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Abstract
Template-free SMILES-to-SMILES translation
models for reaction prediction and single-step ret-
rosynthesis are of interest for industrial applica-
tions in computer-aided synthesis planning sys-
tems due to their state-of-the-art accuracy. How-
ever, they suffer from slow inference speed. We
present a method to accelerate inference in autore-
gressive SMILES generators through speculative
decoding by copying query string subsequences
into target strings in the right places. We apply
our method to the molecular transformer imple-
mented in Pytorch Lightning and achieve over 3X
faster inference in reaction prediction and single-
step retrosynthesis.

1. Introduction
Automated planning of organic chemical synthesis, first for-
malized around fifty years ago (Pensak & Corey, 1977), is
one of the core technologies enabling computer-aided drug
discovery. While first computer-aided synthesis planning
(CASP) systems relied on manually encoded rules (John-
son et al., 1989; Gasteiger et al., 2000), researchers now
primarily focus on CASP methods powered by artificial
intelligence techniques. The design principles of the latter
were outlined in the seminal work by Segler et al. (Segler
et al., 2018): a machine learning-based single-step retrosyn-
thesis model combined with a planning algorithm. The
former proposes several candidate retrosynthetic chemical
transformations for a given molecule, and the latter, e.g.,
Monte-Carlo Tree Search, uses those candidates to construct
a synthesis tree. Single-step retrosynthesis models are now
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commonly developed in two paradigms: template-based
models and template-free models. Besides retrosynthesis,
one can also build a model to predict the products of chemi-
cal reactions (Figure 1).

Figure 1. Both reaction product prediction and single-step retrosyn-
thesis can be formulated as SMILES-to-SMILES translation and
approached with a model like an encoder-decoder transformer.

The principle of template-based models is to use a set of
SMIRKS templates extracted from reaction data and a ma-
chine learning model for classification or ranking to select a
matching template for a query SMILES that will, upon ap-
plication, transform the query into the product SMILES (for
product prediction), or the SMILES of possible reactants
(for single-step retrosynthesis). In contrast, in template-
free models, the query transforms into the result without
resorting to SMIRKS templates, e.g., with a sequence of
predicted graph edits (Sacha et al., 2021; Bradshaw et al.,
2018) or through “translation” of the query SMILES into the
desired SMILES with a conditioned text generation model
(Schwaller et al., 2019; Tetko et al., 2020; Irwin et al., 2022).
While CASP systems leveraging template-based single-step
models proved to be effective (Genheden et al., 2020), there
is an interest in building CASP with template-free mod-
els instead, as they demonstrate state-of-the-art accuracy
in both single-step retrosynthesis and reaction product pre-
diction. Most accurate template-free models are currently
conditional autoregressive SMILES generators based on the
transformer architecture (Vaswani et al., 2017), which also
serves as the backbone for Large Language Models (LLM)
(Brown et al., 2020; Zhao et al., 2023). Unfortunately, the
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high accuracy of autoregressive models like Chemformer
(Irwin et al., 2022) comes at the cost of a slow inference
speed (Torren-Peraire et al., 2024), which hinders their suc-
cessful adoption as part of industrial CASP systems. In our
work, we propose a method to accelerate inference from
SMILES-to-SMILES translation models based on specula-
tive decoding (Leviathan et al., 2023; Xia et al., 2023), a gen-
eral technique for LLM inference acceleration, combined
with insights from the chemical essence of the problem. We
reimplement the Molecular Transformer (Schwaller et al.,
2019) in Pytorch Lightning and use our method to demon-
strate its inference acceleration in single-step retrosynthesis
and product prediction by 300% without changing the model
architecture, training procedure, or generated SMILES.

2. Methods
2.1. Algorithm

Autoregressive models, such as Transformer variants
(Vaswani et al., 2017; Brown et al., 2020; Schmidhuber,
1992), generate sequences token by token, and every predic-
tion of the next token requires a forward pass of the model.
Such a process may be computationally expensive, espe-
cially for models with billions of parameters. Therefore,
an intriguing question arises whether could one generate
several tokens in one forward pass of the model, thus com-
pleting the output faster. Speculative decoding (Xia et al.,
2023; Leviathan et al., 2023) answers positively. Recently
proposed as a method of inference acceleration for Large
Language Models, it is based on the draft-and-verify idea.
At every generation step, one can append some draft se-
quence to the sequence generated by the model so far and
see if the model ”accepts” the draft tokens.

If the draft sequence has length N , in the best case, the
model adds N + 1 token to the generated sequence in one
forward pass, and in the worst case, it adds one token as
in standard autoregressive generation. The acceptance rate
for one generated sequence is the number of accepted draft
tokens divided by the total number of tokens in the generated
sequence. One can also test multiple draft sequences in
one forward pass taking advantage of parallelization, and
choose the best one. Speculative decoding does not affect
the content of the predicted sequence compared to the one-
by-one decoding in any way.

One can freely choose a way of generating draft sequences.
For LLMs, one would usually use another smaller language
model that performs its forward pass faster than the main
LLM (Leviathan et al., 2023) or additional generation heads
on top of the LLM’s backbone (Cai et al., 2024). However,
one can also construct draft sequences without calling any
learned functions. For example, generate random draft se-
quences, even though their acceptance rate will be minimal,

or assemble draft sequences out of tokens in the query se-
quence — a prompt for decoder-only language models or
a source sequence for translation models. The latter op-
tion is perfect for retrosynthesis or reaction prediction as
SMILES-to-SMILES translation. In a chemical reaction,
large fragments of reactants typically remain unchanged,
which means that the SMILES of products and reactants
have many common substrings. It is especially true if reac-
tant and product SMILES are aligned to minimize the edit
distance between them (Zhong et al., 2022). Therefore, we
can extract multiple substrings of a chosen length N from
the query SMILES and use them as draft sequences with a
high acceptance rate. Figure 2 demonstrates this method in
product prediction. Before generating the target string, we
assemble a list of token subsequences from the source se-
quence (reactant tokens) with a sliding window of a desired
length (4 in this case) and stride 1. Then, at every generation
step, we can try all draft sequences in one forward pass of
the model to see if the model can copy up to 4 tokens from
one of them. The draft token acceptance rate in this example
reaches 78%.

Speculative decoding does not require any changes to the
model architecture or training of additional models. The
cost of generating draft sequences in this way is negligible
compared to that of the forward pass of the reaction model,
and the generation acceleration with this method comes
practically ”for free”.

2.2. Model

We demonstrate the application of our method to the
Molecular Transformer (Schwaller et al., 2019). It is an
encoder-decoder transformer model suitable for SMILES-
to-SMILES translation. We conduct our experiments on one
H100 GPU with 80 GB memory.

The original Molecular Transformer (Schwaller et al., 2019)
adopts OpenNMT (Klein et al., 2018), a general framework
for neural machine translation, for SMILES-to-SMILES
translation. Since the code in this framework is complex
and intractable to customize, we decided to re-implement
the model in PyTorch Lightning to keep only the necessary
code and have more design freedom in the model’s inference
procedure implementation.

2.3. Data

We used the open reaction data from US patents (Lowe,
2012) for training all models. We trained the model for re-
action product prediction as in the original paper (Schwaller
et al., 2019) on the USPTO MIT dataset, a standard bench-
mark for product prediction, without reactant-reagent sepa-
ration. We trained the model for single-step retrosynthesis
on USPTO 50K, a standard dataset for the task. In this
dataset, we augmented every reaction in the training set 20
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Figure 2. Speculative decoding accelerates product prediction with the molecular transformer or a similar autoregressive SMILES
generator. Before generating an output sequence, we prepare a list of subsequences of a desired length, e.g., four, of the tokenized query
SMILES of reactants. Then, at every generation step, the model can copy up to four tokens from one of the draft sequences to the output,
thus generating from one to five tokens in one forward pass.

times using SMILES augmentation (Tetko et al., 2020) with
root-aligned SMILES (Zhong et al., 2022). We followed the
standard atomwise tokenization procedure (Schwaller et al.,
2019) to tokenize SMILES.

3. Results and Discussion
By replacing the standard decoding procedures for the
molecular transformer with our method, we achieve a sig-
nificant speed-up in both product prediction and single-step
retrosynthesis. Our implementation of the Molecular Trans-
former (MT) successfully reproduces the accuracy scores
of the original MT (Schwaller et al., 2019) that relies on
OpenNMT. Comparing our MT and the original MT, we
observe at most 0.2 percentage points discrepancy of top-1
to top-5 accuracy in product prediction with beam search.

3.1. Product prediction

We tested our MT for product prediction on USPTO MIT
mixed, i.e., without an explicit separation between reactants
and reagents. The test dataset in this benchmark comprises
40 thousand reactions.

When serving a reaction prediction model as an AI assistant
for chemists, one could use greedy decoding with a batch
size of 1 for inference. Table 1 summarizes our experiments
with greedy decoding from MT on the test set of USPTO
MIT. The model’s inference with standard greedy decoding
with a batch size of 1 finishes in around 62 minutes. In con-
trast, if we use greedy generation enhanced with our spec-
ulative decoding, the inference time reduces to 26 minutes

Table 1. Wall time of the model’s inference on the USPTO MIT
test set in reaction product prediction with standard and speculative
greedy decoding. BS stands for batch size, and DL stands for draft
length. The time is averaged over five attempts.

DECODING TIME, MINUTES

GREEDY (BS 1) 61.8 ± 5.88
GREEDY SPECULATIVE (BS 1, DL 4) 26.04 ± 2.07
GREEDY SPECULATIVE (BS 1, DL 10) 17.06 ± 0.25
GREEDY (BS 32) 4.13 ± 0.06

with a draft length of 4 and 17 minutes with a draft length
of 10, which corresponds to 137 % and 262 % speedup,
respectively. The acceptance rate in our drafting method
averaged over all test reactions is 79%. Potentially, it can
be even higher if one adds more draft sequences to choose
from, for example, subsequences of the source sequence
dilated by one token. Of course, greedy decoding with a
large batch size is much faster and completes in around 4
minutes with 32 reactions in a batch. However, accelerating
inference with a batch size of 1 would be sufficient for an
improved user experience with reaction prediction assis-
tants. The model’s accuracy is 88.3% with both standard
and speculative greedy decoding.

3.2. Single-step retrosynthesis

We carried out single-step retrosynthesis experiments on
USPTO 50K, in which the training dataset was augmented
20 times. The augmentation procedure is to construct alter-
native root-aligned (Zhong et al., 2022) SMILES for every
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Table 2. Wall time of the single-step retrosynthesis model’s infer-
ence USPTO 50K test set without augmentations (5000 reactions)
with beam search and speculative nucleus sampling. BW is beam
width. The time is averaged across five runs. The batch size is set
to 1.

DECODING TIME, MINUTES

BEAM SEARCH (5 BW, 5 BEST) 27.98 ± 0.60
SPECULATIVE NS (5 BEST) 7.06 ± 0.03

dataset entry. This augmentation minimizes the edit distance
between reactants and products, which simplifies training,
pushes the model’s accuracy higher, and increases the accep-
tance rate in our speculative decoding method. Speculative
decoding in single-step retrosynthesis accelerates greedy
decoding as much as in reaction product prediction. How-
ever, this has limited utility. In synthesis planning, one
would want a single-step retrosynthesis model to suggest
multiple different reactant sets for every query product so
that the planning algorithm can choose from them. Usually,
one would employ beam search to generate several outputs
from the transformer for single-step retrosynthesis. Unfortu-
nately, accelerating beam search with speculative decoding
proves to be a challenging task. In beam search, the dif-
ferent beams are ordered by probability and may change
order after each generation of a single token. Therefore,
one cannot skip individual token generations in beam search
and hope to introduce no change to the output compared to
the standard beam search. Eventually, if we would like to
accelerate the generation of multiple reactant sets with our
single-step retrosynthesis model, we would have to consider
methods other than beam search. A viable alternative here
could be nucleus (top-p) sampling. In nucleus sampling,
the model can generate different output sequences for the
same query when run several times, and we can accelerate
nucleus sampling with speculative decoding just as we can
accelerate greedy decoding. In essence, our speculative nu-
cleus sampling algorithm is as follows. First, we generate
several diverse complete output sequences for a query using
nucleus sampling. Generating a sequence is fast using spec-
ulative decoding. Then, we order the obtained sequences by
their probabilities. Finally, we keep the N best sequences.
We choose nucleus sampling over top-k sampling to ensure
the high validity of generated SMILES. We use a high tem-
perature after masking logits not among the positions in the
top-p to increase the diversity of generated candidates.

The top-N accuracy of our speculative nucleus sampling
falls expectedly behind the accuracy of beam search (Table
3). While top-1 accuracy remains practically unchanged,
top-3 accuracy declines by 5.3 percentage points, and top-
5 accuracy declines by 8.6 percentage points. The reason
for that is an insufficient diversity of candidates generated

Table 3. The top-N accuracy of our single-step retrosynthesis
model on USPTO 50K with both beam search and speculative
nucleus sampling.

ACCURACY BEAM SEARCH SPECULATIVE NS

TOP-1, % 52.1 51.0
TOP-3, % 75.1 69.8
TOP-5, % 82.0 73.3

with nucleus sampling - it may fail to produce N unique
predictions and yield identical ones instead. However, this
issue does not lie with speculative decoding and can be
resolved, which is a part of our ongoing work. Our specula-
tive nucleus sampling works almost four times faster than
beam search (Table 2). The wall time our retrosynthesis
model takes to process the USPTO 50K test set and gener-
ate five predictions for every entry with the batch size of 1
is around 28 minutes for beam search and around 7 minutes
for speculative nucleus sampling. Such a speed-up could
make the transformer a more attractive single-step model
for multi-step synthesis planning.

3.3. Limitations

When generating predictions for a batch of query sequences,
the number of accepted speculative tokens is generally differ-
ent for every sequence. Therefore, formulating speculative
decoding batch sizes larger than 1 is a challenging prob-
lem, although researchers are seeking the key to solving it
(Qian et al., 2024). In any case, the inference speed for a
batch would be bottlenecked by the ”least lucky” sequence
in terms of the acceptance rate of speculative tokens, and
the benefits from speculative decoding would vanish with
larger batch sizes. Although this is a serious limitation, it
is not critical for industrial application of reaction models
like the Molecular Transformer. Chemists would usually
enter one query at a time in a user interface for a reaction
model like IBM RXN. Similarly, a CASP system calls an
underlying single-step model at every step with batch size
1 when building a synthesis tree for a molecule. With that,
the latency of the single-step model massively contributes
to the overall time of the synthesis tree generation (Torren-
Peraire et al., 2024). Therefore, we believe that even the
acceleration of the transformer inference with batch size 1
is valuable for industrial applications.

4. Conclusion
We combine speculative decoding and chemical insights
to accelerate inference in the molecular transformer, a
SMILES-to-SMILES translation model. Our method makes
processing the test set more than three times faster in both
single-step retrosynthesis on USPTO 50K and reaction prod-
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uct prediction on USPTO MIT compared to the standard
decoding procedures. Our method aims at making state-
of-the-art template-free SMILES-generation-based models
such as the molecular transformer more suitable for indus-
trial applications such as computer-aided synthesis planning
systems.
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A. Training details.
For product prediction, we train this model with the same hyperparameters as in Schwaller et al. with four encoder and
decoder layers, eight heads, embedding dimensionality of 256, and feedforward dimensionality of 2048, which results in
11,4 million parameters. For single-step retrosynthesis, we set the hyperparameters as in Zhong et al. (six encoder and
decoder layers, eight heads, embedding dimensionality of 256, and feedforward dimensionality of 2048), which results
in 17,4 million parameters. The dictionary is the same for the encoder and the decoder in both models. We use the Adam
optimizer for both models.
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