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Abstract

Neural surrogates for Partial Differential Equations (PDEs) often suffer significant1

performance degradation when evaluated on unseen problem configurations, such2

as novel material types or structural dimensions. Meanwhile, Domain Adapta-3

tion (DA) techniques have been widely used in vision and language processing to4

generalize from limited information about unseen configurations. In this work, we5

address this gap through two focused contributions. First, we introduce SIMSHIFT,6

a novel benchmark dataset and evaluation suite composed of four industrial simu-7

lation tasks: hot rolling, sheet metal forming, electric motor design and heatsink8

design. Second, we extend established domain adaptation methods to state of9

the art neural surrogates and systematically evaluate them. These approaches use10

parametric descriptions and ground truth simulations from multiple source con-11

figurations, together with only parametric descriptions from target configurations.12

The goal is to accurately predict target simulations without access to ground truth13

simulation data. Extensive experiments on SIMSHIFT highlight the challenges of14

out of distribution neural surrogate modeling, demonstrate the potential of DA in15

simulation, and reveal open problems in achieving robust neural surrogates under16

distribution shifts in industrially relevant scenarios.17

1 Introduction18

Simulations based on PDEs are essential tools for understanding and predicting physical phenomena19

in engineering and science [1]. Over recent years, machine learning has emerged as a promising and20

novel modeling option for complex systems [2], significantly accelerating and augmenting simulation21

workflows across diverse applications, including weather and climate forecasting [3, 4, 5, 6], material22

design [7, 8, 9] and protein folding [10, 11], amongst others.23

In practice, however, models are often deployed in settings where simulation configurations differ24

from those seen during training. This distribution shift [12] often leads to significant degradation25

in performance [13, 14, 15], making reliable deployment of neural surrogates in industrial work-26

flows less likely. Some industry relevant studies propose post simulation correction [16], identify27

limited parameter variation as a constraint [17], or consider out of distribution tasks without tailored28

solutions [13].29

While methods for increasing out of distribution performance have been at the center of research for30

a long time [12, 18, 19, 20, 21, 22, 23], to the best of our knowledge, no benchmark systematically31

investigates such methods on simulation tasks [24, 25, 26, 13, 17, 27, 28, 29]. Addressing this gap is32

particularly relevant in scientific and industrial settings, where generating ground truth simulation33

data is costly and limits the diversity of training configurations. In contrast, parametric descriptions,34

such as material types or structural dimensions, are often readily available or easy to generate.35
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Figure 1: Schematic overview of the SIMSHIFT framework. During model training, we have access
to inputs (e.g. parameters and meshes) and corredsponding outputs (x, y) from the source domain
(left, blue), and only inputs x′ from the target domain (right, yellow). The neural operator g and the
conditioning network ϕ are shared across domains and jointly optimized. Models are trained with
two loss terms, namely Lrecon, which is computed on source labels, and LDA, which aligns source
and target conditioning features. After training, unsupervised model selection strategies choose the
model θk1 expected to perform best on the target domain.

This problem is known as Unsupervised Domain Adaptation (UDA) [30], where parametric (input)36

descriptions and full simulation outputs are available for each source configuration, while only input37

descriptions are provided for target configurations, without corresponding outputs. Decades of UDA38

research have produced effective methods for addressing domain gaps [31, 32, 33], yet their potential39

for PDE surrogate modeling remains largely unexplored.40

To investigate the potential of UDA for neural surrogate modeling, we provide simulation data from41

diverse simulation configurations, across a range of realistic tasks from engineering design. Our42

settings are all rooted in application and derived from industrial problem settings. We introduce43

a comprehensive benchmark that evaluates established UDA methods and neural surrogates. An44

overview of the framework is shown in Figure 1. Our contributions can be summarized as follows:45

• We propose four practical datasets with predefined distribution shifts in hot rolling, sheet metal46

forming, electric motor, and heatsink design, based on realistic simulation setups.47

• We present, to the best of our knowledge, the first joint study of established neural surrogate48

architectures and UDA on engineering simulations with unstructured meshes.49

• We introduce SIMSHIFT, a modular benchmarking suite that complements our datasets with50

baseline models and algorithms. It allows easy integration of new simulations, machine learning51

methods, domain adaptation techniques, and model selection strategies.52

2 Related Work53

Unsupervised Domain Adaptation. UDA research covers a wide spectrum of results from theoretical54

foundations [18, 34, 30, 35] to modern deep learning methods [36, 37, 38, 23, 39, 40, 41, 42, 43,55

44, 45]. A prominent class of methods, dubbed as representation learning, aims to map the data to56

a feature space, where source and target representations appear similar, while maintaining enough57

information for accurate prediction. To enforce feature similarity between domains, algorithms58

often employ statistical [46, 47, 23, 48, 49, 50, 51, 52, 53, 54] or adversarial [22, 55] discrepancy59

measures. One crucial yet frequently overlooked factor in the success of UDA methods is model60

selection. Numerous studies underline the critical impact of hyperparameter choices on UDA61

algorithm performance, often overshadowing the adaptation method itself [56, 32, 57, 58, 59]. Even62

more, since labeled data is unavailable in the target domain, standard validation approaches (including63

validation sets, ensembling or information criteria) become infeasible. Thus, it is essential to jointly64

evaluate adaptation algorithms alongside their associated unsupervised model selection strategies. In65
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this work, we focus on importance weighting strategies [60, 61, 58], which stand out by their general66

applicability, theoretical guarantees and high empirical performance.67

Benchmarks for UDA. Numerous benchmark datasets and evaluation protocols have been established68

for UDA methods across various machine learning domains, including computer vision [62, 63, 64,69

65, 66], natural language processing [67], timeseries data [68] and tabular data [69]. However, to the70

best of our knowledge, systematic UDA benchmarking for neural surrogates remains unexplored.71

Neural Surrogates. One prominent approach in neural surrogate modeling for PDEs is operator72

learning [70, 71, 72, 73, 74]. In this setting, an operator maps input functions, such as boundary73

or initial conditions, to the corresponding solution of the PDE. During training, neural operators74

typically learn from input-output pairs of discretized functions [70, 71, 72, 73]. While some methods75

expect regular, grid based inputs [71], others can be applied to any kind of data structure [73, 74]. One76

notable property is discretization invariance, which, along with the ability to handle irregular data,77

enables generalization across different resolutions and mesh geometries. This is a highly desirable78

property for industrial simulations [75, 73, 76, 77, 78], where non-uniform meshes are the standard79

due to the computational and modeling advantages. In this work, we focus on domain adaptation80

rather than benchmarking discretization invariance, and include neural surrogates that may not satisfy81

this property, such as [79].82

Benchmarks for Neural Surrogates. Benchmarks for neural surrogates have made substantial83

progress, providing new datasets and metrics specific to PDE problems. Many focus on solving PDEs84

on structured, regular grids [24, 25, 26], which serve as valuable platforms for developing and testing85

new algorithms. However, these overlook the irregular meshes commonly used in large scale industrial86

simulations. In that direction, other benchmarks extend to Computational Fluid Dynamics (CFD)87

on irregular static meshes for airfoil simulations [13], aereodynamics for automotive [17, 27], more88

traditional fluid study problems [28], and even particle based Smoothed Particle Hydrodynamics89

simulations [29, 80]. Finally, and most closely related to our work, recent efforts have explored the90

application of Active Learning techniques [81, 82] to neural surrogates, introducing a benchmark91

specifically designed for data-scarce scenarios [83].92

Despite these contributions, all current benchmarks often fall short when addressing a critical93

issue: the significant performance drop learned models exhibit under distribution shifts, i.e., when94

encountering simulation configurations beyond their training setting [12].95

3 Dataset Presentation96

Our datasets follow three design principles. (i) Industry relevance: They reflect a practical, real-world97

simulation use-case. The benchmark covers a diverse set of problems, including 2D as well as 3D98

cases. (ii) Parametrized conditions: The behavior of all simulations depends on the set of initial99

parameters only. (iii) steady state scenarios: We constrain them to time independent problems, in100

order to avoid additional complexity such as autoregressive error accumulation in neural surrogates101

[84].102

The datasets were generated using the commercial Finite Element Method (FEM) software Abaqus1,103

the open-source simulation software HOTINT2 and the open-source CFD package OpenFoam 93.104

An overview of each dataset is presented in Sections 3.1 to 3.4. Additionally, we present detailed105

descriptions of the respective numerical simulations provided in the technical supplementary material.106

Since the behavior of each simulation task is entirely determined by its input parameters, we predefine107

source and target domains by partitioning the parameter space into distinct, non-overlapping regions.108

A detailed explanation of the domain splitting strategy is provided in Section 3.5.109

Each dataset includes three levels of distribution shift difficulty: easy, medium and hard. These110

levels reflect increasing domain gap magnitudes in parameter space. In this work, we benchmark the111

medium difficulty for each dataset and, for clarity, provide error scaling results across all levels for112

the hot rolling dataset (Figure 6).113

1https://www.3ds.com/products/simulia/abaqus
2https://hotint.lcm.at/
3https://www.openfoam.com/
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In total, we collect four datasets leading to 12 domain adaptation tasks. Table 1 summarizes114

key characteristics of each dataset, including physical dimensionality, mesh resolution, number of115

conditioning parameters, and total dataset size. All datasets are publicly hosted on Hugging Face4 for116

convenient access.117

Table 1: Overview of the benchmark datasets. The heatsink meshes were subsampled to a fourth of
their original size during preprocessing. For a detailed description the simulation parameter sampling
ranges, see Appendix E.

Dataset Origin Samples Output
channels

Avg.
# nodes

Varied simulation
parameters Dim (GB)

Rolling Metallurgy 4,750 10 576 4 2D 0.5
Forming Manufacturing 3,315 10 6,417 4 2D 4.1
Motor Machinery 3,196 26 9,052 15 2D 13.4
Heatsink Electronics 460 5 1,385,594 4 3D 40.8

3.1 Hot Rolling118

The rolling dataset captures a hot rolling process, where a metal slab is plastically deformed into a119

sheet metal product, as visualized in Figure 2. This complex thermo-mechanical operation involves120

tightly coupled elasto-plastic deformation and heat transfer phenomena [85, 86, 87]. The Finite121

Element simulation models the progressive thickness reduction and thermal evolution of the material122

as it passes through a rolling gap, incorporating temperature-dependent material properties and123

contact between the slab and the rolls.124

Key input parameters include the initial slab thickness t, temperature characteristics Tcore and Tsurf125

of the slab, as well as the geometry of the roll gap. To vary the slab deformation we define the126

thickness reduction as a percentage of the initial thickness: reduction = t−g
t , where g is the rolling127

gap distance. Table 10 in Appendix E.1 shows a detailed overview of the parameter values together128

with their sampling ranges used to generate the dataset.129

The 2D simulation outputs various field quantities, with the most important being Equivalent Plastic130

Strain (PEEQ), a scalar field representing the materials plastic deformation, shown in Figure 2b.131

t
Tcore

Tsurf g

(a) Illustration of the simulation setup. The parameters
correspond to those in Table 10. We use symmetry
constraints and only simulate one half of the slab.
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(b) Metal slab after the process, showing PEEQ as a
contour plot.

Figure 2: Overview of the hot rolling simulation scenario.

3.2 Sheet Metal Forming132

The forming dataset represents a sheet metal forming process, a critical manufacturing operation133

widely used across industries such as automotive, aerospace, and industrial equipment manufacturing.134

FEM simulations are commonly employed to estimate critical quantities such as thinning, local135

plastic deformation and residual stress distribution with high accuracy [88, 89, 90].136

The simulated setup in this dataset consists of a symmetrical sheet metal workpiece supported at the137

ends and center, a holder and a punch that deforms the sheet by applying a displacement denoted138

4https://huggingface.co/datasets/simshift/SIMSHIFT_data
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as U . Figure 3a visualizes the process. During the process, the metal sheet undergoes elasto-plastic139

deformation, transitioning from a flat initial state to a “w-shaped” geometry.140

Variable input parameters include half the deformed sheet length l, the sheet thickness t, friction141

coefficient µ and the radii of the holder, punch, and supports r. Table 11 in Appendix E.2 provides the142

sampling ranges for data generation. The 2D model simulates the forming procedure and predicts the143

sheet’s deformation behavior, providing field quantities such as stress, as well as elastic and plastic144

strain distributions, one of which is shown in Figure 3b.145

l/2
l

μU

r
t/
2

r

(a) Illustration of the simulation setup. The parameters
correspond to those listed in Table 11.
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(b) Material before (top) and after (bottom) the pro-
cess, showing the PEEQ field as a contour plot.

Figure 3: Overview of the sheet metal forming simulation scenario.

3.3 Electric Motor Design146

The electric motor dataset encompasses a structural FEM simulation of a rotor in electric machinery,147

subjected to mechanical loading at burst speed. This simulation is motivated by the inherently148

conflicting design objectives in rotor development: while magnetic performance favors certain rotor149

topologies to optimize flux paths and torque generation, structural integrity requires designs capable150

of withstanding centrifugal loads without plastic deformation [91, 92]. The simulation predicts stress151

and deformation responses due to assembly pressing forces and centrifugal loads, accounting for the152

rotor’s topology, material properties, and rotation speed.153

Figure 4: The electric motor design simulation scenario, with a schematic sketch of the motor (left)
and zoomed-in detail from the simulated radial portion (right). Mises stress field contour plot is
shown.

Figure 4 shows an overview of the simulation setup. Since this case is more complex than the154

preceding datasets, we omit a detailed technical drawing from the main body and instead provide it155

in Figure 11, besides the corresponding parameter variations in Table 12, both in Appendix E.3.156

3.4 Heatsink Design157

The heat sink dataset represents a CFD simulation focused on the thermal performance of heat sinks,158

commonly used in electronic cooling applications [93, 94].159
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Figure 5: Sliced view of
the temperature field of
a heatsink design simula-
tion.

It models the convective heat transfer from a heated base through an array160

of fins to the surrounding air. The simulation captures how geometric161

fin characteristics, specifically, the number, height, and thickness of fins,162

affect the overall heat dissipation, along with the temperature of the heat163

sink.164

The 3D CFD model outputs include steady state temperature (see Fig-165

ure 5), velocity and pressure fields, enabling the assessment of design effi-166

ciency and thermal resistance under varying configurations. An overview167

of the setup as well as key parameters are provided in Appendix E.4.168

3.5 Distribution Shifts169

To define distribution shifts of varying difficulties and corresponding170

source and target domains, we focus on the most influential input param-171

eter in each simulation scenario, which is identified by domain experts.172

To further validate the opinions of the experts, we perform clustering173

analyses on the latent representations of models trained across the full174

parameter range. In general, the resulting clusters confirm the sensitivity175

of the latent space to the chosen dominant parameter. Visualizations of176

t-SNE plots of the latent spaces with the respective clusters are provided177

in Figures 7 to 10. The chosen parameters and their respective ranges for178

the different domains are provided in Table 7.179

4 Benchmark Setup180

This section outlines the learning problem (Section 4.1), the domain adaptation algorithms considered181

(Section 4.2), the unsupervised model selection strategies (Section 4.3), and the baseline models used182

(Section 4.4). Finally, we describe the experimental setup and evaluation metrics in Section 4.5.183

4.1 Learning Problem184

Let X be an input space X containing geometries and conditioning parameters (e.g., thickness and185

temperatures in Figure 2a) and Y be an output space containing ground truth solution fields obtained186

from a numerical solver (e.g., PEEQ field in Figure 2b). Following [30], a domain is represented by a187

probability density function p on X ×Y (e.g., describing the probability of observing an input-output188

pair corresponding to the parameter range r ∈ [0.01, 0.115) in Table 7). UDA has been formulated189

as follows: Given a source dataset (x1, y1), ..., (xn, yn) drawn from a source domain pS together190

with an unlabeled target dataset x′
1, ..., x

′
m drawn from the (X -marginal) of a target domain pT , the191

problem is to find a model f : X → Y that has small expected risk on the target domain:192

E(x,y)∼pT
[ℓ(f(x), y)] , (1)

with ℓ : Y × Y → R being some loss function. For example, consider the square loss ℓ(f(x), y) =193

(f(x)− y)2 and Figure 1, where f(x) = g(x, ϕ(x)) is composed of a conditioning network ϕ and a194

surrogate g.195

4.2 Unsupervised Domain Adaptation Algorithms196

Our UDA baseline algorithms are from the class of domain-invariant representation learning methods.197

These methods are strong baselines, in the sense that their performance typically lies within the198

standard deviation of the winning algorithms in large scale empirical evaluations (i.e., no significant199

outperformance is observed), see CMD, Deep-CORAL and DANN in [58, Tables 12–14], M3SDA200

in [95], MMDA and HoMM in [68].201

Following [49, 57], we express the objective of domain-invariant learning using two learning models:202

a representation mapping ϕ ∈ Φ ⊂ {ϕ : X → R}, which in our case corresponds to the conditioning203

network that maps simulation parameters into some representation space R ⊂ Rm and a regressor204

g ∈ G ⊂ {g : X ×R → Y}, which is realized by a neural surrogate. The goal is to find a mapping ϕ205

under which the source representations ϕ(x) := (ϕ(x1), . . . , ϕ(xn)) and the target representations206

6



ϕ(x′) := (ϕ(x′
1), . . . , ϕ(x

′
m)) appear similar, and, at the same time, enough information is preserved207

for prediction by g, see [12]. This is realized by estimating objectives of the form208

min
g∈G,ϕ∈Φ

E(x,y)∼pT
[ℓ(g(x, ϕ(x)), y)] + λ · d(ϕ(x), ϕ(x′)), (2)

where d is a distance between source and target representations and λ is a regularization parameter.209

Good choices for d in Eq. (2) have been found to be the Wasserstein distance [53, 54], the Maximum210

Mean Discrepancy [51, 52], moment distances [46, 23], adversarially learned distances [22, 55]211

and other measures of divergence [48, 49, 50]. Appropriately choosing λ is crucial for high perfor-212

mance [56, 32, 58, 61, 59], making model selection necessary.213

4.3 Unsupervised Model Selection214

Among all algorithm design choices in UDA, model selection has been repeatedly recognized as215

one of the most crucial [56, 32, 58, 61, 59], with sub-optimal choices potentially leading to negative216

transfer [33]. However, classical approaches (e.g., validation set, cross-validation, information217

criterion) cannot be used due to missing labels and distribution shifts. It is therefore a natural218

benchmark requirement for UDA to provide also unified model selection strategies in addition to219

UDA algorithms.220

In this work, we rely on Importance Weighted Validation (IWV) [60] and Deep Embedded Validation221

(DEV) [61] to overcome the two challenges: (i) distribution shift and (ii) missing target labels. These222

methods rely on the Radon-Nikodým derivative and the covariate shift assumption pS(y|x) = pT (y|x)223

to obtain224

E(x,y)∼pT
[ℓ(f(x), y)] = E(x,y)∼pS

[
pT (x)����pT (y|x)
pS(x)����pS(y|x)

ℓ(f(x), y)

]
= E(x,y)∼pS

[β(x)ℓ(f(x), y)] . (3)

Eq. (3) motivates to estimate the target error by a two step procedure: First, approaching challenge225

(i) by estimating the density ratio β(x) = pT (x)
pS(x) from the input data only, and, approaching challenge226

(ii) by estimating the target error by the weighted source error using the labeled source data.227

4.4 Baseline Models228

We provide a comprehensive range of machine learning methods, adapted to our conditioned simula-229

tion task, organized by their capacity to model interactions across different spatial scales:230

Global context models such as PointNet [96] incorporate global information into local Multi-Layer231

Perceptrons (MLPs) by summarizing features of all input points by aggregation into a global repre-232

sentation, which is then shared among nodes. Recognizing the necessity of local information when233

dealing with complex meshes and structures, we include GraphSAGE [79], a proven Graph Neural234

Network (GNN) architecture [97, 98] already used in other mesh based tasks [75, 13]. However,235

large scale applications of GNNs are challenging due to computational expense [73] and issues like236

oversmoothing [99]. Finally, to overcome these limitations, we employ attention based models [100].237

These models typically scale better with the number of points, and integrate both global and local238

information enabling stronger long-range interactions and greater expressivity. We include Transolver239

[101], a modern neural operator Transformer.240

As an alternative categorization, baselines can also be classified by input-output pairings into point-241

to-point and latent approaches. The former explicitly encodes nodes, while the latter represents the242

underlying fields in a latent space and requires queries to retrieve nodes. All previously mentioned243

models are point-to-point, and as an example of a latent field method, we include Universal Physics244

Transformer (UPT) [73, 76] . UPTs are designed for large scale problems and offer favorable scaling245

on large meshes through latent field modeling; however they are better suited for static-mesh scenarios,246

as they are lacking the notion of point and don’t handle deformations out-of-the-box. Therefore we247

benchmark this approach only on the heatsink design dataset.248

Finally, all our tasks require neural operators to be explicitly conditioned on configuration parameters249

of the numerical simulations. To achieve this, we embed these parameters using an embedding250

and a shallow MLP (denoted as ϕ in Section 4.2 and Figure 1) to produce a latent representation.251

Subsequently, we condition the neural operator using either concatenation of this latent conditioning252

vector with the global features, or scale-shift modulation of intermediate features using FiLM or DiT253
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conditioning layers [102, 103]. Detailed explanations of all implemented architectures are given in254

Appendix C.255

4.5 Experiments and Evaluation256

Experimental Setup. We benchmark the three prominent UDA algorithms Deep-Coral [46], CMD257

[23] and DANN [22], in combination with the four unsupervised model selection strategies IWV [60],258

DEV [61], Source Best (SB), which selects models based on source domain validation performance,259

and, Target Best (TB), which is the (oracle) best performing model (over all runs with all hyper-260

parameters) that is selected by hand using the target simulation data (that is not available in UDA).261

For the baseline neural surrogate models, we evaluate PointNet [96], GraphSAGE [79], and Transolver262

[101] on the hot rolling, sheet metal forming, and electric motor design datasets. Due to memory263

and runtime constraints on the large scale heatsink design dataset, we omit GraphSAGE and instead264

benchmark UPT [73] alongside PointNet and Transolver.265

Experimental Scale. In total, this results in 3models × 3UDA algorithms × 4selection algorithms +266

3unregularized models = 39 configurations per dataset (i.e. number of lines per results table in Ap-267

pendix A). We perform an extensive sweep over the critical UDA parameter λ and average across268

four seeds, totaling in 1,200 training runs.269

Full details on architectures, hyperparameters, training setup and normalization, as well as a break-270

down of training times are included in Appendices C and D.271

Evaluation Metrics. For each dataset, we report the averaged Root Mean Squared Error (RMSE)272

over all normalized output fields, as well as the averaged per field RMSE values (computed on273

denormalized data) and the Euclidean error for deformation predictions. Detailed metric definitions274

are provided in Appendix D.2.275

5 Benchmarking Results276

Table 2 presents an overview of the benchmarking results. Overall, we observe consistent improve-277

ments in target domain performance with the application of UDA algorithms and unsupervised model278

selection strategies, validating their effectiveness.279

While the results in Table 2 suggest a minor performance decline on the Forming dataset, this is not280

representative of the full performance across all output fields. As only selected outputs are shown281

Table 2: Best performing UDA algorithm & unsupervised model selection combination for all model
architectures across all datasets. Additionally, we provide an oracle (TB), which demonstrates the
theoretical lower bound on error. Values show the denormalized average RMSE per field in the target
domain. Differences to the model trained without UDA are shown in parentheses, where negative
values indicate performance improvements. Dashes (–) indicate fields not present in the respective
dataset. The best performing models were chosen based on the average RMSE across all normalized
fields of the respective datasets (see detailed results in Appendix A).

Dataset All Models Best UDA
method

Best model
selection

Deformation
(mm)

Mises stress
(MPa)

Equivalent plastic
strain (×10−2)

Temperature
(K)

Velocity
(m/s)

Rolling

PointNet CMD SB 11.33 (-0.15) 27.92 (+0.31) 2.51 (-0.01) – –
GraphSAGE CMD IWV 4.62 (-1.09) 14.49 (-5.30) 1.56 (-0.55) – –
Transolver CMD SB 13.87 (-579.11) 77.74 (-6409.53) 5.80 (-126.88) – –
Oracle (GraphSAGE) Deep Coral TB 4.55 (-1.17) 13.83 (-5.96) 1.43 (-0.69) – –

Forming

PointNet Deep Coral SB 2.56 (-0.00) 31.35 (-0.09) 0.15 (-0.01) – –
GraphSAGE DANN IWV 2.10 (+0.16) 52.40 (+6.30) 0.27 (-0.00) – –
Transolver Deep Coral DEV 1.39 (+0.20) 25.05 (+2.04) 0.15 (+0.02) – –
Oracle (Transolver) CMD TB 1.02 (-0.17) 20.28 (-2.73) 0.12 (-0.01) – –

Motor

PointNet Deep Coral SB 1.53 (-0.06) 26.23 (-4.43) – – –
GraphSAGE CMD SB 1.31 (-0.19) 28.92 (-0.54) – – –
Transolver Deep Coral SB 1.30 (-0.20) 7.68 (-0.65) – – –
Oracle (Transolver) Deep Coral TB 1.25 (-0.24) 7.59 (-0.73) – – –

Heatsink

PointNet Deep Coral SB – – – 17.43 (-3.70) 0.044 (+0.000)
Transolver Deep Coral IWV – – – 13.43 (+0.00) 0.041 (+0.001)
UPT Deep Coral SB – – – 12.41 (-0.62) 0.039 (-0.001)
Oracle (UPT) Deep Coral TB – – – 12.64 (-0.40) 0.039 (-0.001)
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here, the observed gains in other fields captured by the mean normalized RMSE are not visible in this282

summary (see Table 4).283

Despite the clear benefits provided by UDA, we find that no single UDA algorithm or unsupervised284

model selection strategy consistently outperforms the others across all datasets. Furthermore, the285

evident gap between the best performing UDA algorithms and model selection strategies compared286

to the theoretical lower bound provided by the Target Best (TB) oracle indicates that existing287

unsupervised model selection strategies still leave substantial room for improvement.288

Finally, since the presented tables only report performance on the medium difficulty setting, we289

additionally visualize model behavior of the best performing combination (model + UDA algorithm290

+ selection strategy: CMD + IWV) across all difficulty levels of the hot rolling dataset in Figure 6.291

It illustrates the increase in prediction error as the domain gap widens and highlights the consistent292

improvements achieved by applying UDA algorithms combined with unsupervised model selection293

strategies on the easy and medium settings.294

Architecture
+ UDA

algorithm
potential

Model
selection
potential

Figure 6: Error scaling with increasing domain gap. We show the averaged RMSE across all
(normalized) fields for the easy, medium, and hard gaps on the hot rolling task. We compare models
without UDA, the best performing UDA method with unsupervised model selection (CMD + IWV),
and the theoretical lower bound (TB). Error bars indicate the standard deviation across 4 seeds.
Furthermore, we highlight potentials of selection improvements on the hard.

For the hard setting, however, the shown unsupervised model selection algorithm fails to identify295

suitable models, as the mean error matches that of the unregularized baselines with the standard296

deviation even increasing. Nonetheless, the theoretical lower bound (TB) remains substantially below297

the unregularized error. This indicates the two promising directions for further improvement of the298

presented baselines: (i) enhancement of neural surrogate architectures and UDA algorithms, and299

(ii) especially, improvement of unsupervised model selection strategies.300

6 Discussion301

We presented SIMSHIFT, a collection of industry relevant datasets paired with a benchmarking302

library for comparing UDA algorithms, unsupervised model selection strategies and neural operators303

in real word scenarios. We adapt available techniques and apply them on physical simulation data304

and perform extensive experiments to evaluate their performance on the presented datasets. Our305

findings suggest that standard UDA training methods can improve performance of neural operators306

to unseen parameter ranges in physical simulations, with improvement margins in line with those307

seen in UDA literature [58, 68]. Additionally, we find correct unsupervised model selection to be308

extremely important in downstream model performance on target domains, with it arguably having as309

much impact as the UDA training itself, which is also in agreement with other DA works [56].310

Limitations. We acknowledge that our datasets are limited under three main aspects: (i) They only311

cover steady state problems, whereas there is a growing interest in modeling time dependent PDEs312

with neural operators. (ii) By defining domains with parameter ranges, we restrict the shifts to “scalar”313

gaps, disregarding changes in mesh geometry (e.g. topology or geometric transformations). (iii) The314

defined domain shifts currently emphasize variations in a single parameter rather than exploring315

more realistic shifts involving multiple parameters simultaneously. These three choices are motivated316

by considering benchmarking simplicity and computational constraints, and are open for future317

extensions.318
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Appendix657

A Detailed results658

A.1 Hot Rolling659

Table 3: Mean (± standard deviation) of RMSE across four seeds on the hot rolling dataset. Bold
values indicate the best target domain performance across all normalized fields. Underlined entries
mark the best performing UDA algorithm and unsupervised model selection strategy per model.
Asterisks denote unstable models (error more than 10× higher than others).

Model DA
Algorithm

Model
Selection

All Fields normalized avg (-) Deformation (mm) Logarithmic strain (×10−2) Equivalent plastic strain (×10−2) Mises stress (MPa) Stress (MPa)

SRC TGT SRC TGT SRC TGT SRC TGT SRC TGT SRC TGT

GraphSAGE

- - 0.016(±0.000) 0.365(±0.130) 0.525(±0.023) 5.715(±1.567) 0.018(±0.000) 0.997(±0.377) 0.033(±0.000) 2.113(±0.789) 1.972(±0.024) 19.790(±7.186) 1.234(±0.010) 11.421(±3.891)

DANN DEV 0.014(±0.000) 1.175(±0.053) 0.577(±0.061) 17.363(±0.803) 0.019(±0.001) 3.452(±0.176) 0.035(±0.001) 7.290(±0.405) 2.056(±0.050) 111.626(±7.317) 1.264(±0.033) 59.263(±5.594)
DANN IWV 0.014(±0.000) 0.289(±0.147) 0.561(±0.032) 5.359(±1.848) 0.018(±0.000) 0.792(±0.186) 0.033(±0.001) 1.622(±0.306) 1.992(±0.037) 24.471(±22.423) 1.246(±0.025) 13.737(±11.828)
DANN SB 0.014(±0.000) 0.692(±0.511) 0.573(±0.043) 11.090(±7.161) 0.018(±0.000) 2.120(±1.506) 0.034(±0.001) 4.510(±3.201) 1.991(±0.045) 60.352(±51.358) 1.237(±0.027) 31.612(±25.882)
DANN TB 0.014(±0.000) 0.230(±0.041) 0.604(±0.010) 4.640(±0.593) 0.018(±0.001) 0.740(±0.134) 0.034(±0.001) 1.549(±0.275) 2.017(±0.047) 14.867(±3.085) 1.248(±0.028) 8.665(±1.635)

CMD DEV 0.015(±0.001) 1.447(±0.202) 0.617(±0.040) 18.383(±2.116) 0.020(±0.001) 3.781(±0.544) 0.037(±0.003) 7.764(±1.210) 2.169(±0.151) 136.324(±23.104) 1.324(±0.062) 95.502(±20.973)
CMD IWV 0.014(±0.000) 0.228(±0.021) 0.577(±0.023) 4.622(±0.283) 0.018(±0.000) 0.742(±0.071) 0.033(±0.001) 1.563(±0.153) 1.980(±0.040) 14.494(±1.375) 1.237(±0.032) 8.386(±0.819)

CMD SB 0.014(±0.000) 0.786(±0.535) 0.571(±0.040) 12.160(±7.174) 0.018(±0.000) 2.403(±1.541) 0.033(±0.000) 5.068(±3.248) 1.974(±0.034) 68.509(±55.017) 1.228(±0.024) 36.834(±28.921)
CMD TB 0.014(±0.000) 0.221(±0.007) 0.583(±0.033) 4.607(±0.261) 0.018(±0.000) 0.711(±0.014) 0.033(±0.000) 1.507(±0.045) 1.992(±0.021) 14.288(±1.040) 1.245(±0.019) 8.275(±0.632)

Deep Coral DEV 0.014(±0.000) 0.668(±0.351) 0.519(±0.066) 10.566(±4.767) 0.018(±0.000) 2.042(±1.017) 0.033(±0.000) 4.291(±2.145) 1.992(±0.014) 56.628(±37.354) 1.241(±0.008) 30.864(±18.487)
Deep Coral IWV 0.014(±0.000) 0.282(±0.056) 0.569(±0.040) 5.416(±0.356) 0.018(±0.000) 0.874(±0.103) 0.033(±0.000) 1.841(±0.199) 1.977(±0.017) 20.781(±8.267) 1.231(±0.014) 11.823(±4.643)
Deep Coral SB 0.014(±0.000) 0.511(±0.420) 0.548(±0.031) 8.679(±5.518) 0.018(±0.000) 1.597(±1.222) 0.033(±0.000) 3.385(±2.597) 1.970(±0.010) 41.196(±43.492) 1.227(±0.015) 22.041(±21.683)
Deep Coral TB 0.014(±0.000) 0.212(±0.012) 0.590(±0.045) 4.547(±0.361) 0.018(±0.000) 0.679(±0.050) 0.033(±0.001) 1.427(±0.095) 1.992(±0.028) 13.829(±0.609) 1.237(±0.018) 8.097(±0.242)

PointNet

- - 0.023(±0.001) 0.469(±0.055) 2.240(±0.001) 11.474(±0.290) 0.026(±0.001) 1.225(±0.165) 0.051(±0.002) 2.519(±0.385) 2.860(±0.138) 27.611(±5.693) 1.674(±0.071) 16.226(±3.967)

DANN DEV 0.020(±0.001) 1.093(±0.052) 2.238(±0.002) 17.985(±0.472) 0.027(±0.002) 3.313(±0.129) 0.053(±0.004) 7.055(±0.289) 2.954(±0.179) 101.784(±7.299) 1.714(±0.101) 51.655(±3.392)
DANN IWV 0.020(±0.001) 0.974(±0.419) 2.243(±0.008) 16.949(±3.600) 0.028(±0.002) 2.953(±1.232) 0.054(±0.003) 6.263(±2.630) 2.949(±0.177) 89.454(±42.987) 1.727(±0.102) 45.685(±21.204)
DANN SB 0.019(±0.001) 0.951(±0.347) 2.239(±0.004) 16.497(±3.351) 0.027(±0.001) 2.906(±1.015) 0.052(±0.003) 6.165(±2.173) 2.886(±0.135) 85.396(±36.953) 1.679(±0.085) 43.890(±17.807)
DANN TB 0.020(±0.001) 0.336(±0.054) 2.239(±0.002) 11.137(±0.329) 0.027(±0.001) 1.092(±0.206) 0.052(±0.002) 2.312(±0.421) 2.988(±0.138) 22.461(±4.074) 1.733(±0.060) 12.876(±2.085)

CMD DEV 0.020(±0.001) 1.030(±0.374) 2.240(±0.002) 17.213(±3.515) 0.028(±0.001) 3.196(±1.087) 0.054(±0.003) 6.777(±2.307) 2.987(±0.188) 89.470(±39.163) 1.746(±0.085) 45.786(±18.799)
CMD IWV 0.020(±0.001) 1.243(±0.047) 2.240(±0.001) 19.180(±0.409) 0.028(±0.001) 3.779(±0.111) 0.054(±0.002) 8.037(±0.257) 2.996(±0.112) 113.164(±5.966) 1.758(±0.059) 57.501(±3.749)
CMD SB 0.019(±0.001) 0.387(±0.059) 2.241(±0.002) 11.327(±0.574) 0.027(±0.001) 1.201(±0.297) 0.051(±0.001) 2.511(±0.699) 2.852(±0.079) 27.922(±6.676) 1.675(±0.053) 16.105(±3.828)

CMD TB 0.019(±0.001) 0.353(±0.078) 2.240(±0.002) 11.231(±0.508) 0.026(±0.000) 1.147(±0.284) 0.051(±0.001) 2.402(±0.634) 2.843(±0.083) 23.881(±4.994) 1.684(±0.060) 13.680(±2.721)

Deep Coral DEV 0.020(±0.001) 1.036(±0.102) 2.241(±0.002) 17.119(±1.256) 0.028(±0.001) 3.071(±0.374) 0.055(±0.003) 6.501(±0.887) 3.003(±0.133) 96.974(±10.676) 1.768(±0.079) 50.257(±3.638)
Deep Coral IWV 0.020(±0.001) 1.048(±0.167) 2.238(±0.003) 17.395(±1.880) 0.028(±0.001) 3.077(±0.508) 0.055(±0.002) 6.461(±1.120) 2.984(±0.108) 100.276(±20.956) 1.775(±0.050) 52.079(±8.798)
Deep Coral SB 0.019(±0.000) 0.977(±0.158) 2.243(±0.002) 16.764(±1.497) 0.027(±0.001) 2.947(±0.409) 0.052(±0.001) 6.257(±0.856) 2.866(±0.081) 88.933(±21.502) 1.677(±0.043) 45.919(±10.860)
Deep Coral TB 0.019(±0.000) 0.346(±0.078) 2.239(±0.003) 11.099(±0.287) 0.027(±0.001) 1.100(±0.270) 0.051(±0.001) 2.304(±0.618) 2.857(±0.089) 24.024(±6.005) 1.693(±0.037) 13.911(±3.132)

Transolver

- - 0.028(±0.001) ⋆ 0.580(±0.035) ⋆ 0.036(±0.001) ⋆ 0.070(±0.002) ⋆ 3.541(±0.094) ⋆ 2.056(±0.041) ⋆

DANN DEV 0.024(±0.001) 1.329(±0.053) 0.572(±0.020) 19.399(±0.646) 0.038(±0.002) 3.855(±0.131) 0.075(±0.004) 8.177(±0.272) 3.562(±0.107) 137.463(±8.757) 2.072(±0.045) 68.023(±3.389)
DANN IWV 0.023(±0.001) ⋆ 0.563(±0.031) ⋆ 0.036(±0.002) ⋆ 0.072(±0.003) ⋆ 3.510(±0.112) ⋆ 2.052(±0.058) ⋆
DANN SB 0.023(±0.000) ⋆ 0.557(±0.026) ⋆ 0.035(±0.000) ⋆ 0.069(±0.001) ⋆ 3.420(±0.039) ⋆ 1.989(±0.016) ⋆
DANN TB 0.023(±0.001) 1.248(±0.044) 0.581(±0.052) 18.346(±0.511) 0.036(±0.002) 3.634(±0.123) 0.072(±0.004) 7.702(±0.270) 3.483(±0.129) 126.739(±6.274) 2.032(±0.073) 63.423(±2.244)

CMD DEV 0.024(±0.001) 0.945(±0.385) 0.609(±0.039) 14.247(±5.368) 0.037(±0.001) 2.836(±1.064) 0.074(±0.002) 6.058(±2.217) 3.586(±0.092) 86.716(±48.985) 2.071(±0.043) 44.557(±22.613)
CMD IWV 0.024(±0.001) 2.630(±3.515) 0.598(±0.040) 78.553(±130.657) 0.037(±0.002) 4.817(±4.474) 0.073(±0.003) 12.720(±14.409) 3.603(±0.105) 350.914(±536.759) 2.075(±0.056) 251.012(±418.842)
CMD SB 0.023(±0.001) 0.899(±0.359) 0.589(±0.026) 13.868(±5.333) 0.035(±0.001) 2.743(±1.054) 0.070(±0.003) 5.800(±2.236) 3.526(±0.128) 77.740(±38.121) 2.034(±0.051) 41.268(±18.879)

CMD TB 0.024(±0.001) 0.567(±0.137) 0.615(±0.047) 9.350(±2.012) 0.038(±0.002) 1.798(±0.445) 0.074(±0.003) 3.834(±1.010) 3.599(±0.156) 41.982(±11.590) 2.085(±0.092) 23.189(±5.853)

Deep Coral DEV 0.023(±0.001) 3.231(±4.873) 0.596(±0.014) 91.582(±159.064) 0.035(±0.002) 9.198(±13.552) 0.070(±0.003) 22.590(±34.680) 3.483(±0.170) 253.494(±372.755) 2.027(±0.084) 174.785(±278.902)
Deep Coral IWV 0.023(±0.001) ⋆ 0.606(±0.052) ⋆ 0.036(±0.003) ⋆ 0.072(±0.006) ⋆ 3.510(±0.124) ⋆ 2.035(±0.069) ⋆
Deep Coral SB 0.023(±0.001) 3.600(±4.655) 0.583(±0.017) 94.451(±157.174) 0.034(±0.002) 10.287(±12.902) 0.068(±0.004) 25.566(±32.972) 3.409(±0.076) 268.916(±363.263) 1.989(±0.047) 198.891(±265.635)
Deep Coral TB 0.024(±0.000) 0.656(±0.187) 0.589(±0.020) 10.200(±2.893) 0.037(±0.001) 1.985(±0.588) 0.073(±0.003) 4.247(±1.284) 3.527(±0.051) 53.775(±18.336) 2.045(±0.046) 29.340(±8.568)

A.2 Sheet Metal Forming660

Table 4: Mean (± standard deviation) of RMSE across four seeds on the sheet metal forming dataset.
Bold values indicate the best target domain performance across all normalized fields. Underlined
entries mark the best performing UDA algorithm and unsupervised model selection strategy per
model. Asterisks denote unstable models (error more than 10× higher than others).

Model DA
Algorithm

Model
Selection

All fields normalized Avg (-) Deformation (mm) Logarithmic strain (×10−2) Equivalent plastic strain (×10−2) Mises stress (MPa) Stress (MPa)

SRC TGT SRC TGT SRC TGT SRC TGT SRC TGT SRC TGT

GraphSAGE

- - 0.070(±0.002) 0.376(±0.028) 1.411(±0.070) 1.939(±0.530) 0.024(±0.001) 0.156(±0.014) 0.043(±0.001) 0.272(±0.026) 11.022(±0.324) 46.097(±4.911) 5.548(±0.198) 31.225(±1.554)

DANN DEV 0.056(±0.004) ⋆ 1.347(±0.045) 16.199(±21.097) 0.023(±0.001) 0.965(±1.238) 0.042(±0.003) ⋆ 10.597(±0.564) 406.576(±403.135) 5.334(±0.299) 177.376(±187.164)
DANN IWV 0.057(±0.003) 0.329(±0.027) 1.406(±0.071) 2.095(±0.188) 0.023(±0.001) 0.158(±0.010) 0.042(±0.003) 0.269(±0.011) 10.758(±0.277) 52.401(±7.908) 5.387(±0.134) 34.644(±4.404)

DANN SB 0.055(±0.002) 1.139(±0.411) 1.404(±0.035) 7.810(±6.066) 0.022(±0.001) 0.467(±0.147) 0.040(±0.001) 0.921(±0.452) 10.732(±0.406) 186.098(±37.057) 5.372(±0.168) 94.370(±16.943)
DANN TB 0.057(±0.003) 0.323(±0.025) 1.416(±0.055) 2.021(±0.156) 0.023(±0.001) 0.156(±0.010) 0.042(±0.003) 0.265(±0.004) 10.728(±0.218) 49.234(±5.606) 5.405(±0.167) 33.375(±4.786)

CMD DEV 0.055(±0.002) 0.857(±0.475) 1.355(±0.058) 6.409(±3.878) 0.022(±0.001) 0.380(±0.177) 0.041(±0.002) 0.645(±0.290) 10.590(±0.343) 145.233(±79.730) 5.287(±0.140) 87.123(±42.179)
CMD IWV 0.055(±0.001) 0.407(±0.124) 1.326(±0.031) 2.455(±1.014) 0.022(±0.001) 0.201(±0.057) 0.041(±0.001) 0.358(±0.112) 10.730(±0.065) 61.685(±20.293) 5.354(±0.115) 37.004(±7.364)
CMD SB 0.055(±0.001) 0.569(±0.306) 1.433(±0.024) 4.708(±4.280) 0.022(±0.000) 0.290(±0.160) 0.040(±0.000) 0.497(±0.273) 10.550(±0.163) 99.069(±58.190) 5.299(±0.071) 55.134(±35.744)
CMD TB 0.057(±0.001) 0.289(±0.036) 1.345(±0.059) 2.028(±0.798) 0.023(±0.000) 0.139(±0.017) 0.042(±0.001) 0.243(±0.028) 10.828(±0.169) 43.746(±5.836) 5.437(±0.110) 29.606(±3.478)

Deep Coral DEV 0.054(±0.001) 0.411(±0.103) 1.347(±0.048) 3.347(±2.232) 0.021(±0.001) 0.185(±0.031) 0.039(±0.001) 0.330(±0.064) 10.355(±0.455) 65.861(±28.277) 5.206(±0.190) 43.062(±14.129)
Deep Coral IWV 0.055(±0.002) 0.353(±0.075) 1.389(±0.055) 2.449(±1.115) 0.022(±0.001) 0.170(±0.032) 0.041(±0.002) 0.304(±0.078) 10.585(±0.289) 48.326(±6.560) 5.320(±0.174) 34.667(±5.465)
Deep Coral SB 0.056(±0.002) 0.364(±0.105) 1.392(±0.071) 2.386(±0.735) 0.022(±0.001) 0.177(±0.055) 0.041(±0.001) 0.310(±0.090) 10.744(±0.189) 52.764(±11.554) 5.368(±0.092) 35.332(±8.182)
Deep Coral TB 0.056(±0.003) 0.287(±0.011) 1.395(±0.068) 1.825(±0.369) 0.023(±0.001) 0.137(±0.007) 0.041(±0.002) 0.242(±0.008) 10.781(±0.333) 44.161(±3.225) 5.398(±0.179) 29.228(±1.451)

PointNet

- - 0.077(±0.011) 0.226(±0.047) 2.012(±0.149) 2.556(±0.948) 0.024(±0.004) 0.087(±0.022) 0.045(±0.007) 0.160(±0.039) 11.357(±2.106) 31.435(±6.317) 8.067(±0.634) 16.525(±3.262)

DANN DEV 0.066(±0.003) 1.195(±1.934) 2.243(±0.041) 6.185(±6.903) 0.024(±0.001) 0.709(±1.194) 0.045(±0.003) 1.528(±2.648) 11.665(±0.483) 129.318(±178.366) 8.505(±0.083) 101.783(±163.427)
DANN IWV 0.067(±0.006) 0.318(±0.171) 2.283(±0.052) 5.000(±4.861) 0.025(±0.002) 0.155(±0.081) 0.047(±0.005) 0.281(±0.149) 12.151(±1.359) 58.156(±38.050) 8.631(±0.245) 27.216(±16.145)
DANN SB 0.067(±0.005) 0.359(±0.153) 2.250(±0.022) 5.573(±4.577) 0.025(±0.002) 0.181(±0.076) 0.047(±0.004) 0.328(±0.138) 12.090(±1.186) 63.622(±34.926) 8.522(±0.221) 30.676(±14.620)
DANN TB 0.076(±0.004) 0.166(±0.008) 2.270(±0.037) 2.089(±0.144) 0.028(±0.001) 0.084(±0.010) 0.053(±0.002) 0.149(±0.016) 14.069(±1.203) 24.299(±2.097) 9.041(±0.253) 13.427(±0.788)

CMD DEV 0.089(±0.037) 0.329(±0.141) 2.414(±0.373) 4.199(±2.432) 0.038(±0.024) 0.162(±0.069) 0.071(±0.045) 0.280(±0.111) 14.104(±3.213) 61.546(±35.760) 9.417(±1.408) 28.416(±13.163)
CMD IWV 0.071(±0.002) 0.242(±0.148) 2.263(±0.056) 2.685(±0.972) 0.026(±0.001) 0.117(±0.071) 0.050(±0.002) 0.213(±0.126) 12.925(±0.692) 46.808(±38.805) 8.806(±0.188) 20.683(±12.572)
CMD SB 0.060(±0.006) 0.252(±0.066) 1.988(±0.069) 3.698(±1.484) 0.022(±0.002) 0.124(±0.029) 0.042(±0.005) 0.221(±0.049) 10.166(±1.459) 38.406(±13.599) 7.737(±0.316) 20.153(±5.512)
CMD TB 0.069(±0.006) 0.173(±0.013) 2.099(±0.124) 2.114(±0.141) 0.026(±0.003) 0.089(±0.011) 0.049(±0.005) 0.158(±0.019) 12.260(±0.750) 25.184(±1.660) 8.365(±0.388) 13.693(±0.839)

Deep Coral DEV 0.067(±0.008) 0.228(±0.065) 2.201(±0.189) 2.613(±0.839) 0.025(±0.003) 0.119(±0.040) 0.046(±0.006) 0.213(±0.067) 12.087(±1.995) 36.983(±12.354) 8.439(±0.665) 18.516(±5.099)
Deep Coral IWV 0.064(±0.006) 0.190(±0.027) 2.196(±0.185) 2.324(±0.411) 0.024(±0.002) 0.092(±0.013) 0.044(±0.005) 0.166(±0.022) 11.283(±1.392) 32.908(±5.779) 8.302(±0.562) 16.048(±2.999)
Deep Coral SB 0.060(±0.009) 0.182(±0.021) 2.042(±0.185) 2.555(±0.422) 0.022(±0.004) 0.084(±0.011) 0.042(±0.008) 0.150(±0.023) 10.156(±2.001) 31.345(±5.362) 7.837(±0.674) 16.017(±2.153)

Deep Coral TB 0.069(±0.014) 0.158(±0.006) 2.129(±0.184) 2.004(±0.051) 0.026(±0.006) 0.078(±0.005) 0.049(±0.011) 0.140(±0.009) 12.320(±3.129) 22.942(±1.429) 8.432(±0.932) 12.967(±0.350)

Transolver

- - 0.070(±0.002) 0.168(±0.029) 1.168(±0.012) 1.189(±0.293) 0.022(±0.001) 0.070(±0.015) 0.041(±0.001) 0.126(±0.029) 12.862(±0.461) 23.014(±4.849) 6.033(±0.161) 10.852(±1.952)

DANN DEV 0.057(±0.002) 0.206(±0.051) 1.211(±0.062) 2.625(±1.493) 0.021(±0.001) 0.103(±0.022) 0.040(±0.001) 0.187(±0.038) 12.275(±0.537) 36.777(±15.101) 5.787(±0.203) 17.571(±6.801)
DANN IWV 0.056(±0.003) 0.165(±0.026) 1.194(±0.049) 1.473(±0.537) 0.021(±0.001) 0.081(±0.011) 0.040(±0.002) 0.150(±0.023) 12.223(±0.559) 26.736(±6.986) 5.764(±0.277) 13.037(±3.317)
DANN SB 0.056(±0.002) 0.172(±0.016) 1.207(±0.062) 1.679(±0.366) 0.021(±0.001) 0.085(±0.006) 0.040(±0.002) 0.157(±0.012) 12.074(±0.284) 28.661(±5.284) 5.709(±0.179) 13.862(±2.528)
DANN TB 0.058(±0.002) 0.133(±0.016) 1.249(±0.054) 1.205(±0.276) 0.022(±0.001) 0.064(±0.013) 0.041(±0.001) 0.117(±0.025) 12.560(±0.653) 21.245(±1.910) 5.924(±0.299) 10.337(±0.834)

CMD DEV 0.058(±0.002) 0.286(±0.118) 1.233(±0.062) 4.088(±3.003) 0.022(±0.001) 0.142(±0.058) 0.042(±0.001) 0.255(±0.104) 12.696(±0.924) 51.628(±29.111) 5.958(±0.363) 26.089(±13.258)
CMD IWV 0.056(±0.002) 0.209(±0.096) 1.200(±0.051) 2.431(±1.533) 0.021(±0.001) 0.108(±0.054) 0.040(±0.001) 0.192(±0.092) 12.080(±0.396) 31.566(±13.954) 5.712(±0.172) 17.061(±8.722)
CMD SB 0.056(±0.002) 0.235(±0.097) 1.214(±0.063) 2.739(±1.545) 0.021(±0.001) 0.122(±0.053) 0.040(±0.001) 0.215(±0.090) 12.145(±0.515) 35.915(±14.900) 5.731(±0.224) 19.679(±9.245)
CMD TB 0.062(±0.001) 0.131(±0.008) 1.263(±0.042) 1.023(±0.223) 0.023(±0.000) 0.065(±0.005) 0.044(±0.001) 0.117(±0.007) 13.505(±0.428) 20.285(±1.747) 6.326(±0.169) 9.821(±0.838)

Deep Coral DEV 0.058(±0.001) 0.159(±0.011) 1.230(±0.033) 1.386(±0.287) 0.022(±0.000) 0.081(±0.006) 0.041(±0.001) 0.146(±0.009) 12.885(±0.257) 25.049(±2.398) 6.026(±0.065) 12.572(±1.158)

Deep Coral IWV 0.057(±0.001) 0.261(±0.203) 1.206(±0.008) 3.011(±3.099) 0.021(±0.000) 0.133(±0.107) 0.041(±0.001) 0.240(±0.192) 12.595(±0.275) 44.262(±37.731) 5.921(±0.116) 22.722(±19.867)
Deep Coral SB 0.057(±0.001) 0.263(±0.201) 1.199(±0.019) 3.277(±2.944) 0.021(±0.001) 0.135(±0.106) 0.040(±0.001) 0.244(±0.189) 12.509(±0.180) 44.318(±37.691) 5.878(±0.082) 22.645(±19.921)
Deep Coral TB 0.059(±0.001) 0.138(±0.014) 1.227(±0.016) 0.957(±0.036) 0.022(±0.000) 0.068(±0.012) 0.042(±0.001) 0.124(±0.023) 12.970(±0.502) 22.062(±2.213) 6.080(±0.207) 10.846(±0.704)
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A.3 Electric Motor Design661

Table 5: Mean (± standard deviation) of RMSE across four seeds on the electric motor design dataset.
Bold values indicate the best target domain performance across all normalized fields. Underlined
entries mark the best performing UDA algorithm and unsupervised model selection strategy per
model. Asterisks denote unstable models (error more than 10× higher than others).

Model DA
Algorithm

Model
Selection

All fields normalized avg (-) Deformation (m) Logarithmic strain (×10−2) Principal strain (×10−2) Stress (MPa) Cauchy stress (MPa) Mises stress (MPa) Principal stress (MPa) Total strain (×10−2)

SRC TGT SRC TGT SRC TGT SRC TGT SRC TGT SRC TGT SRC TGT SRC TGT SRC TGT

GraphSAGE

- - 0.317(±0.004) 0.375(±0.006) 0.002(±0.001) 0.001(±0.000) 0.008(±0.000) 0.010(±0.000) 0.008(±0.000) 0.009(±0.000) 10.786(±0.179) 12.768(±0.213) 10.806(±0.180) 12.796(±0.214) 24.128(±0.736) 29.458(±0.882) 12.317(±0.252) 14.578(±0.318) 0.007(±0.000) 0.009(±0.000)

DANN DEV 0.314(±0.023) 0.443(±0.071) 0.003(±0.000) 0.002(±0.000) 0.009(±0.001) 0.012(±0.002) 0.008(±0.001) 0.012(±0.002) 11.443(±0.760) 16.354(±2.726) 11.463(±0.761) 16.387(±2.730) 25.734(±1.822) 38.735(±6.880) 13.059(±0.826) 18.779(±3.137) 0.008(±0.001) 0.011(±0.002)
DANN IWV 0.291(±0.002) 0.346(±0.006) 0.002(±0.000) 0.002(±0.001) 0.008(±0.000) 0.009(±0.000) 0.008(±0.000) 0.009(±0.000) 10.695(±0.052) 12.713(±0.241) 10.715(±0.052) 12.740(±0.242) 24.033(±0.146) 29.295(±0.897) 12.243(±0.056) 14.529(±0.328) 0.007(±0.000) 0.009(±0.000)
DANN SB 0.293(±0.001) 0.347(±0.006) 0.003(±0.001) 0.002(±0.001) 0.008(±0.000) 0.010(±0.000) 0.008(±0.000) 0.009(±0.000) 10.760(±0.025) 12.728(±0.220) 10.779(±0.025) 12.755(±0.221) 24.195(±0.163) 29.318(±0.913) 12.336(±0.066) 14.557(±0.317) 0.007(±0.000) 0.009(±0.000)
DANN TB 0.297(±0.004) 0.343(±0.006) 0.002(±0.000) 0.002(±0.000) 0.008(±0.000) 0.009(±0.000) 0.008(±0.000) 0.009(±0.000) 10.932(±0.141) 12.608(±0.246) 10.952(±0.141) 12.635(±0.247) 24.660(±0.404) 29.001(±0.820) 12.517(±0.177) 14.431(±0.322) 0.007(±0.000) 0.009(±0.000)

CMD DEV 0.299(±0.019) 0.395(±0.052) 0.002(±0.000) 0.002(±0.000) 0.008(±0.000) 0.011(±0.002) 0.008(±0.000) 0.011(±0.002) 10.919(±0.624) 14.550(±2.044) 10.939(±0.624) 14.580(±2.048) 24.480(±1.528) 34.337(±6.047) 12.483(±0.694) 16.672(±2.506) 0.007(±0.000) 0.010(±0.001)
CMD IWV 0.294(±0.004) 0.379(±0.060) 0.002(±0.000) 0.002(±0.001) 0.008(±0.000) 0.010(±0.002) 0.008(±0.000) 0.010(±0.002) 10.802(±0.151) 13.990(±2.340) 10.822(±0.151) 14.020(±2.344) 24.354(±0.539) 32.782(±6.804) 12.380(±0.180) 16.014(±2.833) 0.007(±0.000) 0.010(±0.002)
CMD SB 0.293(±0.010) 0.344(±0.005) 0.002(±0.000) 0.001(±0.000) 0.008(±0.000) 0.009(±0.000) 0.008(±0.000) 0.009(±0.000) 10.727(±0.303) 12.605(±0.221) 10.746(±0.302) 12.632(±0.222) 23.942(±0.597) 28.918(±0.552) 12.248(±0.278) 14.379(±0.226) 0.007(±0.000) 0.009(±0.000)

CMD TB 0.295(±0.009) 0.340(±0.005) 0.002(±0.001) 0.002(±0.001) 0.008(±0.000) 0.009(±0.000) 0.008(±0.000) 0.009(±0.000) 10.785(±0.258) 12.484(±0.187) 10.804(±0.258) 12.510(±0.188) 24.024(±0.739) 28.500(±0.660) 12.295(±0.285) 14.224(±0.262) 0.007(±0.000) 0.008(±0.000)

Deep Coral DEV 0.296(±0.012) 0.351(±0.017) 0.002(±0.001) 0.002(±0.001) 0.008(±0.000) 0.010(±0.001) 0.008(±0.000) 0.009(±0.001) 10.883(±0.424) 12.886(±0.632) 10.903(±0.425) 12.915(±0.634) 24.393(±1.011) 29.931(±1.710) 12.421(±0.439) 14.759(±0.737) 0.007(±0.000) 0.009(±0.000)
Deep Coral IWV 0.296(±0.011) 0.349(±0.016) 0.002(±0.001) 0.002(±0.001) 0.008(±0.000) 0.010(±0.000) 0.008(±0.000) 0.009(±0.001) 10.862(±0.405) 12.782(±0.586) 10.882(±0.406) 12.810(±0.588) 24.261(±1.070) 29.194(±1.648) 12.374(±0.441) 14.543(±0.697) 0.007(±0.000) 0.009(±0.000)
Deep Coral SB 0.288(±0.004) 0.351(±0.008) 0.003(±0.000) 0.002(±0.001) 0.008(±0.000) 0.010(±0.000) 0.007(±0.000) 0.009(±0.000) 10.543(±0.129) 12.915(±0.312) 10.562(±0.129) 12.943(±0.313) 23.450(±0.270) 30.013(±1.011) 12.075(±0.169) 14.773(±0.350) 0.007(±0.000) 0.009(±0.000)
Deep Coral TB 0.290(±0.003) 0.338(±0.003) 0.002(±0.001) 0.002(±0.001) 0.008(±0.000) 0.009(±0.000) 0.008(±0.000) 0.009(±0.000) 10.678(±0.134) 12.401(±0.118) 10.698(±0.134) 12.428(±0.119) 23.983(±0.330) 28.527(±0.407) 12.206(±0.130) 14.163(±0.148) 0.007(±0.000) 0.008(±0.000)

PointNet

- - 0.319(±0.050) 0.396(±0.048) 0.002(±0.001) 0.002(±0.001) 0.008(±0.001) 0.010(±0.001) 0.008(±0.001) 0.010(±0.001) 10.714(±1.624) 13.389(±1.583) 10.731(±1.626) 13.417(±1.584) 23.666(±3.655) 30.654(±3.391) 12.090(±1.910) 15.146(±1.847) 0.007(±0.001) 0.009(±0.001)

DANN DEV 0.289(±0.050) 0.505(±0.032) 0.001(±0.000) 0.001(±0.000) 0.008(±0.001) 0.014(±0.001) 0.007(±0.001) 0.014(±0.001) 10.489(±1.784) 18.840(±1.166) 10.506(±1.787) 18.875(±1.167) 23.009(±3.887) 44.796(±2.664) 11.815(±2.054) 21.509(±1.376) 0.007(±0.001) 0.013(±0.001)
DANN IWV 0.275(±0.037) 0.444(±0.085) 0.001(±0.000) 0.001(±0.000) 0.007(±0.001) 0.012(±0.002) 0.007(±0.001) 0.012(±0.002) 9.973(±1.270) 16.409(±3.248) 9.990(±1.271) 16.442(±3.253) 21.849(±2.570) 38.862(±7.799) 11.214(±1.442) 18.724(±3.694) 0.007(±0.001) 0.011(±0.002)
DANN SB 0.269(±0.037) 0.434(±0.121) 0.002(±0.001) 0.002(±0.001) 0.007(±0.001) 0.012(±0.003) 0.007(±0.001) 0.012(±0.003) 9.749(±1.272) 16.051(±4.549) 9.766(±1.273) 16.083(±4.555) 21.424(±2.685) 37.862(±10.930) 10.980(±1.463) 18.344(±5.326) 0.007(±0.001) 0.011(±0.003)
DANN TB 0.279(±0.053) 0.343(±0.052) 0.001(±0.000) 0.000(±0.000) 0.008(±0.001) 0.009(±0.001) 0.007(±0.001) 0.009(±0.001) 10.117(±1.888) 12.449(±1.838) 10.135(±1.891) 12.476(±1.841) 22.144(±4.215) 28.299(±3.982) 11.426(±2.183) 14.100(±2.119) 0.007(±0.001) 0.009(±0.001)

CMD DEV 0.321(±0.107) 0.380(±0.074) 0.002(±0.001) 0.001(±0.001) 0.009(±0.003) 0.011(±0.002) 0.007(±0.002) 0.010(±0.002) 11.854(±4.237) 13.976(±2.812) 11.873(±4.243) 14.006(±2.817) 23.042(±5.163) 32.349(±6.906) 11.970(±2.765) 15.852(±3.293) 0.008(±0.003) 0.010(±0.002)
CMD IWV 0.470(±0.454) 0.353(±0.073) 0.006(±0.009) 0.002(±0.001) 0.013(±0.014) 0.010(±0.002) 0.011(±0.010) 0.009(±0.002) 17.801(±18.040) 12.930(±2.776) 17.825(±18.057) 12.958(±2.781) 34.334(±31.237) 29.373(±6.774) 20.747(±21.808) 14.613(±3.036) 0.012(±0.013) 0.009(±0.002)
CMD SB 0.471(±0.453) 0.353(±0.073) 0.006(±0.009) 0.002(±0.001) 0.014(±0.014) 0.010(±0.002) 0.011(±0.010) 0.009(±0.002) 17.862(±18.009) 12.998(±2.799) 17.886(±18.026) 13.027(±2.803) 34.519(±31.151) 29.782(±6.876) 20.804(±21.778) 14.717(±3.074) 0.012(±0.013) 0.009(±0.002)
CMD TB 0.252(±0.048) 0.314(±0.059) 0.002(±0.000) 0.001(±0.000) 0.007(±0.001) 0.009(±0.002) 0.006(±0.001) 0.008(±0.002) 9.109(±1.686) 11.382(±2.094) 9.125(±1.689) 11.408(±2.097) 19.744(±3.712) 25.760(±5.145) 10.278(±1.857) 12.934(±2.404) 0.006(±0.001) 0.008(±0.001)

Deep Coral DEV 0.254(±0.034) 0.327(±0.031) 0.002(±0.001) 0.002(±0.001) 0.007(±0.001) 0.009(±0.001) 0.006(±0.001) 0.009(±0.001) 9.185(±1.182) 11.852(±1.071) 9.201(±1.184) 11.877(±1.073) 20.106(±2.391) 27.164(±1.924) 10.390(±1.267) 13.490(±1.162) 0.006(±0.001) 0.008(±0.001)
Deep Coral IWV 0.259(±0.033) 0.318(±0.012) 0.002(±0.001) 0.002(±0.001) 0.007(±0.001) 0.009(±0.000) 0.007(±0.001) 0.009(±0.000) 9.318(±1.064) 11.525(±0.391) 9.334(±1.065) 11.551(±0.391) 20.385(±2.250) 26.522(±0.984) 10.519(±1.137) 13.139(±0.507) 0.006(±0.001) 0.008(±0.000)
Deep Coral SB 0.255(±0.035) 0.313(±0.017) 0.002(±0.001) 0.002(±0.001) 0.007(±0.001) 0.009(±0.000) 0.006(±0.001) 0.008(±0.000) 9.189(±1.130) 11.357(±0.564) 9.205(±1.131) 11.382(±0.565) 20.156(±2.363) 26.229(±1.375) 10.371(±1.224) 12.941(±0.727) 0.006(±0.001) 0.008(±0.000)

Deep Coral TB 0.255(±0.035) 0.313(±0.017) 0.002(±0.001) 0.002(±0.001) 0.007(±0.001) 0.009(±0.000) 0.006(±0.001) 0.008(±0.000) 9.189(±1.130) 11.357(±0.564) 9.205(±1.131) 11.382(±0.565) 20.156(±2.363) 26.229(±1.375) 10.371(±1.224) 12.941(±0.727) 0.006(±0.001) 0.008(±0.000)

Transolver

- - 0.104(±0.011) 0.121(±0.007) 0.002(±0.001) 0.001(±0.000) 0.002(±0.000) 0.003(±0.000) 0.002(±0.000) 0.003(±0.000) 3.448(±0.377) 3.975(±0.220) 3.454(±0.377) 3.982(±0.220) 6.999(±0.576) 8.328(±0.473) 4.243(±0.570) 4.811(±0.231) 0.002(±0.000) 0.003(±0.000)

DANN DEV 0.088(±0.002) 0.111(±0.006) 0.001(±0.000) 0.001(±0.000) 0.002(±0.000) 0.003(±0.000) 0.002(±0.000) 0.003(±0.000) 3.150(±0.064) 3.953(±0.216) 3.155(±0.064) 3.961(±0.216) 6.455(±0.162) 8.334(±0.554) 3.825(±0.086) 4.774(±0.233) 0.002(±0.000) 0.003(±0.000)
DANN IWV 0.087(±0.001) 0.111(±0.006) 0.001(±0.000) 0.001(±0.000) 0.002(±0.000) 0.003(±0.000) 0.002(±0.000) 0.003(±0.000) 3.102(±0.037) 3.926(±0.234) 3.108(±0.037) 3.934(±0.234) 6.390(±0.077) 8.280(±0.589) 3.768(±0.040) 4.747(±0.255) 0.002(±0.000) 0.003(±0.000)
DANN SB 0.085(±0.002) 0.109(±0.007) 0.001(±0.000) 0.001(±0.000) 0.002(±0.000) 0.003(±0.000) 0.002(±0.000) 0.003(±0.000) 3.029(±0.070) 3.869(±0.280) 3.034(±0.070) 3.877(±0.281) 6.210(±0.140) 8.174(±0.673) 3.680(±0.083) 4.672(±0.308) 0.002(±0.000) 0.003(±0.000)
DANN TB 0.085(±0.002) 0.104(±0.003) 0.001(±0.000) 0.001(±0.000) 0.002(±0.000) 0.003(±0.000) 0.002(±0.000) 0.003(±0.000) 3.030(±0.088) 3.710(±0.091) 3.035(±0.088) 3.718(±0.091) 6.248(±0.208) 7.788(±0.187) 3.689(±0.102) 4.502(±0.102) 0.002(±0.000) 0.002(±0.000)

CMD DEV 0.089(±0.004) 0.112(±0.007) 0.001(±0.000) 0.001(±0.000) 0.002(±0.000) 0.003(±0.000) 0.002(±0.000) 0.003(±0.000) 3.176(±0.136) 3.950(±0.204) 3.182(±0.136) 3.958(±0.205) 6.536(±0.266) 8.223(±0.396) 3.851(±0.152) 4.782(±0.255) 0.002(±0.000) 0.003(±0.000)
CMD IWV 0.088(±0.004) 0.107(±0.007) 0.001(±0.000) 0.001(±0.000) 0.002(±0.000) 0.003(±0.000) 0.002(±0.000) 0.003(±0.000) 3.140(±0.140) 3.802(±0.233) 3.146(±0.140) 3.809(±0.234) 6.488(±0.324) 7.971(±0.511) 3.803(±0.163) 4.594(±0.252) 0.002(±0.000) 0.002(±0.000)
CMD SB 0.086(±0.001) 0.106(±0.004) 0.001(±0.000) 0.001(±0.000) 0.002(±0.000) 0.003(±0.000) 0.002(±0.000) 0.003(±0.000) 3.085(±0.032) 3.757(±0.137) 3.090(±0.032) 3.765(±0.137) 6.334(±0.080) 7.864(±0.363) 3.752(±0.039) 4.553(±0.174) 0.002(±0.000) 0.002(±0.000)
CMD TB 0.086(±0.002) 0.103(±0.003) 0.001(±0.000) 0.001(±0.000) 0.002(±0.000) 0.003(±0.000) 0.002(±0.000) 0.003(±0.000) 3.061(±0.081) 3.670(±0.115) 3.066(±0.081) 3.677(±0.116) 6.294(±0.183) 7.646(±0.237) 3.720(±0.097) 4.447(±0.125) 0.002(±0.000) 0.002(±0.000)

Deep Coral DEV 0.087(±0.002) 0.105(±0.002) 0.001(±0.000) 0.001(±0.000) 0.002(±0.000) 0.003(±0.000) 0.002(±0.000) 0.003(±0.000) 3.093(±0.076) 3.720(±0.076) 3.099(±0.076) 3.727(±0.076) 6.394(±0.171) 7.825(±0.181) 3.768(±0.095) 4.533(±0.102) 0.002(±0.000) 0.002(±0.000)
Deep Coral IWV 0.161(±0.146) 0.104(±0.003) 0.002(±0.002) 0.001(±0.000) 0.003(±0.002) 0.003(±0.000) 0.004(±0.003) 0.003(±0.000) 4.747(±3.245) 3.711(±0.111) 4.751(±3.242) 3.718(±0.111) 11.535(±10.150) 7.784(±0.285) 6.294(±4.970) 4.524(±0.146) 0.003(±0.001) 0.002(±0.000)
Deep Coral SB 0.085(±0.003) 0.103(±0.004) 0.001(±0.000) 0.001(±0.000) 0.002(±0.000) 0.003(±0.000) 0.002(±0.000) 0.003(±0.000) 3.042(±0.100) 3.658(±0.142) 3.048(±0.100) 3.664(±0.142) 6.261(±0.214) 7.678(±0.339) 3.695(±0.117) 4.446(±0.162) 0.002(±0.000) 0.002(±0.000)

Deep Coral TB 0.086(±0.003) 0.102(±0.003) 0.001(±0.000) 0.001(±0.000) 0.002(±0.000) 0.003(±0.000) 0.002(±0.000) 0.003(±0.000) 3.067(±0.108) 3.638(±0.123) 3.072(±0.109) 3.645(±0.124) 6.330(±0.252) 7.594(±0.268) 3.724(±0.128) 4.417(±0.139) 0.002(±0.000) 0.002(±0.000)

A.4 Heatsink Design662

Table 6: Mean (± standard deviation) of RMSE across four seeds on the heatsink design dataset. Bold
values indicate the best target domain performance across all normalized fields. Underlined entries
mark the best performing UDA algorithm and unsupervised model selection strategy per model.

Model DA
Algorithm

Model
Selection

All fields normalized avg (-) Temperature (K) Velocity (m/s) Pressure (kPa)

SRC TGT SRC TGT SRC TGT SRC TGT

PointNet

- - 0.525(±0.026) 0.568(±0.030) 15.581(±1.535) 21.126(±2.365) 0.054(±0.002) 0.044(±0.000) 0.386(±0.034) 1.879(±0.239)

DANN DEV 0.339(±0.104) 0.442(±0.050) 12.078(±4.555) 19.408(±3.391) 0.043(±0.009) 0.047(±0.007) 0.815(±1.032) 1.998(±0.360)
DANN IWV 0.289(±0.056) 0.429(±0.052) 10.167(±2.894) 18.172(±3.222) 0.040(±0.008) 0.047(±0.007) 0.283(±0.071) 1.806(±0.145)
DANN SB 0.228(±0.016) 0.494(±0.026) 6.668(±1.013) 20.129(±2.380) 0.031(±0.002) 0.055(±0.002) 0.207(±0.014) 2.103(±0.615)
DANN TB 0.304(±0.036) 0.397(±0.019) 10.964(±1.411) 15.719(±1.387) 0.041(±0.005) 0.043(±0.002) 0.331(±0.141) 1.908(±0.232)

CMD DEV 0.423(±0.003) 0.442(±0.004) 16.324(±0.135) 20.548(±0.035) 0.042(±0.001) 0.042(±0.000) 2.386(±0.018) 2.466(±0.042)
CMD IWV 0.239(±0.008) 0.480(±0.020) 7.577(±0.479) 18.524(±1.213) 0.033(±0.001) 0.051(±0.002) 0.193(±0.005) 2.455(±0.118)
CMD SB 0.238(±0.007) 0.475(±0.025) 7.433(±0.330) 18.460(±1.300) 0.033(±0.001) 0.051(±0.002) 0.199(±0.009) 2.373(±0.157)
CMD TB 0.302(±0.086) 0.442(±0.018) 10.801(±4.087) 17.800(±2.256) 0.037(±0.004) 0.046(±0.004) 0.757(±1.077) 2.289(±0.108)

Deep Coral DEV 0.275(±0.071) 0.394(±0.048) 9.324(±3.565) 18.021(±2.349) 0.038(±0.010) 0.044(±0.006) 0.239(±0.084) 0.988(±0.479)
Deep Coral IWV 0.275(±0.071) 0.394(±0.048) 9.324(±3.565) 18.021(±2.349) 0.038(±0.010) 0.044(±0.006) 0.239(±0.084) 0.988(±0.479)
Deep Coral SB 0.270(±0.061) 0.394(±0.048) 9.071(±3.069) 17.428(±1.939) 0.037(±0.009) 0.044(±0.006) 0.224(±0.055) 1.037(±0.574)

Deep Coral TB 0.343(±0.063) 0.384(±0.042) 12.763(±3.067) 18.517(±2.502) 0.047(±0.009) 0.042(±0.004) 0.324(±0.103) 1.439(±0.427)

Transolver

- - 0.348(±0.009) 0.487(±0.009) 8.553(±0.526) 13.432(±0.486) 0.033(±0.001) 0.040(±0.000) 0.519(±0.047) 1.655(±0.176)

DANN DEV 0.275(±0.042) 0.433(±0.030) 9.629(±2.784) 17.110(±1.633) 0.035(±0.006) 0.048(±0.004) 0.486(±0.043) 1.871(±0.135)
DANN IWV 0.276(±0.039) 0.448(±0.022) 9.251(±1.988) 17.483(±1.168) 0.035(±0.005) 0.050(±0.003) 0.547(±0.146) 1.993(±0.179)
DANN SB 0.251(±0.005) 0.445(±0.014) 7.823(±0.056) 16.603(±1.047) 0.032(±0.001) 0.049(±0.002) 0.487(±0.040) 2.079(±0.134)
DANN TB 0.296(±0.046) 0.425(±0.024) 10.624(±2.804) 16.740(±0.747) 0.038(±0.006) 0.047(±0.003) 0.583(±0.121) 1.921(±0.163)

CMD DEV 0.412(±0.006) 0.495(±0.014) 16.426(±0.267) 22.584(±0.912) 0.038(±0.001) 0.047(±0.001) 2.509(±0.119) 2.926(±0.150)
CMD IWV 0.256(±0.005) 0.411(±0.028) 8.321(±0.303) 15.435(±2.032) 0.033(±0.000) 0.046(±0.004) 0.465(±0.066) 1.870(±0.057)
CMD SB 0.255(±0.006) 0.420(±0.038) 8.341(±0.280) 15.821(±2.496) 0.032(±0.001) 0.046(±0.005) 0.471(±0.058) 1.915(±0.061)
CMD TB 0.256(±0.005) 0.408(±0.024) 8.269(±0.208) 15.028(±1.653) 0.033(±0.001) 0.045(±0.003) 0.431(±0.059) 1.900(±0.107)

Deep Coral DEV 0.261(±0.004) 0.374(±0.005) 8.652(±0.241) 13.539(±0.543) 0.033(±0.000) 0.041(±0.001) 0.515(±0.047) 1.726(±0.104)
Deep Coral IWV 0.257(±0.014) 0.368(±0.009) 8.349(±0.855) 13.434(±0.870) 0.033(±0.001) 0.041(±0.001) 0.481(±0.074) 1.559(±0.127)

Deep Coral SB 0.245(±0.005) 0.372(±0.015) 7.783(±0.388) 13.367(±0.909) 0.032(±0.001) 0.041(±0.002) 0.388(±0.014) 1.719(±0.188)
Deep Coral TB 0.259(±0.013) 0.351(±0.023) 8.389(±0.613) 12.756(±1.125) 0.033(±0.001) 0.039(±0.002) 0.529(±0.113) 1.464(±0.180)

UPT

- - 0.244(±0.002) 0.441(±0.024) 4.316(±0.028) 13.033(±1.059) 0.025(±0.000) 0.040(±0.002) 0.232(±0.014) 0.816(±0.049)

DANN DEV 0.188(±0.011) 0.446(±0.026) 4.651(±0.781) 15.580(±0.609) 0.026(±0.002) 0.050(±0.003) 0.223(±0.013) 2.165(±0.302)
DANN IWV 0.222(±0.053) 0.443(±0.070) 6.731(±3.132) 15.179(±1.591) 0.030(±0.007) 0.048(±0.006) 0.247(±0.033) 2.380(±0.727)
DANN SB 0.184(±0.002) 0.480(±0.018) 4.285(±0.072) 15.689(±0.806) 0.025(±0.000) 0.051(±0.001) 0.244(±0.024) 2.729(±0.517)
DANN TB 0.273(±0.092) 0.398(±0.038) 9.411(±4.841) 15.644(±3.334) 0.037(±0.012) 0.043(±0.004) 0.285(±0.073) 1.872(±0.366)

CMD DEV 0.210(±0.055) 0.406(±0.046) 5.994(±3.353) 14.289(±2.054) 0.028(±0.007) 0.046(±0.005) 0.236(±0.022) 1.874(±0.394)
CMD IWV 0.182(±0.000) 0.363(±0.015) 4.297(±0.038) 12.908(±0.487) 0.025(±0.000) 0.043(±0.001) 0.221(±0.009) 1.365(±0.257)
CMD SB 0.179(±0.001) 0.444(±0.010) 4.135(±0.026) 16.130(±0.627) 0.024(±0.000) 0.050(±0.001) 0.231(±0.008) 1.919(±0.052)
CMD TB 0.182(±0.000) 0.363(±0.015) 4.297(±0.038) 12.908(±0.487) 0.025(±0.000) 0.043(±0.001) 0.221(±0.009) 1.365(±0.257)

Deep Coral DEV 0.183(±0.001) 0.345(±0.013) 4.318(±0.067) 13.290(±0.655) 0.025(±0.000) 0.041(±0.001) 0.221(±0.008) 0.810(±0.099)
Deep Coral IWV 0.183(±0.001) 0.339(±0.020) 4.344(±0.055) 13.037(±1.027) 0.025(±0.000) 0.041(±0.002) 0.223(±0.007) 0.778(±0.065)
Deep Coral SB 0.182(±0.000) 0.325(±0.008) 4.307(±0.042) 12.414(±1.209) 0.025(±0.000) 0.039(±0.001) 0.214(±0.007) 0.840(±0.184)

Deep Coral TB 0.182(±0.000) 0.321(±0.008) 4.347(±0.039) 12.637(±0.949) 0.025(±0.000) 0.039(±0.001) 0.218(±0.012) 0.792(±0.122)
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B Distribution Shifts663

Table 7 provides an overview of the parameter ranges chosen to define source and target domains for664

different task difficulties across all datasets. To gain more insights into the parameter importance665

besides the domain experts’ opinion, we visualize the latent space of the conditioning network for all666

presented datasets in Figures 7 to 10.667

Table 7: Defined distribution shifts (source and target domains) of each dataset and each difficulty.

Dataset Parameter Difficulty Source range
(no. samples)

Target range
(no. samples)

Rolling Reduction r (−)
easy [0.01, 0.13) (4000) [0.13, 0.15] (750)
medium [0.01, 0.115) (3500) [0.115, 0.15] (1250)
hard [0.01, 0.10) (3000) [0.10, 0.15] (1750)

Forming Thickness t (mm)
easy [2, 4.8) (3060) [4.8, 5] (255)
medium [2, 4.3) (2550) [4.3, 5] (765)
hard [2, 4.1) (2295) [4.1, 5] (1020)

Electric Motor Rotor slot diameter 3 dr3 (mm)
easy [100, 122)(2693) [122, 126](504)
medium [99, 120) (2143) [120, 126] (1054)
hard [99, 118) (1728) [118, 126] (1469)

Heatsink # fins
easy [5, 13) (404) [13, 14] (56)
medium [5, 12) (365) [12, 15] (95)
hard [5, 11) (342) [11, 15] (118)

Figure 7: T-SNE visualization of the conditioning vectors for the hot rolling dataset. Point color
indicates the magnitude of the respective parameter. While the sheet thickness t appears to be
uniformly distributed, the remaining three exhibit distinct clustering patterns. Taking into account
domain knowledge from industry experts, we defined the reduction parameter r as the basis for
constructing distribution shifts.
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Figure 8: T-SNE visualization of the conditioning vectors for the sheet metal forming dataset. Point
color indicates the magnitude of the respective parameter. The sheet length l shows the most distinct
groupings, but with only three discrete values, it is unsuitable for defining domain splits. The friction
coefficient µ appears uniformly distributed across the embedding. In contrast, sheet thickness t
and roll radius r show clustering behavior, making them more appropriate candidates for inducing
distribution shifts. We choose t as the domain defining parameter.

Figure 9: T-SNE visualization of the conditioning vectors for the electric motor design dataset.
Point color indicates the magnitude of the respective parameter. For clarity, we only show selected
parameters. The only parameter for which exhibits see some structure in the latent space is dr3, we
therefore choose this to be our domain defining parameter in accordance with domain experts.
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Figure 10: T-SNE visualization of the conditioning vectors for the heatsink design dataset. Point
color indicates the magnitude of the respective parameter. Height 2 is distributed equally across the
representation, but the other parameters show concrete grouping behavior. We therefore choose the
number of fins as the domain defining parameter.

C Model Architectures668

This section provides explanations of all model architectures used in our benchmark. All models669

are implemented in PyTorch and are adapted to our conditional regression task. All models have in670

common, that they take node coordinates as inputs and embed them using a sinusoidal positional en-671

coding. Additionally, all models are conditioned on the input parameters of the respective simulation672

sample, which are encoded through a conditioning network described below.673

Conditioning Network. The conditioning module used for all neural surrogate architectures embeds674

the simulation input parameters into a latent vector used for conditioning. The network consists of a675

sinusoidal encoding followed by a simple MLP. The dimension of the latent encoding is 8 throughout676

all experiments.677

PointNet. Our PointNet implementation is adapted from [96] for node-level regression. Input node678

coordinates are first encoded using sinusoidal embeddings and passed through an encoder MLP.679

The resulting representations are aggregated globally using max pooling over nodes to obtain a680

global feature vector. To propagate this global feature, it is concatenated back to each point’s feature681

vector. This fused representation is then fed into a final MLP, which produces the output fields.682

The conditioning is performed by concatenating the conditioning vector to the global feature before683

propagating it to the nodes features. We use a PointNet base dimension of 16 for the small model and684

32 for the larger model.685

GraphSAGE. We adapt GraphSAGE [79] to the conditional mesh regression setting. Again, input686

node coordinates are embedded using a sinusoidal encoding and passed through an MLP encoder.687

The main body of the model consists of multiple GraphSAGE message passing layers with mean688

aggregation. We support two conditioning modes, namely concatenating the latent conditioning689

vector to the node features, or applying FiLM style modulation [102] to the node features before each690

message passing layer. We always use FiLM modulation in the presented results. After message691

passing, the node representations are passed through a final MLP decoder to produce the output fields.692

The base dimension of the model is kept at 128 and we employ 4 GraphSAGE layers.693
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Transolver. The Transolver model follows the originally introduced architecture [101]. Similar694

to the other models, node coordinates first are embedded using a sinusoidal encoding and passed695

through an MLP encoder to produce initial features. Through learned assignement, each node then696

gets mapped to a slice, and inter- as well as intra-slice attention is performed. Afterwards, fields are697

decoded using an MLP readout. The architecture supports two conditioning modes: concatenation,698

where the conditioning vector is concatenated to the input node features before projection, or699

modulation through DiT layers across the network. For our experiments, DiT is used. We choose a700

latent dimension of 128, a slice base of 32 and we apply four attention blocks for the small model.701

For the larger model, we scale to 256, 128 and 8 layers respectively.702

UPT. Our UPT implementation builds on the architecture proposed in [73]. First, a fixed number703

of supernodes are uniformly sampled from the input nodes. Node coordinates are embedded using704

a sinusoidal encoding followed by an MLP. The supernodes aggregate features from nearby nodes705

using one-directional message passing and serve as tokens for subsequent transformer processing.706

They are then processed by stack of DiT blocks, which condition the network on the simulation input707

parameters. For prediction, we employ a DiT Perceiver [104] decoder that performs cross-attention708

between the latent representation and a set of query positions. This allows the model to generate709

field predictions at arbitrary spatial locations, which is a desirable property for inference. We sample710

4096 supernodes and use a base dimension of 192. We use 8 DiT blocks for processing and 4 DiT711

Perceiver blocks for decoding.712

D Experiments713

This section provides a detailed overview of the performed experiments for this benchmark. First, we714

explain the benchmarking setup used to generate the benchmarking results in detail in Appendix D.1715

and the evaluation procedure in Appendix D.2. Furthermore, we provide information about training716

times for the presented methods in Appendix D.3.717

D.1 Experimental Setup718

Dataset Splits. We split each dataset into source and target domains as outlined in Section 3.5719

and Appendix B. Within source domains, we use a 50%/25%/25% split for training, validation,720

and testing, respectively. For target domains, where labels are unavailable during training in our721

UDA setup, we use a 50%/50% split for training and test sets. The large validation and test sets722

are motivated the industrial relevance of our benchmark, where reliable performance estimation on723

unseen data is a crucial factor.724

Training Pipeline. For training, we use a dataset wide per field z-score normalization strategy, with725

statistics computed on the source domain training set. We use a batch size of 16 and the AdamW726

optimizer [105] with a weight decay of 1e-5 and a cosine learning rate schedule, starting from 1e-3.727

Gradients are clipped to a maximum norm of 1. For the large scale heatsink design dataset, we enable728

Automatic Mixed Precision (AMP) to reduce memory consumption and training time. Additionally,729

we use Exponential Moving Average (EMA) updates with a decay factor of 0.95 to stabilize training.730

Performance metrics are evaluated every 10 epochs, and we train all models for a maximum of 3000731

epochs with early stopping after 500 epochs of no improvement on the source domain validation loss.732

Domain Adaptation Specifics. To enable UDA algorithms, we jointly sample mini batches from733

the source and target domains at each training step and pass them thorugh the model. Since target734

labels are not available, we compute supervised losses only on the source domain outputs. In addition,735

we compute DA losses on the latent representations of source and target domains in order to encourage736

domain invariance.737

Since a crucial factor in the performance of UDA algorithms is the choice of the domain adaptation738

loss weight λ, we perform extensive sweeps over this hyperparameter and select models using the739

unsupervised model selection strategies described in Section 4.3.740

For the three smaller datasets, we sweep λ logarithmically over λ ∈ {10−1, 10−2, . . . , 10−9},741

while for the large scale Heatsink design dataset, we sweep a smaller range, namely λ ∈742

{102, 10−1, . . . , 10−2}, motivated by the balancing principle [57].743
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Table 8 provides an overview of the number of trained models for benchmarking performance of all744

models and all UDA algorithms on the medium difficulty domain shifts across all datasets.745

Table 8: Overview of the benchmarking setup and number of trained models across all datasets.
Dataset Models UDA algorithms λ values # seeds # models trained

Rolling PointNet, GraphSAGE, Transolver Deep Coral, CMD, DANN {10−1; 10−9} 4 324
w/o UDA – 4 12

Forming PointNet, GraphSAGE, Transolver Deep Coral, CMD, DANN {10−1; 10−9} 4 324
w/o UDA – 4 12

Motor PointNet, GraphSAGE, Transolver Deep Coral, CMD, DANN {10−1; 10−9} 4 324
w/o UDA – 4 12

Heatsink PointNet, Transover, UPT Deep Coral, CMD, DANN {102; 10−2} 4 180
w/o UDA – 4 12

Sum 1,200

Additional Details. For the three smaller datasets, we use smaller networks, while for the large746

scale heatsink design dataset, we train larger model configurations to accommodate the increased747

data complexity. An overview of model sizes along with average training times per dataset is748

provided in Table 9. We also refer to the accompanying code repository for a complete listing of all749

model hyperparameters, where we provide all baseline configuration files and detailed step by step750

instructions for reproducibility of our results.751

Another important detail is that, during training on the heatsink design dataset, we randomly subsam-752

ple 16,000 nodes from the mesh in each training step to ensure computational tractability. However, all753

reported performance metrics are computed on the full resolution of the data without any subsampling.754

D.2 Evaluation Metrics755

We report the RMSE for each predicted output field. For field i, the RMSE is defined as:756

RMSEfield
i =

1

M

M∑
m=1

√√√√ 1

Nm

Nm∑
n=1

(
y
(i)
m,n − f(x)

(i)
m,n

)2

,

where M is the number of test samples (graphs), Nm the number of nodes in graph m, y(i)m,n the757

ground truth value of field i at node n of graph m, and f(x)
(i)
m,n the respective model prediction.758

For aggregated evaluation, we define the total Normalized RMSE (NRMSE) as:759

NRMSE =

K∑
i=1

NRMSEfield
i ,

where K is the number of predicted fields. For this metric, all individual field errors are computed on760

normalized fields before aggregation.761

In addition to the error on the fields, we report the mean Euclidean error of the predicted node762

displacement. This is computed based on the predicted coordinates ĉm,n ∈ Rd and the ground truth763

coordinates cm,n ∈ Rd, where d ∈ {2, 3} is the spatial dimensionality, as follows:764

RMSEdeformation =
1

M

M∑
m=1

1

Nm

Nm∑
n=1

∥cm,n − ĉm,n∥2 .

D.3 Computational Resources and Timings765

While generating the results reported on the medium difficulty level of our benchmark, we measured766

average training times per dataset and model architecture. While the total compute budget is difficult767

to estimate due to distributed training runs across various hardware setups, we report standardized768

average training times for 2000 epochs in Table 9, measured on a single NVIDIA H100 GPU using769

batch size of 16.770
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Table 9: Average training times (averaged for 2000 epochs) and parameter counts for each model on
the medium difficulty benchmark tasks. Times are measured on a H100 GPU using a batch size of 16.

Dataset Model # parameters Avg. training time (h)

Rolling
PointNet 0.3M 1.2
GraphSAGE 0.2M 3
Transolver 0.57M 2.1

Forming
PointNet 0.3M 2.8
GraphSAGE 0.2M 8
Transolver 0.57M 4.4

Motor
PointNet 0.3M 5.6
GraphSAGE 0.2M 11.5
Transolver 0.57M 6.5

Heatsink
PointNet 1.08M 4.9
Transolver 4.07M 5.3
UPT 5.77M 5.5

E Dataset Details771

E.1 Hot Rolling772

Table 10: Input parameter ranges for the hot rolling simulations. Samples are generated by equally
spacing each parameter within the specified range using the indicated number of steps, resulting in
5× 19× 10× 5 = 4750 total samples.

Parameter Description Min Max Steps

t (mm) Initial slab thickness. 50.0 183.3 5
reduction (−) Reduction of initial slab thickness. 1.0 15.0 19
Tcore (

◦C) Core slab temperature. 900.0 1000.0 10
Tsurf (

◦C) Surface slab temperature. 900.0 1077.77 5

E.2 Sheet Metal Forming773

Table 11: Input parameter ranges for the sheet metal forming simulations. Samples are generated
by equally spacing each parameter within the specified range using the indicated number of steps,
resulting in 17× 13× 3× 5 = 3315 total samples.

Parameter Description Min Max Steps

r (mm) Roll radius. 10.0 50.0 17
t (mm) Sheet thickness. 2.0 5.0 13
l (mm) Sheet length. 175.0 350.0 3
µ (−) Friction coefficient between... 0.1 0.5 5
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E.3 Electric Motor Design774
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Figure 11: Technical drawing of the electrical motor. Sampling ranges for the shown parameters can
be found in Table 12.

Table 12: Input parameters for the electric motor design simulations. Since this simulation was
performed by domain experts, the parameters are not uniformly sampled as in the previous simulation
scenarios. In total, 3196 simulations were performed.

Parameter Description Min Max

dsi (mm) Stator inner diameter. 150.0 180.0
hm (mm) Magnet height. 6.0 9.0
αr (

◦) Angle between magnets. 120.0 160.0
tr1 (mm) Magnet step. 1.0 5.0
rr1 (mm) Rotor slot fillet radius 1. 0.5 2.5
rr2 (mm) Rotor slot fillet radius 2. 0.5 3.5
rr3 (mm) Rotor slot fillet radius 3. 0.5 5.0
rr4 (mm) Rotor slot fillet radius 4. 0.5 3.0
trsb1 (mm) Thickness saturation bar 1. 4.0 12.0
trsb2 (mm) Thickness saturation bar 2. 1.0 3.0
trsb3 (mm) Thickness saturation bar 3. 1.2 4.0
trsb4 (mm) Thickness saturation bar 4. 5.0 12.0
dr1 (mm) Rotor slot diameter 1. 60.0 80.0
dr2 (mm) Rotor slot diameter 2. 80.0 120.0
dr3 (mm) Rotor slot diameter 3. 100.0 125.0
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E.4 Heatsink Design775

Figure 12: Technical drawing of the solid body in the heatsink design dataset. Some of the shown
parameters are varied for data generation (see Table 13).

Table 13: Input parameters for the heatsink design simulations. The simulation was performed by
domain experts and the parameters are not uniformly sampled as in the previous simulation scenarios.
In total, 460 simulations were performed.

Parameter Description Min Max

fins (−) Number of fins. 5 14
gap (m) Gap between fins. 0.0023 0.01625
height2 (m) Height 2. 0.053 0.083
T (solid) (K) Temperature of the solid fins. 340 400
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NeurIPS Paper Checklist776

1. Claims777

Question: Do the main claims made in the abstract and introduction accurately reflect the778

paper’s contributions and scope?779

Answer: [Yes]780

Justification: We implement baseline neural surrogate (Section 4.4), DA algorithms (Sec-781

tion 4.2) and model selection strategies (Section 4.3) as stated in the abstract. Our datasets782

were build are motivated by domain experts (Section 3). Claims on the findings are supported783

by Section 5.784

Guidelines:785

• The answer NA means that the abstract and introduction do not include the claims786

made in the paper.787

• The abstract and/or introduction should clearly state the claims made, including the788

contributions made in the paper and important assumptions and limitations. A No or789

NA answer to this question will not be perceived well by the reviewers.790

• The claims made should match theoretical and experimental results, and reflect how791

much the results can be expected to generalize to other settings.792

• It is fine to include aspirational goals as motivation as long as it is clear that these goals793

are not attained by the paper.794

2. Limitations795

Question: Does the paper discuss the limitations of the work performed by the authors?796

Answer: [Yes]797

Justification: Limitations and issues with our benchmark are brought up in Section 6.798

Guidelines:799

• The answer NA means that the paper has no limitation while the answer No means that800

the paper has limitations, but those are not discussed in the paper.801

• The authors are encouraged to create a separate "Limitations" section in their paper.802

• The paper should point out any strong assumptions and how robust the results are to803

violations of these assumptions (e.g., independence assumptions, noiseless settings,804

model well-specification, asymptotic approximations only holding locally). The authors805

should reflect on how these assumptions might be violated in practice and what the806

implications would be.807

• The authors should reflect on the scope of the claims made, e.g., if the approach was808

only tested on a few datasets or with a few runs. In general, empirical results often809

depend on implicit assumptions, which should be articulated.810

• The authors should reflect on the factors that influence the performance of the approach.811

For example, a facial recognition algorithm may perform poorly when image resolution812

is low or images are taken in low lighting. Or a speech-to-text system might not be813

used reliably to provide closed captions for online lectures because it fails to handle814

technical jargon.815

• The authors should discuss the computational efficiency of the proposed algorithms816

and how they scale with dataset size.817

• If applicable, the authors should discuss possible limitations of their approach to818

address problems of privacy and fairness.819

• While the authors might fear that complete honesty about limitations might be used by820

reviewers as grounds for rejection, a worse outcome might be that reviewers discover821

limitations that aren’t acknowledged in the paper. The authors should use their best822

judgment and recognize that individual actions in favor of transparency play an impor-823

tant role in developing norms that preserve the integrity of the community. Reviewers824

will be specifically instructed to not penalize honesty concerning limitations.825

3. Theory assumptions and proofs826

Question: For each theoretical result, does the paper provide the full set of assumptions and827

a complete (and correct) proof?828
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Answer: [NA]829

Justification: We do not make any theoretical, but only empirical contributions.830

Guidelines:831

• The answer NA means that the paper does not include theoretical results.832

• All the theorems, formulas, and proofs in the paper should be numbered and cross-833

referenced.834

• All assumptions should be clearly stated or referenced in the statement of any theorems.835

• The proofs can either appear in the main paper or the supplemental material, but if836

they appear in the supplemental material, the authors are encouraged to provide a short837

proof sketch to provide intuition.838

• Inversely, any informal proof provided in the core of the paper should be complemented839

by formal proofs provided in appendix or supplemental material.840

• Theorems and Lemmas that the proof relies upon should be properly referenced.841

4. Experimental result reproducibility842

Question: Does the paper fully disclose all the information needed to reproduce the main ex-843

perimental results of the paper to the extent that it affects the main claims and/or conclusions844

of the paper (regardless of whether the code and data are provided or not)?845

Answer: [Yes]846

Justification: As outlined in Section 3, the preprocessed datasets are publicly hosted for847

maximal reproducibility. Additionally, they can be re-generated as we provide a detailed848

description of the numerical simulation setups in the technical supplementary material.849

However, the hot rolling (Section 3.1) and sheet metal forming (Section 3.2) scenarios850

were generated with the proprietary FEM software Abaqus, as stated in the main body. We851

describe the benchmarking procedure in Section 4 and in detail in Appendix D, where we852

describe the most important used hyperparameters for reproducibility.853

Guidelines:854

• The answer NA means that the paper does not include experiments.855

• If the paper includes experiments, a No answer to this question will not be perceived856

well by the reviewers: Making the paper reproducible is important, regardless of857

whether the code and data are provided or not.858

• If the contribution is a dataset and/or model, the authors should describe the steps taken859

to make their results reproducible or verifiable.860

• Depending on the contribution, reproducibility can be accomplished in various ways.861

For example, if the contribution is a novel architecture, describing the architecture fully862

might suffice, or if the contribution is a specific model and empirical evaluation, it may863

be necessary to either make it possible for others to replicate the model with the same864

dataset, or provide access to the model. In general. releasing code and data is often865

one good way to accomplish this, but reproducibility can also be provided via detailed866

instructions for how to replicate the results, access to a hosted model (e.g., in the case867

of a large language model), releasing of a model checkpoint, or other means that are868

appropriate to the research performed.869

• While NeurIPS does not require releasing code, the conference does require all submis-870

sions to provide some reasonable avenue for reproducibility, which may depend on the871

nature of the contribution. For example872

(a) If the contribution is primarily a new algorithm, the paper should make it clear how873

to reproduce that algorithm.874

(b) If the contribution is primarily a new model architecture, the paper should describe875

the architecture clearly and fully.876

(c) If the contribution is a new model (e.g., a large language model), then there should877

either be a way to access this model for reproducing the results or a way to reproduce878

the model (e.g., with an open-source dataset or instructions for how to construct879

the dataset).880

(d) We recognize that reproducibility may be tricky in some cases, in which case881

authors are welcome to describe the particular way they provide for reproducibility.882
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In the case of closed-source models, it may be that access to the model is limited in883

some way (e.g., to registered users), but it should be possible for other researchers884

to have some path to reproducing or verifying the results.885

5. Open access to data and code886

Question: Does the paper provide open access to the data and code, with sufficient instruc-887

tions to faithfully reproduce the main experimental results, as described in supplemental888

material?889

Answer: [Yes]890

Justification: Data is publicly released (Section 3 for details), as encouraged by the Datasets891

and Benchmarks Track. Library code is provided with configuration files and step by step892

instructions to reproduce the paper results. On top of this environment setup and tutorial893

notebooks are also included.894

Guidelines:895

• The answer NA means that paper does not include experiments requiring code.896

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/897

public/guides/CodeSubmissionPolicy) for more details.898

• While we encourage the release of code and data, we understand that this might not be899

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not900

including code, unless this is central to the contribution (e.g., for a new open-source901

benchmark).902

• The instructions should contain the exact command and environment needed to run to903

reproduce the results. See the NeurIPS code and data submission guidelines (https:904

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.905

• The authors should provide instructions on data access and preparation, including how906

to access the raw data, preprocessed data, intermediate data, and generated data, etc.907

• The authors should provide scripts to reproduce all experimental results for the new908

proposed method and baselines. If only a subset of experiments are reproducible, they909

should state which ones are omitted from the script and why.910

• At submission time, to preserve anonymity, the authors should release anonymized911

versions (if applicable).912

• Providing as much information as possible in supplemental material (appended to the913

paper) is recommended, but including URLs to data and code is permitted.914

6. Experimental setting/details915

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-916

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the917

results?918

Answer: [Yes]919

Justification: Refer to Section 4.4 Appendix C, Section 4.5, Appendix D.920

Guidelines:921

• The answer NA means that the paper does not include experiments.922

• The experimental setting should be presented in the core of the paper to a level of detail923

that is necessary to appreciate the results and make sense of them.924

• The full details can be provided either with the code, in appendix, or as supplemental925

material.926

7. Experiment statistical significance927

Question: Does the paper report error bars suitably and correctly defined or other appropriate928

information about the statistical significance of the experiments?929

Answer: [Yes]930

Justification: We provide error bars across all measures reported by running on four seeds931

(see tables in Appendix A and error bars in Figure 6) and report mean and standard deviation932

over metrics.933
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• The answer NA means that the paper does not include experiments.935

• The authors should answer "Yes" if the results are accompanied by error bars, confi-936

dence intervals, or statistical significance tests, at least for the experiments that support937

the main claims of the paper.938

• The factors of variability that the error bars are capturing should be clearly stated (for939

example, train/test split, initialization, random drawing of some parameter, or overall940

run with given experimental conditions).941

• The method for calculating the error bars should be explained (closed form formula,942

call to a library function, bootstrap, etc.)943

• The assumptions made should be given (e.g., Normally distributed errors).944

• It should be clear whether the error bar is the standard deviation or the standard error945

of the mean.946

• It is OK to report 1-sigma error bars, but one should state it. The authors should947

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis948

of Normality of errors is not verified.949

• For asymmetric distributions, the authors should be careful not to show in tables or950

figures symmetric error bars that would yield results that are out of range (e.g. negative951

error rates).952

• If error bars are reported in tables or plots, The authors should explain in the text how953

they were calculated and reference the corresponding figures or tables in the text.954

8. Experiments compute resources955

Question: For each experiment, does the paper provide sufficient information on the com-956

puter resources (type of compute workers, memory, time of execution) needed to reproduce957

the experiments?958

Answer: [Yes]959

Justification: Although the benchmark was produced on different hardware setups, Ap-960

pendix D.3 contains average training time information for each baseline across all datasets.961

Guidelines:962

• The answer NA means that the paper does not include experiments.963

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,964

or cloud provider, including relevant memory and storage.965

• The paper should provide the amount of compute required for each of the individual966

experimental runs as well as estimate the total compute.967

• The paper should disclose whether the full research project required more compute968

than the experiments reported in the paper (e.g., preliminary or failed experiments that969

didn’t make it into the paper).970

9. Code of ethics971

Question: Does the research conducted in the paper conform, in every respect, with the972

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?973

Answer: [Yes]974

Justification: There is no societal or impact on privacy and potentially harmful consequences975

coming neither from the presented dataset, nor from the methods, since we are treating976

physical simulation data without any personal information associated with it.977

Guidelines:978

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.979

• If the authors answer No, they should explain the special circumstances that require a980

deviation from the Code of Ethics.981

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-982

eration due to laws or regulations in their jurisdiction).983

10. Broader impacts984

Question: Does the paper discuss both potential positive societal impacts and negative985

societal impacts of the work performed?986
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Answer: [NA]987

Justification: No societal impact will be made from the presented simulation datasets and988

applied methods. There is to our knowledge no path to negative applications of the provided989

data and methods.990

Guidelines:991

• The answer NA means that there is no societal impact of the work performed.992

• If the authors answer NA or No, they should explain why their work has no societal993

impact or why the paper does not address societal impact.994

• Examples of negative societal impacts include potential malicious or unintended uses995

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations996

(e.g., deployment of technologies that could make decisions that unfairly impact specific997

groups), privacy considerations, and security considerations.998

• The conference expects that many papers will be foundational research and not tied999

to particular applications, let alone deployments. However, if there is a direct path to1000

any negative applications, the authors should point it out. For example, it is legitimate1001

to point out that an improvement in the quality of generative models could be used to1002

generate deepfakes for disinformation. On the other hand, it is not needed to point out1003

that a generic algorithm for optimizing neural networks could enable people to train1004

models that generate Deepfakes faster.1005

• The authors should consider possible harms that could arise when the technology is1006

being used as intended and functioning correctly, harms that could arise when the1007

technology is being used as intended but gives incorrect results, and harms following1008

from (intentional or unintentional) misuse of the technology.1009

• If there are negative societal impacts, the authors could also discuss possible mitigation1010

strategies (e.g., gated release of models, providing defenses in addition to attacks,1011

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1012

feedback over time, improving the efficiency and accessibility of ML).1013

11. Safeguards1014

Question: Does the paper describe safeguards that have been put in place for responsible1015

release of data or models that have a high risk for misuse (e.g., pretrained language models,1016

image generators, or scraped datasets)?1017

Answer: [NA]1018

Justification: Our datasets and method only use simulation physical data.1019

Guidelines:1020

• The answer NA means that the paper poses no such risks.1021

• Released models that have a high risk for misuse or dual-use should be released with1022

necessary safeguards to allow for controlled use of the model, for example by requiring1023

that users adhere to usage guidelines or restrictions to access the model or implementing1024

safety filters.1025

• Datasets that have been scraped from the Internet could pose safety risks. The authors1026

should describe how they avoided releasing unsafe images.1027

• We recognize that providing effective safeguards is challenging, and many papers do1028

not require this, but we encourage authors to take this into account and make a best1029

faith effort.1030

12. Licenses for existing assets1031

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1032

the paper, properly credited and are the license and terms of use explicitly mentioned and1033

properly respected?1034

Answer:1035

Justification: All datasets in the paper have been created specifically within this work1036

and a license is included. Original authors of models (see Section 4.4), UDA algorithms1037

(see Section 4.2) and unsupervised model selection strategies (see Section 4.3) are cited1038

accordingly.1039
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• The answer NA means that the paper does not use existing assets.1041

• The authors should cite the original paper that produced the code package or dataset.1042

• The authors should state which version of the asset is used and, if possible, include a1043

URL.1044

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1045

• For scraped data from a particular source (e.g., website), the copyright and terms of1046

service of that source should be provided.1047

• If assets are released, the license, copyright information, and terms of use in the1048

package should be provided. For popular datasets, paperswithcode.com/datasets1049

has curated licenses for some datasets. Their licensing guide can help determine the1050

license of a dataset.1051

• For existing datasets that are re-packaged, both the original license and the license of1052

the derived asset (if it has changed) should be provided.1053

• If this information is not available online, the authors are encouraged to reach out to1054

the asset’s creators.1055

13. New assets1056

Question: Are new assets introduced in the paper well documented and is the documentation1057

provided alongside the assets?1058

Answer: [Yes]1059

Justification: Datasets are detailed in Sections 3.1 to 3.4 and the supplementary technical1060

appendix. Library code contains documentation and tutorials.1061

Guidelines:1062

• The answer NA means that the paper does not release new assets.1063

• Researchers should communicate the details of the dataset/code/model as part of their1064

submissions via structured templates. This includes details about training, license,1065

limitations, etc.1066

• The paper should discuss whether and how consent was obtained from people whose1067

asset is used.1068

• At submission time, remember to anonymize your assets (if applicable). You can either1069

create an anonymized URL or include an anonymized zip file.1070

14. Crowdsourcing and research with human subjects1071

Question: For crowdsourcing experiments and research with human subjects, does the paper1072

include the full text of instructions given to participants and screenshots, if applicable, as1073

well as details about compensation (if any)?1074

Answer: [NA]1075

Justification: -1076

Guidelines:1077

• The answer NA means that the paper does not involve crowdsourcing nor research with1078

human subjects.1079

• Including this information in the supplemental material is fine, but if the main contribu-1080

tion of the paper involves human subjects, then as much detail as possible should be1081

included in the main paper.1082

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1083

or other labor should be paid at least the minimum wage in the country of the data1084

collector.1085

15. Institutional review board (IRB) approvals or equivalent for research with human1086

subjects1087

Question: Does the paper describe potential risks incurred by study participants, whether1088

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1089

approvals (or an equivalent approval/review based on the requirements of your country or1090

institution) were obtained?1091
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Answer: [NA]1092

Justification: -1093

Guidelines:1094

• The answer NA means that the paper does not involve crowdsourcing nor research with1095

human subjects.1096

• Depending on the country in which research is conducted, IRB approval (or equivalent)1097

may be required for any human subjects research. If you obtained IRB approval, you1098

should clearly state this in the paper.1099

• We recognize that the procedures for this may vary significantly between institutions1100

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1101

guidelines for their institution.1102

• For initial submissions, do not include any information that would break anonymity (if1103

applicable), such as the institution conducting the review.1104

16. Declaration of LLM usage1105

Question: Does the paper describe the usage of LLMs if it is an important, original, or1106

non-standard component of the core methods in this research? Note that if the LLM is used1107

only for writing, editing, or formatting purposes and does not impact the core methodology,1108

scientific rigorousness, or originality of the research, declaration is not required.1109

Answer: [NA]1110

Justification: LLMs have only been used to assist writing and plotting.1111

Guidelines:1112

• The answer NA means that the core method development in this research does not1113
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• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1115

for what should or should not be described.1116
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