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ABSTRACT

We provide a convergence analysis of gradient descent for the problem of agnosti-
cally learning a single ReLU function under Gaussian distributions. Unlike prior
work that studies the setting of zero bias, we consider the more challenging scenario
when the bias of the ReLU function is non-zero. Our main result establishes that
starting from random initialization, in a polynomial number of iterations gradient
descent outputs, with high probability, a ReLU function that achieves an error
that is within a constant factor of the optimal i.e., it is guaranteed to achieve an
error of O(OPT ), where OPT is the error of the best ReLU function. This is a
significant improvement over existing guarantees for gradient descent, which only
guarantee error of O(

p
d ·OPT ) even in the zero-bias case (Frei et al., 2020). We

also provide finite sample guarantees, and obtain similar guarantees for a broader
class of marginal distributions beyond Gaussians.

1 INTRODUCTION

Gradient descent forms the bedrock of modern optimization algorithms for machine learning. Despite
a long line of work in understanding and analyzing the gradient descent iterates, there remain several
outstanding questions on whether they can provably learn important classes of problems. In this
work we study one of the simplest learning problems where the properties of gradient descent are not
well understood, namely agnostic learning of a single ReLU function.

More formally, let D̃ be a distribution over Rd⇥R. A ReLU function is parameterized by w = (w̃, bw)
where w̃ 2 Rd and bw 2 R. For notational convenience, we will consider the points to be in Rd+1

by appending ex with a fixed coordinate 1 as x = (ex, 1). Let D be the distribution over Rd+1 ⇥ R
induced by D̃. We define the loss incurred at w = (w̃, bw) to be

L(w) =
1

2
E

(ex,y)⇠D̃

h
(�(w̃>ex+ bw)� y)2

i
=

1

2
E

(x,y)⇠D

h
(�(w>x)� y)2

i
.

Here �(x) = max(x, 0) is the standard rectified linear unit popularly used in deep learning. The goal
in agnostic learning of a ReLU function (or agnostic ReLU regression) is to design a polynomial time
learning algorithm that takes as input i.i.d. samples from D and outputs w = (w̃, bw) such that L(w)
compares favorably with OPT that is given by

OPT := min
w=(w̃,bw)2H

1

2
E

(x,y)⇠D

[(�(w>x)� y)2].

Here the hypothesis set H that algorithm competes with is the set of ReLU units with parameters
w = (w̃, bw) with the relative bias |bw|/kw̃k2 being bounded. This is a non-trivial and interesting
regime; when the bias is too large in magnitude the optimal ReLU function fitting the data is either
the constant zero function almost everywhere, or a linear function almost everywhere.

This agnostic learning problem has been extensively studied and polynomial time learning algorithms
exists for a variety of settings. This includes the noisy teacher setting where E[y|x] is given by
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a ReLU function Kakade et al. (2011); Mukherjee & Muthukumar (2020) and the fully agnostic
setting where no assumption on y is made (Goel & Klivans, 2019; Diakonikolas et al., 2020). In
a recent work (Frei et al., 2020) analyzed the properties of gradient descent for the above agnostic
learning problem when the bias term is assumed to be zero. The gradient descent based learning
algorithm corresponds to the following sequence of updates starting from a suitable initializer w0:
wt+1 = wt � ⌘rL(wt). The work of Frei et al. (2020) proved that starting from zero initialization
and for distributions where the marginal of x satisfies some mild assumptions , gradient descent
iterates produce, in polynomial time, a point wT such that L(wT ) = O(

p
OPT ) when the domain

for x is bounded (it is instructive for this bound to think of OPT < 1; the general expression is more
complicated with some additive terms and dependencies on problem-dependent quantities).

While the above provides the first non-trivial learning guarantees for gradient descent in the case of ag-
nostic ReLU learning, it suffers from a few key limitations. The result of Frei et al. (2020) only applies
in the setting when the distribution has a bounded domain and when the bias terms are zero. When
the distribution is not bounded, the error of O(

p
OPT ) also includes some dimension-dependent

terms; e.g., when the marginal of ex is a standard Gaussian N (0, Id⇥d), it gives a O(
p
d ·OPT ) error.

Moreover, there is a natural question of improving the bound of O(
p
OPT ) on the error of gradient

descent (since the most interesting regime of parameters is when OPT ⌧ 1). This is particularly
intriguing given the recent result of Diakonikolas et al. (2020) that shows that, assuming zero bias,
gradient descent on a convex surrogate for L(w) achieves O(OPT ) error. This raises the question of
whether the same holds for gradient descent on L(w) itself. In another recent work, the authors in
Vardi et al. (2021) are able to provide convergence guarantees for gradient descent in the presence of
bias terms, but under the strong realizability assumption, i.e, assuming that OPT = 0.

To summarize the existing guarantees, to the best of our knowledge, (i) there are no existing guarantees
for any polynomial time algorithm (including gradient descent) for agnostic learning of a ReLU
function with bias, and (ii) even in the zero bias case, there is no existing guarantee for gradient
descent (on the standard squared loss) that achieves O(OPT ) error.

1.1 OUR RESULTS

In this work we make progress on both these fronts, by improving the state of the art of guarantees
for gradient descent for agnostic ReLU regression. In particular, we show that when the marginal of
x is a Gaussian, gradient descent on L(w) achieves an error of O(OPT ), even under the presence of
bias terms that are bounded. The O(OPT ) guarantee that we get even in the zero bias case answers
an open question raised in the work of Frei et al. (2020). There are also no additional dependencies
on the dimension. Given the recent statistical query lower bound of Goel & Klivans (2019) that rules
out an additive guarantee of OPT + " for agnostic ReLU regression, our result shows that vanilla
gradient descent on the target loss already achieves near optimal error guarantees. Below we state our
main theorem. For convenience we assume that kṽk2 (the optimal weight, i.e. v = (ev, bv) 2 H such
that L(v) = OPT ), is a constant; Appendix C shows why this is without loss of generality.

Theorem 1.1. Let C1 � 1, C2 > 0, c3 > 0 be absolute constants. Let D be a distribution over

(ex, y) 2 Rd ⇥ R where the marginal over ex is the standard Gaussian N (0, I). Let H = {w =
(w̃, bw) : kw̃k 2 [1/C1, C1], |bw|  C2}, and consider population gradient descent iterates: wt+1 =
wt�⌘rL(wt). For a suitable constant learning rate ⌘, when starting from w0 = (w̃0, 0) where w̃0 is

randomly initialized from a radially symmetric distribution, with at least constant probability c3 > 0
one of the iterates wT of gradient descent after poly(d, 1

"
) steps satisfies L(wT ) = O(OPT ) + ".

Please see Section 4 for the more formal statement and proof. Note that the above guarantee applies
to one of the intermediate iterates produced by gradient descent within the first poly(d, 1/") iterations.
This is consistent with other convergence guarantees for gradient descent in non-realizable settings
where last iterate guarantees typically do not exist Frei et al. (2020). One can always pick the iterate
among the first poly(d, 1/") steps that has the smallest loss on an independent sample from the
distribution D.

The above theorem proves that gradient descent obtains a bound of O(OPT ) when the relative bias
of the optimal ReLU function is bounded (recall that kṽk2 = ⇥(1) for the optimal classifier without
loss of generality from Proposition C.1). Note that we do not constrain the gradient updates to remain
in the set H . This result significantly improves upon the existing state-of-the-art guarantees Frei et al.
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(2020) of O(
p
d ·OPT ) for gradient descent even when specialized to the case of ReLU activations

with no bias. Further this gives the first provable guarantees in the setting with non-zero bias. Our
improved bound of O(OPT ) error even with non-zero bias involves several new ideas. At a high
level there are two main ingredients that allow us to do beyond the previous work: (1) an improved
analysis for gradient descent in the agnostic case that in particular avoids any dimension-dependent
factors, and (2) a new “multiscale” random initialization scheme with a stronger guarantee for the
initializer. We outline these in more detail in Section 4 and Section 5 respectively.

We remark that some of the assumptions in Theorem 1.1 are made with a view towards a clearer
exposition, and similar guarantees hold in more general settings. While the above theorem gives
guarantees for gradient descent on the population loss function L(w) (as in Vardi et al. (2021)),
we also prove guarantees for the empirical loss function in Section D. Moreover while the above
Theorem 1.1 assumes Gaussian marginals (as this already illustrates the improvements guarantees in
a basic and well-studied setting), these techniques extend to a broader class of distributions that we
describe next.

1.2 GUARANTEES BEYOND GAUSSIAN MARGINALS

The above algorithmic result can be generalized to a broader class of marginals than Gaussians, that
we call O(1)-regular marginals.

O(1)-regular marginals: Assumptions about the marginals over ex We make the following
assumptions about the marginal distribution eDx over ex 2 Rd: there exists absolute constants
�1,�0

2,�2,�3,�4,�5 > 0 and �0 : R+ ! R+, such that

(i) Approximate isotropicity and bounded fourth moments: for every unit vector u 2 Rd,
Eex⇠ eDx

[hu, exi2] 2 [1/�0
2,�2], and Eex⇠ eDx

[hu, exi4]  �4.

(ii) Anti-concentration: there exists an absolute constant �3 > 0 such that for every unit vector
ũ 2 Rd and � > 0,

sup
t2R

P
ex⇠ eDx

h
hũ, exi 2 (t� �, t+ �)

i
 min{�3�, 1}.

(iii) Spread out: there exists �0 : R+ ! R+ such that �0(|bv|) > 0 is a constant when |bv| is a
constant, and

8ṽ 2 Sd�1, E
ex⇠ eDx

h
�(ṽ>ex+ bv)

i
� �0(|bv|).

(iv) 2-D projections: In every 2-dimensional subspace of Rd spanned by orthonormal unit
vectors ũ1, ũ2 2 Rd, we have a set Gũ1,ũ2 ⇢ R such that ,

P
ex⇠ eDx

[ũ>
2 ex 2 Gũ1,ũ2 ] = 1� o(1), and (1)

8t 2 Gũ1,ũ2 , E
ex⇠ eDx

h
�(ũ>

1 ex)
�� ũ>

2 ex = t
i
� �5 · E

ex⇠ eDx

⇥
�(ũ>

1 ex)
⇤
. (2)

In other words, the conditional expectation of �(ũ>
1 ex) is not much smaller after conditioning

on the projection in an orthogonal direction ũ2, for most values of ũ>
2 ex. Note that for a

Gaussian N(0, I), the r.v.s ũ>
1 ex, ũ>

2 ex are independent, so this condition holds with �5 = 1
and Gũ1,ũ2 = R.

We remark that Gaussian distribution N (0, I) is O(1)-regular i.e., all the constants �1,�2,�0
2,�5 =

1,�3  2, and �0(bv) = Eg⇠N(0,1)[�(g+ bv)] > 0 for all bv 2 (�1,1); in fact �0 is an increasing
function that is 0 only at �1. We also note that assumptions of this flavor have also been used in
prior works including Vardi et al. (2021), which inspired parts of our analysis. In particular, Vardi
et al. (2021) assume a lower-bound on the density for any 2-dimensional marginal; our assumption
(4) on the 2-dimensional marginals is qualitatively weaker (it is potentially satisfied by even discrete
distributions), and moreover we only need the condition to be satisfied for a large fraction of values
of ũ>

2 ex (and not all). See Section B for the generalized version of our main theorem.
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2 RELATED WORK

The agnostic ReLU regression problem that we consider has been studied in a variety of settings. In
the realizable setting or when the noise is stochastic with zero mean, i.e., E[y|x] is a ReLU function,
the learning problem is known as isotonic regression and can be solved efficiently via the GLM-tron
algorithm (Kakade et al., 2011; Kalai & Sastry, 2009). Distributions generated by a 1-layer ReLU
neural network under the realizable setting can also be learned efficiently (Wu et al., 2019). In the
absence of any assumptions on the distribution of y|x, the work of Goel & Klivans (2019) provided
an efficient algorithm that achieves O(OPT 2/3)+ " error under Gaussian and log-concave marginals
in the zero-bias setting. The authors also show that it is hard to achieve an additive bound of OPT +"
via statistical query (SQ) algorithms Kearns & Valiant (1994). For the case of zero bias and any
marginal over the unit sphere, the work of Goel et al. (2017) provides agnostic learning algorithms
for the ReLU regression problem that run in time exponential in 1/" and achieve an error bound
of OPT + ". The recent work of Diakonikolas et al. (2020) improved the upper bound of Goel &
Klivans (2019) to O(OPT )+" via designing an efficient algorithm that performs gradient descent on
a convex surrogate for the loss L(w); very recently they also obtained near optimal sample complexity
with a regularized loss (Diakonikolas et al., 2022). Note that all of the above works that study the
fully agnostic setting consider the setting where the bias terms are not present.

Recent works of Frei et al. (2020); Vardi et al. (2021) consider analyzing gradient descent for the
ReLU regression problem. Frei et al. (2020) provides an O(

p
OPT ) guarantee (along with some

additional problem-dependent terms) for the case of zero bias and bounded distributions. When
considering distributions such as the standard Gaussian N (0, I) the bound of Frei et al. (2020) incurs
a dimension dependent term of the form O(

p
d ·

p
OPT ) in the error bound. Vardi et al. (2021)

provides a tighter analysis that also extends to the case of non-zero bias. However the analysis
only applies in the realizable setting, i.e., when OPT is zero. Our main result provides improved
bounds over these works by providing a dimension independent error bound that applies to the case
of non-zero bias as well.

There is also a long line of work analyzing gradient descent for broader settings. The works of
Ge et al. (2015; 2018); Jin et al. (2017); Anandkumar & Ge (2016); Soltanolkotabi (2017) show
convergence of gradient descent updates to approximate stationary points in non-convex settings
under suitable assumptions on the function being optimized. Another line of work considers the
global convergence properties of gradient descent. These works establish that gradient descent on
highly overparameterized neural networks converges to the global optimum of the empirical loss
over a finite set of data points (Allen-Zhu et al., 2019; Du et al., 2019; Jacot et al., 2021; Zhong
et al., 2017; Chizat & Bach, 2018; Lee et al., 2019; Arora et al., 2019). Yet another line of work
considers the realizable setting where data is generated from an unknown small depth and width
neural network. These works analyze the local convergence properties of gradient descent when
starting from a suitably close initial point (Bartlett et al., 2018; Zou et al., 2020).

3 PRELIMINARIES

We consider agnostically learning a single ReLU neuron with bias through gradient descent under
the supervised learning setting. We assume we are given data (x, y), where x 2 Rd+1 follows the
standard Gaussian distribution N (0, I) in the first d dimensions and the d+ 1’th dimension being a
constant 1. We also assume the labels y 2 R are arbitrarily correlated with x and �(w>x).

Note that throughout the paper, we will use ew, ev, ex to denote the first d dimensions of w, v, x
respectively, with the last dimension of w being bw 2 R (similarly for bv 2 R). Therefore, w>x is in
fact ew>ex+ bw.

In the analysis, we will compare the current iterate w to any optimizer of the loss L(w).

v := arg min
w2H

L(w), where L(w) =
1

2
E

(x,y)⇠D

h
(�(w>x)� y)2

i
, (3)

and the hypothesis set H = {w = (w̃, bw) : kw̃k 2 [ 1
C1

, C1], |bw|  C2)}, where C1 and C2 are
absolute constants. This is to ensure that the relative bias |bw|/kw̃k2 is bounded; as described earlier
Appendix C allows us to assume kw̃k 2 [ 1

C1
, C1] without loss of generality.
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As we are in the agnostic setting, there may be no w that achieves zero loss. We can split the loss
function L(w) into two components, one of which is F (w) defined by

F (w) :=
1

2
E
h
(�(w>x)� �(v>x))2

i
, rF (w) := E

h
(�(w>x)� �(v>x))�0(w>x)x

i
. (4)

We will often refer to F (w) as the realizable loss, since it captures the difference between w and v;
in the realizable setting L(w) = F (w). Note that F (v) = 0.

Gradient of the Loss. The gradient of L(w) with respect to w is

rL(w) = E
h
(�(w>x)� y)�0(w>x)x

i
(5)

where �0(·) is the derivative of �(·), defined as �0(z) = {z � 0}. Note that the ReLU function �(z)
is differentiable everywhere except at z = 0. Following standard convention in this literature, we
define �0(0) = 1. Note that the exact value of �0(0) will have no effect on our results.

We can also decompose rL(w) as

rL(w) = E
h
(�(w>x)� �(v>x))�0(w>x)x

i
+ E

h
(�(v>x)� y)�0(w>x)x

i
(6)

Therefore, rL(w) = rF (w) + E
h
(�(v>x)� y)�0(w>x)x

i
(7)

Gradient Descent. Finally, our paper focuses on the standard gradient descent algorithm with a
fixed learning rate ⌘ > 0. We initialize at some point w0 2 Rd+1, and at each iteration t 2 N we
have wt+1 = wt � ⌘rF (wt). We do not optimize the iteration count in this paper; hence it will be
instructive to think of ⌘ as a non-negligible parameter that can be set to be sufficiently small (e.g., an
inverse polynomial for polynomial time guarantees).

Simplification. For sake of exposition we will assume that kṽk2 = 1; the same analysis goes
through when kṽk2 2 [1/C1, C1] as well. Moreover Proposition C.1 shows that assuming that kṽk2
is normalized is without loss of generality. Note that we cannot make such a simplifying assumption
about the vectors wt = (w̃t, bw) in the intermediate iterations.

Finally, please see Section B for the weaker distributional guarantees and guarantees.

4 OVERVIEW OF THE ANALYSIS (PROOF OF THEOREM 1.1)

We now provide an overview of our analysis. For complete proofs of the lemmas and propositions,
please refer to the supplementary material (Appendix A). Recall that our goal throughout the learning
process is to find a w 2 Rd+1 such that L(w) achieves a comparable performance to OPT = L(v).
In order to accomplish this, we aim to find w such that it is close to v, i.e. kw � vk is small. Note
that approximating v suffices to achieve an error close to OPT , since we can upper-bound L(w) as

L(w) =
1

2
E
h
(�(w>x)� y)2

i
=

1

2
E
h
(�(w>x)� �(v>x) + �(v>x)� y)2

i

 2 · 1
2
E
h
(�(w>x)� �(v>x))2

i
+ 2 · 1

2
E
h
(�(v>x)� y)2

i
= 2F (w) + 2OPT

through Young’s inequality. The realizable portion of the loss F (w) becomes O(OPT ) when
kw � vk  O(

p
OPT ) (see Lemma 4.4 for a proof), and as a consequence we will get O(OPT )

error in total.

To formalize our intuition above, we adopt a similar proof strategy used in Frei et al. (2020). Namely,
we argue that when optimizing with respect to the agnostic loss L(wt), we are always making some
non-trivial progress due to a decrease in kwt � vk and due to a decrease in F (wt) (which is just the
realizable portion of the loss). Moreover, whenever we stop making progress, we will argue that at
this point either kwt � vk  O(

p
OPT ) or krF (wt)k  O(

p
OPT ); in both cases, this iterate

already achieves an error of O(OPT ) due to Lemma 4.4 and Lemma 4.3.
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Challenges in arguing progress. At a high-level the analysis of gradient descent follows a
similar approach to Frei et al. (2020) which only handles zero bias. Yet there are several new ideas
needed to obtain the stronger O(OPT ) guarantee even for the zero-bias case. Moreover, allowing
non-zero bias terms imposes extra technical challenges. For example, the probability measure of
{w>x � 0, v>x � 0} under Gaussian distributions, which is vital to deriving the gain in each
gradient descent step, does not have a closed-form expression when bias is present. Furthermore
we cannot afford to lose any dimension dependent factors or assume boundedness. Thus, to address
these difficulties, more detailed analyses (e.g. Lemma 4.1, 4.2) are needed to facilitate our argument.

Moreover tackling non-zero bias terms requires additional assumptions when initializing w0 as well.
The initializer finds a w0 such that F (w0) is strictly less than F (0) by a constant amount � > 0 (this
is inspired by Vardi et al. (2021), however � in their case can have an inverse-polynomial dependence
on the dimension ). In fact our multiscale random initialization and the improved analysis is crucial
to obtaining a dimension-independent bound on the error. The high-level intuition behind why
this property is useful is that it ensures that gradient descent does not get trapped around a highly
non-smooth region (e.g. when w = 0) by making it start at somewhere better than it, so that w keeps
moving closer to v. Moreover, in our case the analysis is more challenging to implement compared to
Vardi et al. (2021) because of the agnostic setting. This is because Vardi et al. (2021) heavily relies
on the realizability assumption to simplify its analysis.

We also highlight our improvements on the dependency of the dimension d. In previous works, the
guarantees of the algorithm has a dependence on d either explicitly or implicitly. For instance, in Frei
et al. (2020) the O(

p
OPT ) guarantee for ReLU neurons includes a coefficient in terms of BX (the

upper-bound for kxk), which for Gaussian inputs is in fact
p
d; or for example in Vardi et al. (2021),

the gain for each gradient descent iteration � comes with a dependency on c (the upper-bound for
kxk) of c�8, which for Gaussian is d�4. In contrast, we avoid such dependencies on the dimension d
in order to obtain our guarantees.

We first establish two important lemmas we will later utilize in proving progress in each iteration.
As stated in the preliminaries, we assume in the rest of the section that kṽk2 = 1. The first lemma
gives a lower bound on the measure of the region where both �(v>x) and �(w>

t
x) are non-zero. Our

inductive hypotheses will ensure that this lower bound is a constant (if |bv| is a constant).
Lemma 4.1 (Lower bound on the measure of the intersection). Suppose the marginal distribution

eDx over ex is O(1)-regular. There exists an absolute constant c > 0 such that for all � > 0, if

F (w)  F (0)� � then

P[w>x � 0, v>x � 0] � �2

ckwk42kvk42
=

�2

ckwk42(1 + |bv|2)2
. (8)

With Lemma 4.1, the following lemma allows us to get an improvement on the realizable portion
of the loss function as long as the gradient is non-negligible. We state and prove this lemma for the
general case of O(1)-regular marginal distributions.
Lemma 4.2 (Improvement from the first order term). Suppose the marginal over ex is O(1)-regular.

There exists absolute constants c1, c2 > 0 such that for any � > 0, if kvk2, kwk2  B and

F (w)  F (0)� �, then hrF (w), w � vi � �kw � vk2, where � = c1�
9

B28 .

The constants c1, c2 depend on the constants �1,�0
2,�2,�4 etc. in the regularity assumption of eDx.

We remark that for our setting of parameters � = ⌦(1) and B = O(1), and hence we will conclude
that hrF,w � vi � ⌦(kw � vk22). Please refer to Appendix A for all the complete proofs.

4.1 MAIN PROOF STRATEGY

With these two key lemmas, we are now ready to discuss the proof overview of the main theorem
(Theorem 1.1). We inductively maintain two invariants in every iteration of the algorithm:

(A) kwt � vk2  O(1), and (B) F (0)� F (wt) = ⌦(1).

These two invariants are true at t = 0 due to our initialization w0. Lemma B.3 guarantees with at
least constant probability ⌦(1), both the invariants hold for w0. The proof that both the invariants
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continue to hold follows from the progress made by the algorithm due to a decrease in both kwt�vk2
and F (wt) (note that we only need to show they do not increase to maintain the invariant).

The argument consists of two parts. First, assuming F (wt)  F (0) � � holds (for some constant
� > 0), we establish that whenever kwt � vk2 > �OPT for some constant � > 0, gradient descent
always makes progress i.e. kwt � vk2 � kwt+1 � vk2 is lower bounded. Next, we argue that if w0 is
initialized such that F (w0)  F (0)� � for some constant � > 0, then throughout gradient descent
F (wt) always decreases, i.e. the inequality F (wt)  F (w0)  F (0)� � always holds.

However, unlike Vardi et al. (2021) where they focus on the realizable setting, analyzing gradient
descent on the agnostic loss L(w) is more challenging, since the update depends on rL(w) and not
rF (w). In fact, the additional term from the “non-realizable” portion of the loss L(w) can overwhelm
the contribution from the realizable loss when either krFk2  O(

p
OPT ) or kwt � vk2 

O(
p
OPT ). The following two lemmas argue that in both of these cases, the current iterate already

achieves O(OPT ) error (and this iterate will be the T that satisfies the guarantee of Theorem 1.1).

Lemma 4.3 (Success if krFk  O(
p
OPT )). Suppose B, � > 0 are constants such that

kvk2, kwk2  B and F (w)  F (0) � �. Then there exists a constant CG > 0, such that if

krF (w)k  CG

p
OPT then kw � vk2  O(

p
OPT ).

Proof. We can first apply Lemma 4.2 to conclude that hrF (w), w � vi � �kw � vk2 for some
constant � > 0 (since B, � > 0 are constants), hence we have krF (w)kkw � vk � hrF (w), w �
vi � �kw � vk2. Thus kw � vk2 = O(

p
OPT ) which implies the lemma.

We now argue that if kwt�vk  O(
p
OPT ), then F (wt)  O(OPT ) through the following lemma;

this is stated and proven for O(1)-regular distributions.

Lemma 4.4 (Small kwt � vk implies small F (wt)). Assume eDx is O(1)-regular with parameters

defined above. If kwt � vk2  O(
p
OPT + ") for some " > 0, then F (wt)  O(OPT + ").

Proof. Since ReLU function is 1-Lipschitz (i.e. |�(z)� �(z0)|  |z � z0|),

F (wt) =
1

2
E
h
(�(w>

t
x)� �(v>x))2

i
 1

2
E
h
(w>

t
x� v>x)2

i
=

kwt � vk2

2
E
h
(u>x)2

i

where we defined u = wt�v

kwt�vk , hence the last equation. Now, notice by using Young’s inequality, we
get

E
h
(u>x)2

i
= E

h
(eu>ex+ bu)

2
i
 2E

h
(eu>ex)2

i
+ 2b2

u
 2�2 + 2b2

u
 O(1)

due to the regularity assumption on eDx. Hence

F (wt) 
kwt � vk2

2
·O(1)  O(kwt � vk22)  O(OPT + ")

which concludes the proof.

Proving progress in kwt�vk and F (wt). To show kwt�vk decreases, we establish the following
lemma.
Lemma 4.5 (Decrease in kwt � vk). Assume at time t, F (wt)  F (0)� � where � > 0 is a constant

and eDx is O(1)-regular. For constants ⌘ = 0.05·�
d�2

, Cp = 1
9 (
q

100�2
2/�

2+90
�2/�

+ 10
q

�2

�
), C 0 =

19.8�/�2 where � is defined as in Lemma 4.2, if for some " > 0 kwt � vk2 > ��1C2
p
(OPT + "),

then kwt+1 � vk2  kwt � vk2 � ⌘C 0(OPT + ").

As a direct consequence of Lemma 4.5, we obtain the following inductive statement: for every t,
either (a) kwt � vk2 � kwt+1 � vk2 � ⌘C(OPT + ") is true for some constant C > 0 or (b)
kwt � vk2  O(��1(OPT + ")) holds. Observe that when (b) holds Lemma 4.4 implies the loss is
O(OPT ); hence we need only assume at time t (b) does not hold yet, thus it suffices focusing on
showing (a) is true. Additionally, note at each timestep t,

kwt � vk2 � kwt+1 � vk2 = 2⌘hrL(wt), wt � vi � ⌘2krL(wt)k2
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Therefore, to lower-bound kwt�vk2�kwt+1�vk2, we will give a lower bound for hrL(wt), wt�vi
and an upper bound for krL(wt)k2. To show that F (wt) decreases we show that at time t, if gradient
descent continues to make progress towards v, then F (wt+1)  F (wt)  F (0)� �. The progress in
F (w) follows crucially relies on Lemma 4.2. Please see Appendix A in the supplementary material
for the detailed proofs.

5 RANDOM INITIALIZATION

We now prove the initialization lemma assuming weak conditions on the marginal distribution over
ex 2 Rd which is eDx (recall that the standard Gaussian N(0, I) also satisfies all of the properties).
We will initialize w = (w̃, bw) with bw = 0 and w̃ drawn from a spherical symmetric distribution
Dw. The length is chosen from the distribution D⇢ so that it has a non-negligible probability in any
constant length interval (a1kvk2, a2kvk2) where a2 > a1 > 0 are constants: our specific choice
picks the correct length scale with non-negligible probability, and is reasonably spread out.

Our new random initialization and the improved analysis are crucial in obtaining the O(OPT )
guarantee even with non-zero bias. Our multiscale random initialization scheme tries out different
length scales and ensures that with non-negligible probability we get an initializer that satisfies
the required property. For the correct guess of length scale of kṽk2 (up to a factor of 2), our
improved analysis (see (10)) shows that the random spherically symmetric initialization with constant
probability produces an initializer w with F (w) � F (0) = �⌦(kṽk22). When we have unknown
length scale kṽk2 2 [1/M,M ], the random initialization can try out the different length scales
in geometric progression i.e., the length scale ⌧ is chosen uniformly at random from {2�j : j 2
Z,� logM  j  logM}.

Multiscale random initialization We are given a parameter M such that kvk2 2 [2� logM , 2logM ]
(note that M can have large dependencies on d and other parameters; our guarantees will be polyno-
mial in logM ). A random initializer w = (w̃, 0) is drawn from Dunknown(M) as follows:

1. Pick j uniformly at random from
�
�dlogMe,�dlogMe+1, . . . ,�1, 0, 1, . . . , dlogMe

 
.

2. ⇢ 2 R+ is drawn according to D⇢ as follows: we first pick1 g ⇠ N(0, 1) and set ⇢ = 2j |g|.
3. A uniformly random unit vector ŵ 2 Rd is drawn and we output w̃ = ⇢ŵ. The initializer is

(w̃, 0).

We prove the following claim about the multiscale random initializer.
Lemma 5.1. There exists c1(v), c2(v), c3(v) > 0 which only depend on bv/kṽk2 (and not on the

dimension), and are both absolute constants when |bv|/kṽk2 = O(1), such that the following holds.

When w = (w̃, bw = 0) is drawn according to the distribution Dunknown(M) described above for

some given M � 1 satisfying kvk2 2 [1/M,M ]. Then with probability at least c2(v)/ logM ,

F (w)  F (0)� c1(v)
2kṽk22, and kw � vk  c3(v)kṽk2 (9)

In the above lemma, if eDx is a standard Gaussian N(0, I), the descriptions of these above constants
become much simpler, as described in Section B.3. The guarantees for the multiscale random
initialization scheme follows from the analysis of random initialization when the length scale of
kṽk2 = 1 is known. Without loss of generality (see Section C, we can assume that kṽk2 = 1 (or
⇥(1)). For convenience, we will set D⇢ to be the absolute value of a standard Gaussian N(0, 1) (or
N(0,�2) with � 2 [1, 2]. In this setting, we can show for constants c1(v), c2(v), c3(v) > 0 (these
are constants when |bv|/kṽk2 is bounded), we have with probability at least c2(v) > 0

F (w)  F (0)� c1(v)
2kṽk22, and kw � vk  c3(v)kṽk2. (10)

We remark that for random initialization to work, we only need the probability of success ⌘ �
c2(v) > 0 to be non-negligible (e.g., at least an inverse polynomial). We can try O(1/⌘) many
random initializers, and amplify the success probability to be very close to 1.

1One can pick many other spread out distributions in place of the absolute value of a Gaussian.
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Overview of the proof of Lemma 5.1 We now outline the argument of Lemma 5.1. Please refer
to Section B.3 and Section B.4 for the full proofs. For convenience we define bbv := bv/kṽk2, bv :=
v/kṽk2, so they are normalized w.r.t. the length of ṽ. The conditions of the lemma assume that
|bbv| = O(1). The multiscale random initialization finds the correct length scale with probability at
least 1/(logM). For the rest of the overview we assume that the length kṽk2 = 1 is known; without
loss of generality (see Section C), we can assume that kṽk2 = 1. By definition, the distribution of
w̃ 2 Rd is spherically symmetric.

F (w)� F (0) =
1

2
E
x

h
(�(w̃>x)� �(ṽ>x+ bv))

2
i
� 1

2
E
x

h
�(ṽ>x+ bv))

2
i

=
⇢2kṽk22

2
E
x

h
(�( bw>x)2

i
� ⇢kṽk22 E

x

h
�( bw>x)�(bv>x+bbv))

i
,

where w̃ = ⇢kṽk2 bw with bw being the unit vector along w̃. For a fixed ⇢ 2 R+, bw (and hence w̃) is
picked along a uniformly random direction i.e., bw ⇠U Sd�1. Hence for x ⇠ eDx,

E
bw⇠Sd�1

[F ((⇢ bw, 0))� F (0)] =
⇢2kṽk22

2
E

bw⇠USd�1
E

x⇠ eDx

h
(�( bw>x)2

i
(11)

� ⇢kṽk22 E
bw⇠USd�1

E
x⇠ eDx

h
�( bw>x)�(bv>x+bbv))

i
= kṽk22

�
c0⇢2 � 2c3(v)⇢

�

where c0 > 0 is a universal constant based on our assumptions about eDx (c0 = 0.5 for x ⇠
N(0, I)). One technical portion of the argument is to derive an expression for c3(v), and prove that
it is a constant independent of the dimension. This forms the bulk of the argument and requires
symmetrization and careful use of anti-concentration bounds. Once we establish this, we need to
prove that the first part (10) holds with non-negligible probability. From (11), we note that for any
⇢ 2

⇥
c3(v)
2c0 , c3(v)

c0

⇤
, we have that

E
bw⇠USd�1

[F ((⇢ bw, 0))]  F (0)� kṽk22
c3(v)2

2c0
.

Moreover ⇢ is distributed as the absolute value of a standard normal with variance in [1, 4]; so we
get from anti-concentration bounds that ⇢ is in the right interval with probability at least c5(v) > 0,
which is constant when |bbv| is a constant. Now we condition on this event that ⇢ 2

⇥
c3(v)
2c0 , c3(v)

c0

⇤
. For

a fixed ⇢ in this interval, let Z be a r.v. that captures the distribution of F ((⇢kṽk bw, 0))� F (0) as bw
is drawn uniformly from the unit sphere Sd�1. Note that E[Z]  �kṽk22c3(v)2/2c0.

Var[Z]  E[F ((⇢kṽk2 bw, 0))2]  O(1) · kṽk4
⇣
2�4 +bb4

v

⌘
.

Further for � = �E[Z]/2, we have from the Cantelli-Chebychev one-sided tail inequality we have
for some absolute constant c6 > 0

P
h
Z  E[Z]/2

i
� E[Z]2

4Var[Z] + E[Z]2
� min

n
c6c3(v)

2/(�4 +bb4
v
),
1

2

o
=: c6(v),

where c6(v) is a constant when bbv is a constant. This allows us to conclude that F (w) < F (0) �
⌦(kṽk2) with probability at least c5(v) · c6(v) which is a constant when bbv is a constant. Finally
kw � vk2  kwk2 + kṽk2 is upper bounded just because of our choice of ⇢ and kṽk2 being upper
bounded by assumption. See Sections B.3 and B.4 for the full proofs.

6 CONCLUSION

In this paper, we provided a convergence analysis of gradient descent for learning a single neuron
with general ReLU activations (with non-zero bias terms) and gave improved guarantees under
comparable assumptions also made in previous works. We addressed multiple challenges for analyzing
general ReLU activations with non-zero bias terms throughout our analyses that may lead to better
understanding of the dynamics of gradient descent when learning ReLU neurons. However, our
analysis does not apply to modern neural networks that have multiple nodes and layers. The major
open direction is to generalize current performance guarantees for networks of multiple neurons and
higher depth.
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