

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MODELING INTERFERENCE FOR TREATMENT EFFECT ESTIMATION IN NETWORK DYNAMIC ENVIRONMENT

Anonymous authors

Paper under double-blind review

ABSTRACT

In recent years, estimating causal effects of treatment on the outcome variable in network environments has attracted growing interest. The intrinsic interconnectedness of network and the attendant violation of the SUTVA assumption have prompted a wave of treatment effect estimation methods tailored to network settings, yielding considerable progress such as capturing hidden confounders by leveraging auxiliary network structure. Nevertheless, despite these advances, the existing methods: (*i*) mainly focus on the static network, overlooking the dynamic nature of many real-world networks and confounders that evolve over time; (*ii*) assume the absence of dynamic network interference where one unit’s treatment can affect its neighbors’ outcomes. To address these two limitations, we first define a new estimand of treatment effects accounting for interference in a dynamic network environment, i.e., CATE-ID, and establish its identifiability under such an environment. Then we accordingly propose DSPNET¹, a framework tailored specifically for treatment effect estimation in dynamic network environment, that leverages historical information and network structure to capture time-varying confounders and model dynamic interference. Extensive experiments demonstrate the superiority of our proposed method compared to state-of-the-art approaches.

1 INTRODUCTION

Treatment effect estimation (Winship & Morgan, 1999) plays a fundamental role in understanding the relationship between treatment (a.k.a intervention) and outcome, serving as a cornerstone for decision-making across a wide range of domains, such as healthcare (Hernán & Robins, 2006), social networks (Barabas & Jerit, 2009), and economics (Lechner et al., 2011). The gold standard for estimating treatment effects is randomized controlled trials (RCTs) (Stanley, 2007; Stolberg et al., 2004), which involve randomly assigning units to different treatment arms (e.g., administering or withholding medication) and comparing their observed outcomes (e.g., recovery rates). This design enables reliable estimation of treatment effects by eliminating confounding through randomization. However, RCTs are often costly and time-consuming (Bondemark & Ruf, 2015; Zabor et al., 2020), and may raise ethical concerns in certain contexts (Edwards et al., 1999).

Given the limitations of RCTs, researchers have increasingly turned to rich and readily available observational data to estimate the conditional average treatment effect (CATE)². Many observational studies (Gianicolo et al., 2020; Hernán & Robins, 2006; Rubin, 2007; Winship & Morgan, 1999) rely on the Stable Unit Treatment Value Assumption (SUTVA) (Green & Gerber, 2010), which assumes that units are independent and not subject to interference from one another. Furthermore, one of the critical problems in estimating treatment effects is to eliminate confounding bias caused by confounders (Greenland et al., 1999), the variables that causally affect both treatment and outcome. To facilitate unbiased estimation, these studies also commonly adopt the assumption of ignorability (Greenland & Mansournia, 2015), which assumes the absence of unobserved confounders.

However, the assumptions of no unmeasured confounding and no interference often fail in practice (Guo et al., 2020a; Yao et al., 2021). In a community-level infectious disease study, socioeconomic status (SES) may affect both treatment (e.g., compliance with mobility restriction) and outcome (e.g.,

¹Anonymous code link is available at: <https://anonymous.4open.science/r/DSPNET0D57/>

²While much of the literature equates CATE with Individual Treatment Effect (ITE), in this work we strictly use CATE, as ITE is not identical to CATE theoretically (Vegetabile, 2021).

054 infection risk). For instance, lower-SES individuals may have limited access to safe transportation
 055 and are more likely to live in high-density housing, where close contact increases infection risk.
 056 However, SES, acting as a confounder, is often difficult to observe or measure directly. To address
 057 this, recent work (Chu et al., 2021; Jiang & Sun, 2022; Sui et al.; Veitch et al., 2019) leverages
 058 network structures to infer hidden confounders from relational context, such as inferring SES from
 059 the occupations or attributes of social connections. Moreover, individuals are embedded in networks
 060 where one unit’s compliance with mobility restriction can affect the infection risk of its neighbors, a
 061 phenomenon known as *interference* or the *spillover effect* (Benjamin-Chung et al., 2018; Ma & Tresp,
 062 2021). Several studies (Huang et al., 2023; Rakesh et al., 2018; Zhao et al., 2024) have been made to
 063 explicitly model interference for treatment effect estimation.

064 However, most of these methods are designed for static networks, assuming that the network structure
 065 and covariates remain unchanged over time. In practice, many network environments are inherently
 066 dynamic, with both the network structure and the attributes of individual nodes evolving over time.
 067 For example, in the aforementioned infectious disease study, the community structure may shift as
 068 residents relocate, while individual-level covariates such as health status may also vary over time.
 069 These dynamic characteristics pose substantial challenges for treatment effect estimation in networked
 070 settings. First, the interplay between complex temporal evolution and network interference makes
 071 the identifiability of treatment effects, i.e., determining whether treatment effects can be recovered
 072 from observational data, a highly non-trivial problem. Second, as both network structures and node
 073 covariates evolve, the distribution of confounders becomes time-dependent; modeling the evolution of
 074 confounders and controlling for time-varying confounding bias require further exploration. Third, the
 075 evolution of network and attributes alters the pattern and magnitude of interference between nodes,
 necessitating dynamic modeling of spillover effects based on the changing network structure.

076 To address the aforementioned challenges, we first define a new target estimand, Conditional Average
 077 Treatment Effects with Interference under Dynamic networks (CATE-ID), for treatment effect
 078 estimation in dynamic network environments with interference, and formally prove its identifiability
 079 under a set of assumptions. Building on this theoretical foundation, we propose DSPNET, a novel
 080 framework designed to estimate the target causal estimand by explicitly modeling both hidden
 081 confounders and interference in dynamic networks. Specifically, DSPNET integrates GCNs and
 082 RNNs to aggregate neighborhood and historical information to infer dynamic hidden confounders.
 083 Then it learns a dedicated interference representation to capture spillover effects by encoding the
 084 treatments and characteristics of a unit’s neighborhood. Finally, DSPNET employs an adversarial
 085 learning strategy, encouraging balanced confounder representations to mitigate confounding bias
 086 when estimating treatment effects from an observational dynamic network.

087 2 PROBLEM FORMULATION

089 In this work, we use bold letters to denote vectors or matrices, and unbold lowercase letters for scalars.
 090 Specifically, let unbold capital letters denote random variables (e.g., X_i^t), lowercase letters (e.g., x_i^t)
 091 for their realizations. Let $\mathbf{A}^t \in \{0, 1\}^{N \times N}$ denote the adjacency matrix that encodes the network
 092 structure among N units at time step t , where $\mathbf{A}_{ij}^t = 1$ ($\mathbf{A}_{ij}^t = 0$) indicates the presence (absence) of
 093 an edge between unit i and j . $\mathbf{X}^t = \{x_1^t, \dots, x_N^t\}$ represents the covariates of the N units at time
 094 step t with $x_i^t \in \mathbb{R}^m$ denoting the covariates for unit i , and $\mathbf{X}^{<t}$ denotes the covariates before time t
 095 for all nodes. Let $\mathbf{D}^t = \{d_1^t, \dots, d_N^t\}$ denote the set of treatment assignments for the N units where
 096 $d_i^t = 1$ indicates that unit i is treated and $d_i^t = 0$ otherwise, and $\mathbf{Y}^t = \{y_1^t, \dots, y_N^t\}$ denotes the set of
 097 observed outcomes for N units at time step t . Let \mathcal{G}_i^t represent the neighboring set of i at time step t
 098 and \mathcal{G}_{-i}^t represent unit i ’s non-neighbors, and the covariates and treatments of unit i ’s neighbors and
 099 non-neighbors at time step t are denoted by $\mathbf{X}_{\mathcal{G}_i}^t$, $\mathbf{D}_{\mathcal{G}_i}^t$ and $\mathbf{X}_{\mathcal{G}_{-i}}^t$, $\mathbf{D}_{\mathcal{G}_{-i}}^t$, respectively.

100 For the treatment effect estimation in I.I.D setting, the target estimand is typically the conditional
 101 average treatment effect (CATE): $\tau(\mathbf{x}_i) = \mathbb{E}[Y_i(1)|\mathbf{x}_i] - \mathbb{E}[Y_i(0)|\mathbf{x}_i]$ where $Y_i(D_i)$ denote unit i ’s
 102 potential outcome under treatment D_i . However, the above estimand is not applicable in a network
 103 environment where interference exists. To account for interference, prior works (Forastiere et al.,
 104 2021; Ma & Tresp, 2021) often aggregate the treatments of neighboring units into a single scalar
 105 variable (e.g., via mean pooling) and treat it as a regular covariate. However, such a one-dimensional
 106 summary can be inadequate in high-dimensional environments, where it may fail to capture the rich
 107 heterogeneity of neighbors’ influences. Therefore, we define the following generalized factor that
 captures the influence of neighbors’ covariates and treatment assignments:

108 **Definition 2.1.** *Environment Exposure.* We define a summary function that aggregates the treatments
 109 and covariates of unit i 's neighbors at time step t , $F_i^t(\cdot): \{\mathbb{R}^m\}^{|\mathcal{G}_i^t|} \times \{0, 1\}^{|\mathcal{G}_i^t|} \rightarrow \mathcal{E}$ where $\mathcal{E} \in \mathbb{R}^k$
 110 is the exposure space, then the environment exposure is formulated by $E_i^t = F_i^t(\mathbf{X}_{\mathcal{G}_i}^t, \mathbf{D}_{\mathcal{G}_i}^t)$.
 111

112 To ensure well-defined potential outcomes under exposure E_i^t , we adopt the following assumption:
 113

114 **Assumption 2.2.** Given the summary function F_i^t , $\forall \mathbf{D}_{\mathcal{G}_i}^t, \mathbf{D}_{\mathcal{G}_{-i}}^t, \mathbf{X}_{\mathcal{G}_i}^t, \mathbf{X}_{\mathcal{G}_{-i}}^t$, and $\forall \tilde{\mathbf{D}}_{\mathcal{G}_i}^t, \tilde{\mathbf{D}}_{\mathcal{G}_{-i}}^t, \tilde{\mathbf{X}}_{\mathcal{G}_i}^t, \tilde{\mathbf{X}}_{\mathcal{G}_{-i}}^t$ if $F_i^t(\mathbf{X}_{\mathcal{G}_i}^t, \mathbf{D}_{\mathcal{G}_i}^t) = F_i^t(\tilde{\mathbf{X}}_{\mathcal{G}_i}^t, \tilde{\mathbf{D}}_{\mathcal{G}_i}^t)$, the following equality holds:
 115

$$Y_i^t(D_i^t, \mathbf{D}_{\mathcal{G}_i}^t, \mathbf{D}_{\mathcal{G}_{-i}}^t) = Y_i^t(D_i^t, \tilde{\mathbf{D}}_{\mathcal{G}_i}^t, \tilde{\mathbf{D}}_{\mathcal{G}_{-i}}^t), \quad (1)$$

116 where $Y_i^t(D_i^t, \mathbf{D}_{\mathcal{G}_i}^t, \mathbf{D}_{\mathcal{G}_{-i}}^t)$ is the general case of unit i 's potential outcome. $\tilde{\mathbf{D}}_{\mathcal{G}_i}^t, \tilde{\mathbf{D}}_{\mathcal{G}_{-i}}^t, \tilde{\mathbf{X}}_{\mathcal{G}_i}^t, \tilde{\mathbf{X}}_{\mathcal{G}_{-i}}^t$
 117 are the alternative assignments to $\mathbf{D}_{\mathcal{G}_i}^t, \mathbf{D}_{\mathcal{G}_{-i}}^t, \mathbf{X}_{\mathcal{G}_i}^t, \mathbf{X}_{\mathcal{G}_{-i}}^t$, respectively.
 118

119 This assumption implies that once the response to the environment exposure function, i.e., E_i^t , is
 120 determined, the potential outcome of unit i under treatment D_i^t is fully specified. Then we extend the
 121 notation $Y_i(D_i)$ by incorporating the environment exposure E_i^t and let $Y_i(D_i^t, E_i^t)$ denote unit i 's
 122 potential outcome under treatment D_i^t and exposure E_i^t at time step t .
 123

124 Formally, we define our target estimand, the **Conditional Average Treatment Effect with Interference**
 125 under **Dynamic networks (CATE-ID)**, as an extension of the standard CATE to dynamic network
 126 settings with interference. Specifically, CATE-ID measures the expected difference in outcomes
 127 under alternative treatment assignments conditioning on the unit's covariates, historical information,
 128 and neighbors' covariates at time step t :
 129

$$\tau_i^t = \mathbb{E}[Y_i^t(1, E_i^t = e_i^t) | \mathbf{x}_i^t, \mathcal{H}^t, \mathbf{X}_{\mathcal{G}_i}^t] - \mathbb{E}[Y_i^t(0, E_i^t = e_i^t) | \mathbf{x}_i^t, \mathcal{H}^t, \mathbf{X}_{\mathcal{G}_i}^t], \quad (2)$$

130 where $\mathcal{H}^t = \{\mathbf{X}^{<t}, \mathbf{D}^{<t}, \mathbf{A}^{<t}\}$ ³ is the historical information that encodes past covariates, treatments,
 131 and network structures for time step t . CATE-ID incorporates environment exposure, enabling the
 132 assessment of an intervention's *intrinsic* causal effect on an individual while excluding interference.
 133 For instance, in the aforementioned study, we can capture the true effect of a mobility restriction itself
 134 on infection risk, eliminating the bias from the indirect effects transmitted through social contacts
 135 (e.g., a unit's infection risk may increase due to its neighbors' non-compliance with the mobility
 136 restriction, then the effect of the intervention may be underestimated).
 137

3 CAUSAL IDENTIFIABILITY

141 Building on the theoretical frameworks proposed in (Forastiere et al.,
 142 2021; Ma & Tresp, 2021), we introduce the assumptions adopted in
 143 our setting and formally establish the identifiability of CATE-ID de-
 144 fined in Eq. (2) for dynamic network environments with interference.
 145

146 Previous literature (Shalit et al., 2017; Schwab et al., 2018; Ma et al.,
 147 2022) typically relies on the ignorability assumption, which presumes the absence of hidden con-
 founders. In this work, we extend this assumption to allow for the presence of hidden confounders:
 148

149 **Assumption 3.1. Extended Ignorability Assumption.** There exists a function $\Phi_z(\cdot): \mathbf{z}_i^t =$
 150 $\Phi_z(\mathbf{x}_i^t, \mathbf{X}_{\mathcal{G}_i}^t, \mathcal{H}^t)$ that encodes the information of unit i 's covariates, historical factor, and its neigh-
 151 bors' covariates into *full confounders* Z_i^t , such that, given Z_i^t , the treatment D_i^t and environment
 152 exposure E_i^t are independent of the potential outcomes, i.e., $Y_i^t(1, E_i^t), Y_i^t(0, E_i^t) \perp D_i^t, E_i^t | Z_i^t$.
 153

154 Assumption 3.1 implies that all confounders have been captured by Z_i^t . Noting that this assumption
 155 is conceptually aligned with the standard ignorability assumption which assumes that all confounders
 156 are measured in the observed covariates, our extended ignorability assumes that all confounders are
 157 absorbed into the learned latent factor Z_i^t . Furthermore, to guarantee correspondence between potential
 158 outcomes and observations, we generalize the standard consistency assumption (VanderWeele &
 Hernan, 2013) to the setting with environment exposure:

Figure 1: Causal Graph.

159 ³Following prior works in dynamic causality (Lim, 2018; Bica et al., 2020; Ma et al., 2021), past outcomes
 160 $\mathbf{Y}^{<t}$ are often excluded, as their influence is assumed to be captured by past covariates and treatments, with
 161 the goal of estimating marginal treatment effects at each time step rather than modeling outcome trajectories.
 Nonetheless, our framework can readily incorporate $\mathbf{Y}^{<t}$ if required by specific applications.

162
 163 **Assumption 3.2. Consistency Assumption.** An individual's potential outcome under a particular
 164 treatment and environment exposure is exactly the outcome we would observe if the individual
 165 actually received that treatment and exposure, i.e., $Y_i^t(D_i^t, E_i^t) = Y_i^t$ with observed D_i and E_i^t .

166 Based on the above definitions and assumptions, the causal graph for a single time step in the
 167 dynamic network setting is depicted in Figure 1, where the subscript denoting unit index is omitted
 168 for generality and simplicity. Formally, we establish the following theorem on the identifiability of
 169 CATE-ID in the presence of hidden confounders and interference:

170 **Theorem 3.3.** *If we can recover the distribution $p(Y_i^t | Z_i^t, E_i^t, D_i^t)$ and $p(Z_i^t | X_i^t, \mathcal{H}^t, \mathbf{X}_{\mathcal{G}_i}^t)$, the
 171 estimand CATE-ID presented in Eq.(2) can be identified from the observational dynamic network.*

172 *Proof.* The identified form of CATE-ID under interference is derived by:

$$\begin{aligned} \tau_i^t &= \mathbb{E}_Y[Y_i^t(1, E_i = e_i^t) - Y_i^t(0, E_i = e_i^t) | \mathbf{x}_i^t, \mathcal{H}^t, \mathbf{X}_{\mathcal{G}_i}^t] \\ &\stackrel{(1)}{=} \mathbb{E}_Z[\mathbb{E}_Y[Y_i^t(1, E_i = e_i^t) - Y_i^t(0, E_i = e_i^t) | \mathbf{x}_i^t, \mathcal{H}^t, \mathbf{X}_{\mathcal{G}_i}^t, Z_i^t] | \mathbf{x}_i^t, \mathcal{H}^t, \mathbf{X}_{\mathcal{G}_i}^t] \\ &\stackrel{(2)}{=} \mathbb{E}_Z[\mathbb{E}_Y[Y_i^t(1, E_i = e_i^t) - Y_i^t(0, E_i = e_i^t) | \mathbf{x}_i^t, \mathcal{H}^t, \mathbf{X}_{\mathcal{G}_i}^t, Z_i^t, E_i^t, D_i^t] | \mathbf{x}_i^t, \mathcal{H}^t, \mathbf{X}_{\mathcal{G}_i}^t] \quad (3) \\ &\stackrel{(3)}{=} \mathbb{E}_Z[\mathbb{E}_Y[Y_i^t(1, E_i = e_i^t) - Y_i^t(0, E_i = e_i^t) | Z_i^t, E_i^t, D_i^t] | \mathbf{x}_i^t, \mathcal{H}^t, \mathbf{X}_{\mathcal{G}_i}^t] \\ &\stackrel{(4)}{=} \mathbb{E}_Z[\mathbb{E}_Y[Y_i^t | Z_i^t, E_i^t = e_i^t, D_i^t = 1] - \mathbb{E}_Y[Y_i^t | Z_i^t, E_i^t = e_i^t, D_i^t = 0] | \mathbf{x}_i^t, \mathcal{H}^t, \mathbf{X}_{\mathcal{G}_i}^t], \end{aligned}$$

183 where equation (1) is the straightforward expectation over full confounders Z_i^t , equation (2) is
 184 derived by Assumption 3.1, equation (3) can be inferred from condition independence such that
 185 $Y_i^t \perp \mathcal{H}^t, X_i^t, \mathbf{X}_{\mathcal{G}_i}^t | Z_i^t, E_i^t$ from the causal graph, and equation (4) is based on Assumption 3.2. \square

4 METHODOLOGY

187
 188 In this section, we introduce Dynamic
 189 SPillover modeling NETwork (DSPNET),
 190 a novel framework for estimating the
 191 target treatment effect estimand that
 192 explicitly addresses interference in dynamic
 193 network environments. The overall workflow
 194 of DSPNET in a single time step is illus-
 195 trated in Figure 2, and its key components
 196 are detailed in the following subsections.

197 Figure 2: The workflow illustration of DSPNET.

4.1 REPRESENTATION LEARNING OF FULL CONFOUNDERS

200 As previously presented in Assumption 3.1, the full confounders Z_i^t can be inferred via the function
 201 $\Phi_z(\cdot)$ by incorporating historical information, neighbor's covariates, and unit's own covariates. Here,
 202 we approximate the function $\Phi_z(\cdot)$ using multi-layer graph convolutional networks (GCNs) combined
 203 with multilayer perceptrons (MLPs) to learn the representation of the full confounders Z_i^t :

$$z_i^t = f_z^t([g_z^t(\mathbf{X}^t, \mathbf{A}^t)_i, \tilde{\mathbf{H}}_i^t]), \quad (4)$$

207 where $g_z^t(\cdot)$ and $f_z^t(\cdot)$ represent the function parameterized by multiple GCN and MLP layers, $\tilde{\mathbf{H}}_i^t$
 208 is the encoded historical state for unit i at time step t . To model the historical state $\tilde{\mathbf{H}}_i^t$, we employ
 209 a recurrent neural unit, such as a Gated Recurrent Unit (GRU) (Cho et al., 2014) or a Long Short-
 210 Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997), to encode full confounders, treatment
 211 assignment, and the historical state of the previous step:

$$\tilde{\mathbf{H}}_i^t = \text{RNN}([z_i^{t-1}, d_i^{t-1}], \tilde{\mathbf{H}}_i^{t-1}), \quad (5)$$

213 where $\text{RNN}(\cdot)$ can be instantiated as either a GRU or an LSTM cell, depending on the implementation
 214 choice. The initial historical state, i.e., $\tilde{\mathbf{H}}_i^1$, is set to a zero vector.

216 4.2 INTERFERENCE MODELING
217218 In many networks, interference depends not only on neighbors' treatment assignments, but also on
219 how these treatments interact with intrinsic behavioral patterns of individuals. For example, a health
220 intervention (e.g., jog) may affect a user only if its treated neighbors actively engage in and share
221 health-related behaviors. However, previous works (Forastiere et al., 2021; Ma & Tresp, 2021) often
222 model interference by simple aggregations (e.g., mean pooling), which oversimplify these patterns.
223224 To more effectively model interference affected by neighbors' behavioral patterns, we propose
225 inferring an interference representation e_i^t for each unit i as a proxy for the environment exposure
226 variable E_i^t , incorporating both the treatments and attributes of its neighbors for capturing the
227 heterogeneous influences. Specifically, we first project each unit's observed covariates into a latent
228 space via a function $g_r(\cdot)$, parameterized by a stack of GCN layers, to obtain the hidden state r_i^t of
229 each unit i . Then we aggregate the hidden states of unit i 's neighbors by incorporating their treatment
230 assignments to formulate the interference representation e_i^t for unit i at time step t :
231

232
$$r_i^t = g_r(\mathbf{X}^t, \mathbf{A}^t)_i, \quad e_i^t = \sum_{j \in \mathcal{G}_i^t} d_j^t \cdot r_j^t. \quad (6)$$

233

234 The resulting e_i^t can therefore be interpreted as a data-driven embedding of the influence with
235 behaviors exerted by treated neighbors.
236237 4.3 OUTCOME PREDICTION
238239 Given the representation z_i^t of full confounders and the interference representation e_i^t , our goal is to
240 estimate the potential outcomes under alternative treatment assignments. To this end, we construct
241 two separate MLP networks corresponding to treatment treatment $d = 1$ and $d = 0$, respectively.
242 Formally, the potential outcome of unit i w.r.t. treatment assignment d_i^t at time step t is given by:
243

244
$$f(z_i^t, e_i^t, d_i^t) = \begin{cases} \hat{y}_i^t(0) = f_0^t(z_i^t, e_i^t), & \text{if } d_i^t = 0 \\ \hat{y}_i^t(1) = f_1^t(z_i^t, e_i^t), & \text{if } d_i^t = 1 \end{cases} \quad (7)$$

245

246 where the functions $f_0^t(\cdot)$ and $f_1^t(\cdot)$ are both parameterized by stacking multiple MLP layers, $\hat{y}_i^t(0)$
247 and $\hat{y}_i^t(1)$ represent the predicted potential outcomes under treatment $d_i^t = 0$ and $d_i^t = 1$, respectively.
248 Then the predicted factual outcome is computed as $\hat{y}_i^t = (1 - d_i^t) \cdot \hat{y}_i^t(0) + d_i^t \cdot \hat{y}_i^t(1)$.
249250 Given the predicted factual outcome \hat{y}_i^t and observed outcome y_i^t for each unit and time step, we
251 employ the Mean Square Error (MSE) loss to minimize the discrepancy between them:
252

253
$$\mathcal{L}_y = \frac{1}{T} \sum_{t=1}^T \frac{1}{N} \sum_{i=1}^N (\hat{y}_i^t - y_i^t)^2. \quad (8)$$

254

255 4.4 BALANCING CONFOUNDER REPRESENTATIONS VIA GRADIENT REVERSAL
256257 Estimating treatment effects requires addressing confounding bias, which arises from the differences
258 in confounder distributions between treatment and control groups, and (Shalit et al., 2017) theoretically
259 shows that learning representations that minimize distributional discrepancies between different
260 groups can effectively reduce the upper bound of the estimation error. Motivated by this, we adopt an
261 adversarial learning strategy with a Gradient Reversal Layer (GRL) (Ganin et al., 2016; Ma et al.,
262 2021), which encourages confounder representations to be balanced across treatment groups, thus
263 mitigating confounding bias while preserving predictive information.
264265 First, we model treatment assignment with a prediction function $f_d(\cdot)$, parameterized by an MLP,
266 which takes the full confounder representation z_i^t as input and outputs the probability of receiving
267 treatment, i.e., $p(D_i^t = 1 | z_i^t) = f_d(z_i^t)$, and trained by the cross-entropy loss:
268

269
$$\mathcal{L}_d = -\frac{1}{T} \sum_{t=1}^T \frac{1}{N} \sum_{i=1}^N [d_i^t \log(p(D_i^t = 1 | z_i^t)) + (1 - d_i^t) \log(1 - p(D_i^t = 1 | z_i^t))]. \quad (9)$$

270 Then, the Gradient Reversal Layer operates as follows: let \mathcal{L} denote the final loss function of the
271 proposed DSPNET framework, which can be formulated as follows:
272

273
$$\mathcal{L} = \mathcal{L}_y + \alpha \mathcal{L}_d + \omega \|\Theta\|^2, \quad (10)$$

274

270 where Θ denotes the set of learnable model parameters, α and ω are hyperparameters that control
 271 the contributions of the treatment prediction loss and the regularization term, respectively. Let Θ_z
 272 represent the parameters associated with the full confounder representation learning module. Then,
 273 during backpropagation with GRL, the update for Θ_z is modified as follows:

$$275 \quad \Theta_z = \Theta_z - \eta \left(\frac{\partial \mathcal{L}_y}{\partial \Theta_z} - \beta \frac{\partial \alpha \mathcal{L}_d}{\partial \Theta_z} + \omega \frac{\partial \|\Theta\|^2}{\partial \Theta_z} \right), \quad (11)$$

277 where η is the learning rate. That is, when updating the parameters of Θ_z , we multiply the gradient
 278 from treatment prediction module by a negative constant $-\beta$ during backpropagation, and all other
 279 parameters $\Theta \setminus \Theta_z$ are updated by standard gradient descent. Intuitively, the GRL discourages the
 280 confounder representation from carrying predictive information to treatment, thereby aligning the
 281 representation distributions across treatment groups while preserving outcome-relevant information.

283 4.5 TIME AND SPACE COMPLEXITY ANALYSIS

285 At each time step t , DSPNET consists of four main components: (i) an L_g -layer GCN backbone,
 286 (ii) the interference module, (iii) a GRU-based temporal encoder, and (iv) an L_m -layer MLP for
 287 potential-outcome and treatment prediction.

288 For a graph with N nodes, M_t edges, and hidden dimension d_h , the per-layer GCN cost is $\mathcal{O}(Nd^2 +$
 289 $M_t d_h)$, leading to $\mathcal{O}(L_g(Nd_h^2 + M_t d_h))$ for the full backbone. The interference module performs
 290 sparse, edge-wise aggregation with cost $\mathcal{O}(M_t d_h)$. The GRU encoder updates node-level hidden
 291 states with matrix multiplications of size $d_h \times d_h$, giving $\mathcal{O}(Nd_h^2)$ per step. The MLP heads require
 292 $\mathcal{O}(L_m N d_h^2)$ across all nodes. Aggregating these components over a sequence of length T and
 293 assuming $M_t = M$, the overall per-epoch time complexity is as follows:

$$294 \quad \mathcal{O}(T((L_g + 1)Md_h + (L_g + 1 + L_m)Nd_h^2)) = \mathcal{O}(T(L_g Md_h + (L_g + L_m)Nd_h^2)),$$

295 which is linear in the number of edges M and nodes N . The space complexity of DSPNET is
 296 dominated by storing the sparse adjacency structure and node embeddings at each time step, i.e.,
 297 $\mathcal{O}(M_t + Nd_h)$, which is also linear in M and N .

300 5 EXPERIMENTS

301 5.1 DATASETS

304 **Flickr:** Flickr (Tang & Liu, 2011) is a popular image and video-based social network, where users
 305 connect and share multimedia content. In this dataset, each node corresponds to a user, and edges
 306 represent friendships between users. The features of a node are constructed using bag-of-words
 307 representations of user’s interest tag.

308 **BlogCatalog:** BlogCatalog (Zafarani & Liu, 2009) is a social networking platform where bloggers
 309 share their blogs and interact with each other. In the BlogCatalog dataset, each node represents a
 310 blogger, and edges indicate social relationships between bloggers. The features are also constructed
 311 using bag-of-words representations of the bloggers’ posts.

312 To construct a dynamic network, we introduce temporal variations by randomly adding or removing
 313 $p\%$ of edges in the underlying network structure and apply Gaussian noise perturbations to the
 314 same proportion of covariates in each time step (25 time steps in total) to simulate real-world
 315 fluctuations. Using the generated dynamic network, we simulate confounders, treatment assignments,
 316 and interference-aware potential outcomes via an auto-regressive process at each time step, the
 317 detailed data generation procedure can be found in Appendix A.

318 5.2 BASELINES

320 Here we briefly introduce the baseline methods for estimating treatment effects in our evaluation,
 321 which can be categorized into two categories:

323 **Non-Networked:** (1) CFR (Shalit et al., 2017) is a deep learning-based approach which mitigates
 324 distributional imbalance between treatment and control groups by incorporating the Wasserstein

324
 325 Table 1: CATE-ID performance comparison by varying degrees of network dynamics. **Bold**: the
 326 best results. Underline: the 2nd best results. Lower is better. \dagger indicates statistically significant
 327 improvement over the strongest baseline (t-test, p -value < 0.05).

Datasets	Methods	$p\% = 0.1\%$		$p\% = 0.5\%$		$p\% = 1.0\%$	
		$\sqrt{\epsilon_{PEHE}}$	ϵ_{ATE}	$\sqrt{\epsilon_{PEHE}}$	ϵ_{ATE}	$\sqrt{\epsilon_{PEHE}}$	ϵ_{ATE}
Flickr	DESCN	17.982 ± 3.872	16.996 ± 3.821	29.551 ± 9.891	28.273 ± 9.605	30.396 ± 6.052	29.058 ± 5.873
	DFITE	17.404 ± 2.933	3.083 ± 0.486	20.527 ± 3.514	3.306 ± 0.410	22.459 ± 6.097	3.545 ± 0.772
	DERCFR	21.704 ± 3.786	17.246 ± 3.825	31.406 ± 5.804	23.916 ± 5.023	31.847 ± 6.121	25.925 ± 5.850
	CFR	24.218 ± 3.939	2.754 ± 0.599	26.716 ± 3.995	2.841 ± 0.444	29.372 ± 6.836	3.185 ± 0.632
	NetEST	6.822 ± 1.107	1.405 ± 0.219	10.708 ± 2.935	2.575 ± 0.386	11.000 ± 1.806	2.418 ± 0.421
	Deconfounder	8.338 ± 1.230	4.738 ± 0.844	11.724 ± 3.344	6.854 ± 2.175	12.249 ± 1.912	7.132 ± 1.399
	SPNET	8.693 ± 1.030	<u>1.204 ± 0.216</u>	11.320 ± 2.769	<u>1.397 ± 0.340</u>	11.797 ± 1.679	<u>1.542 ± 0.384</u>
	DNDC	<u>2.589 ± 0.959</u>	1.618 ± 0.781	<u>3.062 ± 0.379</u>	1.915 ± 0.187	<u>3.291 ± 0.522</u>	2.194 ± 0.578
BlogCatalog	DSPNET	1.497 $\pm 0.145^\dagger$	0.890 $\pm 0.080^\dagger$	2.062 $\pm 0.498^\dagger$	1.144 $\pm 0.128^\dagger$	2.189 $\pm 0.205^\dagger$	1.351 $\pm 0.209^\dagger$
	DESCN	23.430 ± 3.422	22.348 ± 3.428	26.393 ± 4.581	25.198 ± 4.429	28.458 ± 4.822	27.229 ± 4.654
	DFITE	11.841 ± 3.243	3.446 ± 0.427	14.028 ± 4.200	3.618 ± 0.786	14.483 ± 3.005	3.559 ± 0.599
	DERCFR	35.321 ± 8.824	24.921 ± 3.295	39.149 ± 5.028	29.219 ± 4.523	39.286 ± 7.888	30.360 ± 8.279
	CFR	11.547 ± 3.164	1.295 ± 0.249	13.935 ± 4.166	1.171 ± 0.168	14.546 ± 3.352	<u>1.279 ± 0.246</u>
	NetEST	8.539 ± 1.074	1.586 ± 0.218	9.871 ± 1.161	1.847 ± 0.204	9.533 ± 1.255	1.835 ± 0.223
	Deconfounder	13.067 ± 1.863	8.884 ± 1.170	14.870 ± 2.515	9.709 ± 1.711	15.037 ± 2.336	9.910 ± 1.491
	SPNET	9.569 ± 1.742	2.298 ± 0.859	10.681 ± 1.771	2.597 ± 0.705	10.288 ± 1.736	2.149 ± 0.522
	DNDC	<u>2.475 ± 0.462</u>	<u>1.454 ± 0.400</u>	<u>2.419 ± 0.332</u>	<u>1.319 ± 0.329</u>	<u>3.367 ± 0.757</u>	1.723 ± 0.530
	DSPNET	1.464 $\pm 0.119^\dagger$	0.845 $\pm 0.105^\dagger$	1.506 $\pm 0.237^\dagger$	0.913 $\pm 0.204^\dagger$	2.227 $\pm 0.378^\dagger$	1.183 $\pm 0.290^\dagger$

349 distance regularizer; (2) DESCN (Zhong et al., 2022) is a model for estimating treatment effects
 350 by capturing integrated information on treatment propensity, response, and hidden treatment effects
 351 through a cross-network in a multi-task learning framework; (3) DFITE (Wang et al.) leverages
 352 diffusion models to capture the latent space of these unobserved confounders by modeling the reverse
 353 diffusion process as a Markov chain to estimate treatment effects; (4) DERCFR (Wu et al., 2022) is a
 354 framework which identifies and separates confounders from non-confounders for reducing bias of
 355 treatment effect estimation.

356 **Networked**: (5) NetEST (Jiang & Sun, 2022) formulates the treatment effect estimation problem as
 357 a multi-task learning task, employing representation learning techniques to align the distributions
 358 of treated and control groups for networked environment; (6) Deconfounder (Guo et al., 2020c)
 359 utilize graph neural network to capture the hidden confounders by leveraging the network structure
 360 for treatment effect estimation; (7) DNDC (Ma et al., 2021) is designed to leverage current and
 361 historical networked observational data to learn representations of hidden confounders over time for
 362 the treatment effect estimation in dynamic network environment; (8) SPNet (Huang et al., 2023) aims
 363 to model the interference by developing a attention mechanism for treatment effect estimation in
 364 static networked environment.

366 5.3 EXPERIMENTAL SETUP

368 For each dataset, we run each experiment ten times and report the average performance. In each run,
 369 the dataset is randomly split into training-60%, validation-20%, and test-20% set. As described in
 370 data generation process in Appendix A, we set the degree of dynamic $p\% = 0.1\%$, and the strength
 371 of interference $C = 50$ unless otherwise specified. We adopt the grid search strategy based on the
 372 validation performance to identify the optimal hyperparameter configuration. For hyperparameters
 373 of DSPNET, the learning rate η is set to 4×10^{-3} , α and β range in {1,2,3,4}, and ω ranges in
 374 $\{10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}\}$. We use Adam (Kingma & Ba, 2014) as the model optimizer and GRU
 375 cell to model the historical state. For baselines designed for static data, we train a separate model at
 376 each time step and report the averaged performance across all steps. More detailed experiments such
 377 as using LSTM cell, different strength of historical influence, different influence of network structure
 and different balancing strategies can be found in Appendix C.

Figure 3: Performance under varying strengths of network interference, "BC" denotes BlogCatalog.

5.4 DIRECT EVALUATION OF CATE-ID ESTIMATION

In this section, we directly evaluate the performance of CATE-ID estimation using the following two commonly used metrics: rooted precision in estimation of heterogeneous effect $\sqrt{\epsilon_{PEHE}}$ and mean absolute error on average treatment effect ϵ_{ATE} , where $\sqrt{\epsilon_{PEHE}}$ and ϵ_{ATE} aim to measure the accuracy of unit-level and population-level treatment effect estimation across T time steps:

$$\sqrt{\epsilon_{PEHE}} = \frac{1}{T} \sum_{t=1}^T \sqrt{\frac{1}{N} \sum_{i=1}^N (\tau_i^t - \hat{\tau}_i^t)^2}, \quad \epsilon_{ATE} = \frac{1}{T} \sum_{t=1}^T \left| \frac{1}{N} \sum_{i=1}^N \tau_i^t - \frac{1}{N} \sum_{i=1}^N \hat{\tau}_i^t \right|, \quad (12)$$

where $\tau_i^t = y_i^t(1) - y_i^t(0)$ and $\hat{\tau}_i^t = \hat{y}_i^t(1) - \hat{y}_i^t(0)$ are the ground-truth and predicted CATE-ID, respectively. We take the average of the two metrics over T time steps for the final results.

5.4.1 COMPARISON UNDER VARYING DEGREES OF NETWORK DYNAMICS

First, we evaluate the performance of different models in estimating treatment effects under varying degrees of network dynamics. Specifically, we set $p\% = \{0.1\%, 0.5\%, 1.0\%\}$ to control the level of structural and feature perturbations, and compare the CATE-ID estimation performance of all models across these settings. The experimental results are reported in Table 1.

As shown in the results, the proposed DSPNET consistently achieves the best performance across all dynamic settings. Notably, DSPNET maintains stable performance as the proportion of dynamic edge and feature perturbations increases, demonstrating its robustness to network dynamics. The poor performance of non-network baselines (i.e., CFR, DERCFR, DESCN, DFITE) highlights that ignoring network dependencies leads to biased treatment effect estimation in networked environments. Although NetEST, Deconfounder, and SPNET incorporate network structures, they assume a static network setting, resulting in performance degradation under dynamic conditions. DNDC, which is tailored for dynamic networks, achieves relatively strong results but does not explicitly model interference. Consequently, its performance remains consistently inferior to DSPNET, underscoring the importance of capturing spillover effects for accurate treatment effect estimation.

5.4.2 COMPARISON UNDER VARYING STRENGTHS OF NETWORK INTERFERENCE

Then, we investigate how model performance varies under different strengths of network interference. Specifically, we keep all other parameters as default during the data generation process and control the strength of network interference using $C = \{10, 20, 30, 40, 50\}$. The performance of different models under different interference strength is illustrated in Figure 3.

The results show that the proposed DSPNET consistently outperforms all other models across all levels of network interference, and its performance remains relatively stable even under high interference strengths (e.g., $C = 40$ or 50), demonstrating its effectiveness in handling complex spillover effects and its suitability for real-world applications. While SPNET is designed to model spillover effects, it does not account for temporal dynamics, resulting in inferior performance compared to dynamic models such as DNDC and DSPNET. Moreover, as C increases, the performance gap between DNDC and DSPNET becomes more pronounced, further highlighting the importance of explicitly modeling network interference in treatment effect estimation.

432 5.4.3 ABLATION STUDY
433

434 To investigate the contribution of each component in our proposed DSPNET model, we conduct an
435 ablation study by evaluating the following model variants:

436 (i) *w/o GRL*: This variant removes the Gradient Reversal Layer which is responsible for balancing
437 the confounder representation across treatment groups and mitigating the confounding bias.

438 (ii) *w/o IM*: This variant eliminates the Interference Modeling component, thereby ex-
439 cluding the learning of interference represen-
440 tation for outcome estimation.

441 (iii) *w/o GRU*: This variant excludes the
442 Gated Recurrent Unit (GRU), disabling the
443 model’s ability to capture temporal depen-
444 dencies and historical information.

445 The results are shown in Table 2. Specifically, removing the GRL component results in a moderate
446 drop, underscoring its role in mitigating confounding bias. Excluding interference modeling leads
447 to further degradation, highlighting the importance of capturing spillover effects in networked
448 environments. The most substantial performance loss is observed when removing GRU component,
449 demonstrating the critical role of capturing historical information in dynamic settings. Overall, these
450 findings validate the necessity of each component in ensuring the effectiveness of DSPNET.

451 5.4.4 HYPERPARAMETER ANALYSIS
452

453 To analyze the impact of hyperparameters α (which
454 controls the contribution of treatment prediction) and
455 β (which regulates the gradient reversal layer), we
456 conduct a sensitivity analysis by varying both parameters
457 within the set $\{1, 2, 3, 4\}$. We visualize the performance
458 trends across different combinations of α and β using
459 a histogram to facilitate comparison. As shown in Figure
460 4, the proposed DSPNET exhibits stable performance
461 across different hyperparameter configurations, indicating
462 that it is not highly sensitive to specific choices of
463 α and β . Notably, when $\alpha, \beta \in \{1, 2\}$, DSPNET attains
464 relatively better performance, suggesting that balanced
465 and moderate contributions from treatment prediction
466 and gradient reversal yield better results.

467 5.5 EVALUATING TREATMENT PRIORITIZATION RULES
468

469 Beyond directly measuring the CATE-ID esti-
470 mation accuracy by $\sqrt{\epsilon_{PEHE}}$ and ϵ_{ATE} with
471 ground-truth CATE-ID, we further evaluate the
472 quality of treatment prioritization rules induced
473 by the estimated CATE-ID of different esti-
474 mators by adopting **Rank-weighted Average
475 Treatment Effect (RATE)** (Yadlowsky et al.,
476 2025). RATE provides a principled approach to
477 assess how good the estimated CATE-ID is with-
478 out requiring access to the ground-truth CATE-
479 ID values, focusing on its treatment prioritization ability, i.e., the extent to which individuals with
480 higher estimated CATE-ID truly benefit more from treatment, it provides a complementary perspec-
481 tive on the quality of estimated CATE-ID beyond error-based metrics. The formal definition and
482 more details about RATE metric can be found in the Appendix B.

483 We report the R_{AUTOC} and R_{QINI} scores—two variants of RATE—averaged over all time steps in
484 Table 3, comparing the proposed DSPNET with network-based baselines (Deconfounder, SPNET,

485 Table 2: Ablation Study.

Variants	Flickr		Blogcatalog	
	$\sqrt{\epsilon_{PEHE}}$	ϵ_{ATE}	$\sqrt{\epsilon_{PEHE}}$	ϵ_{ATE}
Original	1.497 ± 0.145	0.890 ± 0.080	1.464 ± 0.119	0.845 ± 0.105
<i>w/o GRL</i>	2.179 ± 0.266	0.986 ± 0.108	1.886 ± 0.227	1.089 ± 0.247
<i>w/o IM</i>	1.938 ± 0.242	1.245 ± 0.203	1.822 ± 0.138	1.118 ± 0.164
<i>w/o GRU</i>	10.235 ± 1.768	6.854 ± 1.014	10.652 ± 0.718	3.547 ± 0.912

486 Figure 4: Hyperparameter Analysis.

487 Table 3: RATE results, higher is better.

Methods	Flickr		BlogCatalog	
	R_{AUTOC}	R_{QINI}	R_{AUTOC}	R_{QINI}
Deconfounder	0.03 ± 0.39	0.01 ± 0.13	0.19 ± 0.14	0.07 ± 0.06
SPNET	0.26 ± 0.24	0.10 ± 0.07	0.05 ± 0.17	0.02 ± 0.06
NetEST	0.51 ± 0.36	0.15 ± 0.12	0.35 ± 0.15	0.15 ± 0.04
DNDC	2.72 ± 0.69	1.04 ± 0.27	3.03 ± 0.68	1.09 ± 0.47
DSPNET	2.98 ± 0.64	1.13 ± 0.25	3.91 ± 0.56	1.52 ± 0.22

486 NetEst, and DNDC) on BlogCatalog and Flickr with default generation. Results for those non-
 487 network baselines are omitted, as their performance was consistently poor in our earlier evaluations.
 488 As shown, DSPNET achieves higher and more stable RATE scores across datasets, demonstrating
 489 superior treatment prioritization capability over the other network-based baseline methods.
 490

491 5.6 TIME AND SPACE OVERHEAD

492 To further evaluate the time and space overhead of DSPNET under large-scale dynamic
 493 networks, we scale the number of nodes and edges to roughly 1x, 2x, 4x, 8x and 10x of the
 494 original size on Flickr and BlogCatalog. DSPNET was trained on each scaled dataset under
 495 the same hardware configuration, and we report the wall-clock time per epoch and peak GPU
 496 memory usage as shown in Table 4.
 497

502 Overall, the results show that both runtime and
 503 memory scale approximately linearly with graph size, consistent with our theoretical complexity
 504 analysis. Moreover, DSPNET continues to train and infer reliably even on graphs with 75k nodes and
 505 2.39 million edges, suggesting that the framework is capable of handling substantially larger dynamic
 506 networks in practice.
 507

508 6 RELATED WORKS

510 treatment effect estimation from observational data has received considerable attention in recent years,
 511 leading to the development of numerous methodological approaches. Unlike traditional methods
 512 (Shalit et al., 2017; Zhong et al., 2022; Wang et al.; Wu et al., 2022; Yao et al., 2018) that assume
 513 independent and identically distributed (i.i.d.) samples, networked data violate this assumption, as an
 514 individual’s outcome can be influenced by their neighbors. To address confounding in such settings,
 515 several approaches—such as Deconfounder (Guo et al., 2020c), NetEST (Jiang & Sun, 2022), CONE
 516 (Guo et al., 2020b), and IGNITE (Guo et al., 2021)—have been proposed. These methods leverage
 517 network structures to capture hidden confounders and adopt various balancing strategies to mitigate
 518 confounding bias for reliable treatment effect estimation. However, they do not explicitly model
 519 network interference. To address interference, LCVA (Rakesh et al., 2018) utilizes a variational
 520 autoencoder to capture spillover effects between units. SPNET (Huang et al., 2023) further refines
 521 this by modeling heterogeneous spillover magnitudes across neighbor pairs. Additionally, (Ma &
 522 Tresp, 2021) explores interference modeling via simple aggregation of neighbors’ treatments, while
 523 HyperSCI (Ma et al., 2022) extends this idea to hypergraphs using attention mechanisms based on
 524 neighbors’ representations. However, these methods are designed for static networks and cannot
 525 be directly applied to dynamic environments. Although DNDC (Ma et al., 2021) aims to estimate
 526 treatment effects in dynamic graphs, it does not account for interference. In contrast, our work
 527 targets on dynamic network environments, while simultaneously modeling hidden confounders and
 528 interference, thereby addressing both time-evolving confounders and spillover effects.
 529

530 7 CONCLUSION

532 In this paper, we study the problem of treatment effect estimation in dynamic network environments,
 533 explicitly accounting for time-varying hidden confounders and network interference. We begin by
 534 introducing a new treatment effect estimand CATE-ID tailored for dynamic settings with interference
 535 and formally prove its identifiability. Building on this theoretical foundation, we propose DSPNET,
 536 a novel framework that leverages both the evolving network structure and historical information
 537 to model dynamic hidden confounders and interference, and then learns the representations of
 538 confounders and environment exposure to enable accurate treatment effect estimation over time.
 539 Extensive experiments demonstrate the superiority of our framework over existing methods for
 estimating treatment effects from dynamic networked observational data.

Table 4: Time and Space Overhead

Dataset	Scale	#Nodes	#Edges	Time	GPU Mem
Flickr	1x	7.5K	239K	0.24s	2.8GB
	2x	15K	478K	0.31s	5.6GB
	4x	30K	956K	0.51s	11.3GB
	8x	60K	1.91M	0.94s	22.5GB
	10x	75K	2.39M	1.14s	28.1GB
BlogCatalog	1x	5K	171K	0.24s	1.7GB
	2x	10K	342K	0.29s	3.4GB
	4x	20K	684K	0.39s	6.8GB
	8x	40K	1.36M	0.65s	13.2GB
	10x	50K	1.71M	0.81s	16.5GB

540

8 REPRODUCIBILITY STATEMENT

541
 542 We have made significant efforts to ensure the reproducibility of our work. For the proposed algorithm,
 543 we provide an anonymous link to the full source code. The assumptions required for Theorem 3.3
 544 as well as its complete proof are clearly presented in Section 3. For experimental evaluation, we
 545 detail the entire dataset generation and processing procedure in Appendix A, and provide additional
 546 experimental results and analysis in Appendix C. Together, these resources allow researchers to fully
 547 reproduce our theoretical results and empirical findings.

548

549 REFERENCES

550 Jason Barabas and Jennifer Jerit. Estimating the causal effects of media coverage on policy-specific
 551 knowledge. *American Journal of Political Science*, 53(1):73–89, 2009.

552 Jade Benjamin-Chung, Benjamin F Arnold, David Berger, Stephen P Luby, Edward Miguel, John M
 553 Colford Jr, and Alan E Hubbard. Spillover effects in epidemiology: parameters, study designs and
 554 methodological considerations. *International journal of epidemiology*, 47(1):332–347, 2018.

555 Ioana Bica, Ahmed M Alaa, James Jordon, and Mihaela Van Der Schaar. Estimating counterfactual
 556 treatment outcomes over time through adversarially balanced representations. *arXiv preprint*
 557 *arXiv:2002.04083*, 2020.

558 Lars Bondemark and Sabine Ruf. Randomized controlled trial: the gold standard or an unobtainable
 559 fallacy? *European Journal of Orthodontics*, 37(5):457–461, 2015.

560 Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
 561 Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for
 562 statistical machine translation. *arXiv preprint arXiv:1406.1078*, 2014.

563 Zhixuan Chu, Stephen L Rathbun, and Sheng Li. Graph infomax adversarial learning for treatment
 564 effect estimation with networked observational data. In *Proceedings of the 27th ACM SIGKDD*
 565 *Conference on Knowledge Discovery & Data Mining*, pp. 176–184, 2021.

566 SJL Edwards, R Lilford, D Brauholtz, J Hewison, J Jackson, and T Thornton. Ethical issues in the
 567 design and conduct of randomised controlled trials. *Health Technology Assessment*, 2(15):1–132,
 568 1999.

569 Laura Forastiere, Edoardo M Airoldi, and Fabrizia Mealli. Identification and estimation of treatment
 570 and interference effects in observational studies on networks. *Journal of the American Statistical
 571 Association*, 116(534):901–918, 2021.

572 Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
 573 Laviolette, Mario March, and Victor Lempitsky. Domain-adversarial training of neural networks.
 574 *Journal of machine learning research*, 17(59):1–35, 2016.

575 Emilio AL Gianicolo, Martin Eichler, Oliver Muensterer, Konstantin Strauch, and Maria Blettner.
 576 Methods for evaluating causality in observational studies. *Deutsches Arzteblatt International*, 116
 577 (7):101–107, 2020.

578 D Green and A Gerber. The stable unit treatment value assumption (sutva) and its implications for
 579 social science rcts. In *Presentation at the Conference on Empirical Legal Studies, Yale Law School*,
 580 volume 13, pp. 14–15, 2010.

581 Sander Greenland and Mohammad Ali Mansournia. Limitations of individual causal models, causal
 582 graphs, and ignorability assumptions, as illustrated by random confounding and design unfaithfulness.
 583 *European journal of epidemiology*, 30:1101–1110, 2015.

584 Sander Greenland, Judea Pearl, and James M Robins. Confounding and collapsibility in causal
 585 inference. *Statistical science*, 14(1):29–46, 1999.

586 Ruocheng Guo, Lu Cheng, Jundong Li, P Richard Hahn, and Huan Liu. A survey of learning causality
 587 with data: Problems and methods. *ACM Computing Surveys (CSUR)*, 53(4):1–37, 2020a.

594 Ruocheng Guo, Jundong Li, and Huan Liu. Counterfactual evaluation of treatment assignment
 595 functions with networked observational data. In *Proceedings of the 2020 SIAM International*
 596 *Conference on Data Mining*, pp. 271–279. SIAM, 2020b.

597 Ruocheng Guo, Jundong Li, and Huan Liu. Learning individual causal effects from networked
 598 observational data. In *Proceedings of the 13th international conference on web search and data*
 599 *mining*, pp. 232–240, 2020c.

600 Ruocheng Guo, Jundong Li, Yichuan Li, K Selçuk Candan, Adrienne Raglin, and Huan Liu. Ignite:
 601 A minimax game toward learning individual treatment effects from networked observational data.
 602 In *Proceedings of the Twenty-Ninth International Conference on International Joint Conferences*
 603 *on Artificial Intelligence*, pp. 4534–4540, 2021.

604 Miguel A Hernán and James M Robins. Estimating causal effects from epidemiological data. *Journal*
 605 *of Epidemiology & Community Health*, 60(7):578–586, 2006.

606 Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural computation*, 9(8):
 607 1735–1780, 1997.

608 Qiang Huang, Jing Ma, Jundong Li, Ruocheng Guo, Huiyan Sun, and Yi Chang. Modeling in-
 609 terference for individual treatment effect estimation from networked observational data. *ACM*
 610 *Transactions on Knowledge Discovery from Data*, 18(3):1–21, 2023.

611 Song Jiang and Yizhou Sun. Estimating causal effects on networked observational data via repre-
 612 sentation learning. In *Proceedings of the 31st ACM International Conference on Information &*
 613 *Knowledge Management*, pp. 852–861, 2022.

614 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint*
 615 *arXiv:1412.6980*, 2014.

616 Michael Lechner et al. The estimation of causal effects by difference-in-difference methods. *Founda-
 617 tions and Trends® in Econometrics*, 4(3):165–224, 2011.

618 Bryan Lim. Forecasting treatment responses over time using recurrent marginal structural networks.
 619 *Advances in neural information processing systems*, 31, 2018.

620 Jing Ma, Ruocheng Guo, Chen Chen, Aidong Zhang, and Jundong Li. Deconfounding with networked
 621 observational data in a dynamic environment. In *Proceedings of the 14th ACM International*
 622 *Conference on Web Search and Data Mining*, pp. 166–174, 2021.

623 Jing Ma, Mengting Wan, Longqi Yang, Jundong Li, Brent Hecht, and Jaime Teevan. Learning causal
 624 effects on hypergraphs. In *Proceedings of the 28th ACM SIGKDD Conference on Knowledge*
 625 *Discovery and Data Mining*, pp. 1202–1212, 2022.

626 Yunpu Ma and Volker Tresp. Causal inference under networked interference and intervention policy
 627 enhancement. In *International Conference on Artificial Intelligence and Statistics*, pp. 3700–3708.
 628 PMLR, 2021.

629 Terence C Mills. *Time series techniques for economists*. Cambridge University Press, 1990.

630 Jonathan K Pritchard, Matthew Stephens, and Peter Donnelly. Inference of population structure using
 631 multilocus genotype data. *Genetics*, 155(2):945–959, 2000.

632 Vineeth Rakesh, Ruocheng Guo, Raha Moraffah, Nitin Agarwal, and Huan Liu. Linked causal
 633 variational autoencoder for inferring paired spillover effects. In *Proceedings of the 27th ACM*
 634 *International Conference on Information and Knowledge Management*, pp. 1679–1682, 2018.

635 Donald B Rubin. The design versus the analysis of observational studies for causal effects: parallels
 636 with the design of randomized trials. *Statistics in medicine*, 26(1):20–36, 2007.

637 Patrick Schwab, Lorenz Linhardt, and Walter Karlen. Perfect match: A simple method for learning
 638 representations for counterfactual inference with neural networks. *arXiv preprint arXiv:1810.00656*,
 639 2018.

648 Uri Shalit, Fredrik D Johansson, and David Sontag. Estimating individual treatment effect: general-
 649 ization bounds and algorithms. In *International conference on machine learning*, pp. 3076–3085.
 650 PMLR, 2017.

651

652 Kenneth Stanley. Design of randomized controlled trials. *Circulation*, 115(9):1164–1169, 2007.

653

654 Harald O Stolberg, Geoffrey Norman, and Isabelle Trop. Randomized controlled trials. *American*
 655 *Journal of Roentgenology*, 183(6):1539–1544, 2004.

656

657 Yongduo Sui, Caizhi Tang, Zhixuan Chu, Junfeng Fang, Yuan Gao, Qing Cui, Longfei Li, JUN
 658 ZHOU, and Xiang Wang. Invariant graph learning for treatment effect estimation from networked
 659 observational data. In *The Web Conference 2024*.

660

661 Lei Tang and Huan Liu. Leveraging social media networks for classification. *Data mining and*
 662 *knowledge discovery*, 23:447–478, 2011.

663

664 Tyler J VanderWeele and Miguel A Hernan. Causal inference under multiple versions of treatment.
 665 *Journal of causal inference*, 1(1):1–20, 2013.

666

667 Brian G Vegetable. On the distinction between" conditional average treatment effects"(cate) and"
 668 individual treatment effects"(ite) under ignorability assumptions. *arXiv preprint arXiv:2108.04939*,
 669 2021.

670

671 Victor Veitch, Yixin Wang, and David Blei. Using embeddings to correct for unobserved confounding
 672 in networks. *Advances in Neural Information Processing Systems*, 32, 2019.

673

674 Zhenlei Wang, Xu Chen, Xiaoxiao Xu, Lantao Hu, Peng Jiang, and Kun Gai. Dfite: Estimation of
 675 individual treatment effect using diffusion model.

676

677 Christopher Winship and Stephen L Morgan. The estimation of causal effects from observational
 678 data. *Annual review of sociology*, 25(1):659–706, 1999.

679

680 Anpeng Wu, Junkun Yuan, Kun Kuang, Bo Li, Runze Wu, Qiang Zhu, Yueling Zhuang, and Fei
 681 Wu. Learning decomposed representations for treatment effect estimation. *IEEE Transactions on*
 682 *Knowledge and Data Engineering*, 35(5):4989–5001, 2022.

683

684 Steve Yadlowsky, Scott Fleming, Nigam Shah, Emma Brunskill, and Stefan Wager. Evaluating
 685 treatment prioritization rules via rank-weighted average treatment effects. *Journal of the American*
 686 *Statistical Association*, 120(549):38–51, 2025.

687

688 Liuyi Yao, Sheng Li, Yaliang Li, Mengdi Huai, Jing Gao, and Aidong Zhang. Representation learning
 689 for treatment effect estimation from observational data. *Advances in neural information processing*
 690 *systems*, 31, 2018.

691

692 Liuyi Yao, Zhixuan Chu, Sheng Li, Yaliang Li, Jing Gao, and Aidong Zhang. A survey on causal
 693 inference. *ACM Transactions on Knowledge Discovery from Data (TKDD)*, 15(5):1–46, 2021.

694

695 Emily C Zabor, Alexander M Kaizer, and Brian P Hobbs. Randomized controlled trials. *Chest*, 158
 696 (1):S79–S87, 2020.

697

698 Reza Zafarani and Huan Liu. Social computing data repository at asu, 2009.

699

700 Ziyu Zhao, Yuqi Bai, Ruoxuan Xiong, Qingyu Cao, Chao Ma, Ning Jiang, Fei Wu, and Kun
 701 Kuang. Learning individual treatment effects under heterogeneous interference in networks. *ACM*
 702 *Transactions on Knowledge Discovery from Data*, 18(8):1–21, 2024.

703

704 Kailiang Zhong, Fengtong Xiao, Yan Ren, Yaorong Liang, Wenqing Yao, Xiaofeng Yang, and Ling
 705 Cen. Descn: Deep entire space cross networks for individual treatment effect estimation. In
 706 *Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining*, pp.
 707 4612–4620, 2022.

708

709

710

APPENDIX

A DATA GENERATION

In this section, we introduce how to generate the treatment, confounders, interference, and potential outcomes for dataset BlogCatalog and Flickr:

Step 1: Simulate the full confounders \mathbf{z}_i^t . we first introduce how to leverage the historical information and network structure to simulate the full confounders. The full confounders \mathbf{z}_i^t for unit i at time step t could be simulated as follows:

$$\mathbf{z}_i^t = \frac{1}{\lambda_1 + \lambda_2 + \lambda_3} (\lambda_1 \Psi_i^t + \lambda_2 \sum_{u \in \mathcal{G}_i^t} f_L(\mathbf{x}_u^t) + \lambda_3 f_L(\mathbf{x}_i^t) + \epsilon^t), \quad (13)$$

where function $f_L(\cdot)$ maps the features in terms of bag-of-words to topic distribution by training a LDA topic model with 50 topics (Pritchard et al., 2000) such that the dimension of the output of $f_L(\cdot)$ is 50, thus $\mathbf{z}_i^t \in \mathbb{R}^{50}$, $\Psi_i^t \in \mathbb{R}^{50}$ represents the historical information, \mathcal{G}_i^t denotes the neighbor set of unit i at time step t . λ_1 , λ_2 and λ_3 are to control the influence of historical information, network structure and current unit's covariates to the hidden confounders, respectively. $\lambda_1, \lambda_2, \lambda_3$ are set to 10, 3, 3 by default; $\epsilon^t \in \mathbb{R}^{50}$ is the noise vector and each element is sampled from the normal distribution $\epsilon_j^t \sim \mathcal{N}(0, 0.001)$; Each element $\Psi_{i,j}^t$ can be obtained using q -order autoregressive (Mills, 1990) as follows:

$$\Psi_{i,j}^t = \frac{1}{q} \left(\sum_{r=1}^q \rho_{r,j} z_{i,j}^{t-r} + \sum_{r=1}^q \varrho_r d_i^{t-r} \right), \quad (14)$$

where $z_{i,j}^{t-r}$ denotes the j -th element of confounders \mathbf{z}_i^{t-r} at time step $t-r$, d_i^{t-r} represents the treatment assignment of unit i at time step $t-r$, $\rho_{r,j} \sim \mathcal{N}(1-r/q, 1/q)$ and $\varrho_r \sim \mathcal{N}(0, 0.02)$ are to control the impact of historical confounders and treatment assignments from previous q time steps, here we follow (Ma et al., 2021) and set the order $q = 3$. Noting that Ψ_i^t at initial time step $t = 1$ is set to zero vector.

Step 2: Simulate observed treatment assignment d_i^t . First we randomly select two vectors $\mathbf{r}_0^t, \mathbf{r}_1^t$ from the current hidden confounders \mathbf{Z}^t in the LDA topic space as the centroids for treatment and control group. The similarity between a unit's confounder representation \mathbf{z}_i^t and each centroid is measured by their inner product:

$$s_{i,0}^t = \mathbf{r}_0^t \cdot \mathbf{z}_i^t, \quad s_{i,1}^t = \mathbf{r}_1^t \cdot \mathbf{z}_i^t, \quad (15)$$

which indicates how close unit i is to the control or treatment centroid in the topic space, \mathbf{r}_0^t represents the transpose of \mathbf{r}_0^t . Then we can simulate the treatment assignment d_i^t for unit i at time step t as follows:

$$d_i^t \sim \mathcal{B} \left(\frac{\exp(s_{i,1}^t)}{\exp(s_{i,1}^t) + \exp(s_{i,0}^t)} \right), \quad (16)$$

where \mathcal{B} denotes the Bernoulli distribution.

Step 3: Simulate interference (spillover effect) \mathcal{I}_i^t . The interference \mathcal{I}_i^t of unit i 's neighbors on it can be computed as follows:

$$\mathcal{I}_i^t = C \cdot \sum_{j \in \mathcal{G}_i^t} \mathbf{w}_p^t \cdot f_L(\mathbf{x}_j) \cdot d_j^t, \quad (17)$$

where C is the scaling value to control the strength of interference in the network, \mathbf{w}_p^t is the weight vector sampled from uniform distribution $\mathcal{N}(\mathbf{0}, \mathbf{I}_{50})$ where \mathbf{I}_{50} is the identity matrix, the inner product $\mathbf{w}_p^t \cdot f_L(\mathbf{x}_j)$ quantifies neighbor j 's influence strength on unit i , which contributes to the interference if the neighbor receives treatment.

Step 4: Simulate potential outcomes. Given the aforementioned steps, the potential outcomes could be formulated as follows:

$$\begin{aligned} y_i^t(1) &= \kappa(s_{i,0}^t + s_{i,1}^t) + \mathcal{I}_i^t + \epsilon_y^t, \\ y_i^t(0) &= \kappa s_{i,0}^t + \mathcal{I}_i^t + \epsilon_y^t, \end{aligned} \quad (18)$$

756
757 **Table 5: Statistical Summaries on Flickr and BlogCatalog**
758

Dataset	Flickr	BlogCatalog
Time Steps	25	25
# Units	7575	5196
# Averaged Edges	239623	171661
# Features	12047	8189
% Treated Ratio	49.48 ± 2.07	49.53 ± 2.00
Average ATE	16.19 ± 12.87	22.00 ± 17.10

766
767 where κ is the scaling factor and set to 100 by default, $\epsilon_y^t \sim \mathcal{N}(0, 1)$ is the sampled Gaussian noise.
768 Then the observed outcome for unit i at time step t could be obtained by:
769

$$770 \quad y_i^t = d_i^t \cdot y_i^t(1) + (1 - d_i^t) \cdot y_i^t(0). \quad (19)$$

771 Then, based on the above data generation process and default parameter settings, we randomly run
772 the simulations 10 times on the Flickr and BlogCatalog datasets. The statistical summaries of the
773 generated data are presented in Table 5.
774

775 B RANK-WEIGHTED AVERAGE TREATMENT EFFECT (RATE) 776

777 In practical applications of treatment effect estimation, the primary goal often lies not only in
778 estimating the conditional average treatment effect (CATE) for each individual, but also in constructing
779 treatment prioritization rules that rank individuals according to their estimated treatment effects. To
780 evaluate the quality of such prioritization rules, (Yadlowsky et al., 2025) proposed the Rank-weighted
781 Average Treatment Effect (RATE), a general evaluation framework that quantifies how well an
782 estimated prioritization rule identifies those who truly benefit most from treatment. At a high level,
783 the RATE captures the extent to which individuals who are highly ranked by the prioritization rule
784 are more responsive to treatment than randomly selected individuals, which is another perspective to
785 evaluate the quality of the estimated CATE.

786 Unlike error-based metrics such as $\sqrt{\epsilon_{PEHE}}$ and ϵ_{ATE} , RATE does not require access to the true
787 CATE values for each individual. Instead, it leverages the ranking induced by estimated CATEs,
788 thereby providing a more practical evaluation criterion in real-world settings where the true individual
789 treatment effect is unobservable.
790

791 B.1 FORMAL DEFINITION OF RATE 792

793 Let $S(X_i)$ denote a treatment prioritization score assigned to the individual X_i , where $S(\cdot)$ is a
794 priority scoring function that could be a learned priority rule, a learned CATE estimate, a hardcoded
795 heuristic, or something else. In this work, our goal is to estimate the quality of the estimated CATE-ID,
796 we take the estimated CATE-ID for each individual as the prioritization score:
797

$$S(X_i) = \hat{\tau}(X_i), \quad (20)$$

798 a larger value of $S(X_i)$ implies that the individual should be treated first. For a given quantile level
799 $0 < q \leq 1$, we define the **Targeting Operator Characteristic (TOC)** as:
800

$$TOC(q; S) = \mathbb{E}[Y(1) - Y(0) \mid F(S(X_i)) \geq 1 - q] - \mathbb{E}[Y(1) - Y(0)], \quad (21)$$

801 where $F(S(X))$ is the cumulative distribution function of the prioritization score $S(X_i)$. Intuitively,
802 $TOC(q; S)$ measures the incremental gain in treatment effect when prioritizing the top- q fraction of
803 individuals based on the priority scoring function $S(\cdot)$, compared to the overall population. Noting
804 that if $q = 1$, the first term in Eq.(21) is the average treatment effect, and so $TOC(q; S) = 0$.
805

806 After defining the $TOC(q; S)$, we can involve evaluating prioritization rules (based on the estimated
807 CATE-ID) in terms of weighted averages of the TOC. Formally, **Rank-weighted Average Treatment
808 Effect (RATE)** is defined as the a weighted integral of the TOC curve:
809

$$RATE(w; S) = \int_0^1 TOC(q; S) \cdot w(q) dq, \quad (22)$$

810 where $w(q)$ is a nonnegative weight function that emphasizes different regions of the ranking.
 811 Different choices of $w(q)$ yield different variants of RATE. Here we introduce two variants of RATE
 812 based on different weight function as follows

813 (1) **Area Under the Targeting Operator Characteristic (AUTOC).** When the weight function is
 814 chosen as uniform, i.e., $w(q) = 1$, RATE reduces to the the area under the TOC curve (AUTOC):
 815

$$816 \quad R_{AUTOC} = \int_0^1 \text{TOC}(q; S) dq. \quad (23)$$

817 R_{AUTOC} provides an overall summary of how much benefit the prioritization rule delivers across
 818 the entire population distribution. A higher R_{AUTOC} indicates that the ranking consistently selects
 819 individuals with higher treatment benefit, demonstrating higher quality of the treatment prioritization
 820 rule induced by the estimated CATE-ID.

821 (2) **Qini coefficient.** The Qini coefficient is a widely used variant of RATE that emphasizes the ability
 822 of a treatment prioritization rule to correctly identify individuals with the largest treatment effects. Its
 823 definition can be written as:
 824

$$825 \quad R_{QINI} = \int_0^1 q \cdot \text{TOC}(q; S) dq, \quad (24)$$

826 we can see that it uses the quantile level q as the weight function. Compared to AUTOC, which
 827 applies uniform weighting over the entire population, the Qini coefficient assigns more weight to the
 828 upper quantiles of the prioritization rule, thereby stressing the importance of ranking performance
 829 among the top-scoring individuals.

831 C ADDITIONAL EXPERIMENTS

832 C.1 MODEL ARCHITECTURE DETAILS

833 To enhance the transparency and reproducibility of our method, we provide a detailed description
 834 of the default model architecture used in the experiments. Table 6 summarizes the configuration of
 835 the backbone components, including the number of GCN and MLP layers, the hidden dimensions
 836 of GCN, MLP and recurrent layers, activation functions, and other relevant hyperparameters about
 837 training details.

838 Table 6: Model architecture specifications and training details.

839 Component	840 Layers	841 Hidden Dimensions	842 Activation	843 Remarks
844 GCN Backbone	845 1	846 70	847 ReLU	-
848 MLP Backbone	849 2	850 70	851 ReLU	-
852 Recurrent Backbone	853 -	854 70	855 -	856 Gated Recurrent Unit
857 Treatment-MLP	858 2	859 100	860 Sigmoid	861 MLP for treatment
862 Dimension of Confounders	863 -	864 70	865 -	866 Final representation of confounders
867 Dimension of Interference	868 -	869 70	870 -	871 Final representation of exposure
872 Optimizer	873 -	874 -	875 -	876 Adam, learning rate = $4e - 3$, weight decay = $1e - 2$
877 Other Hyperparameters	878 -	879 -	880 -	881 epochs=1000, $\alpha = 1$, $\beta = 1$, $\omega = 1e - 4$

882 C.2 PERFORMANCE COMPARISON UNDER VARYING INFLUENCE OF HISTORY

883 In this section, we investigate the impact of different intensities of historical information on the
 884 model’s performance in estimating treatment effects. Specifically, we keep all other parameters in the
 885 data generation process as default and vary the value of $\lambda_1 = \{5, 10, 20\}$ to examine how different
 886 levels of historical influence affect the model’s performance. The results are presented in Table 7.

887 We can see that our proposed DSPNET model consistently outperforms all baselines across different
 888 levels of historical influence. Most baseline methods exhibit significant deteriorating performance as
 889 λ_1 increases, which suggests that stronger historical dependencies make it more challenging for these
 890 models to accurately estimate treatment effects. However, our proposed model DSPNET suffers the
 891 least, demonstrating its superiority on capturing time-varying hidden confounder and interference on
 892 dynamic network environment.

864
 865 Table 7: CATE-ID performance comparison by varying influence of historical information on Flickr
 866 and BlogCatalog datasets. **Bold**: the best results. Underline: the 2nd best results. Lower is better. \dagger
 867 indicates statistically significant improvement over the strongest baseline (t-test, p -value < 0.05).

Datasets	Methods	$\lambda_1 = 5$		$\lambda_1 = 10$		$\lambda_1 = 20$	
		$\sqrt{\epsilon_{PEHE}}$	ϵ_{ATE}	$\sqrt{\epsilon_{PEHE}}$	ϵ_{ATE}	$\sqrt{\epsilon_{PEHE}}$	ϵ_{ATE}
Flickr	DESCN	10.637 ± 2.198	9.621 ± 2.162	17.982 ± 3.872	16.996 ± 3.821	25.112 ± 6.005	23.865 ± 5.858
	DFITE	19.177 ± 10.942	2.828 ± 0.440	17.404 ± 2.933	3.083 ± 0.486	23.042 ± 8.474	3.787 ± 0.642
	DERCFR	12.175 ± 2.673	10.017 ± 2.344	21.704 ± 3.786	17.246 ± 3.825	29.889 ± 4.950	23.725 ± 4.582
	CFR	27.010 ± 11.249	2.932 ± 0.548	24.218 ± 3.939	2.754 ± 0.599	32.181 ± 14.965	3.154 ± 0.494
	NetEST	4.342 ± 0.642	<u>0.875 ± 0.112</u>	6.822 ± 1.107	1.405 ± 0.219	9.136 ± 1.748	2.052 ± 0.333
	Deconfounder	6.275 ± 0.727	3.428 ± 0.401	8.338 ± 1.230	4.738 ± 0.844	10.598 ± 1.903	6.282 ± 0.944
	SPNET	7.208 ± 0.691	1.043 ± 0.173	8.693 ± 1.030	<u>1.204 ± 0.216</u>	10.167 ± 1.622	<u>1.482 ± 0.445</u>
	DNDC	<u>1.892 ± 0.142</u>	1.314 ± 0.154	<u>2.589 ± 0.959</u>	1.618 ± 0.781	<u>3.154 ± 0.998</u>	1.881 ± 1.090
	DSPNET	1.346 $\pm 0.173^\dagger$	0.788 $\pm 0.111^\dagger$	1.497 $\pm 0.145^\dagger$	0.890 $\pm 0.080^\dagger$	1.805 $\pm 0.288^\dagger$	1.072 $\pm 0.318^\dagger$
BlogCatalog	DESCN	13.812 ± 2.041	12.934 ± 2.083	23.430 ± 3.422	22.348 ± 3.428	32.849 ± 6.206	31.539 ± 6.139
	DFITE	8.224 ± 2.465	2.547 ± 0.589	11.841 ± 3.243	3.446 ± 0.427	14.949 ± 3.912	4.383 ± 1.077
	DERCFR	21.791 ± 5.340	16.090 ± 2.407	35.321 ± 8.824	24.921 ± 3.295	47.289 ± 11.642	34.239 ± 7.866
	CFR	8.156 ± 2.369	0.984 ± 0.158	11.547 ± 3.164	<u>1.295 ± 0.249</u>	14.781 ± 3.744	1.631 ± 0.428
	NetEST	5.302 ± 0.664	1.272 ± 0.235	8.539 ± 1.074	1.586 ± 0.218	11.671 ± 1.923	2.021 ± 0.302
	Deconfounder	7.811 ± 1.172	5.226 ± 0.849	13.067 ± 1.863	8.884 ± 1.170	18.247 ± 3.522	12.451 ± 2.533
	SPNET	6.674 ± 0.460	1.643 ± 0.480	9.569 ± 1.742	2.298 ± 0.859	12.206 ± 2.198	2.743 ± 0.809
	DNDC	<u>1.961 ± 0.127</u>	1.314 ± 0.155	<u>2.475 ± 0.462</u>	1.454 ± 0.400	<u>2.905 ± 0.290</u>	<u>1.597 ± 0.144</u>
	DSPNET	1.309 $\pm 0.125^\dagger$	0.853 $\pm 0.093^\dagger$	1.464 $\pm 0.119^\dagger$	0.845 $\pm 0.105^\dagger$	1.773 $\pm 0.426^\dagger$	1.068 $\pm 0.488^\dagger$

889 C.3 PERFORMANCE COMPARISON UNDER VARYING INFLUENCE OF CURRENT COVARIATES

890 As shown in the data generation, λ_2 is set to control the influence of the current unit’s covariates on
 891 its hidden confounders z_i^t . Here we compare the treatment effect estimation performance between
 892 baselines and the proposed model DSPNET under varying values of λ_2 on Flickr and BlogCatalog.
 893 We set the value of λ_2 to $\{3,5,8\}$ and remain the other parameter as default.

894 The experimental results are shown in Table 8. We can see that our proposed model DSPNET
 895 outperforms all the baselines under different levels of current covariates’ influence. Moreover, it can
 896 be observed that under varying levels of influence λ_2 , the proposed model DSPNET exhibits strong
 897 stability in estimating treatment effects, as it effectively captures confounders in the latent space and
 898 learns the factors that truly affect the outcome.

901 C.4 PERFORMANCE COMPARISON UNDER VARYING INFLUENCE OF NETWORK STRUCTURE

902 In the data generation, λ_3 is to control the influence of network structure, i.e., unit’s neighbors, on
 903 its hidden confounders. Similarly, here we conduct the experiments to compare the treatment effect
 904 estimation performance between the baselines and the proposed model DSPNET under varying λ_3
 905 values. We set the value of λ_3 to also range in $\{3,5,8\}$ and remain the other parameters in data
 906 generation as default.

907 The experimental results are shown in Table 9. Still, our proposed model DSPNET outperforms the
 908 other baselines in all settings of λ_3 values and the performance of DSPNET remains stable when the
 909 influence of network structure varies.

912 C.5 ROBUSTNESS STUDY OF UNOBSERVED CONFOUNDERS

913 We also conduct robustness analyses regarding the unobserved confounders that may not be fully
 914 captured. Specifically, we explicitly select 10%, 20%, 30% covariates that affects both treatment
 915 and outcome as the latent confounders, and these selected latent confounders are not included in the
 916 construction of function $\Phi_z(\cdot)$, thereby simulating scenarios where the confounder modeling module
 917 fails to capture all confounders directly.

918
919
920 Table 8: CATE-ID performance comparison by varying influence of current covariates on Flickr and
921 BlogCatalog datasets. **Bold**: the best results. Underline: the 2nd best results. Lower is better. [†]
922 indicates statistically significant improvement over the strongest baseline (t-test, p -value < 0.05).

Datasets	Methods	$\lambda_2 = 3$		$\lambda_2 = 5$		$\lambda_2 = 8$	
		$\sqrt{\epsilon_{PEHE}}$	ϵ_{ATE}	$\sqrt{\epsilon_{PEHE}}$	ϵ_{ATE}	$\sqrt{\epsilon_{PEHE}}$	ϵ_{ATE}
Flickr	DESCN	17.982 ± 3.872	16.996 ± 3.821	14.089 ± 2.125	13.141 ± 2.122	11.797 ± 2.562	10.823 ± 2.582
	DFITE	17.404 ± 2.933	3.083 ± 0.486	14.872 ± 2.196	2.679 ± 0.270	16.166 ± 3.923	2.634 ± 0.670
	DERCFR	21.704 ± 3.786	17.246 ± 3.825	15.100 ± 2.852	11.958 ± 2.363	13.250 ± 2.015	10.515 ± 1.760
	CFR	24.218 ± 3.939	2.754 ± 0.599	23.425 ± 2.193	3.081 ± 0.864	23.708 ± 2.849	3.048 ± 0.788
	NetEST	6.822 ± 1.107	1.405 ± 0.219	5.437 ± 0.615	<u>1.074 ± 0.179</u>	4.750 ± 0.811	<u>0.904 ± 0.155</u>
	Deconfounder	8.338 ± 1.230	4.738 ± 0.844	7.309 ± 0.885	4.154 ± 0.789	6.786 ± 1.017	3.759 ± 0.708
	SPNET	8.693 ± 1.030	<u>1.204 ± 0.216</u>	8.006 ± 0.660	1.173 ± 0.203	7.541 ± 0.859	1.068 ± 0.206
	DNDC	<u>2.589 ± 0.959</u>	1.618 ± 0.781	<u>2.338 ± 0.533</u>	1.561 ± 0.449	<u>2.100 ± 0.361</u>	1.361 ± 0.281
	DSPNET	1.497 $\pm 0.145^{\dagger}$	0.890 $\pm 0.080^{\dagger}$	1.440 $\pm 0.137^{\dagger}$	0.825 $\pm 0.129^{\dagger}$	1.373 $\pm 0.151^{\dagger}$	0.784 $\pm 0.140^{\dagger}$
	DESCN	23.430 ± 3.422	22.348 ± 3.428	19.826 ± 5.019	18.804 ± 4.882	18.436 ± 4.117	17.393 ± 3.978
BlogCatalog	DFITE	11.841 ± 3.243	3.446 ± 0.427	11.050 ± 4.279	3.222 ± 0.471	12.446 ± 4.225	2.866 ± 0.437
	DERCFR	35.321 ± 8.824	24.921 ± 3.295	29.706 ± 6.265	22.365 ± 5.321	31.197 ± 6.479	21.824 ± 4.618
	CFR	11.547 ± 3.164	<u>1.295 ± 0.249</u>	10.574 ± 4.037	<u>1.033 ± 0.207</u>	12.396 ± 4.525	<u>1.021 ± 0.144</u>
	NetEST	8.539 ± 1.074	1.586 ± 0.218	7.205 ± 1.390	1.422 ± 0.188	6.675 ± 1.177	1.332 ± 0.176
	Deconfounder	13.067 ± 1.863	8.884 ± 1.170	11.527 ± 3.180	7.659 ± 2.202	10.195 ± 3.013	6.600 ± 1.901
	SPNET	9.569 ± 1.742	2.298 ± 0.859	8.290 ± 1.515	1.733 ± 0.413	8.421 ± 1.420	2.235 ± 0.551
	DNDC	<u>2.475 ± 0.462</u>	1.454 ± 0.400	<u>2.180 ± 0.182</u>	1.260 ± 0.189	<u>2.273 ± 0.348</u>	1.517 ± 0.416
	DSPNET	1.464 $\pm 0.119^{\dagger}$	0.845 $\pm 0.105^{\dagger}$	1.549 $\pm 0.044^{\dagger}$	0.852 $\pm 0.083^{\dagger}$	1.573 $\pm 0.129^{\dagger}$	0.951 $\pm 0.147^{\dagger}$
	DESCN	23.430 ± 3.422	22.348 ± 3.428	18.261 ± 3.824	17.300 ± 3.641	12.651 ± 2.103	11.815 ± 2.011
	DFITE	11.841 ± 3.243	3.446 ± 0.427	10.308 ± 4.692	2.867 ± 0.600	7.579 ± 1.930	2.311 ± 0.580

944
945
946
947 Table 9: CATE-ID performance comparison by varying influence of network structure on Flickr and
948 BlogCatalog datasets. **Bold**: the best results. Underline: the 2nd best results. Lower is better. [†]
949 indicates statistically significant improvement over the strongest baseline (t-test, p -value < 0.05).

Datasets	Methods	$\lambda_3 = 3$		$\lambda_3 = 5$		$\lambda_3 = 8$	
		$\sqrt{\epsilon_{PEHE}}$	ϵ_{ATE}	$\sqrt{\epsilon_{PEHE}}$	ϵ_{ATE}	$\sqrt{\epsilon_{PEHE}}$	ϵ_{ATE}
Flickr	DESCN	17.982 ± 3.872	16.996 ± 3.821	16.726 ± 2.266	15.802 ± 2.203	10.468 ± 1.807	9.648 ± 1.806
	DFITE	17.404 ± 2.933	3.083 ± 0.486	20.351 ± 8.152	3.076 ± 0.611	16.333 ± 5.052	2.649 ± 0.393
	DERCFR	21.704 ± 3.786	17.246 ± 3.825	17.721 ± 1.587	14.079 ± 1.777	12.066 ± 2.430	9.898 ± 2.171
	CFR	24.218 ± 3.939	2.754 ± 0.599	28.309 ± 7.360	3.106 ± 0.649	27.616 ± 9.904	3.171 ± 0.524
	NetEST	6.822 ± 1.107	1.405 ± 0.219	6.222 ± 0.662	1.256 ± 0.217	4.278 ± 0.501	0.842 ± 0.144
	Deconfounder	8.338 ± 1.230	4.738 ± 0.844	8.082 ± 0.770	4.607 ± 0.601	6.273 ± 0.665	3.428 ± 0.550
	SPNET	8.693 ± 1.030	<u>1.204 ± 0.216</u>	8.432 ± 0.549	<u>1.238 ± 0.251</u>	7.031 ± 0.626	<u>0.982 ± 0.200</u>
	DNDC	<u>2.589 ± 0.959</u>	1.618 ± 0.781	<u>2.273 ± 0.217</u>	1.485 ± 0.176	<u>1.946 ± 0.317</u>	1.322 ± 0.244
	DSPNET	1.497 $\pm 0.145^{\dagger}$	0.890 $\pm 0.080^{\dagger}$	1.565 $\pm 0.171^{\dagger}$	0.939 $\pm 0.137^{\dagger}$	1.305 $\pm 0.088^{\dagger}$	0.770 $\pm 0.092^{\dagger}$
	DESCN	23.430 ± 3.422	22.348 ± 3.428	18.261 ± 3.824	17.300 ± 3.641	12.651 ± 2.103	11.815 ± 2.011
BlogCatalog	DFITE	11.841 ± 3.243	3.446 ± 0.427	10.308 ± 4.692	2.867 ± 0.600	7.579 ± 1.930	2.311 ± 0.580
	DERCFR	35.321 ± 8.824	24.921 ± 3.295	27.508 ± 7.344	20.028 ± 4.403	18.786 ± 4.341	13.430 ± 2.645
	CFR	11.547 ± 3.164	<u>1.295 ± 0.249</u>	10.060 ± 5.000	<u>1.079 ± 0.225</u>	7.198 ± 2.051	<u>0.865 ± 0.159</u>
	NetEST	8.539 ± 1.074	1.586 ± 0.218	6.648 ± 1.136	1.563 ± 0.132	4.815 ± 0.683	1.219 ± 0.196
	Deconfounder	13.067 ± 1.863	8.884 ± 1.170	10.264 ± 1.967	6.707 ± 1.373	7.156 ± 1.385	4.605 ± 0.987
	SPNET	9.569 ± 1.742	2.298 ± 0.859	7.918 ± 1.529	1.796 ± 0.475	6.575 ± 1.327	1.544 ± 0.441
	DNDC	<u>2.475 ± 0.462</u>	1.454 ± 0.400	<u>2.057 ± 0.137</u>	1.250 ± 0.129	<u>1.800 ± 0.214</u>	1.078 ± 0.109
	DSPNET	1.464 $\pm 0.119^{\dagger}$	0.845 $\pm 0.105^{\dagger}$	1.521 $\pm 0.129^{\dagger}$	0.870 $\pm 0.110^{\dagger}$	1.316 $\pm 0.096^{\dagger}$	0.790 $\pm 0.102^{\dagger}$
	DESCN	23.430 ± 3.422	22.348 ± 3.428	18.261 ± 3.824	17.300 ± 3.641	12.651 ± 2.103	11.815 ± 2.011

971

972

973

Table 10: DSPNET performance under different unobserved confounding levels.

Level	Flickr		BlogCatalog	
	$\sqrt{\epsilon_{PEHE}}$	ϵ_{ATE}	$\sqrt{\epsilon_{PEHE}}$	ϵ_{ATE}
10%	1.535 \pm 0.133	0.911 \pm 0.102	1.613 \pm 0.188	0.949 \pm 0.206
20%	1.694 \pm 0.102	0.968 \pm 0.081	1.697 \pm 0.089	1.009 \pm 0.064
30%	1.712 \pm 0.129	1.112 \pm 0.093	1.830 \pm 0.194	1.021 \pm 0.212
original (0%)	1.497 \pm 0.145	0.890 \pm 0.080	1.464 \pm 0.119	0.845 \pm 0.105

980

981

Table 11: Performance of DSPNET and network-based baselines under different unobserved confounding levels.

Dataset	Model	Level = 10%		Level = 20%		Level = 30%	
		$\sqrt{\epsilon_{PEHE}}$	ϵ_{ATE}	$\sqrt{\epsilon_{PEHE}}$	ϵ_{ATE}	$\sqrt{\epsilon_{PEHE}}$	ϵ_{ATE}
Flickr	Deconfounder	8.350 \pm 1.324	4.807 \pm 0.942	8.578 \pm 1.375	4.950 \pm 1.003	8.810 \pm 0.998	5.216 \pm 0.667
	NetEST	6.982 \pm 1.121	1.484 \pm 0.204	7.172 \pm 1.259	1.590 \pm 0.189	7.538 \pm 1.375	1.610 \pm 0.219
	SPNET	8.870 \pm 1.123	1.334 \pm 0.256	9.045 \pm 1.260	1.355 \pm 0.304	9.233 \pm 1.453	1.398 \pm 0.210
	DNDC	2.637 \pm 0.8878	1.724 \pm 0.581	2.749 \pm 0.752	1.751 \pm 0.585	2.878 \pm 0.604	1.768 \pm 0.592
	DSPNET	1.535 \pm 0.133	0.911 \pm 0.102	1.694 \pm 0.102	0.968 \pm 0.081	1.712 \pm 0.129	1.112 \pm 0.093
BlogCatalog	Deconfounder	13.231 \pm 1.839	8.932 \pm 1.212	13.773 \pm 1.792	8.978 \pm 1.280	13.906 \pm 2.092	9.126 \pm 1.483
	NetEST	8.659 \pm 1.065	1.632 \pm 0.319	8.859 \pm 1.095	1.752 \pm 0.319	9.132 \pm 1.146	1.827 \pm 0.322
	SPNET	9.725 \pm 1.546	2.227 \pm 0.838	9.882 \pm 1.346	2.681 \pm 0.846	10.379 \pm 1.475	2.782 \pm 0.943
	DNDC	2.571 \pm 0.336	1.527 \pm 0.486	2.748 \pm 0.364	1.684 \pm 0.388	2.906 \pm 0.440	1.692 \pm 0.407
	DSPNET	1.613 \pm 0.188	0.949 \pm 0.206	1.697 \pm 0.089	1.009 \pm 0.064	1.830 \pm 0.194	1.021 \pm 0.212

995

996

The CATE-ID estimation performance of DSPNET for different levels of unobserved confounding is shown in Table 10. Besides, we also compare the CATE-ID estimation of DSPNET with those network-based baselines (NetEST, Deconfounder, SPNET and DNDC) under different levels of unobserved confounding, as shown in Table 11. We can see that DSPNET remains stable and continues to outperform baselines under different unobserved confounding levels. The above results indicate that our method is robust even when there are unobserved confounders, as the proposed model can infer the dynamic latent confounders by leveraging the network structure and neighbors' characteristics.

1004

1005

C.6 EMPIRICAL STUDY OF MODEL COMPLEXITY

1006

We conduct an empirical study to examine how increasing the architectural depth and width affects the performance of DSPNET. Specifically, we independently explored three key architectural hyperparameters about model complexity: (1) the depth of the GCN backbone, (2) the depth of the MLP backbone, (3) the size of the hidden dimensions.

1011

1012

For each hyperparameter, we varied one factor while fixing the remaining two to their default settings. Concretely, we evaluated GCN depths of 1, 2, 3 layers, MLP depths of 3, 4, 5 layers, and hidden dimensions of 100, 150, 200. The performance of DSPNET for CATE-ID estimation on Flickr and BlogCatalog in different architectural settings is shown in Table 12.

1015

1016

The results show that the performance of DSPNET under different MLP layers and hidden dimensions remains stable across all tested configurations. However, adding more GCN layers leads to a clear performance drop due to the well-known over-smoothing effect, where deeper GCNs produce increasingly similar node representations and erase individual-level heterogeneity essential for accurate CATE estimation. Moreover, in many networks, 1-hop neighbors already provide sufficient information, while deeper propagation introduces irrelevant signals from distant nodes, further degrading performance.

1022

1023

C.7 PARAMETER ANALYSIS OF ω CONTROLLING OVER-FITTING TERM

1024

1025

In the hyperparameter analysis of the main body, we only investigate the impact of the hyperparameter α (control the influence of treatment prediction) and β (control the contribution of gradient reversal

1026

1027

Table 12: Empirical study of model complexity.

1028

1029

Setting	Value	Flickr		BlogCatalog	
		$\sqrt{\epsilon_{PEHE}}$	ϵ_{ATE}	$\sqrt{\epsilon_{PEHE}}$	ϵ_{ATE}
# of GCN Layers	1	1.497 \pm 0.145	0.890 \pm 0.080	1.464 \pm 0.119	0.845 \pm 0.105
	2	5.299 \pm 4.407	2.543 \pm 2.811	6.293 \pm 4.441	3.091 \pm 3.803
	3	15.703 \pm 3.403	6.714 \pm 2.826	16.868 \pm 7.206	8.758 \pm 7.103
# of MLP Layers	3	1.455 \pm 0.145	0.814 \pm 0.110	1.355 \pm 0.145	0.814 \pm 0.110
	4	1.571 \pm 0.107	0.918 \pm 0.116	1.371 \pm 0.107	0.858 \pm 0.116
	5	1.416 \pm 0.149	0.850 \pm 0.116	1.486 \pm 0.149	0.850 \pm 0.116
# of Hidden Dim	100	1.435 \pm 0.121	0.887 \pm 0.087	1.412 \pm 0.110	0.812 \pm 0.141
	150	1.373 \pm 0.103	0.836 \pm 0.089	1.419 \pm 0.221	0.772 \pm 0.130
	200	1.436 \pm 0.159	0.844 \pm 0.084	1.577 \pm 0.433	0.827 \pm 0.154

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

component), here we further conduct additional experiments on analyzing the impact of ω controlling the over-fitting term in Eq.(10) on the proposed model DSPNET. We set ω to range in $\{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}\}$ and plot the curve chart of CATE-ID estimation performance in terms of $\sqrt{\epsilon_{PEHE}}$ and ϵ_{ATE} on Flickr and BlogCatalog. The results are shown in Figure 5, we can see that the proposed DSPNET performs steadily under varying values of ω in both $\sqrt{\epsilon_{PEHE}}$ and ϵ_{ATE} , which means that DSPNET is not sensitive to the hyperparameter ω controlling over-fitting term.

1042

1043

1044

1045

1046

1047

1048

Figure 5: Hyperparameter Analysis of ω .

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

C.8 COMPARISON FOR DIFFERENT BALANCING STRATEGIES

Apart from the gradient reversal method adopted in DSPNET, another common approach to mitigate confounding bias is to enforce distributional balance of confounder representations in the latent space. Two widely used balancing strategies include the Wasserstein-1 (Wass) distance and Maximum Mean Discrepancy (MMD). Both aim to minimize the distributional divergence between the treated and control groups with respect to the confounder representations, thereby ensuring that the learned confounders are not predictive of the treatment assignment.

To demonstrate the effectiveness of the gradient reversal strategy used in our model, we compare it against two widely used balancing strategies—Wasserstein-1 (Wass) distance and Maximum Mean Discrepancy (MMD)—in the task of treatment effect estimation on Flickr and BlogCatalog. As shown in Figure 6, our gradient reversal consistently outperforms the alternatives in different metrics and datasets.

Figure 6: Treatment effect estimation performance of DSPNET under different balance strategies.

Table 13: Performance comparison between unit GRU and LSTM.

Datasets	Model	$p\% = 0.1\%$		$p\% = 0.5\%$		$p\% = 1.0\%$	
		$\sqrt{\epsilon_{PHE}}$	ϵ_{ATE}	$\sqrt{\epsilon_{PHE}}$	ϵ_{ATE}	$\sqrt{\epsilon_{PHE}}$	ϵ_{ATE}
Flickr	DSPNET _{GRU}	1.497 \pm 0.145	0.890 \pm 0.080	2.062 \pm 0.498	1.144 \pm 0.128	2.189 \pm 0.205	1.351 \pm 0.209
	DSPNET _{LSTM}	1.498 \pm 0.119	0.871 \pm 0.099	2.181 \pm 0.419	1.227 \pm 0.332	2.023 \pm 0.137	1.276 \pm 0.150
BlogCatalog	DSPNET _{GRU}	1.464 \pm 0.119	0.845 \pm 0.105	1.506 \pm 0.237	0.913 \pm 0.204	2.227 \pm 0.378	1.183 \pm 0.290
	DSPNET _{LSTM}	1.517 \pm 0.171	0.906 \pm 0.195	1.512 \pm 0.113	0.938 \pm 0.176	2.260 \pm 0.502	0.948 \pm 0.145

C.9 COMPARISON OF GRU AND LSTM UNITS FOR ENCODING HISTORICAL INFORMATION

In the experiments in main body, the proposed DSPNET employs a Gated Recurrent Unit (GRU) (Cho et al., 2014) to encode historical information by capturing hidden confounders, treatment assignments, and past temporal states. While GRUs are computationally efficient and effective for modeling sequential dependencies, another widely used recurrent architecture is the Long Short-Term Memory (LSTM) network (Hochreiter & Schmidhuber, 1997). To assess whether the performance of DSPNET depends on the choice of recurrent unit, we conducted an ablation study comparing GRU and LSTM as alternative modules for encoding historical information.

We replaced the GRU cell in DSPNET with an LSTM cell while keeping all other components, hyperparameters, and training configurations unchanged. Here we report the comparison results between GRU and LSTM cell on Flickr and BlogCatalog by default generation for varying degrees of network dynamics. As shown in Table 13, one can see that both GRU- and LSTM-based variants of DSPNET achieve comparable performance.

C.10 DIFFERENT EXPOSURE FUNCTIONS

In real-world networks, interference depends not only on neighbors’ treatment assignments, but also on how these treatments interact with intrinsic behavioral patterns of individuals. For example, a health intervention (e.g., jog) may affect a user only if its treated neighbors actively engage in and share health-related behaviors. Hence, simple exposure summaries (e.g., averaging neighbor treatments) oversimplify these dynamics. Unlike prior work, DSPNET leverages treatment assignments as gating signals and builds a learnable interference representation through an additional GCN module, which serves as the exposure summary function for modeling interference, as shown in Equation (6).

To examine how sensitive DSPNET is to the design of the summary function, we conducted experiments where we varied the aggregation rule of DSPNET, we derive the following three variants of exposure summary function to capture the interference from neighbors:

- **Sum-Pooling:** directly sum of the treatment values of unit i ’s neighbors, thus the exposure summary of unit i is formulated as $e_i^t = \sum_{j \in \mathcal{G}_i^t} d_j^t$.
- **Average-Pooling:** average the treatment assignments of unit i ’s neighbors, then the exposure summary of unit i is formulated as $e_i^t = \frac{\sum_{j \in \mathcal{G}_i^t} d_j^t}{|\mathcal{G}_i^t|}$.

1134

1135

Table 14: Comparison results for different variants of exposure summary function.

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

Variants	Flickr		BlogCatalog	
	$\sqrt{\epsilon_{PEHE}}$	ϵ_{ATE}	$\sqrt{\epsilon_{PEHE}}$	ϵ_{ATE}
Sum-Pooling	1.570 \pm 0.190	1.163 \pm 0.162	1.752 \pm 0.166	1.183 \pm 0.182
Average-Pooling	1.695 \pm 0.152	1.142 \pm 0.135	1.543 \pm 0.164	1.073 \pm 0.198
PS-Weighting	1.598 \pm 0.121	1.121 \pm 0.135	1.502 \pm 0.062	0.891 \pm 0.091
Original	1.497 \pm 0.145	0.890 \pm 0.080	1.464 \pm 0.119	0.845 \pm 0.105

- **PS-Weighting:** use each unit’s neighbors’ propensity scores as weights to aggregate the GCN-based neighbor representations as the summary exposure: $e_i^t = \sum_{j \in \mathcal{G}_i^t} \pi(\mathbf{x}_j^t) \cdot \mathbf{r}_j^t$, where $\pi(\mathbf{x}_j^t)$ is the propensity score, here we use the MLP network with softmax function to predict the propensity scores.

Then we compare the variants of the above three summary functions with the original strategy of DSPNET on Flickr and BlogCatalog with default generation for the CATE-ID estimation task. The comparison results are shown in Table 14. We can see that the exposure function with representations (i.e., the PS-Weighting and Original) is relatively better, indicating that considering the heterogeneity of neighbor’s interference is important, but the other variants are also competitive.

C.11 CONFOUNDER DISTRIBUTION VISUALIZATION

Additionally, we compared the distributions of confounder representations learned by the DSPNET model, both with and without the balancing strategy, i.e., the gradient reversal component. In particular, we randomly sampled representations of control and treated group samples at a selected time step from models trained under conditions with and without the balancing strategy. These representations were then reduced to two dimensions using t-SNE, and visualized through scatter plots. As illustrated in the Figure 7, the confounder representations of the treated and control groups obtained using the balancing strategy are more closely clustered compared to those without the balancing strategy, indicating a smaller distance between the two groups.

D LIMITATION

In this work, our proposed approach explicitly models local interference, assuming that only treatments assigned to immediate neighbors influence an individual’s outcome. While this simplifies analysis and computational complexity, it inherently neglects global interference effects—scenarios where units beyond direct neighbors can impact the outcomes through indirect or cascading pathways within the network. Such global spillover effects are plausible in many real-world settings, particularly in dense or highly interconnected networks, and their omission could potentially lead to incomplete or biased causal estimates. Therefore, extending our approach to account for broader network influence remains an important direction for future research.

And our work assumes that a given unit’s treatment status does not influence the treatment assignments of its neighbors, we only consider the interference which refers to the influence of one unit’s neighbors’ treatment on its outcome. However, in real-world networked settings, treatments may spread contagiously or through social influence processes, violating this assumption. Ignoring such treatment dependence could limit the generalizability of our findings. Incorporating treatment contagion mechanisms into the modeling framework represents another valuable avenue for future research.

Furthermore, in observational social networks, covariates and structure are often entangled through homophily. And homophily and contagion (peer influence, interference) are fundamentally confounded in observational settings, making it impossible to cleanly distinguish “similarity due to shared attributes” from “similarity due to peer influence”. In this work, we does not aim to identify or separate homophily from contagion, but we acknowledge that fully separating homophily-driven sim-

Figure 7: Confounder distribution visualization with and without balancing strategy on BlogCatalog and Flickr.

ilarity from contagion-driven influence in dynamic observational networks is an open and important problem.

E LLM USAGE

We used large language models (LLMs) solely to aid in the writing process, including polishing grammar and improving clarity of exposition. No part of the research design, theoretical development, experiments, or analysis relied on LLMs.