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ABSTRACT

In recent years, estimating causal effects of treatment on the outcome variable
in network environments has attracted growing interest. The intrinsic intercon-
nectedness of network and the attendant violation of the SUTVA assumption have
prompted a wave of treatment effect estimation methods tailored to network set-
tings, yielding considerable progress such as capturing hidden confounders by
leveraging auxiliary network structure. Nevertheless, despite these advances, the
existing methods: (i) mainly focus on the static network, overlooking the dynamic
nature of many real-world networks and confounders that evolve over time; (ii)
assume the absence of dynamic network interference where one unit’s treatment
can affect its neighbors’ outcomes. To address these two limitations, we first
define a new estimand of treatment effects accounting for interference in a dynamic
network environment, i.e., CATE-ID, and establish its identifiability under such
an environment. Then we accordingly propose DSPNET1, a framework tailored
specifically for treatment effect estimation in dynamic network environment, that
leverages historical information and network structure to capture time-varying
confounders and model dynamic interference. Extensive experiments demonstrate
the superiority of our proposed method compared to state-of-the-art approaches.

1 INTRODUCTION

Treatment effect estimation (Winship & Morgan, 1999) plays a fundamental role in understanding
the relationship between treatment (a.k.a intervention) and outcome, serving as a cornerstone for
decision-making across a wide range of domains, such as healthcare (Hernán & Robins, 2006), social
networks (Barabas & Jerit, 2009), and economics (Lechner et al., 2011). The gold standard for
estimating treatment effects is randomized controlled trials (RCTs) (Stanley, 2007; Stolberg et al.,
2004), which involve randomly assigning units to different treatment arms (e.g., administering or
withholding medication) and comparing their observed outcomes (e.g., recovery rates). This design
enables reliable estimation of treatment effects by eliminating confounding through randomization.
However, RCTs are often costly and time-consuming (Bondemark & Ruf, 2015; Zabor et al., 2020),
and may raise ethical concerns in certain contexts (Edwards et al., 1999).

Given the limitations of RCTs, researchers have increasingly turned to rich and readily available
observational data to estimate the conditional average treatment effect (CATE)2. Many observational
studies (Gianicolo et al., 2020; Hernán & Robins, 2006; Rubin, 2007; Winship & Morgan, 1999)
rely on the Stable Unit Treatment Value Assumption (SUTVA) (Green & Gerber, 2010), which
assumes that units are independent and not subject to interference from one another. Furthermore,
one of the critical problems in estimating treatment effects is to eliminate confounding bias caused by
confounders (Greenland et al., 1999), the variables that causally affect both treatment and outcome.
To facilitate unbiased estimation, these studies also commonly adopt the assumption of ignorability
(Greenland & Mansournia, 2015), which assumes the absence of unobserved confounders.

However, the assumptions of no unmeasured confounding and no interference often fail in practice
(Guo et al., 2020a; Yao et al., 2021). In a community-level infectious disease study, socioeconomic
status (SES) may affect both treatment (e.g., compliance with mobility restriction) and outcome (e.g.,

1Anonymous code link is available at: https://anonymous.4open.science/r/DSPNET-ABE6/
2While much of the literature equates CATE with Individual Treatment Effect (ITE), in this work we strictly

use CATE, as ITE is not identical to CATE theoretically (Vegetabile, 2021).
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infection risk). For instance, lower-SES individuals may have limited access to safe transportation
and are more likely to live in high-density housing, where close contact increases infection risk.
However, SES, acting as a confounder, is often difficult to observe or measure directly. To address
this, recent work (Chu et al., 2021; Jiang & Sun, 2022; Sui et al.; Veitch et al., 2019) leverages
network structures to infer hidden confounders from relational context, such as inferring SES from
the occupations or attributes of social connections. Moreover, individuals are embedded in networks
where one unit’s compliance with mobility restriction can affect the infection risk of its neighbors, a
phenomenon known as interference or the spillover effect (Benjamin-Chung et al., 2018; Ma & Tresp,
2021). Several studies (Huang et al., 2023; Rakesh et al., 2018; Zhao et al., 2024) have been made to
explicitly model interference for treatment effect estimation.

However, most of these methods are designed for static networks, assuming that the network structure
and covariates remain unchanged over time. In practice, many network environments are inherently
dynamic, with both the network structure and the attributes of individual nodes evolving over time.
For example, in the aforementioned infectious disease study, the community structure may shift as
residents relocate, while individual-level covariates such as health status may also vary over time.
These dynamic characteristics pose substantial challenges for treatment effect estimation in networked
settings. First, the interplay between complex temporal evolution and network interference makes
the identifiability of treatment effects, i.e., determining whether treatment effects can be recovered
from observational data, a highly non-trivial problem. Second, as both network structures and node
covariates evolve, the distribution of confounders becomes time-dependent; modeling the evolution of
confounders and controlling for time-varying confounding bias require further exploration. Third, the
evolution of network and attributes alters the pattern and magnitude of interference between nodes,
necessitating dynamic modeling of spillover effects based on the changing network structure.

To address the aforementioned challenges, we first define a new target estimand, Conditional Average
Treatment Effects with Interference under Dynamic networks (CATE-ID), for treatment effect
estimation in dynamic network environments with interference, and formally prove its identifiability
under a set of assumptions. Building on this theoretical foundation, we propose DSPNET, a novel
framework designed to estimate the target causal estimand by explicitly modeling both hidden
confounders and interference in dynamic networks. Specifically, DSPNET integrates GCNs and
RNNs to aggregate neighborhood and historical information to infer dynamic hidden confounders.
Then it learns a dedicated interference representation to capture spillover effects by encoding the
treatments and characteristics of a unit’s neighborhood. Finally, DSPNET employs an adversarial
learning strategy, encouraging balanced confounder representations to mitigate confounding bias
when estimating treatment effects from an observational dynamic network.

2 PROBLEM FORMULATION

In this work, we use bold letters to denote vectors or matrices, and unbold lowercase letters for scalars.
Specifically, let unbold capital letters denote random variables (e.g., Xt

i ), lowercase letters (e.g., xt
i)

for their realizations. Let At ∈ {0, 1}N×N denote the adjacency matrix that encodes the network
structure among N units at time step t, where At

ij = 1 (At
ij = 0) indicates the presence (absence) of

an edge between unit i and j. Xt = {xt
1, ...,x

t
N} represents the covariates of the N units at time

step t with xt
i ∈ Rm denoting the covariates for unit i, and X<t denotes the covariates before time t

for all nodes. Let Dt = {dt1, ..., dtN} denote the set of treatment assignments for the N units where
dti = 1 indicates that unit i is treated and dti = 0 otherwise, and Y t = {yt1, ..., ytN} denotes the set of
observed outcomes for N units at time step t. Let Gt

i represent the neighboring set of i at time step t
and Gt

−i represent unit i’s non-neighbors, and the covariates and treatments of unit i’s neighbors and
non-neighbors at time step t are denoted by Xt

Gi
, Dt

Gi
and Xt

G−i
, Dt

G−i
, respectively.

For the treatment effect estimation in I.I.D setting, the target estimand is typically the conditional
average treatment effect (CATE): τ(xi) = E[Yi(1)|xi]− E[Yi(0)|xi] where Yi(Di) denote unit i’s
potential outcome under treatment Di. However, the above estimand is not applicable in a network
environment where interference exists. To account for interference, prior works (Forastiere et al.,
2021; Ma & Tresp, 2021) often aggregate the treatments of neighboring units into a single scalar
variable (e.g., via mean pooling) and treat it as a regular covariate. However, such a one-dimensional
summary can be inadequate in high-dimensional environments, where it may fail to capture the rich
heterogeneity of neighbors’ influences. Therefore, we define the following generalized factor that
captures the influence of neighbors’ covariates and treatment assignments:
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Definition 2.1. Environment Exposure. We define a summary function that aggregates the treatments
and covariates of unit i’s neighbors at time step t, F t

i (·): {Rm}|Gt
i | × {0, 1}|Gt

i | → E where E ∈ Rk

is the exposure space, then the environment exposure is formulated by Et
i = F t

i

(
Xt

Gi
,Dt

Gi

)
.

To ensure well-defined potential outcomes under exposure Et
i , we adopt the following assumption:

Assumption 2.2. Given the summary function F t
i , ∀ Dt

Gi
,Dt

G−i
, Xt

Gi
, Xt

G−i
, and ∀ D̃t

Gi
, D̃t

G−i
,

X̃t
Gi

, X̃t
G−i

if F t
i (X

t
Gi
,Dt

Gi
) = F t

i (X̃
t
Gi
, D̃t

Gi
), the following equality holds:

Y t
i (D

t
i ,D

t
Gi
,Dt

G−i
) = Y t

i (D
t
i , D̃

t
Gi
, D̃t

G−i
), (1)

where Y t
i (D

t
i ,D

t
Gi
,Dt

G−i
) is the general case of unit i’s potential outcome. D̃t

Gi
, D̃t

G−i
, X̃t

Gi
, X̃t

G−i

are the alternative assignments to Dt
Gi

, Dt
G−i

, Xt
Gi
,Xt

G−i
, respectively.

This assumption implies that once the response to the environment exposure function, i.e., Et
i , is

determined, the potential outcome of unit i under treatment Dt
i is fully specified. Then we extend the

notation Yi(Di) by incorporating the environment exposure Et
i and let Yi(D

t
i , E

t
i ) denote unit i’s

potential outcome under treatment Dt
i and exposure Et

i at time step t.

Formally, we define our target estimand, the Conditional Average Treatment Effect with Interference
under Dynamic networks (CATE-ID), as an extension of the standard CATE to dynamic network
settings with interference. Specifically, CATE-ID measures the expected difference in outcomes
under alternative treatment assignments conditioning on the unit’s covariates, historical information,
and neighbors’ covariates at time step t:

τ ti = E[Y t
i (1, E

t
i = eti)|xt

i,Ht,Xt
Gi
]− E[Y t

i (0, E
t
i = eti)|xt

i,Ht,Xt
Gi
], (2)

where Ht = {X<t,D<t,A<t}3 is the historical information that encodes past covariates, treatments,
and network structures for time step t. CATE-ID incorporates environment exposure, enabling the
assessment of an intervention’s intrinsic causal effect on an individual while excluding interference.
For instance, in the aforementioned study, we can capture the true effect of a mobility restriction itself
on infection risk, eliminating the bias from the indirect effects transmitted through social contacts
(e.g., a unit’s infection risk may increase due to its neighbors’ non-compliance with the mobility
restriction, then the effect of the intervention may be underestimated).

3 CAUSAL IDENTIFIABILITY
tD

tX

tZ

tYtE

t

tX

tD

Figure 1: Causal Graph.

Building on the theoretical frameworks proposed in (Forastiere et al.,
2021; Ma & Tresp, 2021), we introduce the assumptions adopted in
our setting and formally establish the identifiability of CATE-ID de-
fined in Eq. (2) for dynamic network environments with interference.

Previous literature (Shalit et al., 2017; Schwab et al., 2018; Ma et al.,
2022) typically relies on the ignorability assumption, which presumes the absence of hidden con-
founders. In this work, we extend this assumption to allow for the presence of hidden confounders:
Assumption 3.1. Extended Ignorability Assumption. There exists a function Φz(·): zt

i =
Φz(x

t
i,X

t
Gi
,Ht) that encodes the information of unit i’s covariates, historical factor, and its neigh-

bors’ covariates into full confounders Zt
i , such that, given Zt

i , the treatment Dt
i and environment

exposure Et
i are independent of the potential outcomes, i.e., Y t

i (1, E
t
i ), Y

t
i (0, E

t
i ) ⊥ Dt

i , E
t
i |Zt

i .

Assumption 3.1 implies that all confounders have been captured by Zt
i . Furthermore, to guarantee

correspondence between potential outcomes and observations, we generalize the standard consistency
assumption (VanderWeele & Hernan, 2013) to the setting with environment exposure:
Assumption 3.2. Consistency Assumption. An individual’s potential outcome under a particular
treatment and environment exposure is exactly the outcome we would observe if the individual
actually received that treatment and exposure, i.e., Y t

i (D
t
i , E

t
i ) = Y t

i with observed Di and Et
i .

3Following prior works in dynamic causality (Lim, 2018; Bica et al., 2020; Ma et al., 2021), past outcomes
Y <t are often excluded, as their influence is assumed to be captured by past covariates and treatments, with
the goal of estimating marginal treatment effects at each time step rather than modeling outcome trajectories.
Nonetheless, our framework can readily incorporate Y <t if required by specific applications.

3
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Based on the above definitions and assumptions, the causal graph for a single time step in the
dynamic network setting is depicted in Figure 1, where the subscript denoting unit index is omitted
for generality and simplicity. Formally, we establish the following theorem on the identifiability of
CATE-ID in the presence of hidden confounders and interference:

Theorem 3.3. If we can recover the distribution p(Y t
i |Zt

i , E
t
i , D

t
i) and p(Zt

i |Xt
i ,Ht,Xt

Gi
), the

estimand CATE-ID presented in Eq.(2) can be identified from the observational dynamic network.

Proof. The identified form of CATE-ID under interference is derived by:

τ ti = EY [Y
t
i (1, E

t
i = eti)− Y t

i (0, E
t
i = eti)|xt

i,Ht,Xt
Gi
]

(1)
= EZ [EY [Y

t
i (1, E

t
i = eti)− Y t

i (0, E
t
i = eti)|xt

i,Ht,Xt
Gi
, Zt

i ]|xt
i,Ht,Xt

Gi
]

(2)
= EZ [EY [Y

t
i (1, E

t
i = eti)− Y t

i (0, E
t
i = eti)|xt

i,Ht,Xt
Gi
, Zt

i , E
t
i , D

t
i ]|xt

i,Ht,Xt
Gi
]

(3)
= EZ [EY [Y

t
i (1, E

t
i = eti)− Y t

i (0, E
t
i = eti)|Zt

i , E
t
i , D

t
i ]|xt

i,Ht,Xt
Gi
]

(4)
= EZ [EY [Y

t
i |Zt

i , E
t
i = eti, D

t
i = 1]− EY [Y

t
i |Zt

i , E
t
i = eti, D

t
i = 0]|xt

i,Ht,Xt
Gi
],

(3)

where equation (1) is the straightforward expectation over full confounders Zt
i , equation (2) is

derived by Assumption 3.1, equation (3) can be inferred from condition independence such that
Y t
i ⊥ Ht, Xt

i , X
t
Gi
|Zt

i , E
t
i from the causal graph, and equation (4) is based on Assumption 3.2.

4 METHODOLOGY
Time Step t

x1

x4 x5

x2 x3
Dt

GCN

GRU

Layer

 

zt

Ht+1et

At Ht
Outcome

Prediction

Outcome

Prediction

Dt=1

Dt=0

~

~

Ht
~

GCN

MLP

Treatment

Prediction

Figure 2: The workflow illustration of DSPNET.

In this section, we introduce Dynamic
SPillover modeling NETwork (DSPNET),
a novel framework for estimating the tar-
get treatment effect estimand that explic-
itly addresses interference in dynamic net-
work environments. The overall workflow
of DSPNET in a single time step is illus-
trated in Figure 2, and its key components
are detailed in the following subsections.

4.1 REPRESENTATION LEARNING OF FULL CONFOUNDERS

As previously presented in Assumption 3.1, the full confounders Zt
i can be inferred via the function

Φz(·) by incorporating historical information, neighbor’s covariates, and unit’s own covariates. Here,
we approximate the function Φz(·) using multi-layer graph convolutional networks (GCNs) combined
with multilayer perceptrons (MLPs) to learn the representation of the full confounders Zt

i :

zt
i = f t

z([g
t
z(X

t,At)i, H̃
t
i ]), (4)

where gtz(·) and f t
z(·) represent the function parameterized by multiple GCN and MLP layers, H̃t

i

is the encoded historical state for unit i at time step t. To model the historical state H̃t
i , we employ

a recurrent neural unit, such as a Gated Recurrent Unit (GRU) (Cho et al., 2014) or a Long Short-
Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997), to encode full confounders, treatment
assignment, and the historical state of the previous step:

H̃t
i = RNN([zt−1

i , dt−1
i ], H̃t−1

i ), (5)

where RNN(·) can be instantiated as either a GRU or an LSTM cell, depending on the implementation
choice. The initial historical state, i.e., H̃1

i , is set to a zero vector.

4.2 INTERFERENCE MODELING

To more effectively model interference and instantiate environment exposure in a learnable manner,
we propose inferring an interference representation eti for each unit i as a proxy for the environment

4
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exposure variable Et
i , incorporating both the treatments and attributes of its neighbors for capturing

the heterogeneous influences. Specifically, we first project each unit’s observed covariates into a
latent space via a function gr(·), parameterized by a stack of GCN layers, to obtain the hidden state
rti of each unit i. Then we aggregate the hidden states of unit i’s neighbors by incorporating their
treatment assignments to formulate the interference representation eti for unit i at time step t:

rti = gr(X
t,At)i, eti =

∑
j∈Gt

i

dtj · rtj . (6)

4.3 OUTCOME PREDICTION

Given the representation zt
i of full confounders and the interference representation eti, our goal is to

estimate the potential outcomes under alternative treatment assignments. To this end, we construct
two separate MLP networks corresponding to treatment treatment d = 1 and d = 0, respectively.
Formally, the potential outcome of unit i w.r.t. treatment assignment dti at time step t is given by:

f(zt
i , e

t
i, d

t
i) =

{
ŷti(0) = f t

0(z
t
i , e

t
i), if dti = 0

ŷti(1) = f t
1(z

t
i , e

t
i), if dti = 1

, (7)

where the functions f t
0(·) and f t

1(·) are both parameterized by stacking multiple MLP layers, ŷti(0)
and ŷti(1) represent the predicted potential outcomes under treatment dti = 0 and dti = 1, respectively.
Then the predicted factual outcome is computed as ŷti = (1− dti) · ŷti(0) + dti · ŷti(1).
Given the predicted factual outcome ŷti and observed outcome yti for each unit and time step, we
employ the Mean Square Error (MSE) loss to minimize the discrepancy between them:

Ly =
1

T

T∑
t=1

1

N

N∑
i=1

(ŷti − yti)
2. (8)

4.4 BALANCING CONFOUNDER REPRESENTATIONS VIA GRADIENT REVERSAL

Estimating treatment effects requires addressing confounding bias, which arises from the differences
in confounder distributions between treatment and control groups, and (Shalit et al., 2017) theoretically
shows that learning representations that minimize distributional discrepancies between different
groups can effectively reduce the upper bound of the estimation error. Motivated by this, we adopt an
adversarial learning strategy with a Gradient Reversal Layer (GRL) (Ganin et al., 2016; Ma et al.,
2021), which encourages confounder representations to be balanced across treatment groups, thus
mitigating confounding bias while preserving predictive information.

First, we model treatment assignment with a prediction function fd(·), parameterized by an MLP,
which takes the full confounder representation zt

i as input and outputs the probability of receiving
treatment, i.e., p(Dt

i = 1|zt
i) = fd(z

t
i), and trained by the cross-entropy loss:

Ld = − 1

T

T∑
t=1

1

N

N∑
i=1

[dtilog(p(D
t
i = 1|zt

i)) + (1− dti)log(1− p(Dt
i = 1|zt

i))]. (9)

Then, the Gradient Reversal Layer operates as follows: let L denote the final loss function of the
proposed DSPNET framework, which can be formulated as follows:

L = Ly + αLd + ω||Θ||2, (10)

where Θ denotes the set of learnable model parameters, α and ω are hyperparameters that control
the contributions of the treatment prediction loss and the regularization term, respectively. Let Θz

represent the parameters associated with the full confounder representation learning module. Then,
during backpropagation with GRL, the update for Θz is modified as follows:

Θz = Θz − η(
∂Ly

∂Θz
− β

∂αLd

∂Θz
+ ω

∂||Θ||2

∂Θz
), (11)

where η is the learning rate. That is, when updating the parameters of Θz , we multiply the gradient
from treatment prediction module by a negative constant −β during backpropagation, and all other
parameters Θ\Θz are updated by standard gradient descent. Intuitively, the GRL discourages the
confounder representation from carrying predictive information to treatment, thereby aligning the
representation distributions across treatment groups while preserving outcome-relevant information.

5
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5 EXPERIMENTS

5.1 DATASETS

Flickr: Flickr (Tang & Liu, 2011) is a popular image and video-based social network, where users
connect and share multimedia content. In this dataset, each node corresponds to a user, and edges
represent friendships between users. The features of a node are constructed using bag-of-words
representations of user’s interest tag.

BlogCatalog: BlogCatalog (Zafarani & Liu, 2009) is a social networking platform where bloggers
share their blogs and interact with each other. In the BlogCatalog dataset, each node represents a
blogger, and edges indicate social relationships between bloggers. The features are also constructed
using bag-of-words representations of the bloggers’ posts.

To construct a dynamic network, we introduce temporal variations by randomly adding or removing
p% of edges in the underlying network structure and apply Gaussian noise perturbations to the
same proportion of covariates in each time step (25 time steps in total) to simulate real-world
fluctuations. Using the generated dynamic network, we simulate confounders, treatment assignments,
and interference-aware potential outcomes via an auto-regressive process at each time step, the
detailed data generation procedure can be found in Appendix A.

5.2 BASELINES

Here we briefly introduce the baseline methods for estimating treatment effects in our evaluation,
which can be categorized into two categories:

Non-Networked: (1) CFR (Shalit et al., 2017) is a deep learning-based approach which mitigates
distributional imbalance between treatment and control groups by incorporating the Wasserstein
distance regularizer; (2) DESCN (Zhong et al., 2022) is a model for estimating treatment effects
by capturing integrated information on treatment propensity, response, and hidden treatment effects
through a cross-network in a multi-task learning framework; (3) DFITE (Wang et al.) leverages
diffusion models to capture the latent space of these unobserved confounders by modeling the reverse
diffusion process as a Markov chain to estimate treatment effects; (4) DERCFR (Wu et al., 2022) is a
framework which identifies and separates confounders from non-confounders for reducing bias of
treatment effect estimation.

Networked: (5) NetEST (Jiang & Sun, 2022) formulates the treatment effect estimation problem as
a multi-task learning task, employing representation learning techniques to align the distributions
of treated and control groups for networked environment; (6) Deconfounder (Guo et al., 2020c)
utilize graph neural network to capture the hidden confounders by leveraging the network structure
for treatment effect estimation; (7) DNDC (Ma et al., 2021) is designed to leverage current and
historical networked observational data to learn representations of hidden confounders over time for
the treatment effect estimation in dynamic network environment; (8) SPNet (Huang et al., 2023) aims
to model the interference by developing a attention mechanism for treatment effect estimation in
static networked environment.

5.3 EXPERIMENTAL SETUP

For each dataset, we run each experiment ten times and report the average performance. In each run,
the dataset is randomly split into training-60%, validation-20%, and test-20% set. As described in
data generation process in Appendix A, we set the degree of dynamic p% = 0.1%, and the strength
of interference C = 50 unless otherwise specified. We adopt the grid search strategy based on the
validation performance to identify the optimal hyperparameter configuration. For hyperparameters
of DSPNET, the learning rate η is set to 4 × 10−3, α and β range in {1,2,3,4}, and ω ranges in
{10−1, 10−2, 10−3, 10−4}. We use Adam (Kingma & Ba, 2014) as the model optimizer and GRU
cell to model the historical state. For baselines designed for static data, we train a separate model at
each time step and report the averaged performance across all steps. More detailed experiments such
as using LSTM cell, different strength of historical influence, different influence of network structure
and different balancing strategies can be found in Appendix C.

6
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Table 1: CATE-ID performance comparison by varying degrees of network dynamics on Flickr and
BlogCatalog datasets. Bold: the best results. Underline: the 2nd best results. Lower is better.

Datasets Methods
p% = 0.1% p% = 0.5% p% = 1.0%

√
ϵPEHE ϵATE

√
ϵPEHE ϵATE

√
ϵPEHE ϵATE

Flickr

DESCN 17.982 ±3.872 16.996 ±3.821 29.551 ±9.891 28.273 ±9.605 30.396 ±6.052 29.058 ±5.873

DFITE 17.404 ±2.933 3.083 ±0.486 20.527 ±3.514 3.306 ±0.410 22.459 ±6.097 3.545 ±0.772

DERCFR 21.704 ±3.786 17.246 ±3.825 31.406 ±5.804 23.916 ±5.023 31.847 ±6.121 25.925 ±5.850

CFR 24.218 ±3.939 2.754 ±0.599 26.716 ±3.995 2.841 ±0.444 29.372 ±6.836 3.185 ±0.632

NetEST 6.822±1.107 1.405±0.219 10.708±2.935 2.575±0.386 11.000±1.806 2.418±0.421

Deconfounder 8.338±1.230 4.738±0.844 11.724±3.344 6.854±2.175 12.249±1.912 7.132±1.399

SPNET 8.693±1.030 1.204±0.216 11.320±2.769 1.397±0.340 11.797±1.679 1.542±0.384

DNDC 2.589±0.959 1.618±0.781 3.062±0.379 1.915±0.187 3.291±0.522 2.194±0.578

DSPNET 1.497±0.145 0.890±0.080 2.062±0.498 1.144±0.128 2.189±0.205 1.351±0.209

BlogCatalog

DESCN 23.430 ±3.422 22.348 ±3.428 26.393 ±4.581 25.198 ±4.429 28.458 ±4.822 27.229 ±4.654

DFITE 11.841 ±3.243 3.446 ±0.427 14.028 ±4.200 3.618 ±0.786 14.483 ±3.005 3.559 ±0.599

DERCFR 35.321 ±8.824 24.921 ±3.295 39.149 ±5.028 29.219 ±4.523 39.286 ±7.888 30.360 ±8.279

CFR 11.547 ±3.164 1.295 ±0.249 13.935 ±4.166 1.171 ±0.168 14.546 ±3.352 1.279 ±0.246

NetEST 8.539 ±1.074 1.586 ±0.218 9.871 ±1.161 1.847 ±0.204 9.533 ±1.255 1.835 ±0.223

Deconfounder 13.067 ±1.863 8.884 ±1.170 14.870 ±2.515 9.709 ±1.711 15.037 ±2.336 9.910 ±1.491

SPNET 9.569 ±1.742 2.298 ±0.859 10.681 ±1.771 2.597 ±0.705 10.288 ±1.736 2.149 ±0.522

DNDC 2.475 ±0.462 1.454 ±0.400 2.419 ±0.332 1.319 ±0.329 3.367 ±0.757 1.723 ±0.530

DSPNET 1.464 ±0.119 0.845 ±0.105 1.506 ±0.237 0.913 ±0.204 2.227 ±0.378 1.183 ±0.290

5.4 DIRECT EVALUATION OF CATE-ID ESTIMATION

In this section, we directly evaluate the performance of CATE-ID estimation using the following
two commonly used metrics: rooted precision in estimation of heterogeneous effect

√
ϵPEHE and

mean absolute error on average treatment effect ϵATE , where
√
ϵPEHE and ϵATE aim to measure

the accuracy of unit-level and population-level treatment effect estimation across T time steps:

√
ϵPEHE =

1

T

T∑
t=1

√√√√ 1

N

N∑
i=1

(τ ti − τ̂ ti )
2, ϵATE =

1

T

T∑
t=1

| 1
N

N∑
i=1

τ ti −
1

N

N∑
i=1

τ̂ ti |, (12)

where τ ti = yti(1) − yti(0) and τ̂ ti = ŷti(1) − ŷti(0) are the ground-truth and predicted CATE-ID,
respectively. We take the average of the two metrics over T time steps for the final results.

5.4.1 COMPARISON UNDER VARYING DEGREES OF NETWORK DYNAMICS

First, we evaluate the performance of different models in estimating treatment effects under varying
degrees of network dynamics. Specifically, we set p% = {0.1%, 0.5%, 1.0%} to control the level of
structural and feature perturbations, and compare the CATE-ID estimation performance of all models
across these settings. The experimental results are reported in Table 1.

As shown in the results, the proposed DSPNET consistently achieves the best performance across
all dynamic settings. Notably, DSPNET maintains stable performance as the proportion of dynamic
edge and feature perturbations increases, demonstrating its robustness to network dynamics. The
poor performance of non-network baselines (i.e., CFR, DERCFR, DESCN, DFITE) highlights that
ignoring network dependencies leads to biased treatment effect estimation in networked environments.
Although NetEST, Deconfounder, and SPNET incorporate network structures, they assume a static
network setting, resulting in performance degradation under dynamic conditions. DNDC, which
is tailored for dynamic networks, achieves relatively strong results but does not explicitly model
interference. Consequently, its performance remains consistently inferior to DSPNET, underscoring
the importance of capturing spillover effects for accurate treatment effect estimation.

5.4.2 COMPARISON UNDER VARYING STRENGTHS OF NETWORK INTERFERENCE

Then, we investigate how model performance varies under different strengths of network interference.
Specifically, we keep all other parameters as default during the data generation process and control
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Figure 3: Performance under varying strengths of network interference, "BC" denotes BlogCatalog.

the strength of network interference using C = {10, 20, 30, 40, 50}. The performance of different
models under different interference strength is illustrated in Figure 3.

The results show that the proposed DSPNET consistently outperforms all other models across all levels
of network interference, and its performance remains relatively stable even under high interference
strengths (e.g., C = 40 or 50), demonstrating its effectiveness in handling complex spillover effects
and its suitability for real-world applications. While SPNET is designed to model spillover effects,
it does not account for temporal dynamics, resulting in inferior performance compared to dynamic
models such as DNDC and DSPNET. Moreover, as C increases, the performance gap between DNDC
and DSPNET becomes more pronounced, further highlighting the importance of explicitly modeling
network interference in treatment effect estimation.

5.4.3 ABLATION STUDY

Table 2: Abalation Study.

Variants
Flickr Blogcatalog

√
ϵPEHE ϵATE

√
ϵPEHE ϵATE

Original 1.497 ±0.145 0.890 ±0.080 1.464 ±0.119 0.845 ±0.105

w/o GRL 2.179 ±0.266 0.986 ±0.108 1.886 ±0.227 1.089 ±0.247

w/o IM 1.938 ±0.242 1.245 ±0.203 1.822 ±0.138 1.118 ±0.164

w/o GRU 10.235 ±1.768 6.854 ±1.014 10.652 ±0.718 3.547 ±0.912

To investigate the contribution of each com-
ponent in our proposed DSPNET model, we
conduct an ablation study by evaluating the
following model variants:

(i) w/o GRL: This variant removes the Gradient Reversal Layer which is responsible for balancing
the confounder representation across treatment groups and mitigating the confounding bias.

(ii) w/o IM: This variant eliminates the Interference Modeling component, thereby excluding the
learning of interference representation for outcome estimation.

(iii) w/o GRU: This variant excludes the Gated Recurrent Unit (GRU), disabling the model’s ability
to capture temporal dependencies and historical information.

The results are shown in Table 2. Specifically, removing the GRL component results in a moderate
drop, underscoring its role in mitigating confounding bias. Excluding interference modeling leads
to further degradation, highlighting the importance of capturing spillover effects in networked
environments. The most substantial performance loss is observed when removing GRU component,
demonstrating the critical role of capturing historical information in dynamic settings. Overall, these
findings validate the necessity of each component in ensuring the effectiveness of DSPNET.

5.4.4 HYPERPARAMETER ANALYSIS

(a)
√
ϵPEHE on Flickr (b) ϵATE on Flickr

(c)
√
ϵPEHE on BC (d) ϵATE on BC

Figure 4: Hyperparameter Analysis.

To analyze the impact of hyperparameters α (which
controls the contribution of treatment prediction) and
β (which regulates the gradient reversal layer), we con-
duct a sensitivity analysis by varying both parameters
within the set {1, 2, 3, 4}. We visualize the performance
trends across different combinations of α and β using
a histogram to facilitate comparison. As shown in Fig-
ure 4, the proposed DSPNET exhibits stable performance
across different hyperparameter configurations, indicat-
ing that it is not highly sensitive to specific choices of
α and β. Notably, when α, β ∈ {1, 2}, DSPNET attains
relatively better performance, suggesting that balanced
and moderate contributions from treatment prediction
and gradient reversal yield better results.
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5.5 EVALUATING TREATMENT PRIORITIZATION RULES

Table 3: RATE results, higher is better.

Methods
Flickr BlogCatalog

RAUTOC RQINI RAUTOC RQINI

Deconfounder 0.03±0.39 0.01±0.13 0.19 ± 0.14 0.07 ± 0.06

SPNET 0.26±0.24 0.10±0.07 0.05 ± 0.17 0.02 ± 0.06

NetEST 0.51±0.36 0.15±0.12 0.35 ± 0.15 0.15 ± 0.04

DNDC 2.72±0.69 1.04±0.27 3.03 ± 0.68 1.09 ± 0.47

DSPNET 2.98±0.64 1.13±0.25 3.91 ± 0.56 1.52 ± 0.22

Beyond directly measuring the CATE-ID esti-
mation accuracy by

√
ϵPEHE and ϵATE with

ground-truth CATE-ID, we further evaluate the
quality of treatment prioritization rules induced
by the estimated CATE-ID of different esti-
mators by adopting Rank-weighted Average
Treatment Effect (RATE) (Yadlowsky et al.,
2025). RATE provides a principled approach to
assess how good the estimated CATE-ID is with-
out requiring access to the ground-truth CATE-
ID values, focusing on its treatment prioritization ability, i.e., the extent to which individuals with
higher estimated CATE-ID truly benefit more from treatment, it provides a complementary perspec-
tive on the quality of estimated CATE-ID beyond error-based metrics. The formal definition and
more details about RATE metric can be found in the Appendix B.

We report the RAUTOC and RQINI scores—two variants of RATE—averaged over all time steps in
Table 3, comparing the proposed DSPNET with network-based baselines (Deconfounder, SPNET,
NetEst, and DNDC) on BlogCatalog and Flickr with default generation. Results for those non-
network baselines are omitted, as their performance was consistently poor in our earlier evaluations.
As shown, DSPNET achieves higher and more stable RATE scores across datasets, demonstrating
superior treatment prioritization capability over the other network-based baseline methods.

6 RELATED WORKS

treatment effect estimation from observational data has received considerable attention in recent years,
leading to the development of numerous methodological approaches. Unlike traditional methods
(Shalit et al., 2017; Zhong et al., 2022; Wang et al.; Wu et al., 2022; Yao et al., 2018) that assume
independent and identically distributed (i.i.d.) samples, networked data violate this assumption, as an
individual’s outcome can be influenced by their neighbors. To address confounding in such settings,
several approaches—such as Deconfounder (Guo et al., 2020c), NetEST (Jiang & Sun, 2022), CONE
(Guo et al., 2020b), and IGNITE (Guo et al., 2021)—have been proposed. These methods leverage
network structures to capture hidden confounders and adopt various balancing strategies to mitigate
confounding bias for reliable treatment effect estimation. However, they do not explicitly model
network interference. To address interference, LCVA (Rakesh et al., 2018) utilizes a variational
autoencoder to capture spillover effects between units. SPNET (Huang et al., 2023) further refines
this by modeling heterogeneous spillover magnitudes across neighbor pairs. Additionally, (Ma &
Tresp, 2021) explores interference modeling via simple aggregation of neighbors’ treatments, while
HyperSCI (Ma et al., 2022) extends this idea to hypergraphs using attention mechanisms based on
neighbors’ representations. However, these methods are designed for static networks and cannot
be directly applied to dynamic environments. Although DNDC (Ma et al., 2021) aims to estimate
treatment effects in dynamic graphs, it does not account for interference. In contrast, our work
targets on dynamic network environments, while simultaneously modeling hidden confounders and
interference, thereby addressing both time-evolving confounders and spillover effects.

7 CONCLUSION

In this paper, we study the problem of treatment effect estimation in dynamic network environments,
explicitly accounting for time-varying hidden confounders and network interference. We begin by
introducing a new treatment effect estimand CATE-ID tailored for dynamic settings with interference
and formally prove its identifiability. Building on this theoretical foundation, we propose DSPNET,
a novel framework that leverages both the evolving network structure and historical information
to model dynamic hidden confounders and interference, and then learns the representations of
confounders and environment exposure to enable accurate treatment effect estimation over time.
Extensive experiments demonstrate the superiority of our framework over existing methods for
estimating treatment effects from dynamic networked observational data.
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8 REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of our work. For the proposed algorithm,
we provide an anonymous link to the full source code. The assumptions required for Theorem 3.3
as well as its complete proof are clearly presented in Section 3. For experimental evaluation, we
detail the entire dataset generation and processing procedure in Appendix A, and provide additional
experimental results and analysis in Appendix C. Together, these resources allow researchers to fully
reproduce our theoretical results and empirical findings.
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APPENDIX

A DATA GENERATION

In this section, we introduce how to generate the treatment, confounders, interference, and potential
outcomes for dataset BlogCatalog and Flickr:

Step 1: Simulate the full confounders zt
i . we first introduce how to leverage the historical information

and network structure to simulate the full confounders. The full confounders zt
i for unit i at time step

t could be simulated as follows:

zt
i =

1

λ1 + λ2 + λ3
(λ1Ψ

t
i + λ2

∑
u∈Gt

i

fL(x
t
u) + λ3fL(x

t
i) + ϵt), (13)

where function fL(·) maps the features in terms of bag-of-words to topic distribution by training a
LDA topic model with 50 topics (Pritchard et al., 2000) such that the dimension of the output of fL(·)
is 50, thus zt

i ∈ R50, Ψt
i ∈ R50 represents the historical information, Gt

i denotes the neighbor set
of unit i at time step t. λ1, λ2 and λ3 are to control the influence of historical information, network
structure and current unit’s covariates to the hidden confounders, respectively. λ1, λ2, λ3 are set
to 10, 3, 3 by default; ϵt ∈ R50 is the noise vector and each element is sampled from the normal
distribution ϵtj ∼ N (0, 0.001); Each element Ψt

i,j can be obtained using q-order autoregressive
(Mills, 1990) as follows:

Ψt
i,j =

1

q
(

q∑
r=1

ρr,jz
t−r
i,j +

q∑
r=1

ϱrd
t−r
i ), (14)

where zt−r
i,j denotes the j-th element of confounders zt−r

i at time step t − r, dt−r
i represents the

treatment assignment of unit i at time step t− r, ρr,j ∼ N (1− r/q, 1/q) and ϱr ∼ N (0, 0.02) are
to control the impact of historical confounders and treatment assignments from previous q time steps,
here we follow (Ma et al., 2021) and set the order q = 3. Noting that Ψt

i at initial time step t = 1 is
set to zero vector.

Step 2: Simulate observed treatment assignment dti. First we randomly select two vectors rt0, r
t
1 from

the current hidden confounders Zt in the LDA topic space as the centroids for treatment and control
group. The similarity between a unit’s confounder representation zt

i and each centroid is measured
by their inner product:

sti,0 = rt0
T
zt
i , s

t
i,1 = rt1

T
zt
i , (15)

which indicates how close unit i is to the control or treatment centroid in the topic space, rt0
T

represents the transpose of rt0. Then we can simulate the treatment assignment dti for unit i at time
step t as follows:

dti ∼B(
exp(sti,1)

exp(sti,1) + exp(sti,0)
), (16)

where B denotes the Bernoulli distribution.

Step 3: Simulate interference (spillover effect) It
i . The interference It

i of unit i’s neighbors on it can
be computed as follows:

It
i = C ·

∑
j∈Gt

i

wt
p
T
fL(xj) · dtj , (17)

where C is the scaling value to control the strength of interference in the network, wt
p is the weight

vector sampled from uniform distribution N (0, I50) where I50 is the identity matrix, the inner
product wt

p
T
fL(xj) quantifies neighbor j’s influence strength on unit i, which contributes to the

interference if the neighbor receives treatment.

Step 4: Simulate potential outcomes. Given the aforementioned steps, the potential outcomes could
be formulated as follows:

yti(1) = κ(sti,0 + sti,1) + It
i + ϵty,

yti(0) = κsti,0 + It
i + ϵty,

(18)
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Table 4: Statistical Summaries on Flickr and BlogCatalog
Dataset Flickr BlogCatalog

Time Steps 25 25
# Units 7575 5196

# Averaged Edges 239623 171661
# Features 12047 8189

% Treated Ratio 49.48 ± 2.07 49.53 ± 2.00
Average ATE 16.19 ± 12.87 22.00 ± 17.10

where κ is the scaling factor and set to 100 by default, ϵty ∼ N (0, 1) is the sampled Gaussian noise.
Then the observed outcome for unit i at time step t could be obtained by:

yti = dti · yti(1) + (1− dti) · yti(0). (19)

Then, based on the above data generation process and default parameter settings, we randomly run
the simulations 10 times on the Flickr and BlogCatalog datasets. The statistical summaries of the
generated data are presented in Table 4.

B RANK-WEIGHTED AVERAGE TREATMENT EFFECT (RATE)

In practical applications of treatment effect estimation, the primary goal often lies not only in
estimating the conditional average treatment effect (CATE) for each individual, but also in constructing
treatment prioritization rules that rank individuals according to their estimated treatment effects. To
evaluate the quality of such prioritization rules, (Yadlowsky et al., 2025) proposed the Rank-weighted
Average Treatment Effect (RATE), a general evaluation framework that quantifies how well an
estimated prioritization rule identifies those who truly benefit most from treatment. At a high level,
the RATE captures the extent to which individuals who are highly ranked by the prioritization rule
are more responsive to treatment than randomly selected individuals, which is another perspective to
evaluate the quality of the estimated CATE.

Unlike error-based metrics such as
√
ϵPEHE and ϵATE , RATE does not require access to the true

CATE values for each individual. Instead, it leverages the ranking induced by estimated CATEs,
thereby providing a more practical evaluation criterion in real-world settings where the true individual
treatment effect is unobservable.

B.1 FORMAL DEFINITION OF RATE

Let S(Xi) denote a treatment prioritization score assigned to the individual Xi, where S(·) is a
priority scoring function that could be a learned priority rule, a learned CATE estimate, a hardcoded
heuristic, or something else. In this work, our goal is to estimate the quality of the estimated CATE-ID,
we take the estimated CATE-ID for each individual as the prioritization score:

S(Xi) = τ̂(Xi), (20)
a larger value of S(Xi) implies that the individual should be treated first. For a given quantile level
0 < q ≤ 1, we define the Targeting Operator Characteristic (TOC) as:

TOC(q;S) = E[Y (1)− Y (0) | F (S(Xi)) ≥ 1− q]− E[Y (1)− Y (0)], (21)
where F (S(X)) is the cumulative distribution function of the prioritization score S(Xi). Intuitively,
TOC(q;S) measures the incremental gain in treatment effect when prioritizing the top-q fraction of
individuals based on the priority scoring function S(·), compared to the overall population. Noting
that if q = 1, the first term in Eq.(21) is the average treatment effect, and so TOC(q;S) = 0.

After defining the TOC(q;S), we can involve evaluating prioritization rules (based on the estimated
CATE-ID) in terms of weighted averages of the TOC. Formally, Rank-weighted Average Treatment
Effect (RATE) is defined as the a weighted integral of the TOC curve:

RATE(w;S) =
∫ 1

0

TOC(q;S) · w(q)dq, (22)
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where w(q) is a nonnegative weight function that emphasizes different regions of the ranking.
Different choices of w(q) yield different variants of RATE. Here we introduce two variants of RATE
based on different weight function as follows

(1) Area Under the Targeting Operator Characteristic (AUTOC). When the weight function is
chosen as uniform, i.e., w(q) = 1, RATE reduces to the the area under the TOC curve (AUTOC):

RAUTOC =

∫ 1

0

TOC(q;S)dq. (23)

RAUTOC provides an overall summary of how much benefit the prioritization rule delivers across
the entire population distribution. A higher RAUTOC indicates that the ranking consistently selects
individuals with higher treatment benefit, demonstrating higher quality of the treatment prioritization
rule induced by the estimated CATE-ID.

(2) Qini coefficient. The Qini coefficient is a widely used variant of RATE that emphasizes the ability
of a treatment prioritization rule to correctly identify individuals with the largest treatment effects. Its
definition can be written as:

RQINI =

∫ 1

0

q · TOC(q;S)dq, (24)

we can see that it uses the quantile level q as the weight function. Compared to AUTOC, which
applies uniform weighting over the entire population, the Qini coefficient assigns more weight to the
upper quantiles of the prioritization rule, thereby stressing the importance of ranking performance
among the top-scoring individuals.

C ADDITIONAL EXPERIMENTS

Table 5: CATE-ID performance comparison by varying influence of historical information on Flickr
and BlogCatalog datasets. Bold: the best results. Underline: the 2nd best results. Lower is better.

Datasets Methods
λ1 = 5 λ1 = 10 λ1 = 20

√
ϵPEHE ϵATE

√
ϵPEHE ϵATE

√
ϵPEHE ϵATE

Flickr

DESCN 10.637 ±2.198 9.621 ±2.162 17.982 ±3.872 16.996 ±3.821 25.112 ±6.005 23.865 ±5.858

DFITE 19.177 ±10.942 2.828 ±0.440 17.404 ±2.933 3.083 ±0.486 23.042 ±8.474 3.787 ±0.642

DERCFR 12.175 ±2.673 10.017 ±2.344 21.704 ±3.786 17.246 ±3.825 29.889 ±4.950 23.725 ±4.582

CFR 27.010 ±11.249 2.932 ±0.548 24.218 ±3.939 2.754 ±0.599 32.181 ±14.965 3.154 ±0.494

NetEST 4.342 ±0.642 0.875 ±0.112 6.822 ±1.107 1.405 ±0.219 9.136 ±1.748 2.052 ±0.333

Deconfounder 6.275 ±0.727 3.428 ±0.401 8.338 ±1.230 4.738 ±0.844 10.598 ±1.903 6.282 ±0.944

SPNET 7.208 ±0.691 1.043 ±0.173 8.693 ±1.030 1.204 ±0.216 10.167 ±1.622 1.482 ±0.445

DNDC 1.892 ±0.142 1.314 ±0.154 2.589 ±0.959 1.618 ±0.781 3.154 ±0.998 1.881 ±1.090

DSPNET 1.346 ±0.173 0.788 ±0.111 1.497 ±0.145 0.890 ±0.080 1.805 ±0.288 1.072 ±0.318

BlogCatalog

DESCN 13.812 ±2.041 12.934 ±2.083 23.430 ±3.422 22.348 ±3.428 32.849 ±6.206 31.539 ±6.139

DFITE 8.224 ±2.465 2.547 ±0.589 11.841 ±3.243 3.446 ±0.427 14.949 ±3.912 4.383 ±1.077

DERCFR 21.791 ±5.340 16.090 ±2.407 35.321 ±8.824 24.921 ±3.295 47.289 ±11.642 34.239 ±7.866

CFR 8.156 ±2.369 0.984 ±0.158 11.547 ±3.164 1.295 ±0.249 14.781 ±3.744 1.631 ±0.428

NetEST 5.302 ±0.664 1.272 ±0.235 8.539 ±1.074 1.586 ±0.218 11.671 ±1.923 2.021 ±0.302

Deconfounder 7.811 ±1.172 5.226 ±0.849 13.067 ±1.863 8.884 ±1.170 18.247 ±3.522 12.451 ±2.533

SPNET 6.674 ±0.460 1.643 ±0.480 9.569 ±1.742 2.298 ±0.859 12.206 ±2.198 2.743 ±0.809

DNDC 1.961 ±0.127 1.314 ±0.155 2.475 ±0.462 1.454 ±0.400 2.905 ±0.290 1.597 ±0.144

DSPNET 1.309 ±0.125 0.853 ±0.093 1.464 ±0.119 0.845 ±0.105 1.773 ±0.426 1.068 ±0.488

C.1 PERFORMANCE COMPARISON UNDER VARYING INFLUENCE OF HISTORY

In this section, we investigate the impact of different intensities of historical information on the
model’s performance in estimating treatment effects. Specifically, we keep all other parameters in the
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data generation process as default and vary the value of λ1 = {5,10,20} to examine how different
levels of historical influence affect the model’s performance. The results are presented in Table 5.

We can see that our proposed DSPNET model consistently outperforms all baselines across different
levels of historical influence. Most baseline methods exhibit significant deteriorating performance as
λ1 increases, which suggests that stronger historical dependencies make it more challenging for these
models to accurately estimate treatment effects. However, our proposed model DSPNET suffers the
least, demonstrating its superiority on capturing time-varying hidden confounder and interference on
dynamic network environment.

C.2 PERFORMANCE COMPARISON UNDER VARYING INFLUENCE OF CURRENT COVARIATES

As shown in the data generation, λ2 is set to control the influence of the current unit’s covariates on
its hidden confounders zt

i . Here we compare the treatment effect estimation performance between
baselines and the proposed model DSPNET under varying values of λ2 on Flickr and BlogCatalog.
We set the value of λ2 to {3,5,8} and remain the other parameter as default.

Table 6: CATE-ID performance comparison by varying influence of current covariates on Flickr and
BlogCatalog datasets. Bold: the best results. Underline: the 2nd best results. Lower is better.

Datasets Methods
λ2 = 3 λ2 = 5 λ2 = 8

√
ϵPEHE ϵATE

√
ϵPEHE ϵATE

√
ϵPEHE ϵATE

Flickr

DESCN 17.982 ±3.872 16.996 ±3.821 14.089 ±2.125 13.141 ±2.122 11.797 ±2.562 10.823 ±2.582

DFITE 17.404 ±2.933 3.083 ±0.486 14.872 ±2.196 2.679 ±0.270 16.166 ±3.923 2.634 ±0.670

DERCFR 21.704 ±3.786 17.246 ±3.825 15.100 ±2.852 11.958 ±2.363 13.250 ±2.015 10.515 ±1.760

CFR 24.218 ±3.939 2.754 ±0.599 23.425 ±2.193 3.081 ±0.864 23.708 ±2.849 3.048 ±0.788

NetEST 6.822 ±1.107 1.405 ±0.219 5.437 ±0.615 1.074 ±0.179 4.750 ±0.811 0.904 ±0.155

Deconfounder 8.338 ±1.230 4.738 ±0.844 7.309 ±0.885 4.154 ±0.789 6.786 ±1.017 3.759 ±0.708

SPNET 8.693 ±1.030 1.204 ±0.216 8.006 ±0.660 1.173 ±0.203 7.541 ±0.859 1.068 ±0.206

DNDC 2.589 ±0.959 1.618 ±0.781 2.338 ±0.533 1.561 ±0.449 2.100 ±0.361 1.361 ±0.281

DSPNET 1.497 ±0.145 0.890 ±0.080 1.440 ±0.137 0.825 ±0.129 1.373 ±0.151 0.784 ±0.140

BlogCatalog

DESCN 23.430 ±3.422 22.348 ±3.428 19.826 ±5.019 18.804 ±4.882 18.436 ±4.117 17.393 ±3.978

DFITE 11.841 ±3.243 3.446 ±0.427 11.050 ±4.279 3.222 ±0.471 12.446 ±4.225 2.866 ±0.437

DERCFR 35.321 ±8.824 24.921 ±3.295 29.706 ±6.265 22.365 ±5.321 31.197 ±6.479 21.824 ±4.618

CFR 11.547 ±3.164 1.295 ±0.249 10.574 ±4.037 1.033 ±0.207 12.396 ±4.525 1.021 ±0.144

NetEST 8.539 ±1.074 1.586 ±0.218 7.205 ±1.390 1.422 ±0.188 6.675 ±1.177 1.332 ±0.176

Deconfounder 13.067 ±1.863 8.884 ±1.170 11.527 ±3.180 7.659 ±2.202 10.195 ±3.013 6.600 ±1.901

SPNET 9.569 ±1.742 2.298 ±0.859 8.290 ±1.515 1.733 ±0.413 8.421 ±1.420 2.235 ±0.551

DNDC 2.475 ±0.462 1.454 ±0.400 2.180 ±0.182 1.260 ±0.189 2.273 ±0.348 1.517 ±0.416

DSPNET 1.464 ±0.119 0.845 ±0.105 1.549 ±0.044 0.852 ±0.083 1.573 ±0.129 0.951 ±0.147

The experimental results are shown in Table 6. We can see that our proposed model DSPNET
outperforms all the baselines under different levels of current covariates’ influence. Moreover, it can
be observed that under varying levels of influence λ2, the proposed model DSPNET exhibits strong
stability in estimating treatment effects, as it effectively captures confounders in the latent space and
learns the factors that truly affect the outcome.

C.3 PERFORMANCE COMPARISON UNDER VARYING INFLUENCE OF NETWORK STRUCTURE

In the data generation, λ3 is to control the influence of network structure, i.e., unit’s neighbors, on
its hidden confounders. Similarly, here we conduct the experiments to compare the treatment effect
estimation performance between the baselines and the proposed model DSPNET under varying λ3

values. We set the value of λ3 to also range in {3,5,8} and remain the other parameters in data
generation as default.

The experimental results are shown in Table 7. Still, our proposed model DSPNET outperforms the
other baselines in all settings of λ3 values and the performance of DSPNET remains stable when the
influence of network structure varies.
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Table 7: CATE-ID performance comparison by varying influence of network structure on Flickr and
BlogCatalog datasets. Bold: the best results. Underline: the 2nd best results. Lower is better.

Datasets Methods
λ3 = 3 λ3 = 5 λ3 = 8

√
ϵPEHE ϵATE

√
ϵPEHE ϵATE

√
ϵPEHE ϵATE

Flickr

DESCN 17.982 ±3.872 16.996 ±3.821 16.726 ±2.266 15.802 ±2.203 10.468 ±1.807 9.648 ±1.806

DFITE 17.404 ±2.933 3.083 ±0.486 20.351 ±8.152 3.076 ±0.611 16.333 ±5.052 2.649 ±0.393

DERCFR 21.704 ±3.786 17.246 ±3.825 17.721 ±1.587 14.079 ±1.777 12.066 ±2.430 9.898 ±2.171

CFR 24.218 ±3.939 2.754 ±0.599 28.309 ±7.360 3.106 ±0.649 27.616 ±9.904 3.171 ±0.524

NetEST 6.822 ±1.107 1.405 ±0.219 6.222 ±0.662 1.256 ±0.217 4.278 ±0.501 0.842 ±0.144

Deconfounder 8.338 ±1.230 4.738 ±0.844 8.082 ±0.770 4.607 ±0.601 6.273 ±0.665 3.428 ±0.550

SPNET 8.693 ±1.030 1.204 ±0.216 8.432 ±0.549 1.238 ±0.251 7.031 ±0.626 0.982 ±0.200

DNDC 2.589 ±0.959 1.618 ±0.781 2.273 ±0.217 1.485 ±0.176 1.946 ±0.317 1.322 ±0.244

DSPNET 1.497 ±0.145 0.890 ±0.080 1.565 ±0.171 0.939 ±0.137 1.305 ±0.088 0.770 ±0.092

BlogCatalog

DESCN 23.430 ±3.422 22.348 ±3.428 18.261 ±3.824 17.300 ±3.641 12.651 ±2.103 11.815 ±2.011

DFITE 11.841 ±3.243 3.446 ±0.427 10.308 ±4.692 2.867 ±0.600 7.579 ±1.930 2.311 ±0.580

DERCFR 35.321 ±8.824 24.921 ±3.295 27.508 ±7.344 20.028 ±4.403 18.786 ±4.341 13.430 ±2.645

CFR 11.547 ±3.164 1.295 ±0.249 10.060 ±5.000 1.079 ±0.225 7.198 ±2.051 0.865 ±0.159

NetEST 8.539 ±1.074 1.586 ±0.218 6.648 ±1.136 1.563 ±0.132 4.815 ±0.683 1.219 ±0.196

Deconfounder 13.067 ±1.863 8.884 ±1.170 10.264 ±1.967 6.707 ±1.373 7.156 ±1.385 4.605 ±0.987

SPNET 9.569 ±1.742 2.298 ±0.859 7.918 ±1.529 1.796 ±0.475 6.575 ±1.327 1.544 ±0.441

DNDC 2.475 ±0.462 1.454 ±0.400 2.057 ±0.137 1.250 ±0.129 1.800 ±0.214 1.078 ±0.109

DSPNET 1.464 ±0.119 0.845 ±0.105 1.521 ±0.129 0.870 ±0.110 1.316 ±0.096 0.790 ±0.102

C.4 PARAMETER ANALYSIS OF ω CONTROLLING OVER-FITTING TERM

In the hyperparameter analysis of the main body, we only investigate the impact of the hyperparameter
α (control the influcence of treatment prediction) and β (control the contribution of gradient reversal
component), here we further conduct additional experiments on analyzing the impact of ω controlling
the over-fitting term in Eq.(10) on the proposed model DSPNET.

We set ω to range in {10−4, 10−3, 10−2, 10−1, } and plot the curve chart of CATE-ID estimation
performance in terms of

√
ϵPEHE and ϵATE on Flickr and BlogCatalog. The results are shown in

Figure 5, we can see that the proposed DSPNET performs steadily under varying values of ω in both√
ϵPEHE and ϵATE , which means that DSPNET is not sensitive to the hyperparameter ω controlling

over-fitting term.
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Figure 5: Hyperparameter Analysis of ω.
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Table 8: Performance comparison between unit GRU and LSTM.

Datasets Model
p% = 0.1% p% = 0.5% p% = 1.0%

√
ϵPEHE ϵATE

√
ϵPEHE ϵATE

√
ϵPEHE ϵATE

Flickr
DSPNETGRU 1.497± 0.145 0.890± 0.080 2.062 ±0.498 1.144 ±0.128 2.189± 0.205 1.351± 0.209

DSPNETLSTM 1.498 ±0.119 0.871 ±0.099 2.181 ±0.419 1.227 ±0.332 2.023 ±0.137 1.276 ± 0.150

BlogCatalog
DSPNETGRU 1.464 ±0.119 0.845 ±0.105 1.506 ±0.237 0.913 ±0.204 2.227 ±0.378 1.183 ±0.290

DSPNETLSTM 1.517 ±0.171 0.906 ±0.195 1.512 ±0.113 0.938 ±0.176 2.260 ±0.502 0.948 ±0.145

C.5 COMPARISON FOR DIFFERENT BALANCING STRATEGIES

Apart from the gradient reversal method adopted in DSPNET, another common approach to mitigate
confounding bias is to enforce distributional balance of confounder representations in the latent space.
Two widely used balancing strategies include the Wasserstein-1 (Wass) distance and Maximum Mean
Discrepancy (MMD). Both aim to minimize the distributional divergence between the treated and
control groups with respect to the confounder representations, thereby ensuring that the learned
confounders are not predictive of the treatment assignment.

To demonstrate the effectiveness of the gradient reversal strategy used in our model, we compare it
against two widely used balancing strategies—Wasserstein-1 (Wass) distance and Maximum Mean
Discrepancy (MMD)—in the task of treatment effect estimation on Flickr and BlogCatalog. As
shown in Figure 6, our gradient reversal consistently outperforms the alternatives in different metrics
and datasets.
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Figure 6: Treatment effect estimation performance of DSPNET under different balance strategies.

C.6 COMPARISON OF GRU AND LSTM UNITS FOR ENCODING HISTORICAL INFORMATION

In the experiments in main body, the proposed DSPNET employs a Gated Recurrent Unit (GRU) (Cho
et al., 2014) to encode historical information by capturing hidden confounders, treatment assignments,
and past temporal states. While GRUs are computationally efficient and effective for modeling
sequential dependencies, another widely used recurrent architecture is the Long Short-Term Memory
(LSTM) network (Hochreiter & Schmidhuber, 1997). To assess whether the performance of DSPNET
depends on the choice of recurrent unit, we conducted an ablation study comparing GRU and LSTM
as alternative modules for encoding historical information.

We replaced the GRU cell in DSPNET with an LSTM cell while keeping all other components,
hyperparameters, and training configurations unchanged. Here we report the comparison results
between GRU and LSTM cell on Flickr and BlogCatalog by default generation for varying degress of
network dynamics. As shown in Table 8, one can see that both GRU- and LSTM-based variants of
DSPNET achieve comparable performance.
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Table 9: Comparison results for different variants of exposure summary function.

Variants
Flickr BlogCatalog

√
ϵPEHE ϵATE

√
ϵPEHE ϵATE

Sum-Pooling 1.570 ±0.190 1.163 ±0.162 1.752 ±0.166 1.183 ±0.182

Average-Pooling 1.695 ±0.152 1.142 ±0.135 1.543 ±0.164 1.073 ±0.198

PS-Weighting 1.598 ±0.121 1.121 ±0.135 1.502 ±0.062 0.891 ±0.091

Original 1.497± 0.145 0.890± 0.080 1.464 ±0.119 0.845 ±0.105

C.7 DIFFERENT EXPOSURE FUNCTIONS

In real-world networks, interference depends not only on neighbors’ treatment assignments, but also
on how these treatments interact with intrinsic behavioral patterns of individuals. For example, a health
intervention (e.g., jog) may affect a user only if its treated neighbors actively engage in and share
health-related behaviors. Hence, simple exposure summaries (e.g., averaging neighbor treatments)
oversimplify these dynamics. Unlike prior work, DSPNET leverages treatment assignments as gating
signals and builds a learnable interference representation through an additional GCN module, which
serves as the exposure summary function for modeling interference, as shown in Equation (6).

To examine how sensitive DSPNET is to the design of the summary function, we conducted experi-
ments where we varied the aggregation rule of DSPNET, we drive the following three variants of
exposure summary function to capture the interference from neighbors:

• Sum-Pooling: directly sum of the treatment values of unit i’s neighbors, thus the exposure
summary of unit i is formulated as eti =

∑
j∈Gt

i
dtj .

• Average-Pooling: average the treatment assignments of unit i’s neighbors, then the exposure

summary of unit i is formulated as eti =
∑

j∈Gt
i
dt
j

|Gt
i |

.

• PS-Weighting: use each unit’s neighbors’ propensity scores as weights to aggregate the
GCN-based neighbor representations as the summary exposure: eti =

∑
j∈Gt

i
π(xt

j) · rtj ,
where π(xt

j) is the propensity score, here we use the MLP network with softmax function
to predict the propensity scores.

Then we compare the variants of the above three summary functions with the original strategy of
DSPNET on Flickr and BlogCatalog with default generation for the CATE-ID estimation task. The
comparison results are shown in Table 9. We can see that the exposure function with representations
(i.e., the PS-Weighting and Original) is relatively better, indicating that considering the heterogeneity
of neighbor’s interference is important, but the other variants are also competitive.

C.8 CONFOUNDER DISTRIBUTION VISUALIZATION

Additionally, we compared the distributions of confounder representations learned by the DSPNET
model, both with and without the balancing strategy, i.e., the gradient reversal component. In
particular, we randomly sampled representations of control and treated group samples at a selected
time step from models trained under conditions with and without the balancing strategy. These
representations were then reduced to two dimensions using t-SNE, and visualized through scatter
plots. As illustrated in the Figure 7, the confounder representations of the treated and control groups
obtained using the balancing strategy are more closely clustered compared to those without the
balancing strategy, indicating a smaller distance between the two groups.

D LIMITATION

In this work, our proposed approach explicitly models local interference, assuming that only treat-
ments assigned to immediate neighbors influence an individual’s outcome. While this simplifies
analysis and computational complexity, it inherently neglects global interference effects—scenarios
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Figure 7: Confounder distribution visualization with and without balancing strategy on BlogCatalog
and Flickr.

where units beyond direct neighbors can impact the outcomes through indirect or cascading pathways
within the network. Such global spillover effects are plausible in many real-world settings, particularly
in dense or highly interconnected networks, and their omission could potentially lead to incomplete or
biased causal estimates. Therefore, extending our approach to account for broader network influence
remains an important direction for future research.

Furthermore, our work assumes that a given unit’s treatment status does not influence the treatment
assignments of its neighbors, we only consider the interference which refers to the influence of one
unit’s neighbors’ treatment on its outcome. However, in real-world networked settings, treatments
may spread contagiously or through social influence processes, violating this assumption. Ignoring
such treatment dependence could limit the generalizability of our findings. Incorporating treatment
contagion mechanisms into the modeling framework represents another valuable avenue for future
research.

E LLM USAGE

We used large language models (LLMs) solely to aid in the writing process, including polishing
grammar and improving clarity of exposition. No part of the research design, theoretical development,
experiments, or analysis relied on LLMs.
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