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Abstract

There was a significant progress in protein design using deep learning approaches.
The majority of methods predict sequences for a given structure. Recently, diffusion
approaches were developed for generating protein backbones. However, de novo
design of epitope-specific antibody binders remains an unsolved problem due to
the challenge of simultaneous optimization of the antibody sequence, variable loop
structures, and antigen binding. Here we present, EAGLE (Epitope-specific Anti-
body Generation using Language model Embeddings), a diffusion-based model that
does not require input backbone structures. The full antibody sequence (constant
and variable regions) is designed in the continuous space using protein language
model embeddings. Similarly to denoising diffusion probabilistic models for image
generation that condition the sampling on a text prompt, here we condition the
sampling of antibody sequences on antigen structure and epitope amino acids. The
model is trained on the available antibody and antibody-antigen structures, as well
as antibody sequences. Our Top-100 designs include sequences with 55% identity
to known binders for the most variable heavy chain loop. EAGLE’s high perfor-
mance is achieved by tailoring the method specifically for antibody design through
integration of continuous latent space diffusion and sampling conditioned on anti-
gen structure and epitope amino acids. Our model enables generating a wide range
of diverse, unique, variable loop length antibody binders using straightforward
epitope specifications.

1 Introduction

Antibody-based biotherapeutics represent a rapidly growing class of biologics that have significantly
transformed the landscape of the biopharmaceutical industry. There are over 100 approved antibody-
based therapeutics and over 1,000 in clinical studies for a wide range of diseases, including cancer,
autoimmunity, inflammatory diseases, and viral infections [1]. Antibodies consist of two chains (light
and heavy), with conserved frame regions and three variable loops (Complementarity Determining
Regions - CDRs) on each chain (Fig. S1). In a typical antibody discovery project, animal immu-
nization or display libraries [2–4] are used to generate antibodies for a specific target. Neutralizing
antibodies can also be isolated from virus outbreak survivors, as in Ebola [5] or SARS-CoV-2 [6].
One major challenge is to identify antibodies that target specific epitopes with high affinity out of
multiple candidates for further development [7, 8]. While antigens possess multiple epitopes, certain
ones among them may serve as more favorable targets from a therapeutic standpoint. For example,
binding to a highly conserved epitope reduces the risk of viral escape and extends the effectiveness of
antibodies [9–11].
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Deep learning approaches have been highly successful in protein design relying on generative models
[12]. The antibody design field has begun to investigate deep generative models because of their
computational efficiency, which surpasses that of conventional physics-based models [13–15]. The
first group of models uses protein language models (pLMs), both trained on all protein sequences
[16–18] or only on antibody sequences [19–21]. These models enable sampling antibody sequences
from the space of naturally observed antibodies, thus increasing the likelihood of expression and
folding of the designs. The second group of models aims to find sequences for a given backbone
structure [22–24]. This is applicable in a setting where some initial antibody binder and its structure
with an antigen is available and our goal is to further optimize the binder [25]. Finally, the third group
of models attempts to simultaneously co-design antibody sequence and structure. These methods
most often rely on graph neural networks, designing antibody sequences in an autoregressive manner.
The main drawbacks are that they are limited to CDRs of a fixed length and are not epitope-specific
[26, 27]. When epitopes are considered, only the CDR H3 sequence is redesigned while the rest of
the antibody sequence is fixed [28–30].

Figure 1: A. Sampling antibody sequences without (top) and with epitope conditioning (bottom). B.
A pipeline for epitope-specific sequence and structure generation.

Most recent co-design approaches rely on diffusion models that have proven themselves in text-to-
image generation, to co-design sequence and structure [31–33]. Diffusion models are deep generative
models that work by adding Gaussian noise to the available training data (also known as the forward
diffusion process) and then reversing the process (known as denoising or the reverse diffusion process)
to recover the data [34]. The model gradually learns to remove the noise. The reverse process can be
used for generating new data points. Similar to text-to-image generation, where image denoising is
conditioned on a text prompt, in protein design, sequence generation can be conditioned on shape,
symmetry, or binder. Despite the impressive performance, these methods work well for designing
structured regions that include helices or sheets [31–33]. Similarly to antibody-antigen structure
prediction [35–37], tailored models are needed for antibodies that bind through highly variable loops.
DiffAb [38] relies on a multinomial sequence diffusion [39] to co-design antibody CDR sequences
and their structure but requires a starting structure of antibody framework oriented relative to antigen.
While AbDiffuser can co-design sequence and structure of variable length without a need for a
starting structure, it does not consider the antigen or the epitope [40]. Despite recent advances, de
novo design of epitope-specific antibody binders including constant regions and variable length CDR
loops is not possible with current methods.

Here, we will apply techniques that are used for text conditioned image generation to generate
antibody sequences (Fig. 1, 2). We condition antibody sequence generation on the antigen structure
and epitope amino acids. To account for inter-dependencies between the frame and CDR loops, as
well as light and heavy chains, we design the full antibody sequence using diffusion in the continuous
space of ESM embeddings. Our designs are not limited to fixed-length CDR loops. Moreover, no
starting structure of the antibody (or frame) relative to antigen is required. To validate epitope-
specificity of the designed sequences, we use a structure generation model that simultaneously folds
the antibody and docks it to the antigen [37].
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2 Methods

Problem definition. Here we address the most general setting of de novo design: given an antigen
structure and the epitope site (list of antigen amino acids), generate antibody sequences that bind
to the given epitope. In the context of denoising diffusion models, instead of generating images
conditioned by a text prompt, we would like to generate antibody sequences conditioned on an
epitope sequence and structure.

Figure 2: Training setup. A. ESM encoder-decoder model. B. CLIP model for antibody-antigen
pairs. C. Denoiser model: the antigen CLIP encoder (purple) and ESM encoder (red) are fixed during
the training.

Figure 3: Sampling setup. The sampling relies on the pre-trained antigen CLIP encoder (purple),
denoiser (green), and ESM decoder (yellow) modules. The generated antibody sequences are folded
and docked to an antibody using a Fold&Dock model [37].
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Denoising diffusion for latent space generation of sequences. We rationalized that a diffusion
process will work better in the continuous pLMs embeddings space, that capture information about
the local and global contexts of amino acids rather than in the discrete categorical space of 20 amino
acids. For this purpose, we represent the antibody sequences by their ESM [41] residue embeddings
which are continuous and are essentially like a color in images. Diffusion models for image generation
have been currently used to generate images with smaller dimensions (about 64x64), that are later
converted to a high resolution image [42, 43]. The smallest ESM amino acid embedding dimension
currently available is 320, so we first train an encoder-decoder model (A.1.1, Fig. 2A). The encoder
reduces an antibody ESM embedding (Nx320) to a latent dimension of Nx64 in the range of [-1,1].
The diffusion model operates on this smaller dimension representation. The decoder model converts
the latent representation back to the original antibody sequence.

In the forward process we add Gaussian noise to the antibody latent space embeddings with a
noise scheduler until we reach a standard normal distribution (A.1.5). In the reverse process we
train a denoiser model to gradually move from a standard normal distribution (white noise) to the
antibody ESM latent embedding space (Nx64) and use the trained decoder to convert to an amino
acid sequence.

Epitope conditioning. To condition the sampling on an antigen structure and a specific epitope,
we use a ‘classifier-free guidance’ technique [44] that trains the denoiser model without the antigen
epitope for 10% of the time. Inspired by text-to-image generative models such as DALL·E [43], we
designed a Contrastive Language-Image Pretraining (CLIP) [45] - like model that greatly improved
the results of diffusion models for conditional image generation. Our CLIP model involves training
two encoders to generate embeddings for antibody sequence and antigen structure, respectively,
with the goal of maximizing the cosine similarities between interacting antibody-antigen pairs and
minimizing the cosine similarities between non-interactive pairs in a contrastive manner (Fig. 2B,
A.1.2). This is achieved by training two encoders simultaneously with symmetrical cross-entropy
loss. We later use the antigen embedding as an additional input for the denoiser model to provide
information about antibody sequences that can bind to the antigen, guiding the diffusion process in
the right direction. The CLIP-like model was trained prior to the denoiser model.

Denoiser architecture. The denoiser model consists of four Transformer modules, each accounting
for antibody-antibody, antibody-antigen, antigen-antibody, and antigen-antigen interactions (A.1.3).
The input for the denoiser model is the noised antibody ESM latent embeddings, the timestep t, the
antigen sequence and structure, epitope amino acids, and CLIP epitope representation (A.1.4). The
output is the predicted noise added at time t. The loss is defined as a mean squared error (MSE) loss
between the predicted and the actual noise (Fig. 2C).

Docking and scoring. The generated sequences are folded and docked to antigens, followed by
ranking (Fig. 1B, 3) using the fast ’Fold&Dock’ model [37] .

Datasets. Structures for the training of the Denoiser and CLIP models were obtained from the
SabDAB database [46]. A total of 8,411 structures were used for training and validation. For test
set, we retrieved all the antibodies from SabDAB that were published after the data for training
was obtained and had at least three different amino acids in CDR3 from each CDR3 in both the
training and validation sets, resulting in 71 structures. For the training of the ESM encoder-decoder
model which requires only antibody sequences without structures, we used sequences from the OAS
database [47] (A.1.6).

3 Results

Evaluation metrics. In nature, multiple diverse antibody sequences bind to the same epitope [9–11].
When we evaluate design methods, it is common to compare designed sequences to a single known
binder, neglecting the fact that the space of possible binder sequences is large. Despite that, metrics
that measure how similar the designed sequences to a single known binder are used due to a lack
of better options. The similarity is measured by amino acid recovery (AAR), that is the fraction of
correctly recovered CDR amino acids. Our model is the first one that can produce CDRs of different
length for a given epitope. Therefore, we define variable length AAR (VAAR) to account for CDR
length variability, dividing the number of identical aligned positions by the maximal length of the
two CDRs (A.2.2). In addition, because VAAR tends to decrease for longer CDR designs compared
to a true one, we also use sequence identity metrics (A.2.3). While most methods report the mean
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sequence recovery over a large number of generated sequences, due to the limitation of comparison
to a single binder, here we also report the maximal sequence recovery for 1,000 generated sequences
per test case.

Test set VAAR. As a baseline, for each of the 1,000 generated sequence, a random sequence of the
same length was generated by sampling CDRs with uniform amino acids probability over each CDR
position. In addition, 1,000 sequences were generated using the same architecture trained without
CLIP embeddings. We calculate maximal and mean VAAR over all generated sequences (Fig. 4A,
S4A, Tab. S1). As expected, the maximal VAAR for all CDRs except for CDR H3 is high, in the
range of 80%. For CDR H3, the maximal VAAR is ∼60%. Without CLIP training, the performance
is slightly lower. We have also explored the effect of the weight of classifier guidance (Fig. S2, S3)
and selected the value of 2.0 for the final model.

Figure 4: Test set performance. A. Maximal VAAR (%) by CDR loop. B. Maximal CDR H3 VAAR
(%) compared to HERN. B. Maximal CDR H3 sequence identity (%) compared to HERN.

Docking score correlates with CDR H3 VAAR. The ’Fold&Dock’ model typically generates
hundreds of models for each antibody sequence. We focus only on models that have at least 80%
overlap with the input epitope and select the best scoring one. We rank the 1,000 generated sequences
using this score. To support this ranking, we test if this score correlates with CDR H3 sequence
recovery. Indeed, we find such a dependency for our test set cases (Fig. S5).

Comparison to other methods. We compare our method to HERN (A.2.4), the only approach that
can co-design antibody sequence and structure given only the structure of the antigen and epitope
amino acids [28]. HERN only designs CDR H3 with fixed length and without considering frame
and other CDR loops. We find that HERN performs slightly better for the VAAR metrics (Fig. 4B,
S4B, Tab. S2) while our model performs slightly better for the sequence identity metrics (Fig. 4C,
S4C, Tab. S3). The difference can be attributed to the fact that our model can produce variable length
CDR loops. While the performance is comparable, EAGLE solves the most general antibody design
settings, while HERN only designs fixed length CDR H3 loops.

4 Conclusion

We present a model for the most general setting of de novo epitope-specific antibody design by
adapting ideas that advanced text-to-image generation, such as CLIP training. However, unlike
in images, we suffer from small size of the training set of only a few thousands antibody-antigen
structures. Another difficulty in training and validating antibody design models vs. image generation
is that sequence recovery of a single known binder is the main approach to assessment of designs
without labor-intensive lab experiments. We anticipate that further progress in the accuracy of
antibody-antigen docking and scoring models will aid in addressing those bottlenecks. Further
experimental validation of EAGLE designs will help to improve the method.
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A Appendix

A.1 Extended Methods

A.1.1 ESM encoder-decoder architecture

Our proposed model performs the diffusion process on the space of ESM latent embeddings. We
first tried to perform the diffusion process directly on the ESM embedding (with a dimension of
Nx320) [41], but found it difficult to train with lower performance compared to diffusing in a smaller
dimension space. This is consistent with image diffusion models which usually perform the diffusion
process on 64x64 images. Because we are performing the diffusion process in the space of ESM
latent embeddings, during the sampling our model will generate those embeddings and not antibody
sequences. To translate these latent embeddings back to amino acid sequence, we trained a simple
transformer based encoder-decoder model that converts ESM embeddings to a lower dimensional
latent space and then convert those latent embeddings back to amino acid sequences (Fig. 2A). The
architecture contains an encoder and decoder that are trained simultaneously (Fig. 2A). The encoder
reduces antibody chain (heavy/light) ESM embeddings (Nx320) to a latent dimension of 64 using a
single linear layer, which is then scaled to the range of [-1, 1] using a tanh activation. The decoder
converts this representation (’ESM latent embedding’) to amino acid probabilities for each position
(Nx22) using a simple BERT module [48]. The loss is defined as a categorical cross entropy between
a true antibody sequence and the decoder output. The encoder-decoder model was trained on a
∼100M antibody sequence from a database of observed antibody sequences (OAS) [47] until high
sequence recovery was reached (99.99%). Because the encoder-decoder model is trained on a huge
dataset, it achieves a nearly perfect sequence recovery rate even when adding some noise to the ESM
latent embedding.

A.1.2 CLIP architecture

The CLIP architecture contains two modules, antibody and antigen encoders (Fig. 2B). The antibody
encoder receives an antibody sequence as an ESM embedding and outputs an antibody vector
representation of dimension 128. The antibody encoder is a BERT-like model that contains a
sequence of transformers. The output of the last transformer is projected and normalized into a 128
vector representation. The antigen encoder receives an antigen representation identical to the denoiser
model but without the CLIP representation. The antigen encoder architecture is the same as the
antibody encoder but instead of regular transformers, it uses a transformer with added distance as
bias (same as the denoiser antigen-antigen module). The loss for training the CLIP is symmetrical
categorical cross-entropy loss between the corresponding antigen and antibody vectors representations
in the batch.

A.1.3 Denoiser architecture

The denoiser architecture is based on the previous work [37] which uses four Transformer modules
(a GPA block), each responsible for a different aspect of the antibody-antigen interaction. Here, for
each of the four interactions we use a simple transformer where the queries, keys and values are
either the antigen amino acids representation or the antibody amino acid representation. For the
antibody-antigen and the antigen-antibody transformers we use only the antigen amino acids that
are part of the epitope as queries, keys, and values. For the antigen-antigen transformer we provide
the antigen structure information by storing distances of amino acid atoms (N, Cα, C, O, and, Cβ
atoms and five additional side chain atoms that define the χ1−5 angles) from Cβ atom of all other
amino acids (LxLx10). This distance matrix is added to the antigen-antigen attention logits as bias
before the softmax activation. For the antigen-antigen transformer we also attend only on amino
acids that have Cβ-Cβ distance lower than 10Å. There are a total of three GPA blocks, each updating
the antibody and antigen representations.

A.1.4 Denoiser input and output

Antibody representation. The input for the denoiser model includes the antibody noised sequence
in the form of latent ESM embeddings (Nx64) with 5 additional channels for chain (light/heavy)
and antibody type (mAb/heavy chain only/light chain only) resulting in a matrix of size Nx69. To
support generation of CDRs with variable lengths, we represent the antibody sequence with the AHo
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numbering scheme [49] that defines 149 amino acid positions, including gaps, for each chain. We
define N=298 for light and heavy chains and treat a gap ’-’ as an additional amino acid (22 amino
acids in total: 20 standard amino acids, unknown, and gap).

Antigen and epitope representation. The input to the denoiser also includes the antigen information:
the one-hot encoded sequence (Lx22), the sequence in BLOSUM62 [50] representation where
each amino acid is represented by a corresponding row from the matrix (Lx22), the antigen CLIP
embeddings (Lx128), two additional channels for specifying binary epitope information, and one
channel for surface accessible area. This results in a Lx175 matrix for antigen 1D representation.
The antigen 3D structure information is represented by a Nx10x3 matrix which includes the 3D
coordinates of the backbone N, Cα, C, O, and, Cβ atoms and five additional side chain atoms that
define the χ1−5 angles. The antigen acts as a conditional same as a text prompt for image generation.

The denoiser input also includes the time step t. The output of the denoiser model is a matrix (Nx64)
which is trained to match the added noise at timestep t by minimizing the MSE loss between the
network prediction and the true noise added at timestep t (Fig. 2C). This output is converted to an
antibody sequence using the ESM decoder (Fig. 3).

A.1.5 Denoising diffusion for antibody sequence generation

We use the same forward diffusion process as defined in (Ho at el.) [34] with the addition of classifier-
free guidance [44]. Where q(x0) is the latent ESM embedding (Nx64) in the range of [-1,1]. We use
T = 1000 timesteps and a 0.0001 to 0.02 linear β scheduler. For sampling, we use guidance weight
of 2.0 (Fig. S2 ,S3) and dynamic thresholding as described in Imagen [42].

A.1.6 Datasets

Structures for the training of the Denoiser and CLIP models were obtained from the SabDAB database
[46]. We used only structures with a resolution of 3.5Å or better, resulting in a total of 8,411 structures
(6,375 antibodies, 1686 heavy chain only antibodies (nanobodies), 350 light chain only antibodies) for
training and validation (92%, 8% respectively). 4,963 of the sequences were solved with an antigen
structure, for simplicity and memory efficiency we used only antigens with up to 500 amino acids.
The sequences that were solved without an antigen were used for the denoiser training as the 10% of
inputs without a conditional antigen (classifier-free guidance). For test set, after finishing training
our models we retrieved all the antibodies from SabDAB that were published after 08.03.2023 (the
date the data for training the models was obtained) and had at least three different amino acids in
CDR3 from each CDR3 in both the training and validation sets after alignment of the CDRs. This
resulted in 51 antibodies and 20 nanobodies. For the training of the ESM encoder-decoder model
which requires only antibody sequences without structures, we used millions of sequences obtained
from the OAS database [47].

A.2 Evaluation

A.2.1 CDR definitions

To calculate amino acid recovery and sequence identity, we defined the CDRs following the IMGT
numbering scheme [51] using the abnumber python package which relies on ANARCI [52].

A.2.2 Variable length amino acid recovery (VAAR)

VAAR between a true CDR, x, and a predicted CDR, y is defined as follows:

V AAR(x, y) = AlignmentScore(x, y)/max(|x|, |y|) (1)

where AlignmentScore is the number of matching amino acids after performing global sequence
alignment.

A.2.3 CDR sequence identity

CDR sequence identity between a true CDR, x, and a predicted CDR, y is defined as follows:

SeqID(x, y) = AlignmentScore(x, y)/min(|x|, |y|) (2)
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where AlignmentScore is the number of matching amino acids after performing global sequence
alignment.

A.2.4 Comparison to HERN

We used the trained model provided in the github repository of HERN [28]. We converted our test
set to the format needed for HERN using the provided scripts in the repository and generated 1,000
sequences ranked by HERN score.

A.2.5 Runtimes

Generation of 1,000 sequences takes about 2.5 hours on a RTX2080 GPU with 8Gb.

A.3 Figures

Figure S1: Antibody recognition. An antibody bound to an antigen (PDB 6xm2). The variable CDR
loops are labeled L1, L2, L3 and H1, H2, H3 for light and heavy chains respectively.
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Figure S2: Maximal VAAR (%) for 1,000 generated sequences for each antibody in the test set by
CDR loop. Guidance weight of 0.0 corresponds to an antibody sequence design without an epitope
information

Figure S3: Average VAAR (%) for 1,000 generated sequences for each antibody in the test set by
CDR loop. Guidance weight of 0.0 corresponds to an antibody sequence design without an epitope
information

Figure S4: Test set performance. A. Average VAAR (%) by CDR loop. B. Average CDR H3 VAAR
(%) compared to HERN. B. Average CDR H3 sequence identity (%) compared to HERN.
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Figure S5: Correlation between Fold&Dock maximal score for a complex with >80% true epitope
overlap and CDR H3 VAAR (%) for four test set antibodies. A. PDB 8ELO. B. PDB 8TCO. C. PDB
8G3P. D. PDB 8GS9.
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A.4 Tables

H1 H2 H3 L1 L2 L3

Method Max Mean Max Mean Max Mean Max Mean Max Mean Max Mean

Random 55.55 20.76 54.84 19.64 45.71 21.34 56.75 16.85 68.81 11.94 51.30 20.45
EAGLE - no CLIP 82.10 46.17 77.46 43.00 59.32 33.21 84.63 37.46 96.92 39.66 74.90 39.18
EAGLE 81.07 47.19 79.55 44.60 60.16 33.78 87.14 38.77 94.96 38.23 77.37 40.41

Table S1: Averages over the 71 test cases of the maximal and average VAAR (%) of 1,000 generated
sequences by CDR loop.

T1 T10 T100 T1000

Method Max/Mean Max Mean Max Mean Max Mean

HERN 41.56 51.96 40.48 57.93 38.75 62.75 38.88
EAGLE 33.27 46.40 34.53 54.45 34.16 60.16 33.78

Table S2: Averages over the 71 test cases of the maximal and average H3 VAAR (%) of top-n
generated sequences.

T1 T10 T100 T1000

Method Max/Mean Max Mean Max Mean Max Mean

HERN 41.56 51.96 40.48 57.93 38.75 62.75 38.88
EAGLE 43.57 60.93 45.18 75.60 45.48 89.31 45.88

Table S3: Averages over the 71 test cases of the maximal and average H3 sequence identity (%) of
top-n generated sequences.
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