicted for other classes.

3.3 HYPERPARAMETER SEARCH

In Fig. 3, we present the results of a search over the weighting coefficients a1 and a2 on the Office-
31 benchmark. Each point corresponds to a complete (a1, a2) configuration evaluated across the
six source→target tasks, with the color reflecting the mean target classification accuracy achieved
across all tasks. As shown in Fig. 3(b), the best performance across epochs occurs primarily along
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the line where a1 = a2, highlighting the importance of weighting the terms Lt
adapt and Lt

reg equally.
Additionally, in Fig. 3(a), we observe that the highest final accuracy is achieved for lower values of
both a1 and a2, again near the a1 = a2 line. This indicates that for higher values of a1 and a2,
training tends to diverge in the middle stages, despite achieving high accuracy at that point.
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Figure 3: Search over the weighting coefficients a1 and a2
on the OFFICE-31 benchmark. Each dot represents a com-
plete (a1, a2) configuration across the six source→target
tasks, with the color indicating its mean target classification
accuracy across all tasks. (a) Mean final accuracy measured
at the last training epoch. (b) Mean best accuracy, i.e. the
highest target-domain accuracy achieved at any epoch.

This divergence attributes to the in-
terplay between the terms Lt

adapt,
Lt
reg, and Ls

fid. During the early
stages of training, the influence of
Ls
fid (the only supervised term) is sig-

nificant due to its high weighting.
However, as training progresses and
the λ factor increases, if a1 and a2
are set too high, the combined ener-
gies of Lt

adapt and Lt
reg begin to dom-

inate, diminishing the role of Ls
fid.

Since Ls
fid is crucial for preserving

correct features, its diminished influ-
ence causes instability, leading to di-
vergence in the training process. Ad-
ditional plots and full results of the
search over a1 and a2 are provided in
the Appendix B.

The self-supervised loss
term can be written as
Lt
ss = KL

(
P t ∥P t,Aug2

)
=

H
(
P t, P t,Aug2

)
− H

(
P t

)
, where H(p, q) = −

∑
i pi log qi denotes the cross-entropy between

two distributions. Consequently, Lt
ss has an energy scale comparable to Lt

adapt and Lt
reg. For

consistency across objectives, we therefore fix a1 = a2 = a3 = 0.5 in all subsequent experiments.

3.4 SYNERGY OF ADAPTATION AND REGULARIZATION IN CLASS ALLOCATION

To investigate the impact of combining the adaptation and regularization terms, we conducted ex-
periments to show how they affect the improvement of data point-to-class allocations.

40 20 0 20 40
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20

0

20

40
(A)

Source Only

40 20 0 20 40

40

20

0

20

40
(B)

Path 1

40 20 0 20 40

40

20
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20

40
(C)

Path 2 Class
Class 0
Class 1
Class 2
Class 3
Class 4
Class 5
Class 6
Class 7
Class 8
Class 9
Class 10
Class 11
Class 12
Class 13
Class 14

Accuracy:98.7% Accuracy:98.4% Accuracy:99.7%

Figure 4: t-SNE visualizations of target domain (Webcam) data points, using DSLR as the source
domain with 15 classes from Office-31, under three training scenarios: (A) source-only model
trained supervisedly on the source domain (DSLR); (B) source-only model further trained with
unlabeled target data using only the adaptation loss term; (C) source-only model further trained with
both adaptation and regularization loss terms. The red rectangles highlight clusters where adapta-
tion alone fails to separate mixed classes, whereas the combination of adaptation and regularization
resolves the overlap, leading to improved classification.

In Fig. 4, we illustrate three scenarios. First, we trained a source-only model supervisedly on the
source domain (DSLR), then applied it to the target domain (Webcam) data points and display the
t-SNE projection of the outputs in Fig. 4(A). Second, we further trained the source-only model with
unlabeled target data points using only the adaptation loss term and display the t-SNE projection of
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METHOD A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg
Source Only 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DANN (2016) 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
MCD (2018) 51.9 70.7 74.8 59.0 68.4 68.8 58.2 51.6 75.1 69.5 55.8 79.3 65.3
CDAN (2018) 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
ADA (2019) 50.1 63.4 70.9 56.6 66.5 65.9 54.7 51.5 74.2 66.8 54.9 77.6 62.8
SymNets (2019) 47.7 72.9 78.5 64.2 71.3 74.2 64.2 48.8 79.5 74.5 52.6 82.7 67.6
SPL (2020) 54.5 77.8 81.9 65.1 78.0 81.1 66.0 53.1 82.8 69.9 55.3 86.0 71.0
AADA (2020) 54.0 71.3 77.5 60.8 70.8 71.2 59.1 51.8 76.9 71.0 57.4 81.8 67.0
SCAL (2022) 55.3 72.7 78.7 63.1 71.7 73.5 61.4 51.6 79.9 72.5 57.8 81.0 68.3
MJE (2023) 60.3 77.8 81.0 66.0 74.4 74.5 66.7 59.3 81.8 74.2 62.7 84.9 72.0
TAROT (2025) 55.7 73.9 77.8 60.1 73.1 69.9 59.6 55.0 78.7 71.9 59.5 84.4 68.3
OURS 57.1 78.0 81.7 67.2 76.8 78.9 66.7 56.1 82.4 74.6 59.6 85.2 72.0

Table 1: Accuracy comparison (%) of domain adaptation methods on the Office-Home dataset over
12 adaptation tasks across four domains: A (Art), C (Clipart), P (Product), and R (Real World). The
best result in each column is bold; the second best is underlined.

the target outputs in Fig. 4(B). Finally, we trained the source-only model with unlabeled target data
points using both the adaptation and regularization loss terms and display the t-SNE projection of
the target outputs in Fig. 4(C).

The red rectangle in Fig. 4(A) shows two clusters of data points, where one cluster consists of two
classes. This overlap lowers classification accuracy. In Fig. 4(B), where the source-only model is
trained with the adaptation loss term only, the red rectangle highlights the same clusters with the
same issue. However, in Fig. 4(C), where the source-only model is trained with both adaptation and
regularization terms, the red rectangle shows the same clusters, now correctly separated as the mixed
data points have moved to their proper cluster. These scenarios demonstrate that the combination of
adaptation and regularization terms works synergistically, leading to improved classification. This
synergy arises because the regularization term penalizes the dominant class, allowing other class
probabilities that are already high to increase further and correct the model’s predictions. Thus, the
combination of the two terms leverages the full predictive distribution, exploiting more information
from the model’s outputs to improve classification.

4 EXPERIMENTS

We evaluate our method on four UDA benchmarks: Office-31 Saenko et al. (2010) and Office-Home
Venkateswara et al. (2017), the VisDA-2017 Peng et al. (2017), and three digit-recognition datasets:
MNIST (Lecun et al., 1998), USPS (Hull, 2002), and SVHN (Netzer et al., 2011).

METHOD plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg
Source Only 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
MDD (2015) 87.1 63.0 76.5 42.0 90.3 42.9 85.9 53.1 49.7 36.3 85.8 20.7 61.1
DANN (2016) 81.9 77.7 62.8 44.3 81.2 29.5 65.1 28.6 51.9 54.5 82.8 7.8 57.4
MCD (2018) 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 68.8 40.3 83.0 25.8 71.9
GPDA (2019) 83.0 74.3 84.0 66.0 87.6 78.3 88.3 73.1 90.1 57.3 80.2 39.7 74.5
CRST (2019) 88.0 79.2 61.0 60.0 87.5 81.4 86.3 78.8 85.6 86.6 73.9 68.8 78.1
MCC (2020) 88.1 80.3 80.5 71.5 90.4 93.2 85.0 71.6 89.4 73.8 85.0 36.9 78.8
MJE (2023) 93.8 79.5 79.3 55.9 93.9 93.8 86.5 80.3 91.6 87.7 85.4 51.6 81.6
TAROT (2025) - - - - - - - - - - - - 67.1
OURS 93.3 75.9 83.8 70.1 93.1 88.8 92.7 76.7 90.2 83.3 89.2 49.1 82.2

Table 2: Accuracy per class (%) comparison on the VisDA Dataset
(synthetic→Real). Bold for the best and underline for the second-best.

These benchmarks span
a spectrum of realistic
domain shifts, includ-
ing changes in capture
conditions, variations in
style and background,
and substantial stylis-
tic discrepancies in ap-
pearance; this diversity
makes them representa-
tive and widely adopted
testbeds in the UDA lit-
erature. Together, they
present varied scenarios
for robustly evaluating
the contribution of our proposed loss terms and for fair comparison with state-of-the-art methods.
We provide the mean and standard deviation of accuracy in all cases, with the exception of Office-
Home and VisDA, for which only the mean is reported to align with previous studies.

We compare our model with several domain adaptation methods. Performance comparisons on the
Office-Home, VisDA, Office-31, and Digits (SVHN, MNIST, USPS) datasets are shown in Tables 1,
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2, 3 and 4, respectively. Some UDA methods are built upon and depend on other UDA methods
(e.g., Na et al. (2021); Gu et al. (2020)); for fair comparisons, we focus on standalone methods.

METHOD A→W D→W W→D A→D D→A W→A AVG
Source Only 68.4±0.2 96.7±0.1 99.3±0.1 68.9±0.2 62.5±0.3 60.7±0.3 76.1
DANN (2016) 82.0±0.4 96.9±0.2 99.1±0.1 79.7±0.4 68.2±0.4 67.4±0.5 82.2
ADDA (2017) 86.2±0.5 96.2±0.3 98.4±0.3 77.8±0.3 69.5±0.4 68.9±0.5 82.9
MCD (2018) 88.6±0.2 98.5±0.1 100.0±0.0 92.2±0.2 69.5±0.1 69.7±0.3 86.5
CDAN (2018) 94.1±0.1 98.6±0.1 100.0±0.0 92.9±0.2 71.0±0.3 69.3±0.3 87.7
SymNets (2019) 90.8±0.1 98.8±0.3 100.0±0.0 93.9±0.5 74.6±0.6 72.5±0.5 88.4
CRST (2019) 89.4±0.7 98.9±0.4 100.0±0.0 88.7±0.8 72.6±0.7 70.9±0.5 86.8
SPL (2020) 92.7±0.0 98.1±0.0 99.8±0.0 93.7±0.0 76.4±0.0 76.9±0.0 89.6
MCC (2020) 95.5±0.2 98.6±0.1 100.0±0.0 94.4±0.3 72.9±0.2 74.9±0.3 89.4
SCAL (2022) 93.5±0.2 98.5±0.1 100.0±0.0 93.4±0.3 72.4±0.1 74.0±0.3 88.6
MJE (2023) 91.9±0.5 99.0±0.2 100.0±0.0 93.7±0.5 76.1±0.2 77.8±0.2 89.8
TAROT (2025) 95.5 98.0 100.0 94.2 74.5 73.7 89.3
OURS 94.4±0.8 98.9±0.2 100.0±0.0 93.4±0.5 77.5±0.4 76.0±0.9 90.0

Table 3: Accuracy comparison (%) of domain adaptation meth-
ods on the Office-31 dataset over six transfer tasks across three do-
mains: A (Amazon), D (DSLR), and W (Webcam). The best result
in each column is bold; the second best is underlined.

We follow the standard set-
ting: for Office-31 and Office-
Home, we use a ResNet-50
backbone pretrained on Ima-
geNet He et al. (2015); Deng
et al. (2009); for VisDA,
we use a ResNet-101 back-
bone pretrained on ImageNet.
The model architecture for
the Digits experiments is de-
scribed in Appendix C.

On Office-31, our method
achieves the best average ac-
curacy (90.0%), outperform-
ing recent methods. This un-
derscores the strength of our
unified framework.

On Office-Home, our method
achieves the highest average
accuracy (72.0%), matching state of the art and demonstrating generalization across diverse
source–target pairs.

METHOD SVHN to MNIST MNIST to USPS MNIST* to USPS* USPS to MNIST
Source Only 67.1 76.7 79.7 63.4
MDD (2013) 71.1 – 81.1 –
DANN (2016) 71.1 77.3 85.1 73.2
DRCN (2016) 82.0 ± 0.1 91.8 ± 0.1 – 73.7 ± 0.1

ADDA (2017) 76.0 ± 1.8 89.4 ± 0.2 – 90.1 ± 0.8

MCD (2018) 96.2 ± 0.4 94.2 ± 0.7 96.5 ± 0.3 94.1 ± 0.3

GPDA (2019) 98.2 ± 0.1 96.5±0.2 98.1±0.1 96.4 ± 0.1

MJE (2023) 98.6±0.1 96.8±0.2 97.9±0.1 96.9±0.1
ours 99.3±0.1 95.5 ± 0.4 97.8 ± 0.2 96.7±0.5

Table 4: comparison of domain adaptation methods on the digit
datasets over four transfer tasks across four domains: SVHN,
MNIST, and USPS. The best result in each column is bold; the
second best is underlined.

On VisDA, our method
achieves the best average
accuracy (82.2%), outper-
forming recent methods. This
evidences the strength of our
framework.

About Digits (SVHN,
MNIST, USPS), these digit
benchmarks are saturated,
with recent methods typically
achieving accuracies between
95% and 99%. Our method
delivers high and consistent
performance: it attains the
best result on SVHN→MNIST
(99.2±0.1) and the second-
best on USPS→MNIST (96.7±0.5). For MNIST→USPS and MNIST∗ →USPS∗, our approach
remains competitive (95.5±0.4 and 97.3±0.3) relative to top-performing methods.

Loss Terms A→W D→W W→D A→D D→A W→A AVG
Source Only 68.4±0.2 96.7±0.1 99.3±0.1 68.9±0.2 62.5±0.3 60.7±0.3 76.1
w/o Lt

reg 91.2±1.8 99.1±0.1 100.0±0.0 92.0±1.3 68.4±0.1 64.2±1.6 85.8
w/o Lt

adapt 68.3±1.7 96.5±0.3 93.2±1.6 71.0±1.6 57.7±0.7 54.8±0.7 73.6
w/o Lt

adapt, L
t
reg 86.9±0.8 98.6±0.1 99.9±0.1 88.8±0.3 67.9±0.4 65.4±0.4 84.6

w/o label smoothing 91.6±1.0 98.2±0.5 99.9±0.1 89.5±0.8 75.7±0.6 74.5±0.3 88.2
w/o Lt

ss 93.9±0.4 98.7±0.1 100.0±0.0 92.8±0.3 76.4±0.5 75.7±0.7 89.6
All Terms 94.4±0.8 98.9±0.2 100.0±0.0 93.4±0.5 77.5±0.4 76.0±0.9 90.0

Table 5: Ablation study of loss terms on the Office-31 dataset. The
best result in each column is bold; the second best is underlined.

Overall, these experimental
results clearly demonstrate
the effectiveness of our pro-
posed model for addressing
challenging domain adapta-
tion tasks, confirming its su-
periority and generalization.
Furthermore, compared to
CRST Zou et al. (2019), our
approach achieves higher ac-
curacy, highlighting the im-
portance of using the full pre-
dictive distribution of data points in regularization.
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4.1 ABLATION STUDY

We conduct an ablation study to analyze the contribution of each loss term to the overall performance
using Office-31. The results are in Table 5. Our complete model integrates four losses: adaptation
loss (Lt

adapt), regularization loss (Lt
reg), self-supervised loss (Lt

ss), and fidelity loss (Ls
fid).

Effect of Adaptation (Lt
adapt). Omitting Lt

adapt causes the largest accuracy drop (90.0% → 73.6%),
confirming that it is indispensable for domain alignment. Without it, the objective does not leverage
the model’s predictive distribution on unlabeled target data to encourage increased confidence in
those predictions. Consequently, no meaningful adaptation occurs. Interestingly, removing both
Lt
adapt and Lt

reg simultaneously causes less performance degradation (90.0% → 84.6%), suggesting
that Lt

reg alone might excessively regularize the model, degrading its accuracy on the target data.

Effect of Regularization (Lt
reg). Removing the regularization term Lt

reg leads to a significant per-
formance drop (90.0% → 85.8%). This confirms its role in discouraging prediction collapse into a
narrow set of classes and maintaining class diversity. In other words, Lt

reg injects additional knowl-
edge into the optimization process, guiding the model away from degenerate predictions and thereby
improving accuracy.

Effect of Label Smoothing. Disabling label smoothing (ϵ = 0) reduces overall accuracy from
90.0% to 88.2%. Label smoothing discourages overfitting on the source domain and thus improves
the model’s generalization to related target domains. Without it, target accuracy drops, so Lt

adapt

operates on a less accurate predictive distribution, further degrading adaptation.

Effect of Self-supervision (Lt
ss). Omitting the self-supervised loss led to a modest drop in overall

accuracy (90.00% → 89.6%), underscoring its complementary role. Lt
ss reduces sensitivity to noise,

making adaptation more effective. However, it can be omitted to reduce computational cost, at the
cost of a minor drop in performance.

4.2 IMPLEMENTATION DETAILS

We follow standard protocols established in unsupervised domain adaptation (UDA). For all exper-
iments, we utilize an ImageNet-pretrained feature extractor backbone. We train our model using
stochastic gradient descent (SGD) with momentum set to 0.9. We set the initial learning rate to
0.01 for MLP layers and 0.001 for the backbone module. We adopt the annealing strategy proposed
by Ganin et al. (2016). Let T denote the total number of training epochs. For experiments with
the ResNet-50 model pre-trained on ImageNet, we set T = 50 when fine-tuning on Office-31 and
similarly for Office-Home; for architectures trained from random initialization on the digit datasets,
we use T = 200. For each epoch 0 ≤ t < T , we use the following learning-rate schedule and,
following the same work, also increase λ(t) from 0:

α(t) = α0

(
1 +

t

20

)−β

, α0 = 10−3, β = 0.75, λ(t) =
2

1 + exp
(
− t

20

) − 1.

In each experiment, the number of training steps per epoch is set based on the larger of the source
and target datasets, so that each epoch performs a full pass over that dataset.

5 CONCLUSION

We introduce an unsupervised domain-adaptation framework that transfers knowledge from labeled
source data to unlabeled target data while exploiting the prior knowledge that every class is repre-
sented in the target domain. The method combines a label-smoothed Fidelity loss on the source
domain with entropy-based Adaptation, diversity-preserving Regularization, and augmentation-
consistent Self-Supervision on the target domain. Extensive experiments on standard UDA bench-
marks demonstrate the effectiveness of the proposed approach: SKAR achieves 90.0% on Office-31
and 82.2% on VisDA, surpassing existing methods, and 72.0% on Office-Home, matching the state
of the art. Ablation results confirm that each loss term contributes substantially to overall accuracy.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

For reproducibility, we provide details on model architectures, data preprocessing, and dataset de-
scriptions in Appendix C. The code package contains an instruction file for running the experiments,
anonymous download links for the datasets, and all necessary code files to reproduce our work.
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A GRADIENT CALCULATIONS

Calculating derivative of Lt
adapt and Lt

reg with respect to the input logits zt
i,k:

Partial derivative of Lt
adapt (2) respect to the input probabilities pti,k:

∂Lt
adapt

∂pti,k
= − 1

N

(
log pti,k + 1

)
(9)

Softmax function:

pti,k = softmax(zti)k =
exp

(
zti,k

)
K∑

k′=1

exp
(
zti,k′

) .

Partial derivative of softmax w.r.t. logits zti,k:

∂pti,k
∂zti,k′

=

{
pti,k (1− pti,k), if k = k′

− pti,k p
t
i,k′ , if k ̸= k′

(10)

Partial derivative of Lt
adapt w.r.t. logits zti,k:

∂Lt
adapt

∂zti,k
=

K∑
k′=1

∂Lt
adapt

∂pti,k′

∂pti,k′

∂zti,k

Substituting equations 9 and 10 gives

∂Lt
adapt

∂zti,k
= − 1

N

(
log pti,k + 1

)
pti,k (1− pti,k)

+
∑
k′ ̸=k

1

N

(
log pti,k′ + 1

)
pti,k p

t
i,k′

Factoring out common terms:

∂Lt
adapt

∂zti,k
= −

pti,k
N

[
(log pti,k + 1) (1− pti,k)

−
∑
k′ ̸=k

(log pti,k′ + 1) pti,k′

]

= −
pti,k
N

[
(log pti,k + 1)− (log pti,k + 1)pti,k

−
∑
k′ ̸=k

(log pti,k′ + 1)pti,k′

]
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= −
pti,k
N

[
(log pti,k + 1)−

∑
k′

(log pti,k′ + 1)pti,k′

]
= −

pti,k
N

[
(log pti,k + 1)−

∑
k′

pti,k′ log pti,k′ −
∑
k′

pti,k′

]
Noting that

−
∑
k′

pti,k′ log pti,k′ = Entropy
(
pti
)
,∑

k′

pti,k′ = 1

the derivative can be written compactly as

∂Lt
adapt

∂zti,k
= −

pti,k
N

[
log pti,k + Entropy

(
pti
)]

Partial derivative of Lt
reg (3) w.r.t. class mean probabilities gtk:

∂Lt
reg

∂gtk
= log gtk + 1

Partial derivative of class mean probability gtk w.r.t. per-sample probabilities pti,k:

∂gtk
∂pti,k′

=

{
1
N , if k = k′

0, if k ̸= k′

Partial derivative of Lt
reg w.r.t. pti,k:

∂Lt
reg

∂pti,k
=

1

N
(log gtk + 1)

Partial derivative of Lt
reg w.r.t. zti,k:

∂Lt
reg

∂zti,k
=

1

N

∑
k′

(log gtk + 1)
∂pti,k′

∂zti,k

Substituting equation 10 gives:

∂Lt
reg

∂zti,k
=

1

N
(log gtk + 1) pti,k (1− pti,k)

+
∑
k′ ̸=k

1

N
(log gtk′ + 1) (−pti,k p

t
i,k′)

Factoring out common terms:

∂Lt
reg

∂zti,k
=

pti,k
N

[
(log gtk + 1) (1− pti,k)

−
∑
k′ ̸=k

(log gtk′ + 1) pti,k′

]
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=
pti,k
N

[
(log gtk + 1)− (log gtk + 1)pti,k

−
∑
k′ ̸=k

(log gtk′ + 1)pti,k′

]

=
pti,k
N

[
(log gtk + 1)−

∑
k′

(log gtk′ + 1)pti,k′

]

=
pti,k
N

[
(log gtk + 1)−

∑
k′

pti,k′ log gtk′ −
∑
k′

pti,k′

]
Noting that

−
∑
k′

pti,k′ log gtk′ = CrossEntropy
(
pti , g

t
)
,∑

k′

pti,k′ = 1

the derivative can be written compactly as

∂Lt
reg

∂zti,k
=

pti,k
N

[
log gtk +CrossEntropy

(
pti , g

t
)]

Gradient of Lt
adapt + Lt

reg w.r.t. logits zt
i,k

∂(Lt
adapt + Lt

reg)

∂zti,k
=

∂Lt
adapt

∂zti,k
+

∂Lt
reg

∂zti,k

Using equations 6 and 7 gives:

∂(Lt
adapt + Lt

reg)

∂zti,k
=

pti,k
N

[
log gtk − log pti,k

+CrossEntropy
(
pti , g

t
)
− Entropy

(
pti
)]

Noting that

CE
(
pti , g

t
)
− Entropy

(
pti
)
= KL

(
pti ∥ gt

)
the derivative can be written compactly as

∂(Lt
adapt + Lt

reg)

∂zti,k
=

pti,k
N

[
log

gtk
pti,k

+KL
(
pti ∥ gt

)]

B DETAILED HYPERPARAMETER SEARCH RESULTS

To complement the aggregate plots shown in the main text, Figs. 5-8 provide a per-direction break-
down of the same search over the weighting coefficients a1 and a2 on the OFFICE-31 benchmark,
together with an explicit visualization of the gap between the best-epoch and final-epoch accuracies.
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Final Accuracy: a1 vs a2

Figure 5: Final-epoch accuracy for the six Office-31 source→target tasks. Each dot shows the
target-domain accuracy at the last epoch for one (a1, a2) setting; colors fade from yellow (high) to
purple (low). The best region aligns with the diagonal a1 = a2. Accuracy on the two hardest tasks
(DSLR→Amazon and Webcam→Amazon) already drops once both weights exceed about 0.5.

Fig. 5. Final-epoch accuracy by adaptation task For the difficult DSLR→Amazon and
Webcam→Amazon adaptations the model’s target accuracy is still modest midway through training.
When both a1 and a2 rise above roughly 0.5, the combined contribution of the unsupervised losses
Lt
adapt and Lt

reg begins to dominate as the epoch-dependent scaling factor λ grows. This dominance
diminishes the supervised term Ls

fid, steering optimization toward over-confident yet inaccurate tar-
get predictions and neglecting the labeled source data. The net effect is the learning of spurious
features and, ultimately, divergence on these harder source-target tasks. For DSLR→Webcam and
Webcam→DSLR, target accuracy stays near 100% across nearly all hyper-parameter combinations
below (and even slightly above) the diagonal a1 = a2. Mid-training, the classifier is already highly
accurate on the target data thanks to the strong influence of Ls

fid; the regularization loss Lt
reg there-

fore contributes little, and Lt
adapt alone suffices to align the domains. As a result, further diminish-

ing the weight a2 on Lt
reg does not destabilize optimization, and accuracy remains consistently high

throughout this region.

Figure 6. Best-epoch accuracy by adaptation task The highest target-domain accuracy is gen-
erally achieved near the diagonal a1 = a2, confirming that the two unsupervised losses perform
best when their weights are balanced. Notable exceptions are the easy tasks DSLR→Webcam and
Webcam→DSLR, where accuracy remains close to 100% for almost all hyper-parameter combina-
tions below the diagonal; as discussed earlier, once the classifier is already highly accurate, further
reducing the relative influence of Lt

reg does not destabilize training.

Figure 7. Mean stability gap The map shows how far accuracy falls from its peak by the end of
training. When both a1 and a2 stay below about 0.8, the supervised fidelity loss Ls

fid still guides
learning and the stability gap stays under three percentage points. Once the two coefficients rise past
roughly 1.5, the combined influence a1λL

t
adapt + a2λL

t
reg overwhelms Ls

fid; late-epoch accuracy
then drops by eight to twelve points, confirming the instability mechanism noted for Fig. 5.

Figure 8. stability gap by adaptation task The largest gaps appear on the two most difficult
tasks, DSLR→Amazon and Webcam→Amazon. When both a1 and a2 rise above about 0.5 along the
a1 = a2 diagonal, the unsupervised losses Lt

adapt and Lt
reg increase with λ. Their growing influence

diminishes the supervised term Ls
fid, pushes optimization toward overconfident yet inaccurate target

predictions, and causes the model to neglect the labeled source data. The result is the learning
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Best Accuracy: a1 vs a2

Figure 6: Best-epoch accuracy for the six Office-31 source→target tasks. Each dot marks the highest
target-domain accuracy achieved at any epoch for a single (a1, a2) combination; colors fade from
yellow (high) to purple (low). For all six adaptation pairs the optimal region clusters along the
diagonal a1 = a2, except that DSLR→Webcam and Webcam→DSLR remain high across much of
the sub-diagonal region.
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Figure 7: Mean stability gap for the six Office-31 source→target tasks. Each dot reports the gap
∆Acc = Best − Final averaged over all six tasks for one (a1, a2) setting; colors fade from blue
(small drop) to red (large drop). The gap is smallest inside the pocket where a1 and a2 are both
below about 0.8 and close to the diagonal a1 = a2; it grows quickly once the two coefficients
exceed roughly 1.5, signaling late-stage instability when the unsupervised losses outweigh Ls

fid.

of spurious features and, in these harder source-to-target tasks, the final-epoch drop becomes even
larger. Other tasks avoid this issue because their target accuracy is already high, which supplies a
more reliable unsupervised signal in the target-related loss terms.
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Figure 8: Stability gap for each Office-31 adaptation task. Each panel shows ∆Acc = Best−Final
for one source→target pair. Each dot represents a single (a1, a2) setting; colors fade from blue
(small drop) to red (large drop).

C EXPERIMENTAL SETTING

C.1 DATASETS

Office-31 contains 4,110 images from 31 categories distributed across three distinct domains: Ama-
zon (A), DSLR (D), and Webcam (W). Office-Home, a more complex dataset, comprises 15,588
images across 65 categories spanning four distinct domains: Art (Ar), Clipart (Cl), Product (Pr), and
Real-World (Rw). We also evaluate on the VisDA-2017 benchmark, which is a large-scale domain
adaptation dataset with 12 categories, where the source domain consists of synthetic renderings and
the target domain consists of real-world images.

MNIST consists of 70,000 28×28 grayscale digit images, with 60,000 for training and 10,000 for
testing, featuring clean, centered digits. USPS provides 9,298 16×16 grayscale digit images col-
lected from U.S. postal mail, with 7,291 training and 2,007 test samples, and exhibits handwriting
styles that differ from MNIST. SVHN contains color digit images from house numbers in natural
scenes; the standard training set has 73,257 images and the standard test set has 26,032 images, with
cluttered backgrounds and illumination changes that make recognition more challenging. For the
digit datasets, we adopt the network architectures used by Ganin & Lempitsky (2015).

C.2 SVHN→MNIST

For this adaptation, we use the standard training sets of both datasets and evaluate on the standard
MNIST test set. The feature extractor comprises three convolutional layers (5×5 kernels, stride
1, padding 2), with 3×3 max-pooling (stride 2) after the first two layers, and concludes with a
fully-connected block yielding 3072 features. The classifier is a two-layer MLP with 2048 hidden
units and 10 output neurons. Batch normalization follows every layer, and dropout (rate = 0.5) is
applied after the first fully-connected layer.
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C.3 MNIST→USPS & USPS→MNIST

Following Long et al. (2013), we sampled 2000 images from MNIST and 1800 from USPS for train-
ing, evaluating on each dataset’s standard test split. For the MNIST*→USPS* experiment, we use
the full standard training sets of both datasets. The feature generator includes two convolutional lay-
ers (5×5 kernels, stride 1) each followed by 2×2 max-pooling (stride 2), and a final fully-connected
block projecting to 100 features. The classifier is again a two-layer MLP with 100 hidden units and
10 output neurons. As before, batch normalization is applied after every layer and dropout (rate =
0.5) after the first fully-connected layer.

For digit datasets, the second augmentation for Lt
ss combines random affine transformations with

random brightness and contrast perturbations.

For adaptation tasks on digit datasets (SVHN→MNIST, MNIST→USPS, and USPS→MNIST),
target images were left unmodified for the base augmentation. For the second augmentation, we
performed random affine transformations and random brightness and contrast adjustments to the
target data used for the Lt

ss.

C.4 OFFICE-31 & OFFICE-HOME

For these datasets, we use ResNet-50 as a feature extractor, followed by a two-layer MLP with 512
hidden neurons and an output layer sized to the number of classes in each dataset.

For these datasets, the base augmentation is a combination of random crop and random horizontal
flip, which provides varied spatial transformations. The second augmentation introduces additional
diversity through the inclusion of grayscale, random crop, and random horizontal flip.

C.5 VISDA

For this dataset, we use ResNet-101 as a feature extractor, followed by a two-layer MLP with 512
hidden neurons and an output layer sized to the number of classes.

For this dataset, the base and second augmentations are the same as in Office-31.

C.6 ADDITIONAL PREPROCESSING CONSIDERATIONS

For all experiments, input images were normalized by subtracting the per-channel mean and dividing
by the per-channel standard deviation. When using ImageNet-pretrained models, we applied the
standard ImageNet statistics. For models trained from scratch, we computed the per-channel mean
and standard deviation on the source domain’s training set and used those values to normalize inputs
in both the source and target domains.

For these experiments, even with a fixed pseudo-random seed, we observe run-to-run performance
variability due to algorithmic nondeterminism in cuDNN kernels, which employ atomic operations
and parallel reduction orders that are not fixed. The cuDNN benchmark causes the library to profile
multiple convolution implementations at runtime and select the fastest, but this selection can differ
across runs and devices Contributors (2025). Additionally, variations in GPU micro-architecture,
driver, and CUDA/cuDNN versions can alter low-level instruction scheduling and floating-point
rounding behaviors, introducing further minor discrepancies Whitehead & Fit-Florea (2011). To-
gether, these sources of nondeterminism explain why performance metrics may shift slightly despite
using a fixed seed.
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