GAN:-based Transfer of Interpretable Directions for
Disentangled Image Editing in Text-to-Image Diffusion
Models

Yusuf Dalva Hidir Yesiltepe Pinar Yanardag
{ydalva, hidir, pinary}@vt.edu
Virginia Tech

Abstract

The rapid advancement in image generation models has predominantly been driven
by diffusion models, which have demonstrated unparalleled success in generating
high-fidelity, diverse images from textual prompts. However, these models are often
characterized as black boxes due to their complex, less-understood mechanisms,
highlighting a significant gap in interpretability research. In contrast, Generative
Adversarial Networks (GANS5) are praised for their well-structured latent spaces that
offer rich semantics, enabling more straightforward exploration and understanding
of model behaviors. GAN2Diff bridges this gap by transferring the structured,
interpretable latent directions from pre-trained GAN models—representative of
specific, controllable attributes—into diffusion models. This approach enhances
the interpretability of diffusion models, preserving their generative quality while
providing new avenues for exploring and manipulating complex image attributes.

1 Introduction

Denoising Diffusion Models (DDMs) [12] and Latent Diffusion Models (LDMs) [27]] gained popular-
ity in generative modeling landscape due to the capability to generate high-quality, high-resolution
images across diverse domains. Their performance, particularly highlighted by text-to-image models
like Stable Diffusion [27], has led researchers to leverage them for image editing tasks. These tasks
range from text prompt-driven edits to modifications based on scribbles or segmentation maps [39],
underpinning a growing interest in using DDMs and LDMs for fine-grained image manipulation.

Despite their success, these models remain black boxes, limiting interpretability and control. Advanc-
ing interpretability in generative models requires understanding their semantic structures, particularly
how specific attributes can be manipulated within the generative process. GANs excel in this area,
featuring well-structured and informative latent spaces [37, [10, 28|]. Studies have identified up to
2000 semantically meaningful latent directions in GANs [35]], enabling nuanced control and deep
understanding of various image aspects. In contrast, current interpretability research on diffusion
models has only discovered a handful of latent directions [6, [18]. This disparity stems from the
inherently more complex architecture of diffusion models, which involve independent forward noise
estimation and management of numerous latent variables across multiple recursive timesteps. As
a result, mapping disentangled directions within diffusion models presents a significantly greater
challenge compared to GANs. This stark difference in interpretability highlights the need for further
research into diffusion models’ latent spaces, aiming to bridge the gap with the rich latent architecture
of GANSs and enhance our ability to explore and manipulate image attributes in these powerful but
opaque systems.

To bridge this gap, we introduce GAN2Diff, a novel framework designed to transfer the comprehensive
and structured latent capabilities of GANs to the generative domain of large-scale text-to-image
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diffusion models. By incorporating the detailed latent directions from GANs into diffusion models, we
aim not only to enhance the interpretability of these models but also to unlock rich editing capabilities
that were previously constrained by the limited understanding of their latent spaces. Our contributions
are outlined as follows: (1) Our approach represents the first study to transfer latent semantics from a
pre-trained GAN model to a pre-trained text-to-image diffusion model without finetuning. (2) Our
approach showcases the capability to transfer a wide range of fine-grained semantics spanning various
categories, including faces, cats and dogs. Notably, we extend the application of transferred semantics
beyond simple headshots—a common limitation in GAN-based methods—to real-world examples,
showcasing the broader applicability and robustness of our approach. (3) Our experiments show that
our method transfers semantics comparable to state-of-the-art diffusion-based and GAN-based latent
space discovery methods. (4) Our method demonstrates versatility in semantic transfer, drawing from
diverse GAN techniques such as StyleSpace [35] and StyleGAN-NADA [8]], as well as diffusion-
based approaches like Prompt2Prompt [L1]. (5) Our method demonstrates versatility in semantic
transfer, drawing from diverse GAN techniques such as StyleSpace [35] and StyleGAN-NADA [8]],
as well as diffusion-based approaches like Prompt2Prompt [11]. (6) We share our source code along
with the discovered directions to enable further research in this area.

2 Method

Our proposed method GAN2Diff aims to learn a latent direction d formulated as a conditional
embedding, that represents the edit done by a GAN model such as StyleGAN. In order to achieve this
task, we initially populate a small dataset consisting /N image pairs corresponding to images generated
by StyleGAN using style channels As, G(s), and their edited co-variants, G(s + As). Throughout
our framework we label these image sets as Xippyr = {21, -+, zn} and Xegiea = {2, -+, 2N}
Using these image sets, we formulate our overall loss function to learn the latent direction d with two
objectives, which targets both the semantic level differences and latent level differences between the
image pairs. These two objectives are described below.

Semantic Alignment Loss. To learn a latent direction that semantically aligns with the difference
between the difference between the image sets Xy, and X gizeq, We introduce a semantic alignment
loss Lsem- Using the CLIP [26] Image Encoder, we define our objective that aims to learn the
embedding for d from the contrast between the two image sets. Fundamentally, for a latent direction
that represents the difference between the image sets Xjppu¢ and Xegizeq, the similarity between
&' € Xegiteq and the direction d should be maximized, whereas it should be minimized for x € Xy pu.
To reflect this behavior, we use the difference between the similarity values of 2’ and x with direction
d, where we maximize the similarity value for z’ and minimize for z. Furthermore, we enforce
our method to learn the desired semantic change only from the paired images generated by the
StyleGAN generator. We formulate the semantic alignment loss as Lge, = 1 — cossim(E(z'),d) +
cossim(Er(x),d)

Direction Alignment Loss. Complementary to L., we introduce the second optimization term
L 4ir by utilizing the information encoded by the noise predictions across timesteps, which can capture
fine-grained details for the given input-edit pair (z, z’) where = € Xinput and 2’ € X.giteq. Since our
training data involves images that are identical, expect the semantic that we would like to learn with
direction d, we expect the optimized direction d to give a strong response to the difference in noise
predictions ||eg (2}, d) — €g(2¢, d)||3, as the optimized semantic reflects the difference between 2’ and
x, where x; denotes the noised variant of image x at timestep ¢ € ¢/(1, 7). With the motivation to
use the understanding capabilities of the diffusion model complementary to CLIP [26], we formulate
L qir as the difference of noise predictions w.r.t. d with a negative sign, to maximize it. We formulate
the direction alignment 10ss as Ligtent = —Eq, etn(0,1),]|€0(24, d) — €g(24, d)||3]

The final loss to optimize the direction d, is the sum of semantic and direction alignment terms,
L= Csem + Elatent~

2.1 Image Editing

Given a latent direction d, we perform image editing in a way that it successfully reflects the
desired semantic to the input image in a disentangled manner. In order to achieve this, we expand
the classifier-free guidance provided in Eq. [3] with the direction we optimize. Following the
editing schemes provided by [6, [1] we adopt the classifier-free guidance with an editing term
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Figure 1: Qualitative Results. GAN2Diff successfully transfers editing directions that modify the
overall look, including changes in race or aging, as well as more detailed edits that target specific
facial attributes, such as eyeglasses or a beard. GAN2Diff can also distinguish among various edits
for the same feature underlines the versatility of our approach, providing users with an extensive
selection of editing options for individual characteristics, like multiple smile designs (see row 2) or
styles of baldness (as shown in Rows 1 and 2).
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based on d, which is the latent direction we learn during the optimization process. Briefly, we
add an additional classifier-free guidance term corresponding to editing in which we formulate as
€o(xe, c,d) = €g(xs, c) + Ae(eg(as,d) — €p(x, ¢)) for the timesteps where the edit is going to be
applied. We denote the editing scale with )., the image condition with ¢ and the editing direction
with d. Note that our editing scheme does not involve adding any additional input other than the
conditional embedding optimized for the editing task, which is used as the input to the text embedding
for the noise prediction residual applied on the edit.

Editing with multiple directions. To extend our editing scheme for multiple edits, we perform a sum
over multiple editing directions with their corresponding editing scales. For a set of directions D =
{dy,- - ,dy}, which are going to be applied at a given timestep, we expand our editing formulation

with a summation term over direction set D as €y(z;,¢) + legll Ae; (€0(e, di) — eg(xe, @)

Real Image Editing. In addition to performing edits on generated images, the directions learned
by GAN2Diff can also be used to edit real images. To do so, we adopt the DDPM Inversion [13] to
obtain the series of noisy latents, which eventually gives z7 as the initial latent. After inverting
unconditionally, we reformulate the overall noise prediction €y (¢, d) for real image editing, where d
denotes the editing direction: éy(x¢,d) = €g(xt, ®) + Ac(€a(xt, d) — €g(x4, @))

Note that the approach for editing with multiple directions is also applicable to real image editing,
by replacing the edit guidance term A, (eg (¢, d) — g (x4, ¢)) with the summation provided as our
multiple direction editing formulation.

3 Experiments

To evaluate the effectiveness of GAN2Diff in transferring semantically meaningful latent directions
and to demonstrate the generalizability of our method, we evaluate our method in various domains,
such as human faces, cats, and dogs. We also demonstrate the generalizability behavior of our
framework on different images edited with representations different than style space S.

Experimental Setup. We used Stable Diffusion-v1.5 for all of our experiments. We used StyleGAN2
trained on various datasets, including FFHQ [[16], AFHQ-Cats [3], and AFHQ-Dogs [5]]. In our
default setting, we train GAN2Diff with N = 1000 samples for each direction that we would like to
transfer. To optimize, we use the AdamW optimizer [21] for 1000 iterations. Training our method on
a single domain requires approximately 30 minutes, and once trained, zero-shot image editing takes
about 5 seconds using a single NVIDIA L40 GPU.

3.1 Qualitative Results

Our method leverages a single pre-trained diffusion model to transfer latent directions across different
domains. Given the significant variability in facial features and the popularity of face editing in both
GAN and diffusion-based models, we initially explore the potential for face editing in directions
uncovered by GAN2Diff. As illustrated in Fig. [I] our technique showcases a range of editing



capabilities, from comprehensive changes that alter the face’s overall appearance, such as race or
aging, to more fine-grained adjustments targeting specific facial features, such as eyeglasses or a
beard. Our approach can transfer a variety of editing directions that belong to the same semantics,
for example, different styles of bangs, hairstyles, or degrees of baldness. In particular, our method is
capable of distinguishing between very detailed variations within the same editing task; for example,
when provided with four distinct GAN directions for varying smile edits, GAN2Diff successfully
learned to differentiate between them. This highlights our method’s adaptability, offering users a wide
range of options for a single attribute, such as various smile types (row 2) or baldness styles (refer to
rows 1 and 2). We also note that a key feature of our edits is their high degree of disentanglement,
ensuring that only the targeted modifications are made without altering other unrelated aspects. In
addition, our method’s effectiveness extends to domains beyond human faces, including cats and
dogs. The qualitative results depicted in Fig. [T0[b) demonstrate GAN2Dif£’s ability to grasp and
apply a wide array of semantic variations across different domains.

3.2 Quantitative Results

Method LPIPS] CLIP-Tt DINOt  SigLIP-Tt DreamSim?
SEGA 1] 0.17910.07 0.388£0.03 0.714£0.13 0.134£0.02 0.757£0.09
Prompt2Prompt [I1] | 0.074+0.05 0.40820.29 0.867+0.09 0.14320.02 0.869-0.07
InstructPix2Pix [3] | 0.059+0.05 0.403+0.03 0.85140.13 0.145+£0.02 0.877+0.10
Concept Sliders [9] | 0.1214£0.06 0.325+0.06 0.842+0.10 0.09740.03  0.844-£0.08
Ours 0.030£0.01 0.407L0.03 0.92910.05 0.139£0.02 0.90510.05

Table 1: Quantitative Comparisons with Diffusion-based Editing Methods. We compare the
editing performance of the directions learned by GAN2Diff with diffusion based methods using
LPIPS [40], DINO [22], DreamSim [7]], CLIP-T [26] and SigLIP-T [38] metrics. In our experiments,
we compare our framework with SEGA, Prompt2Prompt, InstructPix2Pix and Concept Sliders. In
addition to these metrics, we also conduct a user study on the disentanglement properties of our
framework.

Quantitative Comparisons with Diffusion-based Editing Methods. To quantitatively evaluate the
directions learned by GAN2Diff against diffusion-based editing methods, we compare our method
on images edited with “Asian” and “Smile” semantics, over 200 input-edit pairs. For each edit, we
generate a set of 100 input-edit pairs, where the editing performance is assessed over synthetic images.
For each method, we use their default editing parameters provided in their publicly released code, to
not create any unfair advantage with extensive parameter fine-tuning. In our benchmark, we follow
the same evaluation protocol as our ablation studies and evaluate the faithfulness to the input image
with LPIPS [40], DINO [22] and DreamSim [7] metrics, and alignment with the target semantic with
CLIP-T [26] and SigLIP-T [38] text-to-image similarity scores. Note that our edits do not have access
to a target editing prompt or concept and apply the edits based on the direction transferred from
GANs. We present the quantitative results in Tab. [T} Our evaluations demonstrate that GAN2Diff
outperforms the competing methods in terms of preservation of the input characteristics, and is on
par with diffusion-based editing methods in terms of alignment to the target editing prompt. For
qualitative results regarding comparisons with diffusion-based editing methods, see the supplementary
material.

4 Discussion

Conclusion In this paper, we introduce a novel approach that capitalizes on the strengths of GANS,
known for their disentangled latent spaces and powerful manipulation capabilities, and harmonizes
them with the exceptional image generation abilities of diffusion models. Our method aims to
bring the best of both worlds, transferring directions from GAN models to exploit the generative
capacity of text-to-image diffusion models like Stable Diffusion. This strategic combination not
only delivers editing capabilities that are competitive in both diffusion-based and GAN-based image
editing techniques, but also significantly refines the precision of the image generation process.
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A Related Work

Latent Space Exploration of Diffusion Models. Empowered by pre-trained text encoders as
the conditioning approach, text-to-image diffusion models encode semantically rich information in
their latent spaces, which is utilized to generate high-quality images, given a text condition. With
the motivation to uncover the semantics represented by this feature space, exploration of the latent
space of diffusion models experienced significant advances by recent research [18, [34]. Among
the proposed methods, [18] proposes an approach focused on the representations encoded in the
bottleneck block of the denoising network, where [34] proposes modifying the latent representations
across translation between different imaging domains. In addition to these previous efforts, [23]]
proposed a method to identify latent directions targeted by an input semantic, inspired by latent space
exploration studies in GANs. Despite succeeding in domain-specific diffusion-based models such as
DDPMs, such approaches cannot generalize well over large-scale diffusion models such as Stable
Diffusion. Addressing this gap, [20]] proposes decomposing latent variables into energy functions of
semantic significance, whereas the decomposition represents concepts such as lighting and camera
position. In a different approach that tackles the latent space of large-scale diffusion models, [6]
proposes a contrastive learning objective to discover disentangled latent directions. However, these
methods still operate within the complex latent space of diffusion models, making it challenging
to achieve fine-grained interpretability and precise control over generated outputs. Our method
aims to bridge this gap by transferring semantics from GAN models that are celebrated by their
well-understood latent spaces.

Combining GAN and Diffusion Models. Recent studies such as [32] aims to use a pre-trained
text-to-image diffusion model as a training objective to adapt a GAN generator to another domain.
However, they do not transfer directions between GAN models and diffusion models. Studies such as
W+ Adapter [19] and Concept Sliders [9], have also explored leveraging the disentangled image
editing capabilities of the StyleGAN model. However, these approaches differ significantly from ours
in terms of both their main goals and their methodologies. Concept Sliders [9] focus on finetuning
the Stable Diffusion model using LoRAs [[14]] in order to learn specific concepts where one use case
was demonstrated as using a pre-trained StyleGAN to generate paired images. Unlike this method,
our approach involves transferring directions from StyleGAN to a single pre-trained Stable Diffusion
model, eliminating the need for fine-tuning or training separate LoORA models. The YW+ Adapter [19]]
seeks to utilize the StyleGAN model for image editing on individual images. Unlike our approach,
which learns directions applicable to any given image, the YW+ Adapter finetunes the Stable Diffusion
so that it can edit an image on w+ vectors of StyleGAN and transfer the edit per image to diffusion
model. In contrast, our method can transfer directions from StyleGAN to the diffusion model, which
can perform edits within the diffusion model.

B Background

GANSs The StyleGAN2 generation process consists of several latent spaces, namely Z, W, W+, and
S. More formally, let G denote a generator acting as a mapping function G : Z — X where X is the
target image domain. The latent code z € Z is drawn from a prior distribution p(z), typically chosen
as Gaussian. The z vectors are transformed into an intermediate latent space WV using a mapper
function consisting of 8 fully connected layers. The latent vectors w € W are then transformed
into channel-wise style parameters, forming the style space, denoted S, which is the latent space
that determines the style parameters of the image. This particular space provides extensive editing
possibilities, with each style channel governing a specific attribute modification, such as smile,
eye color, or hair type. Essentially, this means that targeted adjustments to the channel-wise style
parameters can facilitate precise and disentangled alterations to an image. In our work, we use the
directions in the style space S identified by previous work [35,[30].

Diffusion Models Diffusion models [12, 31} [27], create data samples using an iterative denoising
procedure, commonly referred to as the reverse process. This process operates on a sequence of noise
levels t € {1,..., T}, with ¢’ = a’e where € is drawn from a normal distribution N'(0, 1). The role
of the denoising network, denoted as ey, is to predict the noise component ¢ in the noised image x;
during the reverse process. Here, z; symbolizes the noised variant of the original image z, subjected
to a noise level of €*. The training of such a denoising network revolves around an objective function
that is structured as follows:



Loatr = Eag comnionyallle = ol I3 )

To produce an image with the denoising network €y, the reverse process begins with an initial input
@7, which is sampled from a normal distribution A/(0, 1). During the reverse diffusion procedure,
the variable x; undergoes a series of iterative denoising steps to gradually approach x, for each noise
level ¢ ranging from 1 to 7". This iterative denoising process is mathematically represented by Eq.
which is defined for a given step size «y and a specific timestep ¢.

w1 = a2 — yeg(w4,t) + &, €~ N(0,071) (@)

Classifier-free guidance, introduced by [13], facilitates conditioned sampling by making nuanced
modifications to both the forward and reverse diffusion processes based on a specific condition c. By
adapting the training of the denoising network €y to be compatible with classifier-free guidance, it
becomes feasible to generate images conditionally. This is achieved by adjusting the standard noise
prediction €y (z;) to incorporate the condition, resulting in a conditional noise prediction denoted as
€y (x¢, ¢). For the sake of clarity, the notation ey(z;) is used here to indicate the predicted noise at
timestep ¢, with the understanding that ¢ is implicitly indicated by the variable x;. The formulation
for the noise prediction under classifier-free guidance, €5(x, ), is given by:

679(3:15’ C) = EG(xta ¢) + A{](ee('rtv C) - 69($ta ¢)) (3)

where )\, is guidance scale and ¢ is null-text.

C Ablation Studies

We conducted ablation studies that focus on the number of time steps, the number of samples from the
GAN direction intended for transfer, and the distinct components of our loss function. In accordance
with our ablation study, we provide qualitative and quantitative analyses in Fig. P]and Tab. [2] For
our quantitative analysis, we report results using the “Beard” semantic, and report our metrics on
100 input-edit pairs generated by Stable Diffusion. In our experiments, we use LPIPS [40], DINO
[22] and DreamSim [[7]] metrics to assess the faithfulness to the input image and use CLIP-T [26] and
SigLIP-T [38] text-to-image similarity metrics to assess the faithfulness to the target semantic.

Ablation on sample size. We perform ablations to assess the impact of the number of images
sampled from the GAN directions during the learning phase (see Fig. [2](b)). Our findings reveal that
GAN2Diff can successfully learn directions with as few as N = 10 samples. Moreover, increasing the
sample size appears to yield slightly more disentangled results, as we also verify with our quantitative
analyses presented in Tab. [2]

Ablation of loss terms. We perform ablations focusing on the individual loss terms (see Fig. 2] (c)).
Employing only the semantic alignment loss (indicated as ‘w/o L4;,”) demonstrates the capability
to learn the desired edit. However, this approach results in entangled outcomes that alter facial
structure. However, utilizing both loss terms in conjunction (indicated as ‘with L4;,") leads to highly
disentangled edits, ensuring that the edits are consistent with the facial structure and background. We
refer to our quantitative ablations to assess the impact of Lg;,- on the disentanglement of the edits.
As shown in Tab. [2] absence of this loss term results in deteriorated disentanglement properties (as
validated by LPIPS and DINO metrics).

D Qualitative Comparisons with Diffusion-based Editing Methods

To qualitatively compare the edits performed with diffusion-based editing methods and the edits
performed by GAN2Diff, we provide additional results here. In addition, we further demonstrate
the editing capabilities of our framework, such as edit strength interpolation and generalization over
out-of-domain images (e.g. images with style components) to demonstrate how the edit strength can
be controlled and applied to a diverse set of imaging settings.

To compare the edits performed by GAN2Diff with diffusion-based editing methods, we bench-
mark our approach against several recent approaches including Concept Sliders [9], SEGA [1]],



Method LPIPS| CLIP-T1 DINO?T SigLIP-Tt DreamSim?
N =10 | 0.0984+0.038 0.403+0.033 0.869+0.092 0.143+0.020 0.872:£0.066
N =100 | 0.1364+0.051 0.425+0.019 0.842+0.119 0.148+0.011 0.771+0.085
w/o L4 | 0.121£0.046  0.40940.020 0.832+0.117 0.143+£0.013  0.860+0.080
Ours 0.093+0.034 0.406£0.021 0.891+£0.090 0.1474+0.013 0.861£0.065

Table 2: Quantitative Results for the Ablation Studies. We perform ablation studies quantitatively
on the number of samples N used in training, and the loss components included during optimization.
We evaluate each variant with LPIPS [40]], DINO [22], DreamSim [[7]], CLIP-T [26] and SigL.IP-T
[38]] metrics. We label the final direction as “Ours”, where we set N = 1000 and use both L., and
Edir'

W/o Ly With Lay  W/oLair  with Ly N=10

Figure 2: Ablation Study. We perform ablations to assess the effectiveness of three different variables,
which are the selection of editing timesteps (a), effect of proposed loss terms (b) and the number of
sample used for training (c). For each of our ablations we present qualitative results on two different
edits, where their corresponding labels are provided for easy understanding.

InstructPix2Pix [3] and Prompt2Prompt (P2P) [[11]. Here we use Null-text inversion (NTI) to adapt
Prompt2Prompt for real image editing task (NTI + P2P). In particular, SEGA, Prompt2Prompt,
and InstructPix2Pix often result in substantial alterations to the input image for edits like ‘Asian’.
In addition, Prompt2Prompt and SEGA lead to entangled edits for edits such as ‘Gender’, where
alterations on attributes such as age and race are also visible, whereas InstructPix2Pix produces
results that are deteriorated in terms of image quality. As illustrated in Fig. [[3] GAN2Diff surpasses
these alternatives in maintaining semantic accuracy and in its ability to execute disentangled edits.
Concept Sliders face challenges in applying multiple edits simultaneously, such as combining Race
and Beard modifications, resulting in significant deviations from the original input image, whereas
GAN2Diff can successfully combine multiple edits. We provide additional examples of combining
multiple edits in Fig. [7}

In addition, we provide additional comparisons with LEDITS++ [2], which requires text prompts to
perform edits within the Stable Diffusion model. We perform these comparisons on Beard, Gender,
and Race semantics, which we provide in Figs. 3| f]and[5] As can be seen from the results, our method
performs more disentangled edits compared to LEDITS++. Furthermore, we provide comparisons
with the DDPM-based direction discovery methods Asyrp [18] and DiffAE [23] in Fig. [T4] along
with the diffusion-based editing methods PnP-Diffusion [33]] and MasaCtrl [4].

Lastly, since our method performs real image editing with DDPM inversion [[15], we provide ablations
on the impact of the inversion method in Fig. [} where we compare with DDIM inversion [31]]. As
demonstrated qualitatively, our method is able to perform edits with both inversion methods, but can
preserve nuanced details with DDPM inversion better, compared to DDIM inversion.

E Qualitative Comparison with Diffusion-based Latent Direction Methods.

We conduct comparisons with methods that identify latent directions within Stable Diffusion. Diffu-
sion Pullback [23]] introduces an unsupervised approach to discover latent directions in diffusion-based
models, employing the pullback metric for this purpose. Another recent method, NoiseCLR [6]],
employs a contrastive learning framework to uncover directions without supervision. Given the unsu-
pervised nature of both methods, we selected three overlapping directions for comparison: ‘Gender’,
‘Old’, and ‘Race’. Fig. [9]shows a comparative analysis between our approach, Diffusion Pullback
(referred to as D-Pullback), and NoiseCLR. The comparison reveals that Diffusion Pullback often
results in significant alterations to the input image (such as race edit), as acknowledged in their study
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Figure 3: Comparisons on Beard Edit. We provide qualitative comparisons on beard editing task
with Concept Sliders [9]] and LEDITS++ [2]] where we use image sliders in [9] for a fair comparison.
Our editing results succeeds over the competing approaches both in terms of editing quality and
content preservation. Note that [9], which learns the edit based on reference images, struggle when it
attempts to add a beard to sample without any traces of the attribute.

[23]]. Although NoiseCLR shows performance on par with our method, its unsupervised approach
inherently restricts it to a limited number of discoverable directions.

F Qualitative Comparison with GAN-based Latent Direction Methods.

GAN-based editing techniques are recognized for their exceptional editing abilities, attributed to their
disentangled latent spaces [36]]. In our comparative analysis, we evaluate GAN2Diff alongside leading
GAN-based methods capable of identifying directions within the latent space, including StyleCLIP
that finds directions using text prompts, and unsupervised methods LatentCLR [37], GANSpace
[10] and SeFa [29] (see Fig. [8). The comparison reveals that our diffusion-based approach delivers
results that are on par with those of GAN-based models.
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Figure 4: Comparisons on Gender Edit. To demonstrate the effectiveness of the gender editing
direction learned by GAN2Diff, we provide qualitative comparisons with Concept Sliders [9] and
LEDITS++ [2]. Notably, both [9] and [2] struggle with artifacts while performing such an edit that
changes the overall appearance of the face, where [9] experiences it more severely. Directions learned
by our method can both perform such edits without sacrificing from generation quality and in a
disentangled manner.

Transferring Directions from Different Image Editing Methods. In addition to the style space of
StyleGAN, GAN2Diff can also transfer latent directions from input-edit pairs obtained by different
methods. To demonstrate this generalizability of our framework, we demonstrate qualitative results
on transferring directions from image pairs generated by StyleGAN-NADA [[8]] and Prompt2Prompt
[11], in Figure GAN2Diff can both identify semantic changes generated by different image
translation methods and can apply them in a way that is not limited to the output space of the model
from which the direction is transferred (e.g., StyleGAN-NADA is specialized for face images, where
GAN2Diff can also apply the edits learned on full-body images).
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Figure 5: Comparisons on Race #2 Edit. We provide qualitative comparisons on the attribute
Race #2 with Concept Sliders [9] and LEDITS++ [2]. As observed from the provided examples,
our method successfully reflects the edit while preserving the identity of the input image. Note that
with LoRA based approaches such as [9], image quality is sacrificed in order to apply the edit where
significant changes to the input are present in the corresponding edits.

G Supplementary Editing Results and Details

In addition to the results we provided in the main paper, we provide additional editing results in the
supplementary material. Specifically, editing with multiple directions in Fig. [7} editing results with
images generated by Stable Diffusion in[I6]and editing results on artistic paintings in Fig. [T7]

H Failure Cases

Extending our discussion on the Limitations of GAN2Diff, we provide examples of failure cases of
our method in Fig. [] In case of edits performed by StyleGAN that involve very nuanced changes
(e.g. minor modifications on the nose shape), our method fails to conduct the desired edits. As we
demonstrate qualitatively, even though GAN2Diff fails to perform the exact edit, it can still recognize
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Input w/ DDIM Inv. w/ DDPM Inv.

Figure 6: Ablations on Inversion Method and Failure Cases. We provide ablations on the inversion
method used and the failure cases of the GAN2Diff framework. Regarding the inversion method, we
observe that DDPM inversion results in more disentangled edits. However, note that our method is
able to perform edits on both inversion methods. For the failure cases, we demonstrate an example
direction that involves low amount of semantic difference between the input and edited image, where
the direction d fails to capture such differences.

Input ++ Asian ++ Beard ++ Smile

++ Female ++ Smile

Figure 7: Application of Multiple Editing Directions. We provide qualitative results on the
application of multiple editing directions over a given input image. From top to bottom, we apply

the edit triplets (“race”, “beard” “smile”) and (“gender”, “age” “smile”) to each input. Note that we
apply each of these edits in a cumulative manner, from left to right.
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LatentCLR

Figure 8: Qualitative Comparisons with GAN-based Latent Direction Discovery. GAN2Diff
is evaluated against methods for discovering latent directions in GANs. Our findings show that
the editing and direction discovery capabilities of GAN2Diff are on par with those of GAN-based
approaches, especially in the context of detailed face editing.

Gender + ++ Age + ++ Race + ++

D-~Pullback

NoiseCLR

Ours

Figure 9: Qualitative Comparison with Diffusion-based Latent Direction Methods We compare
our method with Diffusion Pullback [23]] and NoiseCLR [6]].

Input Ukiyoe Pixar Input Eye: Nose Skin Color Input Skin Color

gl fe—qa B0
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Figure 10: Edits Transferred from additional methods & domains. We demonstrate the generaliz-
ability of GAN2Diff by transferring edits using input-edit pairs generated by from StyleGAN-NADA
[8], and Prompt2Prompt [11] (a). In addition, we also demonstrate the generalizability of our method
to domains different than faces, such as cats and dogs (b).

the region to be edited (e.g., the shape of the nose). We suggest the cause of this behavior the
capabilities of the text encoder and the amount of detail that can be encoded by the diffusion model
(Stable Diffusion for our case).

I Comparisons with W+ Adapter and Concept Sliders

We provide a qualitative comparison between the YW+ Adapter and our proposed method in Fig. [12}
Our approach effectively learns latent directions from StyleGAN, such as Gender or Age, and applies
these directions to any given image, as demonstrated in Fig. [T2} In contrast, the W+ Adapter requires
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Gender

Figure 11: Qualitative Results from GAN2Diff. GAN2Diff can successfully transfer edits from
GANsS to diffusion models, and facilitate them over edits in different imaging setups

Gender

Figure 12: Comparisons with 1V+ Adapter [19]. We compare our method with as a competing
approach on face editing task. Apparent from the results we provide, our method succeeds over in
terms of capabilities such as content preservation (preserving the identity and details irrelevant to the
edit) and disentangled editing (such as disentangling attributes like eyeglasses and age).

fine-tuning the Stable Diffusion model by training a separate Y+ Adapter. Our results demonstrate
that our edits more accurately preserve the integrity of the input image while implementing the
desired edits, such as changes in Gender or Age.

Moreover, we provide qualitative comparisons with Concept Sliders [9] in Fig. 3] Fig. 4] and Fig.
[5| where our method surpasses [9] both in terms of disentanglement capabilities and representation
quality without the need of training separate LoRA models for each direction.
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InstructPix2Pix
InstructPix2Pix

NTI + P2P
NTI + P2P

Figure 13: Qualitative Comparison with Diffusion-based Image Editing Methods We compare
our approach with Concept Sliders [9]], SEGA [1]], InstructPix2Pix [3]] and Prompt2Prompt (NTI +
P2P) [11]. The qualitative outcomes demonstrate that GAN2Diff outperforms the aforementioned

methods in achieving disentangled image edits both in single and multiple semantics (e.g. “Race”
and “Beard”), and in identifying detailed latent directions.

Concept Sliders

Input Qurs InstructPix2Pix PnP-Diffusion MasaCtrl NTI + P2P Asyrp

Figure 14: Supplementary Comparisons with Diffusion-based Editing Methods. In addition to the
editing methods included in our evaluation benchmark such as InstructPix2Pix [3] and Prompt2Prompt
[11]] (NTI + P2P), we present qualitative results with PnP-Diffusion [33]], MasaCtrl [4], Asyrp [18]],

and DiffAE [23]. As we demonstrate qualitatively, GAN2Diff achieves more disentangled edits
compared to competing methods, while successfully reflecting the edited semantic.

7

Gender

Smile

e
a

J StyleGAN Edits vs. Transferred Edits

To demonstrate how the representations that GAN2Diff learn align with the latent space of StyleGAN,
we demonstrate the edits performed by the directions learned by our framework and the input-edit
pairs sampled from StyleGAN in Fig. [T3]

K Training Algorithm

To further clarify our training procedure for learning a latent direction d, we provide the training
algorithm of GAN2Diff in Alg. [T} We also provide our training code as a part of our supplementary
material.

L. Rescoring Analysis

To assess the disentanglement capabilities of the learned directions, we perform a rescoring analysis
to assess how the CLIP classification probabilities for specific attributes change following an edit,
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Input I T Race #2 Bald

Figure 15: Edits learned by GAN2Diff. We demonstrate the beard, gender, race # 2 and baldness
edits above, along with reference images from the training datasets constructed using StyleGAN.
Above, we show the images generated by StyleGAN as G(s) and their edited counter-parts as
G(s+ As), respectively. As our qualitative results also show, edits learned by GAN2Diff successfully
translates the disentangled directions performed on StyleGAN to Stable Diffusion.

following [2816]]. The rows in Tab. [3]correspond to various editing directions—Asian, Smile, Gender,
and Beard—applied to 100 images generated by Stable Diffusion, while the columns show the
resulting shifts in CLIP scores. Consistent with our expectations, performing a targeted edit increases
the probability of the image being classified under that attribute. For example, an Asian edit improves
the likelihood that the image is identified as Asian by 53.6%, with similar increases observed for
other attributes, as detailed in the diagonal entries of Tab. [3] Additionally, some edits naturally impact
related attributes; for instance, enhancing the Gender attribute towards femininity notably reduces the
Beard attribute probability. The interaction between Beard and Smile attributes also demonstrates a
degree of interdependence, which can be attributed to inherent biases within the SD model, where
adding beard diminishes the presence of smile attribute. Our approach notably supports disentangled
editing as it minimally affects the scores of unrelated attributes when making specific edits.

M User Study

We conducted a user study with 40 participants on Prolific.com, compared to [1,[3L[I1}9]. Participants
were shown a series of edits made using common semantics for each method in comparison. Unlike
the previous experiments, we conduct this set of experiments with real images to also evaluate the
real image editing capabilities of our method. They were then asked to judge whether they deemed
the edit successful in conveying the intended semantics and if the edit was executed in a disentangled
manner, for a set of 60 input-edit pair. The participants rated each question on a scale from 1 to 5,
with 5 representing the highest level of satisfaction, where we provide additional details on our study
in the Supplementary Material. We present the result for the user study in Tab. [T} where our method
outperforms competing approaches in terms of user preference.
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Algorithm 1: Learning direction d with GAN2Diff

Input: Pre-trained diffusion model eg(x, ¢); CLIP image encoder Ey(x); latent codes
{s1,...,8n}; editing direction As; StyleGAN generator G(s); random initial
embedding d; learning rate A

Output: Trained conditional embedding d

Procedure: LEARNDIRECTION(¢€g, Ey, G, {s;}, As,d, \)

begin

while training do

for i < 1to N do

z; + G(si);

xh +— G(s; + As)

sample € ~ N(0,1);

sample ¢ ~ U(1,T) and set €’ + a'e

Tig — x; + €l

e e

€input < €0(Ti e, d);

€edited < €0 (x;‘,ta d),

2
Ligent _||€edited - einputH2
Liem 1 — cossim(E(x}),d) + cossim(E;(z;),d)
L+ Esem + Llatent
d+—d— V4L

end

end
return d

end

Asian Smile Gender Beard Method User Pref. 1
; SEGA 1.96
Amgn 53.6 15.8 -12.1 -3.5 Prompt2Prompt 274
Smile 204 41.2 11.8 -7.2 R
InstructPix2Pix 2.06
Gender 2.0 -4.3 94.7 -19.8 Concent Slider 395
Beard 26 -8.1  -0.05 283 oncept Stders .
Ours 3.36

Table 3: Re-scoring Analysis. GAN2Diff can perform edits
efficiently on several attributes. The attributes edited are
shown as rows, whereas the measured attributes are shown
as columns.

Table 4: User Study Results. Human
preference scores on attribute disentan-
glement and edit quality.
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Input Age Gender Beard Race

Figure 16: Supplementary Editing Results on Images Generated by Stable Diffusion. To show
the generalization capabilities of the directions learned by GAN2Diff, we present qualitative results
on images generated with Stable Diffusion, containing diverse style elements. Our directions can
apply the desired semantic to the generated images, without the need of inversion. Additionally, our
method can preserve the stylization characteristics of the edited images.
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Input Age Gender Beard Race

Figure 17: Supplementary Editing Results on Artistic Paintings. We provide additional editing
results painting images, to further demonstrate our methods compatibility with stylized images. As
we demonstrate qualitatively, our method is able to perform edits without changing the overall style
of the image (e.g. oil painting).
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Given the input image on the left, how likely do you think the modified image is disentangled,
meaning that the modification only performed the desired edit, e.g. Woman, and did not alter any
unrelated areas? *

wWWw W W W

Figure 18: User Study Setup. To further clarify the experimental setup used for the user study,
we provide an example question. In the conducted study, users are shown an input-edit pair for a
corresponding method, and asked to assign a score from 1-to-5, based on their assessment of the edit.
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