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Abstract

Generating natural language text from graph-001
structured data is essential for conversational002
information seeking. Semantic triples derived003
from knowledge graphs can serve as a valuable004
source for grounding responses from conversa-005
tional agents by providing a factual basis for the006
information they communicate. This is espe-007
cially relevant in the context of large language008
models, which offer great potential for conver-009
sational interaction but are prone to hallucinat-010
ing, omitting, or producing conflicting infor-011
mation. In this study, we conduct an empirical012
analysis of conversational large language mod-013
els in generating human-readable text from se-014
mantic triples. We compare four large language015
models of varying sizes with different prompt-016
ing techniques. Through a series of benchmark017
experiments, we analyze the models’ perfor-018
mance and identify the most common issues in019
the generated predictions. Our findings demon-020
strate that the capabilities of large language021
models in triple verbalization can be signifi-022
cantly improved through few-shot prompting,023
efficient fine-tuning, and post-processing tech-024
niques, particularly for smaller models that ex-025
hibit lower zero-shot performance.026

1 Introduction027

Accessing structured information through natu-028

ral language interfaces has garnered significant029

research interest in natural language processing030

(NLP) (Radlinski and Craswell, 2017; Aliannejadi031

et al., 2021). These search-oriented conversational032

interfaces are often connected to structured data033

sources like knowledge graphs. However, a key034

challenge lies in mediating between natural lan-035

guage, in which users express their queries, and036

machine-readable knowledge representations. The037

task of data-to-text generation focuses on this issue,038

taking structured data as input to produce coherent,039

human-readable text, which has been extensively040

studied with approaches ranging from rule-based041

to supervised neural network-based techniques. 042

Over the last years, the field of NLP has wit- 043

nessed a shift in methodologies with the advent of 044

pre-trained large language models (LLMs). Un- 045

like traditional supervised learning approaches that 046

rely on annotated datasets, LLMs are trained in a 047

self-supervised manner, predicting tokens within 048

vast amounts of unlabeled data. Combined with 049

scaling up the model size and training corpora, this 050

approach has demonstrated remarkable emergent 051

capabilities of LLMs and their prowess in multi- 052

task learning (Radford et al., 2019; Brown et al., 053

2020). An advantage of LLMs lies in prompt-based 054

(in-context) learning. Through carefully defined 055

prompts, these foundation models can perform mul- 056

tiple tasks like question-answering or text summa- 057

rization (Liu et al., 2023). More recently, there 058

has been a growing interest in optimizing LLMs 059

for conversational interactions by pre-training on 060

dialogue corpora, instruction fine-tuning, and rein- 061

forcement learning from human feedback (Thoppi- 062

lan et al., 2022; OpenAI, 2022). Although LLMs 063

offer tremendous potential for conversational inter- 064

action, owing to their ability to produce responses 065

for arbitrary input texts, they have known limita- 066

tions, such as the risk of hallucinating or omitting 067

important information and a lack of transparency 068

regarding the origins of information sources from 069

which they derive their outputs (Dou et al., 2022; Ji 070

et al., 2023). In order to mitigate these limitations, 071

it becomes imperative to ground their generated 072

outputs in verifiable factual data from knowledge 073

graphs. However, there has been insufficient sys- 074

tematic investigation into their proficiency in ver- 075

balizing graph-structured data input. 076

To assess LLMs in knowledge-based text genera- 077

tion, we compare four models of different sizes and 078

training objectives, with a primary focus on mod- 079

els optimized for conversational interaction. Based 080

on the popular WebNLG benchmark dataset, we 081

evaluate the models’ performance in generating nat- 082
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ural language text from semantic triples. Through083

multiple experiments, we analyze different con-084

figurations of models and prompting techniques,085

discussing insights about their individual capabil-086

ities and limitations. Our contributions include:087

(1) creating a benchmark to evaluate LLMs on088

the WebNLG dataset, (2) comparing model perfor-089

mance through automatic reference-based metrics090

and human evaluation, and (3) providing insights091

on their reliability in triple-to-text generation. To092

ensure reproducibility, we publish our source code093

and datasets in an anonymous GitHub repository.1094

2 Related Work095

Existing works from the NLP literature have ex-096

plored knowledge-based text generation, with sig-097

nificant advancements driven by new deep learning098

architectures and fine-tuning language models on099

downstream tasks (Li et al., 2021). For triple-to-100

text generation, many evaluations use the estab-101

lished WebNLG benchmark (Colin et al., 2016).102

Several studies have focused on comparing neural103

pipeline versus end-to-end approaches, assessing104

supervised versus unsupervised training regimes105

and developing frameworks for making text genera-106

tion more controllable (Castro Ferreira et al., 2019;107

Schmitt et al., 2020; Su et al., 2021).108

Concerning pre-trained language models, Chen109

et al. (2020) were among the first to propose the110

task of few-shot natural language generation. With111

just 200 table-to-text training examples, their ap-112

proach achieves strong performance and good gen-113

eralization. By collecting a novel dataset and ex-114

perimenting with few-shot fine-tuning, Kasner et al.115

(2023) demonstrate that pre-trained language mod-116

els trained with a diverse set of labels exhibit robust-117

ness in verbalizing knowledge graph relations, be-118

ing capable of generalizing to novel domains. Sim-119

ilar to our work, Han et al. (2023) assess the capa-120

bilities LLMs but for text-to-graph generation with121

the model ChatGPT. They develop a prompting122

framework with iterative verification, improving123

the quality of generated outputs. In contrast, our124

objective is to achieve a comprehensive understand-125

ing of conversational LLMs for triple verbalization126

rather than solely concentrating on individual use127

cases or models. To the best of our knowledge, we128

are the first to conduct a comparative analysis of129

conversational LLMs and prompt configurations130

on the task of triple-to-text generation.131

1GitHub: https://github.com/CS-Lab-Study/LLM-D2T

3 Experiments 132

Experimental Setup We conduct our experi- 133

ments on the WebNLG+ 2020 dataset, a DBpedia- 134

based triple-to-text benchmark with 1,779 test ex- 135

amples (Castro Ferreira et al., 2020). As evaluation 136

metrics, we calculate the lexical similarity between 137

model outputs and human annotations using BLEU 138

(Papineni et al., 2002), METEOR (Banerjee and 139

Lavie, 2005), and TER (Snover et al., 2006). Since 140

these metrics mainly focus on lexical overlaps, we 141

also use the BERTScore-F1 metric, which cap- 142

tures semantic similarity (Zhang et al., 2020). 143

As a commercial state-of-the-art LLM, we in- 144

clude GPT-3.5-Turbo (ChatGPT) (OpenAI, 2022) 145

in our comparison. It is optimized for conversa- 146

tions and has demonstrated remarkable zero-shot 147

performance on various NLP tasks. We ran our 148

experiments with the latest model released in June 149

2023 (GPT-3.5-Turbo-0613). Further, we opted to 150

test LLaMA, a collection of open-source LLMs 151

from Meta (Touvron et al., 2023), achieving com- 152

petitive performance on benchmarks. We include 153

three model variations with 7B parameters of the 154

first LLaMA version. In addition to the non- 155

conversational base model, we tested a fine-tuned 156

model which was trained on 26,422 WebNLG ex- 157

amples in chat completion format. The training 158

was done through low-rank adaptation (LoRA), a 159

method that fine-tunes only a subset of the model’s 160

parameters, referred to as low-rank matrices, rather 161

than updating the entire parameter space, improv- 162

ing the fine-tuning efficiency (Hu et al., 2022). An- 163

other fine-tuned LLaMA model we included is Vi- 164

cuna. It was trained on a corpus of around 70K 165

user-shared ChatGPT conversations crawled from 166

the ShareGPT website (Chiang et al., 2023). 167

The LLaMA and Vicuna models are prompted in 168

the chat completion structure of the FastChat2 plat- 169

form, replicating OpenAI’s chat completion API 170

endpoint with a structured list of system, user, and 171

assistant messages. We set the token limit to 128 172

and the temperature parameter to 0, maximizing de- 173

terministic generation by favoring high-probability 174

words. The zero-shot prompt contains only a sys- 175

tem message with a triple verbalization instruction. 176

The few-shot prompt expands the instruction with 177

three in-context examples provided as user and as- 178

sistant messages. Table 2 in Appendix A displays 179

each prompt in full length. 180

2FastChat: https://github.com/lm-sys/FastChat
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Model Zero-Shot Prompt Few-Shot Prompt
BLEU METEOR TER BERTScore BLEU METEOR TER BERTScore

LLaMA-7B 0.06 0.21 1.03 0.84 0.11 0.26 1.03 0.85
LLaMA-7B + PP 0.15 0.25 0.76 0.89 0.38 0.36 0.53 0.94
Vicuna-7B 0.27 0.35 0.68 0.92 0.39 0.38 0.64 0.93
Vicuna-7B + PP 0.27 0.35 0.68 0.92 0.43 0.39 0.51 0.95
GPT-3.5-Turbo 0.41 0.41 0.56 0.95 0.39 0.40 0.65 0.94
GPT-3.5-Turbo + PP 0.41 0.41 0.56 0.95 0.44 0.41 0.50 0.95
LoRA-7B 0.47 0.40 0.55 0.94 0.47 0.40 0.55 0.94
LoRA-7B + PP 0.52 0.41 0.42 0.96 0.53 0.41 0.42 0.96
Copy-Baseline 0.02 0.02 0.95 0.79 0.02 0.02 0.95 0.79

Table 1: Zero-shot and few-shot performance metrics on WebNLG test set evaluated by BLEU, METEOR, TER,
and BERTScore-F1 (+ PP denotes post-processed model output). Bold values indicate the best value per metric.

Results of Performance Metrics Table 1 sum-181

marizes the calculated metrics. The Copy-Baseline182

denotes copying the triples as output without mod-183

ifications. We distinguish between scores for raw184

and post-processed (+ PP) outputs. Post-processing185

involved removing in-context examples or instruc-186

tion parts from the input prompt which were re-187

peated by some models in the generated output.188

Examining the scores, LoRA-7B demonstrates189

superior performance compared to the other mod-190

els. Even without few-shot examples, it effectively191

learned from fine-tuning to handle the triple ver-192

balization task, gaining only a minor performance193

increase through few-shot prompting. The sec-194

ond ranking model GPT-3.5-Turbo shows similar195

scores, which is remarkable because it was not196

explicitly trained for triple-to-text generation. No-197

tably, Vicuna achieves a performance level almost198

on par with the much bigger GPT-3.5-Turbo model199

when it was provided with in-context examples and200

the output was post-processed. In the zero-shot201

setting, Vicuna could not match the scores of GPT-202

3.5-Turbo but outperformed LLaMA-7B. Although203

LLaMA is the worst-performing model, it claims204

the most significant improvements through few-205

shot prompting and post-processing, with scores206

not too far from Vicuna. The metrics collectively207

suggest that all tested LLMs can generate rea-208

sonable output text from knowledge graph triples.209

Besides, we observe that while all models show210

improvements with few-shot prompting or post-211

processing, models trained on conversations like212

Vicuna require less post-processing and exhibit bet-213

ter zero-shot proficiency, resulting in comparatively214

smaller performance gains from post-processed out-215

puts or in-context examples.216

Analysis and Discussion The WebNLG triple217

verbalization task involves different subtasks, such218

as segmentation of the input data, lexicalization of219

the DBpedia properties, information aggregation, 220

and surface realization of grammatically correct 221

text (Colin et al., 2016). All of these subtasks are 222

handled by LLMs in an end-to-end manner. In 223

direct comparison to state-of-the-art models eval- 224

uated on WebNLG like Control Prefixes (BLEU: 225

0.62, METEOR: 0.45, TER: 0.35) from Clive et al. 226

(2022) or T5-Large+Wiki+Position (BLEU: 0.61, 227

METEOR: 0.44, TER: 0.36, BERTScore: 0.96) 228

from Wang et al. (2021), the LLMs’ lexical sim- 229

ilarity metrics are worse. Yet, when looking at 230

semantic similarity, the BERTScore metric of the 231

LoRA-7B model is identical with 0.96. We hy- 232

pothesize that the lower lexical similarity is partly 233

caused by the concise writing style of the WebNLG 234

human ground-truth verbalizations, aggregating as 235

much information as possible in succinct sentences. 236

While many WebNLG annotations are as short as 237

possible (e.g., “The 98.0 minute film Super Ca- 238

pers starring Danielle Harris was written by the 239

director Ray Griggs.”), the more verbose output of 240

LLMs like GPT-3.5-Turbo consists of multiple sen- 241

tences (e.g., “Danielle Harris stars in the movie Su- 242

per Capers. The writer of the movie is Ray Griggs. 243

The movie has a runtime of 98.0 minutes.”). This 244

concise writing style can be better learned and repli- 245

cated by LoRA and other fine-tuned models. 246

With a larger number of input triples, models 247

struggle more to transform structured information 248

into cohesive text. Figure 1 illustrates the decreas- 249

ing model performance when confronted with mul- 250

tiple triples. While all four LLMs follow the same 251

trend, the performance loss seems to be a taper- 252

ing decrease. Since aggregating information into 253

short sentences is also desired in conversational 254

user interactions, we compared the sentence count 255

of generated predictions for each model regard- 256

ing the number of input triples. As can be dis- 257

cerned from Figure 2 in Appendix A, the fine-tuned 258
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Figure 1: Comparison of BLEU score by number of
triples for few-shot models with post-processing.

LoRA model produces sentences in direct propor-259

tion to the number of input triples in alignment260

with the human annotations. Vicuna and GPT-3.5-261

Turbo, which have been explicitly trained on con-262

versations, exhibit a similar generation behavior.263

While LoRA produces the fewest sentences, Vicuna264

seems to be a bit less verbose than GPT-3.5-Turbo.265

In contrast, text outputs from LLaMA contain, on266

average, the largest number of sentences and show267

a much higher variance. This suggests that fine-268

tuning LLMs on instructions from dialogue corpora269

improves adherence to concise triple verbalization.270

After conducting the automatic evaluation, we271

manually examined the model predictions to gauge272

their reliability and grouped the most common273

issues into five types as presented in Table 4274

in Appendix A. For example, the LLMs some-275

times misinterpreted the prompt, failed to lexicalize276

triples correctly, or produced inaccurate informa-277

tion. Most of these issues occurred in zero-shot278

predictions from LLaMA or Vicuna, whereas GPT-279

3.5-Turbo produced the most reliable outputs. To280

obtain deeper insights into the model-specific oc-281

currence rates of the issue types, two researchers282

jointly evaluated a sample of 75 zero- and 75 few-283

shot predictions for the lowest averaged BLEU and284

METEOR scores across all models. Looking at285

Table 3, it can be seen that LLaMA has the high-286

est incidence of issues from all types, followed by287

Vicuna and then LoRA with better reliability, and288

GPT-3.5-Turbo as the most dependable model.289

As to be expected from instruction-tuned and290

fine-tuned models, LoRA, Vicuna, and GPT-3.5-291

Turbo demonstrate greater ability in generating292

zero-shot output that aligns with the given prompt.293

Conversely, LLaMA tended to misinterpret the294

prompt, failing to produce the desired output for-295

mat in nearly two-thirds of the evaluated instances 296

(0.65). Interestingly, off-prompt issues could be 297

effectively addressed in all models by including 298

few-shot examples in the prompt. While few- 299

shot prompting reduced off-prompt generations and 300

caused the LLMs to produce actual sentences based 301

on the graph triples, this led to a relative increase 302

of inaccurate generations, such as hallucinated in- 303

formation, twisted numbers, or often omitting facts 304

from the input triples. Occasionally, the relation- 305

ships within these triples were also compromised. 306

The rate of inaccurate zero-shot output in LLaMA 307

(0.60) and Vicuna (0.41) was three to four times 308

higher in comparison to GPT-3.5-Turbo (0.13). 309

Another issue type where the usefulness of few- 310

shot examples became evident is unlexicalized 311

triples, meaning the translation of entities and rela- 312

tions into their intact word form. This was observed 313

across all models except LoRA, with LLaMA and 314

Vicuna particularly affected. Providing in-context 315

examples with lexicalized triples could completely 316

resolve unlexicalized triples for all models. Prob- 317

lems with redundancy, which involves the unnec- 318

essary repetition of information, are mostly associ- 319

ated with LLaMA. This was due to some instances 320

where LLaMA became stuck in a loop, repeatedly 321

generating the same sequence until the maximum 322

token limit was reached. In contrast, this issue 323

type appears to be less of a problem for the other 324

models. Lastly, there are rare cases in which the 325

LLM generated output in a language other than 326

the prompt language English. This happened, for 327

example, when most of the input triples contained 328

words in Spanish. Only Vicuna faced translation 329

issues in our benchmark test, specifically in zero- 330

shot scenarios. This behavior may be attributed to 331

its fine-tuning dataset with translation instructions. 332

4 Conclusion 333

We compared the abilities of LLMs in triple-to-text 334

generation. Our findings indicate that even smaller 335

7B-LLMs exhibit reasonable performance in ver- 336

balizing triples, conveying the intended meanings 337

and facts in a sensible manner, although they might 338

not always be factually accurate or perfectly repli- 339

cate the writing style of human references. We also 340

discussed model-specific differences and common 341

generation errors that can be mitigated through 342

few-shot prompting and post-processing. In future 343

work, we plan to investigate how our findings gen- 344

eralize to more complex graph data structures. 345
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5 Limitations346

Our comparative analysis has certain limitations.347

We focus solely on text generation based on knowl-348

edge graph triples, and we acknowledge that verbal-349

izing entire subgraphs or producing graph queries350

are other important tasks worth exploring. Nonethe-351

less, by studying semantic triples, we can still de-352

rive valuable insights about the performance of353

LLMs for processing more complex graph data354

structures. In that regard, it is recommended to ex-355

pand the comparison with human evaluations that356

go beyond automatically calculated metrics and to357

assess more models, particularly those trained on358

source code or documents with structured data.359

Further, the employed test dataset is limited to360

English triples. Since pre-training corpora of LLMs361

primarily consist of English text data, they likely362

work better where entities and relations correspond363

to meaningful English words or morphemes. Con-364

sequently, it is to be expected that LLMs exhibit365

worse performance on multilingual benchmarks366

with more morphologically rich languages, such as367

Russian, which is also part of the WebNLG dataset.368

6 Ethical Considerations369

Our experiments were conducted on the publicly370

available WebNLG dataset, ensuring that no de-371

mographic or identifying information about indi-372

viduals was processed or disclosed. Because our373

focus was not on addressing well-documented is-374

sues like privacy or biases associated with LLMs,375

we acknowledge potential risks and concerns in376

line with similar studies dealing with LLMs. The377

experiments with LLaMA, LoRA, and Vicuna were378

executed on a single NVIDIA V100 GPU and re-379

quired relatively low computational resources, with380

around one GPU hour of inference time per model.381
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A Appendix 556

The Appendix provides further insights into the results of our research, including the model prompts in 557

full length (Table 2), an overview of common issue types identified in the predictions along with their 558

relative frequency (Table 3 and 4), and the distribution of generated sentences per model (Figure 2). 559

Prompt Type Prompt Content
Zero-shot SYSTEM: Generate a concise text for the given set of triples. Ensure that the generated

output only includes the provided information from the triples.
Few-shot SYSTEM: Generate a concise text for the given set of triples. Ensure that the generated

output only includes the provided information from the triples.
USER: Input triples: [{’object’: ’Mike_Mularkey’,’property’: ’coach’,’subject’: ’Ten-
nessee_Titans’}]
ASSISTANT: Output text: Mike Mularkey is the coach of the Tennessee Titans.
USER: Input triples: [{’object’: ’Albert_E._Austin’, ’property’: ’successor’, ’subject’:
’Alfred_N._Phillips’}, {’object’: ’Connecticut’, ’property’: ’birthPlace’, ’subject’:
’Alfred_N._Phillips’}, {’object’: ’United_States_House_of_Representatives’, ’prop-
erty’: ’office’, ’subject’: ’Alfred_N._Phillips’}]
ASSISTANT: Output text: Albert E. Austin succeeded Alfred N. Phillips who was born
in Connecticut and worked at the United States House of Representatives.
USER: Input triples: [{’object’: ’College_of_William_&_Mary’, ’property’: ’owner’,
’subject’: ’Alan_B._Miller_Hall’}, {’object’: ’2009-06-01’, ’property’: ’completion-
Date’, ’subject’: ’Alan_B._Miller_Hall’}, {’object’: ’101 Ukrop Way’, ’property’: ’ad-
dress’, ’subject’: ’Alan_B._Miller_Hall’}, {’object’: ’Williamsburg,_Virginia’, ’prop-
erty’: ’location’, ’subject’: ’Alan_B._Miller_Hall’}, {’object’: ’Robert_A._M._Stern’,
’property’: ’architect’, ’subject’: ’Alan_B._Miller_Hall’}]
ASSISTANT: Output text: The Alan B Miller Hall’s location is 101 Ukrop Way,
Williamsburg, Virginia. It was designed by Robert A.M. Stern and was completed on
1 June 2009. Its owner is the College of William and Mary.

Table 2: Overview of applied zero-shot and few-shot prompts.

Issue Type LLaMA-7B Vicuna-7B GPT-3.5-Turbo LoRA-7B
relative frequency: zero-shot / few-shot

Inaccurate 0.60* / 0.61 0.41* / 0.48 0.13 / 0.11 0.19 / 0.17
Mistranslated - / - 0.01* / - - / - - / -
Off-prompt 0.65 / - 0.27 / - - / - - / -
Redundant 0.23* / 0.07 0.02* / - 0.01 / 0.01 - / 0.01
Unlexicalized 0.69* / - 0.27* / - 0.07 / - - / -

Table 3: Relative frequency of issue types for zero-shot and few-shot prompts in evaluated sample of 150 predictions
with lowest averaged BLEU and METEOR scores. For values marked with “*”, the relative frequency only considers
generations being on-prompt.
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Issue Type Definition Example
Inaccurate Prediction is in-

complete or fac-
tually incorrect.

GOLD: Binignit is a dessert that comes from the Philippines.
PRED: Philippines is a dessert.

Mistranslated Triples were ver-
balized in a lan-
guage other than
English.

GOLD: The Mexican based city of Ciudad Ayala in Morelos stands
at 1147 metres above sea level and is in the PDT time zone.
PRED: Ciudad Ayala es parte de Morelos, que es un estado en
México. Ciudad Ayala tiene una elevación de 1147 metros sobre
el nivel del mar [...]

Off-prompt Prediction is un-
related to the
prompt and con-
tradicts desired
output format.

GOLD: GMA Network is a public company.
PRED: The input triples are: [{’object’: ’Public_company’, ’prop-
erty’: ’type’, ’subject’: ’GMA_Network_(company)’}].

Redundant Unnecessary
repetition of
triple informa-
tion.

GOLD: The Pontiac Rageous, a car with a coupe body style, assem-
bled in Detroit Michigan, was first and last produced in 1997.
PRED: 1997 Pontiac Rageous was produced in Detroit, Michigan,
in 1997. It was a coupe. It was assembled in 1997. It was produced
in 1997 [...] It was a coupe. It was assembled in 1997 [...]

Unlexicalized Entities or rela-
tions are not lex-
icalized.

GOLD: The Fellowship of the Ring was followed by The Two
Towers.
PRED: The_Fellowship_of_the_Ring was followed by
The_Two_Towers.

Table 4: Overview of five identified issue types with examples from generated model predictions (PRED) and
human annotations (GOLD).
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Figure 2: Distribution of model generated sentences by number of triples for few-shot models with post-processing.
The size of the dots reflects the occurrence frequency. The ground-truth references are denoted as “Human”.
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