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Abstract

Neural surrogates for Partial Differential Equations (PDEs) often suffer significant
performance degradation when evaluated on unseen problem configurations, such
as novel material types or structural dimensions. Meanwhile, Domain Adapta-
tion (DA) techniques have been widely used in vision and language processing to
generalize from limited information about unseen configurations. In this work, we
address this gap through two focused contributions. First, we introduce SIMSHIFT,
a novel benchmark dataset and evaluation suite composed of four industrial simu-
lation tasks: hot rolling, sheet metal forming, electric motor design and heatsink
design. Second, we extend established domain adaptation methods to state of
the art neural surrogates and systematically evaluate them. These approaches use
parametric descriptions and ground truth simulations from multiple source con-
figurations, together with only parametric descriptions from target configurations.
The goal is to accurately predict target simulations without access to ground truth
simulation data. Extensive experiments on SIMSHIFT highlight the challenges of
out of distribution neural surrogate modeling, demonstrate the potential of DA in
simulation, and reveal open problems in achieving robust neural surrogates under
distribution shifts in industrially relevant scenarios.

1 Introduction

Simulations based on PDEs are essential tools for understanding and predicting physical phenomena
in engineering and science [1]. Over recent years, machine learning has emerged as a promising and
novel modeling option for complex systems [2], significantly accelerating and augmenting simulation
workflows across diverse applications, including weather and climate forecasting [3, 4, 5, 6], material
design [7, 8, 9] and protein folding [10, 11], amongst others.

In practice, however, models are often deployed in settings where simulation configurations differ
from those seen during training. This distribution shift [12] often leads to significant degradation
in performance [13, 14, 15], making reliable deployment of neural surrogates in industrial work-
flows less likely. Some industry relevant studies propose post simulation correction [16], identify
limited parameter variation as a constraint [17], or consider out of distribution tasks without tailored
solutions [13].

While methods for increasing out of distribution performance have been at the center of research for
along time [12, 18, 19, 20, 21, 22, 23], to the best of our knowledge, no benchmark systematically
investigates such methods on simulation tasks [24, 25, 26, 13, 17, 27, 28, 29]. Addressing this gap is
particularly relevant in scientific and industrial settings, where generating ground truth simulation
data is costly and limits the diversity of training configurations. In contrast, parametric descriptions,
such as material types or structural dimensions, are often readily available or easy to generate.
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Figure 1: Schematic overview of the SIMSHIFT framework. During model training, we have access
to inputs (e.g. parameters and meshes) and corredsponding outputs (z, y) from the source domain
(left, blue), and only inputs =’ from the target domain (right, yellow). The neural operator g and the
conditioning network ¢ are shared across domains and jointly optimized. Models are trained with
two loss terms, namely L e.on, Which is computed on source labels, and Lpa, which aligns source
and target conditioning features. After training, unsupervised model selection strategies choose the
model 0 expected to perform best on the target domain.

Output

This problem is known as Unsupervised Domain Adaptation (UDA) [30], where parametric (input)
descriptions and full simulation outputs are available for each source configuration, while only input
descriptions are provided for farget configurations, without corresponding outputs. Decades of UDA
research have produced effective methods for addressing domain gaps [31, 32, 33], yet their potential
for PDE surrogate modeling remains largely unexplored.

To investigate the potential of UDA for neural surrogate modeling, we provide simulation data from
diverse simulation configurations, across a range of realistic tasks from engineering design. Our
settings are all rooted in application and derived from industrial problem settings. We introduce
a comprehensive benchmark that evaluates established UDA methods and neural surrogates. An
overview of the framework is shown in Figure 1. Our contributions can be summarized as follows:

* We propose four practical datasets with predefined distribution shifts in hot rolling, sheet metal
forming, electric motor, and heatsink design, based on realistic simulation setups.

* We present, to the best of our knowledge, the first joint study of established neural surrogate
architectures and UDA on engineering simulations with unstructured meshes.

* We introduce SIMSHIFT, a modular benchmarking suite that complements our datasets with
baseline models and algorithms. It allows easy integration of new simulations, machine learning
methods, domain adaptation techniques, and model selection strategies.

2 Related Work

Unsupervised Domain Adaptation. UDA research covers a wide spectrum of results from theoretical
foundations [18, 34, 30, 35] to modern deep learning methods [36, 37, 38, 23, 39, 40, 41, 42, 43,
44, 45]. A prominent class of methods, dubbed as representation learning, aims to map the data to
a feature space, where source and target representations appear similar, while maintaining enough
information for accurate prediction. To enforce feature similarity between domains, algorithms
often employ statistical [46, 47, 23, 48, 49, 50, 51, 52, 53, 54] or adversarial [22, 55] discrepancy
measures. One crucial yet frequently overlooked factor in the success of UDA methods is model
selection. Numerous studies underline the critical impact of hyperparameter choices on UDA
algorithm performance, often overshadowing the adaptation method itself [56, 32, 57, 58, 59]. Even
more, since labeled data is unavailable in the target domain, standard validation approaches (including
validation sets, ensembling or information criteria) become infeasible. Thus, it is essential to jointly
evaluate adaptation algorithms alongside their associated unsupervised model selection strategies. In
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this work, we focus on importance weighting strategies [60, 61, 58], which stand out by their general
applicability, theoretical guarantees and high empirical performance.

Benchmarks for UDA. Numerous benchmark datasets and evaluation protocols have been established
for UDA methods across various machine learning domains, including computer vision [62, 63, 64,
65, 66], natural language processing [67], timeseries data [68] and tabular data [69]. However, to the
best of our knowledge, systematic UDA benchmarking for neural surrogates remains unexplored.

Neural Surrogates. One prominent approach in neural surrogate modeling for PDEs is operator
learning [70, 71, 72, 73, 74]. In this setting, an operator maps input functions, such as boundary
or initial conditions, to the corresponding solution of the PDE. During training, neural operators
typically learn from input-output pairs of discretized functions [70, 71, 72, 73]. While some methods
expect regular, grid based inputs [71], others can be applied to any kind of data structure [73, 74]. One
notable property is discretization invariance, which, along with the ability to handle irregular data,
enables generalization across different resolutions and mesh geometries. This is a highly desirable
property for industrial simulations [75, 73, 76, 77, 78], where non-uniform meshes are the standard
due to the computational and modeling advantages. In this work, we focus on domain adaptation
rather than benchmarking discretization invariance, and include neural surrogates that may not satisfy
this property, such as [79].

Benchmarks for Neural Surrogates. Benchmarks for neural surrogates have made substantial
progress, providing new datasets and metrics specific to PDE problems. Many focus on solving PDEs
on structured, regular grids [24, 25, 26], which serve as valuable platforms for developing and testing
new algorithms. However, these overlook the irregular meshes commonly used in large scale industrial
simulations. In that direction, other benchmarks extend to Computational Fluid Dynamics (CFD)
on irregular static meshes for airfoil simulations [13], aereodynamics for automotive [17, 27], more
traditional fluid study problems [28], and even particle based Smoothed Particle Hydrodynamics
simulations [29, 80]. Finally, and most closely related to our work, recent efforts have explored the
application of Active Learning techniques [81, 82] to neural surrogates, introducing a benchmark
specifically designed for data-scarce scenarios [83].

Despite these contributions, all current benchmarks often fall short when addressing a critical
issue: the significant performance drop learned models exhibit under distribution shifts, i.e., when
encountering simulation configurations beyond their training setting [12].

3 Dataset Presentation

Our datasets follow three design principles. (i) Industry relevance: They reflect a practical, real-world
simulation use-case. The benchmark covers a diverse set of problems, including 2D as well as 3D
cases. (ii) Parametrized conditions: The behavior of all simulations depends on the set of initial
parameters only. (iii) steady state scenarios: We constrain them to time independent problems, in
order to avoid additional complexity such as autoregressive error accumulation in neural surrogates
[84].

The datasets were generated using the commercial Finite Element Method (FEM) software Abaqus’,
the open-source simulation software HOTINT? and the open-source CFD package OpenFoam 9°.
An overview of each dataset is presented in Sections 3.1 to 3.4. Additionally, we present detailed
descriptions of the respective numerical simulations provided in the technical supplementary material.

Since the behavior of each simulation task is entirely determined by its input parameters, we predefine
source and target domains by partitioning the parameter space into distinct, non-overlapping regions.
A detailed explanation of the domain splitting strategy is provided in Section 3.5.

Each dataset includes three levels of distribution shift difficulty: easy, medium and hard. These
levels reflect increasing domain gap magnitudes in parameter space. In this work, we benchmark the
medium difficulty for each dataset and, for clarity, provide error scaling results across all levels for
the hot rolling dataset (Figure 6).

Uhttps://www.3ds.com/products/simulia/abaqus
Zhttps://hotint.lcm.at/
3https://www.openfoam.com/
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In total, we collect four datasets leading to 12 domain adaptation tasks. Table 1 summarizes
key characteristics of each dataset, including physical dimensionality, mesh resolution, number of
conditioning parameters, and total dataset size. All datasets are publicly hosted on Hugging Face®* for
convenient access.

Table 1: Overview of the benchmark datasets. The heatsink meshes were subsampled to a fourth of
their original size during preprocessing. For a detailed description the simulation parameter sampling
ranges, see Appendix E.

Output Avg. Varied simulation

Dataset Origin Samples channels  # nodes parameters Dim (GB)
Rolling Metallurgy 4,750 10 576 4 2D 0.5
Forming Manufacturing 3,315 10 6,417 4 2D 4.1
Motor Machinery 3,196 26 9,052 15 2D 13.4
Heatsink Electronics 460 5 1,385,594 4 3D 40.8

3.1 Hot Rolling

The rolling dataset captures a hot rolling process, where a metal slab is plastically deformed into a
sheet metal product, as visualized in Figure 2. This complex thermo-mechanical operation involves
tightly coupled elasto-plastic deformation and heat transfer phenomena [85, 86, 87]. The Finite
Element simulation models the progressive thickness reduction and thermal evolution of the material
as it passes through a rolling gap, incorporating temperature-dependent material properties and
contact between the slab and the rolls.

Key input parameters include the initial slab thickness ¢, temperature characteristics Ttore and Tiyes
of the slab, as well as the geometry of the roll gap. To vary the slab deformation we define the
thickness reduction as a percentage of the initial thickness: reduction = thg’ where g is the rolling
gap distance. Table 10 in Appendix E.1 shows a detailed overview of the parameter values together
with their sampling ranges used to generate the dataset.

The 2D simulation outputs various field quantities, with the most important being Equivalent Plastic
Strain (PEEQ), a scalar field representing the materials plastic deformation, shown in Figure 2b.
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(a) Ilustration of the simulation setup. The parameters
correspond to those in Table 10. We use symmetry (b) Metal slab after the process, showing PEEQ as a
constraints and only simulate one half of the slab. contour plot.

Figure 2: Overview of the hot rolling simulation scenario.

3.2 Sheet Metal Forming

The forming dataset represents a sheet metal forming process, a critical manufacturing operation
widely used across industries such as automotive, aerospace, and industrial equipment manufacturing.
FEM simulations are commonly employed to estimate critical quantities such as thinning, local
plastic deformation and residual stress distribution with high accuracy [88, 89, 90].

The simulated setup in this dataset consists of a symmetrical sheet metal workpiece supported at the
ends and center, a holder and a punch that deforms the sheet by applying a displacement denoted

*https://huggingface.co/datasets/simshift/SIMSHIFT_data
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as U. Figure 3a visualizes the process. During the process, the metal sheet undergoes elasto-plastic
deformation, transitioning from a flat initial state to a “w-shaped” geometry.

Variable input parameters include half the deformed sheet length [, the sheet thickness ¢, friction
coefficient y and the radii of the holder, punch, and supports r. Table 11 in Appendix E.2 provides the
sampling ranges for data generation. The 2D model simulates the forming procedure and predicts the
sheet’s deformation behavior, providing field quantities such as stress, as well as elastic and plastic
strain distributions, one of which is shown in Figure 3b.
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(a) llustration of the simulation setup. The parameters  (b) Material before (top) and after (bottom) the pro-
correspond to those listed in Table 11. cess, showing the PEEQ field as a contour plot.

Figure 3: Overview of the sheet metal forming simulation scenario.

3.3 Electric Motor Design

The electric motor dataset encompasses a structural FEM simulation of a rotor in electric machinery,
subjected to mechanical loading at burst speed. This simulation is motivated by the inherently
conflicting design objectives in rotor development: while magnetic performance favors certain rotor
topologies to optimize flux paths and torque generation, structural integrity requires designs capable
of withstanding centrifugal loads without plastic deformation [91, 92]. The simulation predicts stress
and deformation responses due to assembly pressing forces and centrifugal loads, accounting for the
rotor’s topology, material properties, and rotation speed.
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Mises stress (MPa)

Figure 4: The electric motor design simulation scenario, with a schematic sketch of the motor (left)
and zoomed-in detail from the simulated radial portion (right). Mises stress field contour plot is
shown.

Figure 4 shows an overview of the simulation setup. Since this case is more complex than the
preceding datasets, we omit a detailed technical drawing from the main body and instead provide it
in Figure 11, besides the corresponding parameter variations in Table 12, both in Appendix E.3.

3.4 Heatsink Design

The heat sink dataset represents a CFD simulation focused on the thermal performance of heat sinks,
commonly used in electronic cooling applications [93, 94].
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It models the convective heat transfer from a heated base through an array
of fins to the surrounding air. The simulation captures how geometric
fin characteristics, specifically, the number, height, and thickness of fins,
affect the overall heat dissipation, along with the temperature of the heat
sink.

The 3D CFD model outputs include steady state temperature (see Fig-
ure 5), velocity and pressure fields, enabling the assessment of design effi-
ciency and thermal resistance under varying configurations. An overview
of the setup as well as key parameters are provided in Appendix E.4.

(M) ainjesadwal

3.5 Distribution Shifts

To define distribution shifts of varying difficulties and corresponding
source and target domains, we focus on the most influential input param- .
eter in each simulation scenario, which is identified by domain experts.
To further validate the opinions of the experts, we perform clustering
analyses on the latent representations of models trained across the full
parameter range. In general, the resulting clusters confirm the sensitivity
of the latent space to the chosen dominant parameter. Visualizations of
t-SNE plots of the latent spaces with the respective clusters are provided
in Figures 7 to 10. The chosen parameters and their respective ranges for
the different domains are provided in Table 7.

Figure 5: Sliced view of
the temperature field of
a heatsink design simula-
tion.

4 Benchmark Setup

This section outlines the learning problem (Section 4.1), the domain adaptation algorithms considered
(Section 4.2), the unsupervised model selection strategies (Section 4.3), and the baseline models used
(Section 4.4). Finally, we describe the experimental setup and evaluation metrics in Section 4.5.

4.1 Learning Problem

Let X be an input space X’ containing geometries and conditioning parameters (e.g., thickness and
temperatures in Figure 2a) and ) be an output space containing ground truth solution fields obtained
from a numerical solver (e.g., PEEQ field in Figure 2b). Following [30], a domain is represented by a
probability density function p on X x ) (e.g., describing the probability of observing an input-output
pair corresponding to the parameter range r € [0.01,0.115) in Table 7). UDA has been formulated
as follows: Given a source dataset (1, %41), ..., (T, yn) drawn from a source domain pg together
with an unlabeled target dataset 2, ..., . drawn from the (X-marginal) of a target domain pr, the
problem is to find a model f : X — ) that has small expected risk on the target domain:

Ey)~pr (] (@), Y)], (1

with £ : ) x ) — R being some loss function. For example, consider the square loss ¢(f(x),y) =
(f(z) — y)? and Figure 1, where f(x) = g(z, ¢(x)) is composed of a conditioning network ¢ and a
surrogate g.

4.2 Unsupervised Domain Adaptation Algorithms

Our UDA baseline algorithms are from the class of domain-invariant representation learning methods.
These methods are strong baselines, in the sense that their performance typically lies within the
standard deviation of the winning algorithms in large scale empirical evaluations (i.e., no significant
outperformance is observed), see CMD, Deep-CORAL and DANN in [58, Tables 12—-14], M3SDA
in [95], MMDA and HoMM in [68].

Following [49, 57], we express the objective of domain-invariant learning using two learning models:
a representation mapping ¢ € ® C {¢ : X — R}, which in our case corresponds to the conditioning
network that maps simulation parameters into some representation space R C R™ and a regressor
g€ G C{g: X xR — Y}, which is realized by a neural surrogate. The goal is to find a mapping ¢
under which the source representations ¢(x) := (¢(z1), . .., d(x,)) and the target representations
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o(x') == (p(x}), ..., P(x),)) appear similar, and, at the same time, enough information is preserved
for prediction by g, see [12]. This is realized by estimating objectives of the form

0 B (U9, 6(2)),9)] + A - d(6(x), 6(x). @
where d is a distance between source and target representations and A is a regularization parameter.
Good choices for d in Eq. (2) have been found to be the Wasserstein distance [53, 54], the Maximum
Mean Discrepancy [51, 52], moment distances [46, 23], adversarially learned distances [22, 55]
and other measures of divergence [48, 49, 50]. Appropriately choosing A is crucial for high perfor-
mance [56, 32, 58, 61, 59], making model selection necessary.

4.3 Unsupervised Model Selection

Among all algorithm design choices in UDA, model selection has been repeatedly recognized as
one of the most crucial [56, 32, 58, 61, 59], with sub-optimal choices potentially leading to negative
transfer [33]. However, classical approaches (e.g., validation set, cross-validation, information
criterion) cannot be used due to missing labels and distribution shifts. It is therefore a natural
benchmark requirement for UDA to provide also unified model selection strategies in addition to
UDA algorithms.

In this work, we rely on Importance Weighted Validation (IWV) [60] and Deep Embedded Validation
(DEV) [61] to overcome the two challenges: (i) distribution shift and (ii) missing target labels. These
methods rely on the Radon-Nikodym derivative and the covariate shift assumption ps(y|z) = pr(y|z)
to obtain

E(m,y)NPT w(f(w)v y)] = ]E(x,y)rvps me(f(w)v y) = E(m,y)wps [B(x)ﬁ(f(m), y)] . (3)

Eq. (3) motivates to estimate the target error by a two step procedure: First, approaching challenge

(i) by estimating the density ratio S(x) = ’; 253 from the input data only, and, approaching challenge

(ii) by estimating the target error by the weighted source error using the labeled source data.

4.4 Baseline Models

We provide a comprehensive range of machine learning methods, adapted to our conditioned simula-
tion task, organized by their capacity to model interactions across different spatial scales:

Global context models such as PointNet [96] incorporate global information into local Multi-Layer
Perceptrons (MLPs) by summarizing features of all input points by aggregation into a global repre-
sentation, which is then shared among nodes. Recognizing the necessity of local information when
dealing with complex meshes and structures, we include GraphSAGE [79], a proven Graph Neural
Network (GNN) architecture [97, 98] already used in other mesh based tasks [75, 13]. However,
large scale applications of GNNs are challenging due to computational expense [73] and issues like
oversmoothing [99]. Finally, to overcome these limitations, we employ attention based models [100].
These models typically scale better with the number of points, and integrate both global and local
information enabling stronger long-range interactions and greater expressivity. We include Transolver
[101], a modern neural operator Transformer.

As an alternative categorization, baselines can also be classified by input-output pairings into point-
to-point and latent approaches. The former explicitly encodes nodes, while the latter represents the
underlying fields in a latent space and requires queries to retrieve nodes. All previously mentioned
models are point-to-point, and as an example of a latent field method, we include Universal Physics
Transformer (UPT) [73, 76] . UPTs are designed for large scale problems and offer favorable scaling
on large meshes through latent field modeling; however they are better suited for static-mesh scenarios,
as they are lacking the notion of point and don’t handle deformations out-of-the-box. Therefore we
benchmark this approach only on the heatsink design dataset.

Finally, all our tasks require neural operators to be explicitly conditioned on configuration parameters
of the numerical simulations. To achieve this, we embed these parameters using an embedding
and a shallow MLP (denoted as ¢ in Section 4.2 and Figure 1) to produce a latent representation.
Subsequently, we condition the neural operator using either concatenation of this latent conditioning
vector with the global features, or scale-shift modulation of intermediate features using FiLM or DiT
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conditioning layers [102, 103]. Detailed explanations of all implemented architectures are given in
Appendix C.

4.5 Experiments and Evaluation

Experimental Setup. We benchmark the three prominent UDA algorithms Deep-Coral [46], CMD
[23] and DANN [22], in combination with the four unsupervised model selection strategies IWV [60],
DEV [61], Source Best (SB), which selects models based on source domain validation performance,
and, Target Best (TB), which is the (oracle) best performing model (over all runs with all hyper-
parameters) that is selected by hand using the target simulation data (that is not available in UDA).

For the baseline neural surrogate models, we evaluate PointNet [96], GraphSAGE [79], and Transolver
[101] on the hot rolling, sheet metal forming, and electric motor design datasets. Due to memory
and runtime constraints on the large scale heatsink design dataset, we omit GraphSAGE and instead
benchmark UPT [73] alongside PointNet and Transolver.

Experimental Scale. In total, this results in 3models X 3UDA algorithms X 4selection algorithms
Bunregularized models = 39 configurations per dataset (i.e. number of lines per results table in Ap-
pendix A). We perform an extensive sweep over the critical UDA parameter A and average across
four seeds, totaling in 1,200 training runs.

Full details on architectures, hyperparameters, training setup and normalization, as well as a break-
down of training times are included in Appendices C and D.

Evaluation Metrics. For each dataset, we report the averaged Root Mean Squared Error (RMSE)
over all normalized output fields, as well as the averaged per field RMSE values (computed on
denormalized data) and the Euclidean error for deformation predictions. Detailed metric definitions
are provided in Appendix D.2.

S Benchmarking Results

Table 2 presents an overview of the benchmarking results. Overall, we observe consistent improve-
ments in target domain performance with the application of UDA algorithms and unsupervised model
selection strategies, validating their effectiveness.

While the results in Table 2 suggest a minor performance decline on the Forming dataset, this is not
representative of the full performance across all output fields. As only selected outputs are shown

Table 2: Best performing UDA algorithm & unsupervised model selection combination for all model
architectures across all datasets. Additionally, we provide an oracle (TB), which demonstrates the
theoretical lower bound on error. Values show the denormalized average RMSE per field in the target
domain. Differences to the model trained without UDA are shown in parentheses, where negative
values indicate performance improvements. Dashes (-) indicate fields not present in the respective
dataset. The best performing models were chosen based on the average RMSE across all normalized
fields of the respective datasets (see detailed results in Appendix A).

Best UDA  Best model  Deformation Mises stress Equivalent plastic Temperature Velocity
Dataset  All Models method selection (mm) (MPa) strain (x1072) (K) (m/s)

PointNet CMD SB 11.33 (-0.15) 27.92 (+0.31) 2.51 (-0.01) - -
Rolline GraphSAGE CMD wv 4.62 (-1.09) 14.49 (-5.30) 1.56 (-0.55) - -
©  Transolver CMD SB 13.87 (-579.11)  77.74 (-6409.53) 5.80 (-126.88) - -
Oracle (GraphSAGE)  Deep Coral TB 4.55 (-1.17) 13.83 (-5.96) 1.43 (-0.69) - -
PointNet Deep Coral SB 2.56 (-0.00) 31.35 (-0.09) 0.15 (-0.01) - -
Formin GraphSAGE DANN wv 2.10 (+0.16) 52.40 (+6.30) 0.27 (-0.00) - -
2 Transolver Deep Coral DEV 1.39 (+0.20) 25.05 (+2.04) 0.15 (+0.02) - -
Oracle (Transolver) CMD TB 1.02 (-0.17) 20.28 (-2.73) 0.12 (-0.01) - -
PointNet Deep Coral SB 1.53 (-0.06) 26.23 (-4.43) - - -
Motor GraphSAGE CMD SB 1.31 (-0.19) 28.92 (-0.54) - - -
Transolver Deep Coral SB 1.30 (-0.20) 7.68 (-0.65) - - -
Oracle (Transolver) Deep Coral TB 1.25 (-0.24) 7.59 (-0.73) - - -

PointNet Deep Coral SB - - - 17.43 (-3.70)  0.044 (+0.000)

Heatsink Transolver Deep Coral ITWV - - - 13.43 (+0.00) 0.041 (+0.001)

UPT Deep Coral SB - - - 12.41 (-0.62)  0.039 (-0.001)

Oracle (UPT) Deep Coral TB - - - 12.64 (-0.40)  0.039 (-0.001)
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here, the observed gains in other fields captured by the mean normalized RMSE are not visible in this
summary (see Table 4).

Despite the clear benefits provided by UDA, we find that no single UDA algorithm or unsupervised
model selection strategy consistently outperforms the others across all datasets. Furthermore, the
evident gap between the best performing UDA algorithms and model selection strategies compared
to the theoretical lower bound provided by the Target Best (TB) oracle indicates that existing
unsupervised model selection strategies still leave substantial room for improvement.

Finally, since the presented tables only report performance on the medium difficulty setting, we
additionally visualize model behavior of the best performing combination (model + UDA algorithm
+ selection strategy: CMD + IWV) across all difficulty levels of the hot rolling dataset in Figure 6.
It illustrates the increase in prediction error as the domain gap widens and highlights the consistent
improvements achieved by applying UDA algorithms combined with unsupervised model selection
strategies on the easy and medium settings.

0.8
I w/o UDA
0.7+ HEEE CMD + IWV
= CMD (TB)

Model
selection
potential

RMSE

Architecture
+UDA
algorithm
potential

Medium

Increasing domain gap

Figure 6: Error scaling with increasing domain gap. We show the averaged RMSE across all
(normalized) fields for the easy, medium, and hard gaps on the hot rolling task. We compare models
without UDA, the best performing UDA method with unsupervised model selection (CMD + IWV),
and the theoretical lower bound (TB). Error bars indicate the standard deviation across 4 seeds.
Furthermore, we highlight potentials of selection improvements on the hard.

For the hard setting, however, the shown unsupervised model selection algorithm fails to identify
suitable models, as the mean error matches that of the unregularized baselines with the standard
deviation even increasing. Nonetheless, the theoretical lower bound (TB) remains substantially below
the unregularized error. This indicates the two promising directions for further improvement of the
presented baselines: (i) enhancement of neural surrogate architectures and UDA algorithms, and
(ii) especially, improvement of unsupervised model selection strategies.

6 Discussion

We presented SIMSHIFT, a collection of industry relevant datasets paired with a benchmarking
library for comparing UDA algorithms, unsupervised model selection strategies and neural operators
in real word scenarios. We adapt available techniques and apply them on physical simulation data
and perform extensive experiments to evaluate their performance on the presented datasets. Our
findings suggest that standard UDA training methods can improve performance of neural operators
to unseen parameter ranges in physical simulations, with improvement margins in line with those
seen in UDA literature [58, 68]. Additionally, we find correct unsupervised model selection to be
extremely important in downstream model performance on target domains, with it arguably having as
much impact as the UDA training itself, which is also in agreement with other DA works [56].

Limitations. We acknowledge that our datasets are limited under three main aspects: (i) They only
cover steady state problems, whereas there is a growing interest in modeling time dependent PDEs
with neural operators. (ii) By defining domains with parameter ranges, we restrict the shifts to “scalar”
gaps, disregarding changes in mesh geometry (e.g. topology or geometric transformations). (iii) The
defined domain shifts currently emphasize variations in a single parameter rather than exploring
more realistic shifts involving multiple parameters simultaneously. These three choices are motivated
by considering benchmarking simplicity and computational constraints, and are open for future
extensions.



3

9

320
321

322
323
324

325

326
327
328
329
330

331
332

333
334
335
336

337
338
339

340
341
342

343
344
345

347

348
349
350

351
352
353

354
355

356
357
358
359

360
361

363
364
365
366
367

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

(10]

(11]

(12]

[13]

(14]

[15]

Lawrence C. Evans. Partial Differential Equations, volume 19 of Graduate Studies in Mathe-
matics. American Mathematical Society, 2nd edition, 2010.

Steven L. Brunton and J. Nathan Kutz. Machine learning for partial differential equations:
Data-driven discovery, model reduction, and control. Journal of Computational Dynamics,
7(2):343-360, 2020.

Ryan Keisler. Forecasting global weather with graph neural networks, 2022.

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopad-
hyay, Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli,
Pedram Hassanzadeh, Karthik Kashinath, and Animashree Anandkumar. Fourcastnet: A global
data-driven high-resolution weather model using adaptive fourier neural operators. CoRR,
abs/2202.11214, 2022.

Tung Nguyen, Johannes Brandstetter, Ashish Kapoor, Jayesh K. Gupta, and Aditya Grover.
Climax: A foundation model for weather and climate. CoRR, abs/2301.10343, 2023.

Ilan Price, Alvaro Sanchez-Gonzalez, Ferran Alet, Tom R. Andersson, Andrew El-Kadi,
Dominic Masters, Timo Ewalds, Jacklynn Stott, Shakir Mohamed, Peter W. Battaglia, Rémi R.
Lam, and Matthew Willson. Probabilistic weather forecasting with machine learning. Nat.,
637(8044):84-90, 2025.

Amil Merchant, Simon L. Batzner, Samuel S. Schoenholz, Muratahan Aykol, Gowoon Cheon,
and Ekin Dogus Cubuk. Scaling deep learning for materials discovery. Nat., 624(7990):80-85,
2023.

Claudio Zeni, Robert Pinsler, Daniel Ziigner, Andrew Fowler, Matthew Horton, Xiang Fu,
Zilong Wang, Aliaksandra Shysheya, Jonathan Crabbé, Shoko Ueda, et al. A generative model
for inorganic materials design. Nature, pages 1-3, 2025.

Han Yang, Chenxi Hu, Yichi Zhou, Xixian Liu, Yu Shi, Jielan Li, Guanzhi Li, Zekun Chen,
Shuizhou Chen, Claudio Zeni, Matthew Horton, Robert Pinsler, Andrew Fowler, Daniel
Zigner, Tian Xie, Jake Smith, Lixin Sun, Qian Wang, Lingyu Kong, Chang Liu, Hongxia Hao,
and Ziheng Lu. Mattersim: A deep learning atomistic model across elements, temperatures
and pressures. arXiv preprint arXiv:2405.04967, 2024.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Zidek, Anna Potapenko, et al.
Highly accurate protein structure prediction with alphafold. nature, 596(7873):583-589, 2021.

Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure
prediction of biomolecular interactions with alphafold 3. Nature, pages 1-3, 2024.

Joaquin Quionero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D. Lawrence.
Dataset Shift in Machine Learning. The MIT Press, 2009.

Florent Bonnet, Jocelyn Ahmed Mazari, Paola Cinnella, and Patrick Gallinari. AirfRANS:
High fidelity computational fluid dynamics dataset for approximating reynolds-averaged
navier—stokes solutions. In Thirty-sixth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2022.

Maximilian Herde, Bogdan Raonic, Tobias Rohner, Roger Kippeli, Roberto Molinaro, Em-
manuel de Bezenac, and Siddhartha Mishra. Poseidon: Efficient foundation models for PDEs.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

Shashank Subramanian, Peter Harrington, Kurt Keutzer, Wahid Bhimji, Dmitriy Morozov,
Michael W Mahoney, and Amir Gholami. Towards foundation models for scientific machine
learning: Characterizing scaling and transfer behavior. In A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural Information Processing
Systems, volume 36, pages 71242—71262. Curran Associates, Inc., 2023.

10



368
369
370

371
372
373
374
375

376
377

379
380

381

383
384
385
386

387
388
389
390
391

392
393
394

395
396
397

398
399

400
401
402
403
404

405
406
407

409
410
411
412
413

414
415
416
417
418

[16]

(17]

(18]

[19

—

(20]

(21]

[22]

(23]

(24]

[25]

(26]

(27]

Werner Zellinger, Thomas Grubinger, Michael Zwick, Edwin Lughofer, Holger Schoner,
Thomas Natschlidger, and Susanne Saminger-Platz. Multi-source transfer learning of time
series in cyclical manufacturing. Journal of Intelligent Manufacturing, 31:777-787, 2020.

Mohamed Elrefaie, Angela Dai, and Faez Ahmed. Drivaernet: A parametric car dataset
for data-driven aerodynamic design and graph-based drag prediction. volume Volume 3A:
50th Design Automation Conference (DAC) of International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference, page VO3AT03A019.
Curran Associates, Inc., 08 2024.

Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis of repre-
sentations for domain adaptation. Advances in neural information processing systems, 19,
2006.

Hidetoshi Shimodaira. Improving predictive inference under covariate shift by weighting the
log-likelihood function. Journal of Statistical Planning and Inference, 90(2):227-244, 2000.

Masashi Sugiyama, Shinichi Nakajima, Hisashi Kashima, Paul von Biinau, and Motoaki
Kawanabe. Direct importance estimation with model selection and its application to covariate
shift adaptation. In John C. Platt, Daphne Koller, Yoram Singer, and Sam T. Rowesis, editors,
Advances in Neural Information Processing Systems 20, Proceedings of the Twenty-First
Annual Conference on Neural Information Processing Systems, Vancouver, British Columbia,
Canada, December 3-6, 2007, pages 1433-1440. Curran Associates, Inc., 2007.

Jiayuan Huang, Alexander J. Smola, Arthur Gretton, Karsten M. Borgwardt, and Bernhard
Scholkopf. Correcting sample selection bias by unlabeled data. In Bernhard Schélkopf, John C.
Platt, and Thomas Hofmann, editors, Advances in Neural Information Processing Systems 19,
Proceedings of the Twentieth Annual Conference on Neural Information Processing Systems,
Vancouver, British Columbia, Canada, December 4-7, 2006, pages 601-608. MIT Press, 2006.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, Frangois
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural
networks, 2015.

Werner Zellinger, Thomas Grubinger, Edwin Lughofer, Thomas Natschldger, and Susanne
Saminger-Platz. Central moment discrepancy (cmd) for domain-invariant representation
learning, 2019.

Jayesh K Gupta and Johannes Brandstetter. Towards multi-spatiotemporal-scale generalized
pde modeling. arXiv preprint arXiv:2209.15616, 2022.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani,
Dirk Pfliiger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine
learning. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors,
Advances in Neural Information Processing Systems, volume 35, pages 1596—1611. Curran
Associates, Inc., 2022.

Ruben Ohana, Michael McCabe, Lucas Meyer, Rudy Morel, Fruzsina J. Agocs, Miguel
Beneitez, Marsha Berger, Blakesley Burkhart, Stuart B. Dalziel, Drummond B. Fielding,
Daniel Fortunato, Jared A. Goldberg, Keiya Hirashima, Yan-Fei Jiang, Rich R. Kerswell,
Suryanarayana Maddu, Jonah Miller, Payel Mukhopadhyay, Stefan S. Nixon, Jeff Shen,
Romain Watteaux, Bruno Régaldo-Saint Blancard, Frangois Rozet, Liam H. Parker, Miles
Cranmer, and Shirley Ho. The well: a large-scale collection of diverse physics simulations for
machine learning. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak,
and C. Zhang, editors, Advances in Neural Information Processing Systems, volume 37, pages
44989-45037. Curran Associates, Inc., 2024.

Mohamed Elrefaie, Florin Morar, Angela Dai, and Faez Ahmed. Drivaernet++: A large-scale
multimodal car dataset with computational fluid dynamics simulations and deep learning
benchmarks. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and
C. Zhang, editors, Advances in Neural Information Processing Systems, volume 37, pages
499-536. Curran Associates, Inc., 2024.

11



419
420

421
422
423

424
425
426

427
428

429
430

431
432

433
434

436
437

438

440

441
442

443
444

445
446
447

448
449

450
451
452

453
454
455

457

458
459

460
461
462

463
464

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

Yining Luo, Yingfa Chen, and Zhen Zhang. Cfdbench: A comprehensive benchmark for
machine learning methods in fluid dynamics. CoRR, abs/2310.05963, 2023.

Artur P. Toshev, Gianluca Galletti, Fabian Fritz, Stefan Adami, and Nikolaus A. Adams.
Lagrangebench: a lagrangian fluid mechanics benchmarking suite. In Proceedings of the 37th
International Conference on Neural Information Processing Systems, NIPS *23, 2023.

Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jen-
nifer Wortman Vaughan. A theory of learning from different domains. Mach. Learn., 79(1-
2):151-175, 2010.

Garrett Wilson and Diane J. Cook. A survey of unsupervised deep domain adaptation. ACM
Trans. Intell. Syst. Technol., 11(5), July 2020.

Wouter M Kouw and Marco Loog. A review of domain adaptation without target labels. IEEE
transactions on pattern analysis and machine intelligence, 43(3):766-785, 2019.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on
Knowledge and Data Engineering, 22(10):1345-1359, 2010.

Joaquin Quinonero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D Lawrence.
Dataset Shift in Machine Learning. MIT Press, 2008.

Werner Zellinger, Bernhard A Moser, and Susanne Saminger-Platz. On generalization
in moment-based domain adaptation. Annals of Mathematics and Artificial Intelligence,
89(3):333-369, 2021.

Q. Liu and H. Xue. Adversarial spectral kernel matching for unsupervised time series domain
adaptation. Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI),
30, 2021.

E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell. Deep domain confusion: Maxi-
mizing for domain invariance. arXiv preprint arXiv:1412.3474, 2014.

B. Sun, J. Feng, and K. Saenko. Correlation alignment for unsupervised domain adaptation.
Domain Adaptation in Computer Vision Applications, pages 153-171, 2017.

C. Chen, Z. Fu, Z. Chen, S. Jin, Z. Cheng, X. Jin, and X.-S. Hua. Homm: Higher-order
moment matching for unsupervised domain adaptation. Association for the Advancement of
Artificial Intelligence (AAAI), 2020.

M. M. Rahman, C. Fookes, M. Baktashmotlagh, and S. Sridharan. On minimum discrepancy
estimation for deep domain adaptation. Domain Adaptation for Visual Understanding, 2020.

Y. Zhu, F. Zhuang, J. Wang, G. Ke, J. Chen, J. Bian, H. Xiong, and Q. He. Deep subdomain
adaptation network for image classification. IEEE Transactions on Neural Networks and
Learning Systems, 32(4):1713-1722, 2021.

Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, and
V. Lempitsky. Domain-adversarial training of neural networks. Journal of Machine Learning
Research, 17(Jan):1-35, 2016.

M. Long, Z. Cao, J. Wang, and M. 1. Jordan. Conditional adversarial domain adaptation.
Advances in Neural Information Processing Systems (NeurIPS), 31, 2018.

R. Shu, H. Bui, H. Narui, and S. Ermon. A dirt-t approach to unsupervised domain adaptation.
International Conference on Learning Representations (ICLR), 2018.

G. Wilson, J. R. Doppa, and D. J. Cook. Multi-source deep domain adaptation with weak
supervision for time-series sensor data. Special Interest Group on Knowledge Discovery and
Data Mining (SIGKDD), 2020.

Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation,
2016.

12



465
466
467

468
469
470

471
472
473

474
475
476

477
478
479

480
481
482

484
485

486
487
488

489
490
491

492

494
495
496
497

499
500

501
502
503
504
505

506
507
508

509
510

511
512

514
515

[47]

(48]

[49]

(50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

(60]

[61]

Arthur Gretton, Karsten Borgwardt, Malte Rasch, Bernhard Scholkopf, and Alex Smola. A
kernel method for the two-sample-problem. In B. Schélkopf, J. Platt, and T. Hoffman, editors,
Advances in Neural Information Processing Systems, volume 19. MIT Press, 2006.

Fuzhen Zhuang, Xiaohu Cheng, Ping Luo, Sinno Jialin Pan, and Qing He. Supervised
representation learning: Transfer learning with deep autoencoders. In Proceedings of the
International Joint Conference on Artificial Intelligence, 2015.

Fredrik D Johansson, David Sontag, and Rajesh Ranganath. Support and invertibility in domain-
invariant representations. In The 22nd International Conference on Artificial Intelligence and
Statistics, pages 527-536. PMLR, 2019.

Yuchen Zhang, Tianle Liu, Mingsheng Long, and Michael Jordan. Bridging theory and
algorithm for domain adaptation. In Proceedings of the International Conference on Machine
Learning, pages 7404-7413, 2019.

Mabhsa Baktashmotlagh, Mehrtash T Harandi, Brian C Lovell, and Mathieu Salzmann. Un-
supervised domain adaptation by domain invariant projection. In Proceedings of the IEEE
International Conference on Computer Vision and Pattern Recognition, pages 769776, 2013.

Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. Unsupervised domain
adaptation with residual transfer networks. In Advances in Neural Information Processing
Systems, pages 136-144, 2016.

Nicolas Courty, Rémi Flamary, Devis Tuia, and Alain Rakotomamonjy. Optimal transport
for domain adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
39(9):1853-1865, 2017.

Uri Shalit, Fredrik D Johansson, and David Sontag. Estimating individual treatment effect:
generalization bounds and algorithms. In Proceedings of the International Conference on
Machine Learning, pages 3076-3085. PMLR, 2017.

Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative
domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 7167-7176, 2017.

Kevin Musgrave, Serge J. Belongie, and Ser-Nam Lim. Unsupervised domain adaptation: A
reality check. CoRR, abs/2111.15672, 2021.

Werner Zellinger, Natalia Shepeleva, Marius-Constantin Dinu, Hamid Eghbal-zadeh, Hoan Duc
Nguyen, Bernhard Nessler, Sergei V. Pereverzyev, and Bernhard Alois Moser. The balancing
principle for parameter choice in distance-regularized domain adaptation. In Marc’ Aurelio
Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan,
editors, Advances in Neural Information Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIlPS 2021, December 6-14, 2021, virtual, pages
20798-20811, 2021.

Marius-Constantin Dinu, Markus Holzleitner, Maximilian Beck, Hoan Duc Nguyen, Andrea
Huber, Hamid Eghbal-zadeh, Bernhard Alois Moser, Sergei V. Pereverzyev, Sepp Hochreiter,
and Werner Zellinger. Addressing parameter choice issues in unsupervised domain adaptation
by aggregation. In The Eleventh International Conference on Learning Representations, ICLR
2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.

Jianfei Yang, Hanjie Qian, Yuecong Xu, Kai Wang, and Lihua Xie. Can we evaluate domain
adaptation models without target-domain labels? In International Conference on Learning
Representations, 2024.

Masashi Sugiyama, Matthias Krauledat, and Klaus-Robert Miiller. Covariate shift adaptation
by importance weighted cross validation. J. Mach. Learn. Res., 8:985-1005, 2007.

Kaichao You, Ximei Wang, Mingsheng Long, and Michael I. Jordan. Towards accurate
model selection in deep unsupervised domain adaptation. In Kamalika Chaudhuri and Ruslan
Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine Learning,
ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of
Machine Learning Research, pages 7124-7133. PMLR, 2019.

13



516
517
518
519
520

521
522
523

524
525

526
527
528

529
530

531
532
533
534
535

536

537

538

539

540

541

542

543

544

546

547

549

550

552

553

555

556

557

558

559

560

561
562

[62] Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting visual category models
to new domains. In Kostas Daniilidis, Petros Maragos, and Nikos Paragios, editors, Computer
Vision - ECCV 2010, 11th European Conference on Computer Vision, Heraklion, Crete, Greece,
September 5-11, 2010, Proceedings, Part IV, volume 6314 of Lecture Notes in Computer
Science, pages 213-226. Springer, 2010.

[63] Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grauman. Geodesic flow kernel for unsupervised
domain adaptation. In 2012 IEEE Conference on Computer Vision and Pattern Recognition,
Providence, RI, USA, June 16-21, 2012, pages 2066-2073. IEEE Computer Society, 2012.

[64] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan.
Deep hashing network for unsupervised domain adaptation. CoRR, abs/1706.07522, 2017.

[65] Xingchao Peng, Ben Usman, Kuniaki Saito, Neela Kaushik, Judy Hoffman, and Kate
Saenko. Syn2real: A new benchmark forsynthetic-to-real visual domain adaptation. CoRR,
abs/1806.09755, 2018.

[66] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk mini-
mization. CoRR, abs/1907.02893, 2019.

[67] John Blitzer, Mark Dredze, and Fernando Pereira. Biographies, Bollywood, boom-boxes
and blenders: Domain adaptation for sentiment classification. In Annie Zaenen and Antal
van den Bosch, editors, Proceedings of the 45th Annual Meeting of the Association of Com-
putational Linguistics, pages 440—447, Prague, Czech Republic, June 2007. Association for
Computational Linguistics.

[68] Mohamed Ragab, Emadeldeen Eldele, Wee Ling Tan, Chuan-Sheng Foo, Zhenghua Chen,
Min Wu, Chee Keong Kwoh, and Xiaoli Li. ADATIME: A benchmarking suite for domain
adaptation on time series data. CoRR, abs/2203.08321, 2022.

[69] Josh Gardner, Zoran Popovic, and Ludwig Schmidt. Benchmarking distribution shift in tabular
data with tableshift. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz
Hardt, and Sergey Levine, editors, Advances in Neural Information Processing Systems 36:
Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New
Orleans, LA, USA, December 10 - 16, 2023, 2023.

[70] Nikola B. Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya,
Andrew M. Stuart, and Anima Anandkumar. Neural operator: Learning maps between function
spaces. CoRR, abs/2108.08481, 2021.

[71] Zongyi Li, Nikola B. Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew M. Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial
differential equations. CoRR, abs/2010.08895, 2020.

[72] Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature Machine Intelligence, 3(3):218-229, March 2021.

[73] Benedikt Alkin, Andreas Fiirst, Simon Schmid, Lukas Gruber, Markus Holzleitner, and
Johannes Brandstetter. Universal physics transformers: A framework for efficiently scaling
neural operators. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak,
and C. Zhang, editors, Advances in Neural Information Processing Systems, volume 37, pages
25152-25194. Curran Associates, Inc., 2024.

[74] Zongyi Li, Nikola B. Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew M. Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial

differential equations. CoRR, abs/2003.03485, 2020.

[75] Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W. Battaglia. Learning
mesh-based simulation with graph networks. CoRR, abs/2010.03409, 2020.

14



563
564
565
566

567
568
569
570

571
572

573
574
575

576
577
578

579
580
581

582
583

585
586
587

588
589
590
591
592
593

594

595
596

598
599

600
601

603

604
605
606
607

608
609

[76]

[77]

(78]

[79]

(80]

[81]

[82]

[83]

[84]

[85]
[86]

[87]

[88]

[89]

[90]

[91]

Andreas Fiirst, Florian Sestak, Artur P. Toshev, Benedikt Alkin, Nikolaus A. Adams, Andreas
Mayr, Giinter Klambauer, and Johannes Brandstetter. UPT++: Latent point set neural operators
for modeling system state transitions. In ICLR 2025 Workshop on Machine Learning Multiscale
Processes, 2025.

Zongyi Li, Nikola Borislavov Kovachki, Chris Choy, Boyi Li, Jean Kossaifi, Shourya Prakash
Otta, Mohammad Amin Nabian, Maximilian Stadler, Christian Hundt, Kamyar Azizzade-
nesheli, and Anima Anandkumar. Geometry-informed neural operator for large-scale 3d PDE:s.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Nicola Rares Franco, Andrea Manzoni, and Paolo Zunino. Mesh-informed neural networks
for operator learning in finite element spaces. Journal of Scientific Computing, 97, 2022.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, NIPS’17, page 1025-1035, Red Hook, NY, USA, 2017. Curran Associates Inc.

Artur Toshev, Harish Ramachandran, Jonas A. Erbesdobler, Gianluca Galletti, Johannes Brand-
stetter, and Nikolaus A. Adams. JAX-SPH: A differentiable smoothed particle hydrodynamics
framework. In ICLR 2024 Workshop on Al4DifferentialEquations In Science, 2024.

David A Cohn, Zoubin Ghahramani, and Michael I Jordan. Active learning with statistical
models. In Advances in neural information processing systems, volume 9, pages 705712,
1996.

Zheng Ren, Yongxin Yang, Bingbing Chen, Yaqing Li, Chengzhong Xu, Timothy M
Hospedales, and Tao Wang. A survey of deep active learning. ACM Computing Surveys
(CSUR), 54(9):1-36, 2021.

Daniel Musekamp, Marimuthu Kalimuthu, David Holzmiiller, Makoto Takamoto, and Mathias
Niepert. Active learning for neural PDE solvers. In The Thirteenth International Conference
on Learning Representations, 2025.

Phillip Lippe, Bas Veeling, Paris Perdikaris, Richard E. Turner, and Johannes Brandstetter.
Pde-refiner: Achieving accurate long rollouts with neural PDE solvers. In Alice Oh, Tristan
Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine, editors, Advances
in Neural Information Processing Systems 36: Annual Conference on Neural Information
Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023,
2023.

N.K. Gupta. Steel Rolling: Principle, Process & Application. CRC Press, 2021.

L.M. Galantucci and L. Tricarico. Thermo-mechanical simulation of a rolling process with an
fem approach. Journal of Materials Processing Technology, 92-93:494-501, 1999.

Seo Yeon Jo, Seojun Hong, Heung Nam Han, and Myoung-Gyu Lee. Modeling and simulation
of steel rolling with microstructure evolution: An overview. steel research international,
94(2):2200260, 2023.

A.Erman Tekkaya. State-of-the-art of simulation of sheet metal forming. Journal of Materials
Processing Technology, 103(1):14-22, 2000.

Muhammad Ali Ablat and Ala Qattawi. Numerical simulation of sheet metal forming: a review.
The international journal of advanced manufacturing technology, 89:1235-1250, 2017.

Luis Fernando Folle, Tiago Nunes Lima, Matheus Passos Sarmento Santos, Bruna Callegari,
Bruno Caetano dos Santos Silva, Luiz Gustavo Souza Zamorano, and Rodrigo Santiago Coelho.
A review on sheet metal forming behavior in high-strength steels and the use of numerical
simulations. Metals, 14(12), 2024.

M.E. Gerlach, M. Zajonc, and B. Ponick. Mechanical stress and deformation in the rotors of
high-speed pmsm and im. Elektrotechnik & Informationstechnik, 138(2):96-109, 2021.

15



610
611
612

613
614
615

616
617

619
620
621

622
623
624
625

626
627
628

630
631
632

633
634

635
636
637
638

639
640
641

642
643
644

646
647

648
649
650
651
652
653

655
656

[92]

(93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

Alexander Dorninger, Simon Weitzhofer, Markus Schorgenhumer, Albert Sorgdrager, and
Eike Janssen. Automated mechanical rotor design assessment based on 2d fea results. In 2021
11th International Electric Drives Production Conference (EDPC), pages 1-8, 2021.

R. Arularasan and R. Velraj. Modeling and simulation of a parallel plate heat sink using com-
putational fluid dynamics. The International Journal of Advanced Manufacturing Technology,
51(1):415-419, 2010.

Md Atiqur Rahman, S. M. Mozammil Hasnain, Prabhu Paramasivam, and Abinet Gosaye
Ayanie. Advancing thermal management in electronics: a review of innovative heat sink
designs and optimization techniques. RSC Adv., 14:31291-31319, 2024.

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment
matching for multi-source domain adaptation. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 1406-1415, 2019.

Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet: Deep
learning on point sets for 3d classification and segmentation. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017,
pages 77-85. IEEE Computer Society, 2017.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfar-
dini. The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61-80,
2009.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius
Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan
Faulkner, et al. Relational inductive biases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261, 2018.

T. Konstantin Rusch, Michael M. Bronstein, and Siddhartha Mishra. A survey on oversmooth-
ing in graph neural networks. arXiv preprint arXiv:2303.10993, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
L ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Haixu Wu, Huakun Luo, Haowen Wang, Jianmin Wang, and Mingsheng Long. Transolver:
A fast transformer solver for pdes on general geometries. In International Conference on
Machine Learning, 2024.

Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron Courville. Film:
Visual reasoning with a general conditioning layer. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence (AAAI-18), pages 3942-3951, 2018.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV), pages 41964206,
2023.

Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu,
David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier J. Hénaff,
Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, and Jodo Carreira. Perceiver IO: A
general architecture for structured inputs & outputs. In The Tenth International Conference
on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net,
2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International

Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019.

16



es7  Appendix

ess A Detailed results

659 A.1 Hot Rolling

Table 3: Mean (& standard deviation) of RMSE across four seeds on the hot rolling dataset. Bold
values indicate the best target domain performance across all normalized fields. Underlined entries
mark the best performing UDA algorithm and unsupervised model selection strategy per model.
Asterisks denote unstable models (error more than 10x higher than others).

Mod DA Model Al Fields normalized avg (-) ion (mm) L ic strain (<103 Equivalent plastic strain (x10~%) Mises stress (MPa) Stress (MPa)
el Algorithm  Selection
Als b SRC 6T SRC TGT SRC 6T SRC 6T SRC 6T SRC 6T
B 0.016(£0.000)  0365(£0.130) _ 0.525(0.023)  5.715(:L567)  0.018(0.000) 0997(£0.377)  0.033(0.000) 2.113(x0.780)  1972(0.021)  19.790(£7186)  L234(x0.010)  1L421(:3.801)
DANN DEV 0.014(0.000)  LI75(£0.053) O0.577(0.061) 17.363(£0.803)  0.019(0.001)  3.452(£0.176)  0.035(0.001)  7.200(0. m') 11 b"0(17 317)  L264(+0.033)  59.263(+5.501)
DANN wy 0.014(0.000)  0.289(£0.147)  0.561(+0.032)  5.350(:1848)  0.018(+0.000)  0.792(£0.186)  0.033(:0.001) 2(:0.306) 423)  1246(£0.025)  13.737(11.828)
DANN sB 0.014(0.000)  0.692(£0.511)  0.573(0.043)  11090(£7.161)  0.018(0.000) ~ 2120(£1.506)  0.034(£0.001)  4.510( 60. 3ﬁ(1 1358)  1.237(£0.027)  31.612(425.852)
DANN TB 0.014(£0.000)  0.230(£0.041)  0.604(£0.010)  4.640(=0.593)  0.018(£0.001)  0.740(+0.134)  0.034(£0.001)  1.549(£0.275) ~ 2.017(£0.047)  14.867(£3.085)  1.248(40.028) 8.665(+1.635)
GraphSAGE  CMD DEV 0.015(x0.001)  1.447(0.202) U(;17(i0m0) 18383(£2.116)  0.020(£0.001)  3.781(£0.544)  0.037(x0.003)  7764(:1210)  2169(+0.151) 136.324(:23.104)  1324(£0.062)  95.502(420.973)
cvMD wy 0.014(+0.000) 0.228(+0.021) 0.577(0.023)  4.622(0.283)  0.01S(+0.000) 0.742(£0.071)  0.033(£0.001)  1.563(0.153) 14.494(+1375)  1.237(+0.032)  8.386(0.819)
coMD B 0.014(0.000) 0786(£0535) 0.571(+0.040)  12160(£7.174)  0.018(0.000) 2403(£1541)  0.033(£0.000)  5.068(3.245) 6S.500(£55.017)  1228(+£0.024)  36.834(28.921)
oMD i 0.014(£0.000)  0.221(£0.007)  0.583(+0.033)  4.607(0.261)  0.018(+0.000)  0.71L(£0.014)  0.033(x0.000)  1.507(0.045) 14288(£1.040)  1245(0019)  8.275(:0.632)
Deep Coral  DEV 0.014(0.000)  0.668(£0.351) 0.519(0.066) 10.566(£4767) 0.018(0.000) 2042(£1.017) 0.033(0.000) 4.201(x2.145) 56.628(+37.351)  1241(£0.008)  30.864(£18.187)
Deep Coral  IWV. 0.014(0.000)  0.282(£0.056) 0.569(0.040)  5.416(0.356)  0.01S(+0.000) 0S74(£0.103)  0.033(£0.000)  1.841(£0.199) 20.781(£8.267)  1.231(+0.014)  11.823(4.643)
Deep Coral  SB 0.014(0.000)  051L(£0.420)  0.548(+0.031)  S.679(:5.518)  0.018(+0.000) 1507(£1.222)  0.033(0.000)  3.385(+2.507) 11.196(£43.492)  1.227(£0.015)  22.041(4:21.683)
Deep Coral B 0.014(0.000)  0212(£0.012)  0.590(+0.045)  4.547(x0.361)  0.018(x0.000)  0.679(£0.050)  0.033(x0.001)  1427(£0.005)  1992(0.028)  13.820(x0.609)  L237(0.018)  8.097(0.242)
- - 0.023(0.001)  0.469(£0.055) _ 2.240(0.001)  11.474(£0290) 0.026(0.001)  1225(£0.165)  0.051(:0.002) 2.519(£0.385) 2860(£0.138)  27.611(5693)  LOTA(0.071)  16.226(::3.967)
DANN DEV 0.020(0.001) 1.093(£0.052) 2.238(0.002) 17985(£0.472)  0.027(0.002) 3313(£0.120) 0.053(x0.001) 7.055(x0.280) 2954(£0179) 101.784(£7.200)  L7IA(+0.101)  51655(:3.392)
DANN wy 0.020(+0.001)  0.974(+0.419)  2243(+0.008)  16.949(+3.600)  0.028(0.002) ~2953(1232)  0.054(£0.003)  6.263(+2630)  2949(=0.177)  BOAGA(+42987)  1L727(+0.102)  45.685(:21.204)
sB 0.019(0.001)  0.951(£0.317)  2.230(0.004)  16.497(£3.351)  0.027(0.001)  2906(£1.015) 0.052(+0.003) G.165(+2.173) 2.886(£0.135)  85.306(+36.953)  LG79(+£0.085)  43.800(+17.807)
DANN B 0.020(+0.001)  0336(x0.054) 2.239(+0.002)  11137(0.329)  0.027(0.001)  1.002(0206) 0.052(£0.002)  2312(£0421)  2988(x0.138)  22461(4.074)  1733(x0.060)  12.876(=2.085)
PointNet  CMD DEV 0.020(+0.001)  1030(+0.374)  2240(+0.002)  17.213(+3.515)  0.028(x0.001)  3.196(+1.087)  0.054(-0.003) 7( 2087(+0.188)  89.470(+39.163)  1.746(+0.085)  45.786(-18.799)
cMD wy 0020(+0.001)  1243(+0.047)  2.240(£0.001)  19.180(+0.409)  0.028(0.001)  3.779(£0.111) u «L.um nnz) 037(10257)  2996(+0.112)  11BI6A(L5.966)  L75S(L0.050)  57.501(8.749)
D SB 0.019(£0.001)  0387(+0.059) 2.241(+0.002)  11327(£0.574)  0.027(0.001)  1.201(+0.27) 01)  2511(0. b‘l‘J) 2852(+0.079)  27.922(+6.676)  1675(+0.053)  16.105(3.828)
CMD B 0.019(0.001)  0353(X0078)  2.240(+0.002)  11231(0.508)  0.026(0.000)  1.147(::0284) 0. n,](+u nm) 2402(30.634)  2843(£0.083)  23.881(£4.994)  16S4(£0.060)  13.680(£2.721)
Decp Coral  DEV 0.020(x0.001)  L036(x0.102)  2.241(£0.002)  17.119(+1.256)  0.028(x0.001)  3.071(0374)  0.055(0.003) (= 3003(£0.133)  96.974(+10.676)  1768(0.079)  50.257(3.638)
Deep Coral  TWV/ 0.020(£0.001)  1.048(£0.167) 38(+0.003)  17.395(+1.880)  0.028(£0.001 3.077(+0.508)  0.055(£0.002) 2.084(=0.108) 100, 2‘(5(1"0 956)  1.775(+0.050)  52.079(+8.798)
Deep Coral ~ SB 0.019(+0.000)  0.977(+0.158)  2.243(+0.002)  16.764(+1.497)  0.027(x0.001)  2.947(0409)  0.052(:0.001) 2866(x0.081)  88.933(+21.502)  1677(+0.043)  45.919(:10.860)
Deep Coral B 0.019(+0.000)  0.346(+0.078) 2.239(£0.003)  11.099(+0.287)  0.027(x0.001)  1.100(::0270)  0.051(::0.001) 2S5T(£0.089)  20021(+6.005)  1693(10037)  13.911(+3.132)
- 0.028(:0.001) « 0.580(:0.035) * 0.036(:0.001) « 0.070(0.002) B 3.541(=0.091) « 2.056(:0.041) «
DANN DEV 0.020(£0001) 1320(£0.053) 0.572(+0.020) 19399(£0.646) 0.035(+0.002) B3855(:0.131) 0.075(x0.000) S.177(x0272) 3562(£0107) 137.AG3(X8757) 2.072(+0.05)  68.023(3.359)
DANN wv 0.023(:0.001) * 0.563(:0.031) - 0.036(:0.002) * 0.072(:0.003) - 2.052(0.058) *
DANN sB 0.023(2:0.000) * 0.557(2:0.026) * 0.035(2:0.000) * 0.069(=:0.001) * 1.980(0.016) *
DANN B 0.023(£0.001)  1248(£0.044)  0.581(0.052)  18346(£0511)  0.036(0.002)  3.634(0.123)  0.072(0.001) 126.730(£6.270)  2.082(+0.073)  63.423(22.244)
Transolver ~ CMD DEV 0.024(£0001)  0.945(£0.385)  0.609(0.039)  14.247(£5.368)  0.037(0.001)  2.836(£1.064)  0.074(:0.002) 86.716(+48.985)  2.071(£0.043)  44557(£22.613)
coMD wy 0.024(0.001)  2630(£3.515)  0.598(+0.040) T8553(£130.657) 0.037(0.002)  ASBIT(ELATE)  0.073(:0.003) 350.914(£536.759)  2.075(+0.056) 251.012(4418.842)
cvMD SB 0.023(0.001)  0.899(£0.350) 0.589(0.026)  13.868(£5.333)  0.035(0.001) 2743(£1.054)  0.070(:0.003) TITAO(E38121)  2.031(£0.051)  41.268(£18.879)
oMD B 0.024(0.001)  D56T(EDIZT)  0.615(+0.047)  9.350(2.012)  0.038(+0.002)  1798(£0.445)  0.074(0.003)  3.834(£1.010)  3599(0.156)  41.952(+11.500)  2085(0.092)  23.189(:5.853)
Deep Coral - DEV 0.023(£0001)  3231(+4873)  0.596(0.014) 91582(£159.064) 0.035(+0.002) 9.198(+13.552) 0.070(+0.003) 22590(£34680) 3.AS3(£0.170) 253494(£372755) 2.027(+0.084) 174.785(£278.902)
Deep Coral  TWV. 0.023(0.001) * 0.606(-£0.052) * 0.036(:£0.003) * 0.072(:0.006) * 124) * 2.035(-£0.069) *
Deep Coral ~ SB 0.023(0.001)  3.600(4655) 0.583(+0.017) 94451(£I57174) 0.034(+0.002) 10287(£12.902) 0.068(£0.004) 25.566(32.972) 076)  268.916(:363.263) 1.989(£0.047)  198.891(:265.635)
Deep Coral  TB 0.024(0.000)  0.656(£0.187)  0.589(0.020)  10.200(£2.803)  0.037(0.001)  1985(£0.588)  0.073(:0.003)  4247(:1.284)  3527(0.051)  53.775(218336)  2.045(:0.046)  20.340(:8.568)

660 A.2 Sheet Metal Forming

Table 4: Mean (+ standard deviation) of RMSE across four seeds on the sheet metal forming dataset.
Bold values indicate the best target domain performance across all normalized fields. Underlined
entries mark the best performing UDA algorithm and unsupervised model selection strategy per
model. Asterisks denote unstable models (error more than 10 higher than others).

odel DA Model _ Allfields normalized Avg (- fon (mm) Logarithmic strain (<10 %) Equivalent plasti strain (<10~ Mises stress (MPa) Stress (MPa)
Algorithm _ Selec SRC TGT SRC TGT SRC TGT SRC 6T SRC 6T SRC 6T
B B 0070(+0.002)  0376(£0.028) 1411(20.070)  1.939(£0.530)  0.024(0.001) 0.156(20.014) 0.043(£0.001) 0272(£0.026) 11.022(£0324)  46.097(+4.911) 548(£0.198)  31.225(%1.554)
DANN DEV 0.056(+0.004) L347(:0.045)  16.199(£21.007) 0.023(+0.001) 0.965(+1.238) 0.042(:0.003) « 10.507(£0.564) 406.576(+403.135) 5.334(+0.200) 177.376(+187.164)
DANN wv 0.057(£0.003) 1.406(+0.071) 2.095(+0.188) 0.023(+£0.001)  0.158(£0.010)  0.042(£0.003)  0.269(+0.011) 10.758(+0.277) 52.401(£7.908) 5.387(+0.134) 34.644(+4.404)
DANN SB 0.055(£0.002) 1.404(£0.035) 7.810(£6.066) 0.022(£0.001)  0.467(£0.147)  0.040(£0.001)  0.921(+0.452) 10.732(£0.406)  186.098( 057)  5.372(+0.168) 94.370(£16.94:
DANN B 0.057(£0.003)  0.323(£0.025)  1.416(=0.055) 2.021(£0.156) 0.023(£0.001)  0.156(+0.010)  0.042(£0.003)  0.265(+0.004) 10.728(£0.218) 49.234(£5.606) 5.405(£0.167) 33.375(£4.786)

GraphSAGE  CMD DEV. 0.055(£0.002)  0.857(£0.475)  1.355(=0.058) 6.409(£3.878) 0.022(£0.001)  0.380(£0.177)  0.041(£0.002)  0.645(+0.290) 10.590(+0.343) 145 'Z K'((L 79.730)  5.287(£0.140) 87.123(+£42.179)
CMD wv 0.055(£0.001)  0.407(£0.124)  1.326(+0.031) 2.455(£1.014) 0.022(£0.001)  0.201(£0.057)  0.041(£0.001)  0.358(+0.112) 10.730(0.065) 61.685(+20.293) 5. 3 4(£0.115) 37.004(£7.364)
CMD SB 0.055(£0.001)  0.569(+0.306)  1.433(30.024) 4.708(+4.280) 0.022(£0.000)  0.290(+0.160)  0.040(£0.000)  0.497(+0.273) 10.550(£0.163) 99.069(£58.190) 5.299(+0.071) 55.134(£35.744)
MD ™ 0057(+0.001)  0.289(£0.036) 1345(+0.059)  2.028(+0.798)  0.023(+0.000) 0.139(+0.017) 0.042(£0.001) 0.243(£0.028) 10.828(+£0.169)  43.746(+5.836) 5 u,(w 110)  20.606(+3.478)
DeepCorl DEV  0.054(0.001) 0411(£0.103) 1347(20.048)  3347(£2232)  0.021(£0.001) 0.185(£0.031) 0.089(£0.001) 0330(£0.004) 10.355(20.455)  G5.861(£25277)  5.206(20.100)  43.062(+14.129)
Deep Coral WV 0055(+0.002)  0.353(£0.075)  1.389(+0.055)  2.449(+1.115)  0.022(0.001) 0.170(+0.032) 0.041(£0.002) 0.304(£0.078) 10585(£0289)  AS.326(£6.560)  5.320(£0.174)  34.667(5.165)
Deep Coral  SB 0.056(£0.002)  0.364(+0.105)  1.392(=0.071) 2.386(£0.735) 0.022(£0.001)  0.177(£0.055)  0.041(£0.001)  0.310(0.090) 10.744(£0.189) 52.764(£11.554) 5.368(£0.092) 35.332(£8.182)
Deep Coral TB 0.056(£0.003)  0.287(£0.011)  1.395(=0.068) 1.825(+0.369) 0.023(£0.001)  0.137(£0.007)  0.041(£0.002)  0.242(+0.008) 10.781(+0.333) 44.161(+3.225) 5.398(£0.179) 29.228(+1.451)
- - 0.077(£0.011)  0.226(+0.047)  2.012(+0.149) 2.556(+0.948) 0.024(+£0.004)  0.087(£0.022)  0.045(+£0.007)  0.160(+0.039) 11.357(+2.106) 31.435(+6.317) B.067(+0.634) 16.525(+3.262)
DANN DEV 0.066(£0.003) 1.195(£1.93: 2.243(£0.041) 6.185(£6.903) 0.024(£0.001)  0.709(x1.194)  0.045(0.003) 1.528(%2.648) 11.665(£0.483)  120.318(£178.366)  8.505(0.083)  101.783(£163.427)
DANN wv 0.067(£0.006)  0.318(+0.171)  2.283(+0.052)  5.000(£4.861)  0.025(£0.002) 0.155(+0.081) 0.047(+0.005) 0281(£0.149) 12.151(£1.359)  58.156(£38.050)  8.631(£0.245)  27.216(+16.145)
DANN SB 0.067(£0.005)  0.359(£0.153)  2.250(+0.022) 5.573(£4.577) 0.025(£0.002)  0.181(£0.076)  0.047(£0.004)  0.328(+0.138) 12.090(£1.186) .622(+34.926) 8.522(£0.221) 30.676(+14.620)
DANN B 0.076(£0.004)  0.166(+0.008)  2.270(=0.037) 2.089(£0.144) 0.028(£0.001)  0.084(£0.010)  0.053(£0.002)  0.149(%0.016) 14.069(£1.203) 24.299(£2.097) 9.041(£0.253) 13.427(£0.788)

PointNet CMD DEV. 0.089(+£0.037)  0.320(+0.141)  2.414(%0.373) 4.199(+2.432) 0.038(£0.024)  0.162(+0.069) 0.071(£0.045)  0.280(%0.111) 14.104(£3.213) 61.546(£35.760) 9.417(£1.408) 28.416(+13.163)
cMD Wy 00TL(E0002) 021200148 2263(0.056)  2685(x0972)  0.026(0.001) OLITEO.0T) 0.050(E0.002) 0213(H012) 12925(£0.692)  46.508(38 805) b SOG(+0.188)  20.683(+12.572)
coMD SB 0.060(+0.006)  0.252(£0.066) 1985(+0.069)  3.698(+1.484)  0.022(+0.002) 0.124(£0.029) 0.042(£0.005) 1(40.049)  10.166(+1.450)  38.406(£13.599) 37(+0.316)  20.153(+5.512)
CMD TB 0.069(£0.006)  0.173(£0.013)  2.099(20.124) 2.114(40.141) 0.026(£0.003)  0.089(£0.011)  0.049(£0.005)  0.158(+0.019) 12.260(£0.750) 25.184(£1.660) K 365(+0.388) 13.693(+0.839)
Deep Coral DEV 0.067(+£0.008)  0.228(+0.065)  2.201(+0.189) 2.613(+0.839) 0.025(£0.003)  0.119(0.040)  0.046(+0.006)  0.213(+0.067) 12.087(+1.995) 36.983(+12.354) 8.439(+0.665) 18.516(+5.099)
Deep Coral  TWV 0.064(+£0.006)  0.190(£0.027)  2.196(+0.185) 2.324(+0.411) 0.024(+£0.002)  0.092(+0.013)  0.044(£0.005)  0.166(+0.022) 11.283(+1.392) 32.908(+5.779) 8.302(+0.562) 16.048(+2.999)
Deep Coral  SB 0.060(£0.009)  0.182(£0.021)  2.042(+0.185) 2.555(£0.422) 0.022(£0.004)  0.084(£0.011)  0.042(£0.008)  0.150(%0.023) 10.156(£2.001) 31.345(+£5.362) 7.837(£0.674) 16.017(+2.153)
Deep Coral TB 0.069(£0.014)  0.158(£0.006) ~ 2.129(+0.184) 2.004(£0.051) 0.026(£0.006)  0.078(£0.005)  0.049(£0.011)  0.140(£0.009) 12.320(£3.129) 22.942(£1.429) 8.432(£0.932) 12.967(+0.350)
- - 0.070(£0.002)  0.168(£0.029)  1.168(=0.012) 1.189(+0.293) 0.022(£0.001)  0.070(x0.015)  0.041(£0.001)  0.126(%0.029) 12.862(+0.461) 23.014(+4.849) 6.033(+0.161) 10.852(+1.952)
DANN DEV 0057(0.002)  0.206(20.051) 1211(x0.062)  2.625(:1.493)  0.021(£0.001) 0.103(x0.022) 0.040(£0.001) 0.187(£0.038) 12.275(£0.537)  36.777(+15.101)  5.787(0.203) \" 7 )
DANN Wy 0.056(+0.003)  0.165(£0.026) 1.194(+0.049)  1AT3(£0.537)  0.021(£0.001) 0.081(x0.011) 0.040(£0.002) 0.150(£0.023) 12.223(£0.559)  26.736(+6.956)  5.764(£0.277)  13.03 )
DANN SB 0.056(£0.002)  0.172(£0.016)  1.207(+0.062) 1.679(+0.366) 0.021(£0.001)  0.085(£0.006)  0.040(£0.002)  0.157(+0.012) 12.074(£0.284) 28.661(+5.284) 5.709(£0.179) l 3.86
DANN B 0.058(£0.002)  0.133( 016)  1.249(£0.054) 1.205(+0.276) 0.022(£0.001)  0.064(£0.013)  0.041(£0.001)  0.117(£0.025) 12.560(£0.653) 21.245(£1.910) 5.924(£0.299) 10.337(+0.834)

Transolver ~ CMD. DEV 0.058(£0.002)  0.286(+0.118)  1.233(+0.06 1088(£3.003)  0.022(+0.001) 0.142(+0.058) 0.042(+0.001)  0.255(+0.104)  12.696(-+0.924)  51.628(+29.111)  5.958(-+0.363)  26.089(413.258)

cMD wy 0.036(£0.002)  0200(0.006) 1.200(+0.051)  2431(£1.533)  0.021(+0.001) 0.108(0.054) 0040(x0.001) ~0.192(£0.092) 12080(x0.396) ~BLSCGCEIZO5)  5TIA£0172)  17.061(28.722)
cMD SB 0.036(+0.002)  0.235(+0.097)  1.214(0.063) 5) 0.021(+0.001) 0.122(+0.053) 0.040(:0.001) 0215(£0.000) 12145(£0.515)  35.915(+14.900)  5.731(£0.224)  19.670(+0.245)
cMD B 0.062(+0.001)  0.131(:0.008)  1.263(0.042) 0.023(+0.000) 0.065(£0.005) 0.044(0.001)  0.117(+0.007) 13.505(+0.428)  20285(+1747)  6.326(=0.169)  9.821(+0.838)

Deep Coral  DEV. 0.058(+0.001)  0.159(0.011)  1.230(0.033 0.022(+0.000) 0.081(=0.006) 0.041(x0.001)  0.146(+0.009) 12.885(+0.257)  25.049(2398)  6.026(=0.065)  12.572(+1.158)
Deep Coral WV 0.057(+0.001) 0:261(£0.203)  1.206(:0.008) 0.021(+0.000)  0.133(0.107) ~ 0.041(0.001) 2)  12505(+0275)  44.262(+37.731)  5.921(+0.116) 2(419.867)
Deep Coral - SB 0.057(+0.001)  0.263(£0.201)  1.199(0.019) 0021(£0.001) 0.135(£0.106) 0.040(0001) 0244(£0.189) 12509(+0.180) 443I8(£37.691) 5STS(L0.082)  22.645(£19.921)
Deep Coral  TB 0050(+0001)  0.135(:0014)  1227(+0.016) 0957(0.035) 0.022(£0.000) 0.0GS(£0.012) 0.042(:0.001) 0.120(£0023) 12970(+0.502) 2206242213  6.0S0(:0.207)  10.846(0.704)
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A.3 Electric Motor Design

Table 5: Mean (+ standard deviation) of RMSE across four seeds on the electric motor design dataset.
Bold values indicate the best target domain performance across all normalized fields. Underlined
entries mark the best performing UDA algorithm and unsupervised model selection strategy per
model. Asterisks denote unstable models (error more than 10>< higher than others).
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A.4 Heatsink Design

Table 6: Mean (+ standard deviation) of RMSE across four seeds on the heatsink design dataset. Bold
values indicate the best target domain performance across all normalized fields. Underlined entries
mark the best performing UDA algorithm and unsupervised model selection strategy per model.

DA Model All fields normalized avg (-) Temperature (K) Velocity (m/s) Pressure (kPa)
Model Algorithm  Selection
& SRC TGT SRC TGT SRC TGT SRC TGT
- - 0.525(£0.026)  0.568(£0.030)  15.581(£1.535) 21.126(£2.365) 0.054(£0.002) 0.044(£0.000) 0.386(£0.034) 1.879(+0.239)
DANN DEV 0.339(£0.104)  0.442(+0.050)  12.078(£+4.555) 19.408(£3.391)  0.043(£0.009) 0.047(+0.007) 0.815(+1.032) 1.998(£0.360)
DANN wv 0.289(£0.056)  0.429(0.052)  10.167(£2.894) 18.172(£3.222)  0.040(£0.008) 0.047(£0.007) 0.283(£0.071)  1.806(£0.145)
DANN SB 0.228(20.016)  0.494(£0.026)  6.668(:1.013)  20.129(£2.380) 0.031(£0.002) 0.055(0.002) 0.207(£0.014)  2.103(£0.615)
DANN TB 0.304(£0.036)  0.397(£0.019)  10.964(£1.411) 15.719(:1.387) 0.041(£0.005) 0.043(£0.002) 0.331(£0.141)  1.908(%0.232)
PointNet CMD DEV 0.423(£0.003)  0.442(+0.004)  16.324(£0.135)  20.548(+0.035)  0.042(+0.001)  0.042(+0.000)  2.386(+0.018)  2.466(+0.042)
CMD wv 0.239(£0.008)  0.480(+0.020) 7.577(+£0.479)  18.524(+1.213)  0.033(+0.001)  0.051(+0.002) 0.193(+0.005)  2.455(+0.118)
CMD SB 0.238(£0.007)  0.475(+0.025) 7.433(+0.330)  18.460(+1.300) 0.033(+0.001)  0.051(+0.002) 0.199(+0.009)  2.373(+0.157)
CMD TB 0.302(£0.086)  0.442(+0.018)  10.801(+4.087) 17.800(£2.256) 0.037(+0.004)  0.046(+0.004) 0.757(+1.077)  2.289(+0.108)
Deep Coral DEV 0.275(£0.071)  0.394(%0.048) 9.324(£3.565)  18.021(£2.349)  0.038(£0.010)  0.044(=£0.006) 0. (£0.084)  0.988(+0.479)
Deep Coral  IWV 0.275(£0.071)  0.394(0.048)  9.324(£3.565)  18.021(£2.349)  0.038(£0.010)  0.044(£0.006) 0.239(£0.084)  0.988(£0.479)
Deep Coral  SB 0.270(£0.061)  0.394(+0.048)  9.071(£3.069)  17.428(1.939)  0.037(£0.009)  0.044(£0.006) 0.224(£0.055) 1.037(£0.574)
Deep Coral TB 0.343(20.063)  0.384(£0.042)  12.763(£3.067) 18.517(£2.502) 0.047(£0.009) 0.042(£0.004) 0.324(£0.103) 1.439(%0.427)
- - 0.348(£0.009)  0.487(+0.009) 8.553(£0.526)  13.432(+0.486)  0.033(£0.001)  0.040(£0.000)  0.519(£0.047)  1.655(+0.176)
DANN DEV 0.275(:0.042)  0.433(£0.030)  9.629(£2.784)  17.110(£1.633) 0.035(£0.006) 0.048(£0.004) 0.486(£0.043) 1.871(%0.135)
DANN wv 0.276(0.039)  0.448(£0.022)  9.251(+1.988)  17.483(£1.168) 0.035(£0.005) 0.050(£0.003) 0.547(£0.146) 1.993(%0.179)
DANN SB 0.251(+0.005)  0.445(+0.014) 7.823(£0.056)  16.603(£1.047)  0.032(£0.001)  0.049(£0.002)  0.487(+0.040) 2.079(+0.134)
DANN TB 0.296(+0.046)  0.425(+0.024)  10.624(£2.804) 16.740(+0.747)  0.038(+0.006)  0.047(+0.003)  0.583(+0.121)  1.921(+0.163)
Transolver CMD DEV 0.412(£0.006)  0.495(+0.014)  16.426(£+0.267) 22.584(£0.912)  0.038(£0.001) 0.047(£0.001) 2.509(+0.119)  2.926(-0.150)
CMD WV 0.256(£0.005)  0.411(£0.028)  8.321(£0.303)  15.435(:2.032) 0.033(£0.000) 0.046(:0.004) 0.465(:0.066) 1.870(+0.057)
CMD SB 0.255(=£0.006)  0.420(+0.038) 8.341(£0.280)  15.821(£2.496)  0.032(£0.001)  0.046(£0.005) 0.471(£0.058) 1.915(+0.061)
CMD TB 0.256(£0.005)  0.408(+0.024) 8.269(£0.208)  15.028(£1.653)  0.033(£0.001)  0.045(£0.003)  0.431(£0.059)  1.900(+0.107)
Deep Coral DEV 0.261(20.004)  0.374(£0.005)  8.652(:0.241)  13.539(:0.543) 0.033(£0.000) 0.041(£0.001) 0.515(£0.047) 1.726(%0.104)
Deep Coral  IWV. 0.257(20.014)  0.368(£0.009)  8.349(0.855)  13.434(£0.870) 0.033(£0.001) 0.041(£0.001) 0.481(£0.074) 1.559(%0.127)
Deep Coral  SB 0.245(+0.005)  0.372(X0.015)  7.783(+0.388)  13.367(0.909) 0.032(£0.001) 0.041(£0.002) 0.388(£0.014) 1.719(+0.188)
Deep Coral TB 0.259(+0.013)  0.351(+0.023) 8.389(+0.613)  12.756(+1.125)  0.033(£0.001)  0.039(£0.002)  0.529(+0.113)  1.464(+0.180)
- - 0.244(£0.002)  0.441(£0.024)  4.316(:0.028)  13.033(£1.059) 0.025(:0.000) 0.040(£0.002) 0.232(£0.014)  0.816(0.049)
DANN DEV 0.188(£0.011)  0.446(+0.026) 4.651(+£0.781)  15.580(+0.609)  0.026(+0.002) 0.050(+0.003) 0.223(+0.013)  2.165(+0.302)
DANN wv 0.222(£0.053)  0.443(+0.070) (£3.132)  15.179(+1.591)  0.030(+0.007)  0.048(+0.006) 0.247(+0.033)  2.380(+0.727)
DANN SB 0.184(+£0.002)  0.480(+0.018) 4 285(+0.072)  15.689(+0.806)  0.025(+0.000)  0.051(+0.001)  0.244(+0.024)  2.729(+0.517)
DANN TB 0.273(£0.092)  0.398(£0.038)  9.411(+4. 841) 15.644(£3.334)  0.037(£0.012)  0.043(£0.004)  0.285(£+0.073)  1.872(+0.366)
UPT CMD DEV 0.210(£0.055)  0.406(+0.046) 4(. 3)  14.289(+2.054)  0.028(+0.007)  0.046(+0.005)  0.236(+£0.022)  1.874(=£0.394)
CMD wv 0.182(£0.000)  0.363(£0.015) 7(£0.038)  12.908(£0.487)  0.025(£0.000) 0.043(+0.001)  0.221(£0.009)  1.365(+0.257)
CMD SB 0.179(£0.001)  0.444(=£0.010) (£0.026)  16.130(0.627) 0.024(£0.000) 0.050(£0.001) 0.231(£0.008) 1.919(=0.052)
CMD TB 0.182(0.000)  0.363(£0.015) 97(£0.038)  12.908(£0.487)  0.025(0.000) 0.043(£0.001) 0.221(0.009) 1.365(:0.257)
Deep Coral DEV 0.183(£0.001)  0.345(£0.013) 4. 318(i0 067)  13.290(£0.655) 0.025(+0.000) 0.041(+£0.001) 0.221(0.008) 0.810(:0.099)
Deep Coral IWV 0.183(+0.001)  0.339(+0.020) 4.344(+0.055)  13.037(£1.027)  0.025(£0.000)  0.041(£0.002)  0.223(£0.007) 0.778(+0.065)
Deep Coral SB 0.182(£0.000)  0.325(+0.008)  4.307(+0.042)  12.414(£1.209) 0.025(+0.000) 0.039(+0.001)  0.214(+0.007)  0.840(+0.184)
Deep Coral TB 0.182(£0.000)  0.321(+0.008) 4.347(£0.039)  12.637(+0.949)  0.025(40.000) 0.039(+0.001) 0.218(40.012)  0.792(+0.122)
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Table 7 provides an overview of the parameter ranges chosen to define source and target domains for
different task difficulties across all datasets. To gain more insights into the parameter importance
besides the domain experts’ opinion, we visualize the latent space of the conditioning network for all
presented datasets in Figures 7 to 10.

Table 7: Defined distribution shifts (source and target domains) of each dataset and each difficulty.

Source range Target range

Dataset Parameter Difficulty (no. samples) (no. samples)
easy [0.01, 0.13) (4000) [0.13,0.15] (750)
Rolling Reduction r (—) medium [0.01, 0.115) (3500) [0.115, 0.15] (1250)
hard [0.01,0.10) (3000)  [0.10, 0.15] (1750)
casy 2, 4.8) (3060) [4.8, 5] (255)
Forming Thickness ¢ (mm) medium [2, 4.3) (2550) [4.3, 5] (765)
hard [2,4.1) (2295) [4.1, 5] (1020)
casy [100, 122)(2693) [122, 126](504)
Electric Motor ~ Rotor slot diameter 3 d,3 (mm) medium [99, 120) (2143) [120, 126] (1054)
hard [99, 118) (1728) [118, 126] (1469)
easy [5, 13) (404) [13, 14] (56)
Heatsink # fins medium [5, 12) (365) [12, 15] (95)
hard [5,11) (342) [11,15] (118)
Thickness Reduction
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Figure 7: T-SNE visualization of the conditioning vectors for the hot rolling dataset. Point color
indicates the magnitude of the respective parameter. While the sheet thickness ¢ appears to be
uniformly distributed, the remaining three exhibit distinct clustering patterns. Taking into account
domain knowledge from industry experts, we defined the reduction parameter r as the basis for
constructing distribution shifts.
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Figure 8: T-SNE visualization of the conditioning vectors for the sheet metal forming dataset. Point
color indicates the magnitude of the respective parameter. The sheet length [ shows the most distinct
groupings, but with only three discrete values, it is unsuitable for defining domain splits. The friction
coefficient p appears uniformly distributed across the embedding. In contrast, sheet thickness ¢
and roll radius r show clustering behavior, making them more appropriate candidates for inducing
distribution shifts. We choose ¢ as the domain defining parameter.
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Figure 9: T-SNE visualization of the conditioning vectors for the electric motor design dataset.
Point color indicates the magnitude of the respective parameter. For clarity, we only show selected
parameters. The only parameter for which exhibits see some structure in the latent space is d..3, we
therefore choose this to be our domain defining parameter in accordance with domain experts.
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Figure 10: T-SNE visualization of the conditioning vectors for the heatsink design dataset. Point
color indicates the magnitude of the respective parameter. Height 2 is distributed equally across the
representation, but the other parameters show concrete grouping behavior. We therefore choose the
number of fins as the domain defining parameter.

C Model Architectures

This section provides explanations of all model architectures used in our benchmark. All models
are implemented in PyTorch and are adapted to our conditional regression task. All models have in
common, that they take node coordinates as inputs and embed them using a sinusoidal positional en-
coding. Additionally, all models are conditioned on the input parameters of the respective simulation
sample, which are encoded through a conditioning network described below.

Conditioning Network. The conditioning module used for all neural surrogate architectures embeds
the simulation input parameters into a latent vector used for conditioning. The network consists of a
sinusoidal encoding followed by a simple MLP. The dimension of the latent encoding is 8 throughout
all experiments.

PointNet. Our PointNet implementation is adapted from [96] for node-level regression. Input node
coordinates are first encoded using sinusoidal embeddings and passed through an encoder MLP.
The resulting representations are aggregated globally using max pooling over nodes to obtain a
global feature vector. To propagate this global feature, it is concatenated back to each point’s feature
vector. This fused representation is then fed into a final MLP, which produces the output fields.
The conditioning is performed by concatenating the conditioning vector to the global feature before
propagating it to the nodes features. We use a PointNet base dimension of 16 for the small model and
32 for the larger model.

GraphSAGE. We adapt GraphSAGE [79] to the conditional mesh regression setting. Again, input
node coordinates are embedded using a sinusoidal encoding and passed through an MLP encoder.
The main body of the model consists of multiple GraphSAGE message passing layers with mean
aggregation. We support two conditioning modes, namely concatenating the latent conditioning
vector to the node features, or applying FiLM style modulation [102] to the node features before each
message passing layer. We always use FILM modulation in the presented results. After message
passing, the node representations are passed through a final MLP decoder to produce the output fields.
The base dimension of the model is kept at 128 and we employ 4 GraphSAGE layers.
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Transolver. The Transolver model follows the originally introduced architecture [101]. Similar
to the other models, node coordinates first are embedded using a sinusoidal encoding and passed
through an MLP encoder to produce initial features. Through learned assignement, each node then
gets mapped to a slice, and inter- as well as intra-slice attention is performed. Afterwards, fields are
decoded using an MLP readout. The architecture supports two conditioning modes: concatenation,
where the conditioning vector is concatenated to the input node features before projection, or
modulation through DiT layers across the network. For our experiments, DiT is used. We choose a
latent dimension of 128, a slice base of 32 and we apply four attention blocks for the small model.
For the larger model, we scale to 256, 128 and 8 layers respectively.

UPT. Our UPT implementation builds on the architecture proposed in [73]. First, a fixed number
of supernodes are uniformly sampled from the input nodes. Node coordinates are embedded using
a sinusoidal encoding followed by an MLP. The supernodes aggregate features from nearby nodes
using one-directional message passing and serve as tokens for subsequent transformer processing.
They are then processed by stack of DiT blocks, which condition the network on the simulation input
parameters. For prediction, we employ a DiT Perceiver [104] decoder that performs cross-attention
between the latent representation and a set of query positions. This allows the model to generate
field predictions at arbitrary spatial locations, which is a desirable property for inference. We sample
4096 supernodes and use a base dimension of 192. We use 8 DiT blocks for processing and 4 DiT
Perceiver blocks for decoding.

D Experiments

This section provides a detailed overview of the performed experiments for this benchmark. First, we
explain the benchmarking setup used to generate the benchmarking results in detail in Appendix D.1
and the evaluation procedure in Appendix D.2. Furthermore, we provide information about training
times for the presented methods in Appendix D.3.

D.1 Experimental Setup

Dataset Splits. We split each dataset into source and target domains as outlined in Section 3.5
and Appendix B. Within source domains, we use a 50%/25%/25% split for training, validation,
and testing, respectively. For target domains, where labels are unavailable during training in our
UDA setup, we use a 50%/50% split for training and test sets. The large validation and test sets
are motivated the industrial relevance of our benchmark, where reliable performance estimation on
unseen data is a crucial factor.

Training Pipeline. For training, we use a dataset wide per field z-score normalization strategy, with
statistics computed on the source domain training set. We use a batch size of 16 and the AdamW
optimizer [105] with a weight decay of 1e-5 and a cosine learning rate schedule, starting from 1e-3.
Gradients are clipped to a maximum norm of 1. For the large scale heatsink design dataset, we enable
Automatic Mixed Precision (AMP) to reduce memory consumption and training time. Additionally,
we use Exponential Moving Average (EMA) updates with a decay factor of 0.95 to stabilize training.

Performance metrics are evaluated every 10 epochs, and we train all models for a maximum of 3000
epochs with early stopping after 500 epochs of no improvement on the source domain validation loss.

Domain Adaptation Specifics. To enable UDA algorithms, we jointly sample mini batches from
the source and target domains at each training step and pass them thorugh the model. Since target
labels are not available, we compute supervised losses only on the source domain outputs. In addition,
we compute DA losses on the latent representations of source and target domains in order to encourage
domain invariance.

Since a crucial factor in the performance of UDA algorithms is the choice of the domain adaptation
loss weight A\, we perform extensive sweeps over this hyperparameter and select models using the
unsupervised model selection strategies described in Section 4.3.

For the three smaller datasets, we sweep \ logarithmically over A € {107!,1072,... 107},
while for the large scale Heatsink design dataset, we sweep a smaller range, namely A\ €
{10%2,1071,...,1072}, motivated by the balancing principle [57].
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Table 8 provides an overview of the number of trained models for benchmarking performance of all
models and all UDA algorithms on the medium difficulty domain shifts across all datasets.

Table 8: Overview of the benchmarking setup and number of trained models across all datasets.

Dataset Models UDA algorithms ) values #seeds # models trained
Rolling PointNet, GraphSAGE, Transolver Deep Co\fj/l(’) %%AD DANN {1071;_1079} i 31224
Forming  PointNet, GraphSAGE, Transolver Deep Co\ff/l(’) %I\SAD DANN {10_1:’_10_9} j 31224
Motor PointNet, GraphSAGE, Transolver Deep CO\?}(’) %%AD DANN {1071;_1079} i 31224
Heatsink PointNet, Transover, UPT Deep Co\ff/l(’) %I\SAD DANN {102:’_10_2} j ]1820

Sum 1,200

Additional Details. For the three smaller datasets, we use smaller networks, while for the large
scale heatsink design dataset, we train larger model configurations to accommodate the increased
data complexity. An overview of model sizes along with average training times per dataset is
provided in Table 9. We also refer to the accompanying code repository for a complete listing of all
model hyperparameters, where we provide all baseline configuration files and detailed step by step
instructions for reproducibility of our results.

Another important detail is that, during training on the heatsink design dataset, we randomly subsam-
ple 16,000 nodes from the mesh in each training step to ensure computational tractability. However, all
reported performance metrics are computed on the full resolution of the data without any subsampling.

D.2 Evaluation Metrics

We report the RMSE for each predicted output field. For field ¢, the RMSE is defined as:

RMSE™ — L f: - % (v = 1 (w)5f;)n)2
M m=1 Nm /

where M is the number of test samples (graphs), NV,,, the number of nodes in graph m, yy(fl)n the
ground truth value of field 7 at node n of graph m, and f (m)%)n the respective model prediction.

For aggregated evaluation, we define the total Normalized RMSE (NRMSE) as:

K
NRMSE = ) ~NRMSE}*,
i=1
where K is the number of predicted fields. For this metric, all individual field errors are computed on
normalized fields before aggregation.

In addition to the error on the fields, we report the mean Euclidean error of the predicted node
displacement. This is computed based on the predicted coordinates €,y 5, € R? and the ground truth

coordinates ¢, ,, € R?, where d € {2, 3} is the spatial dimensionality, as follows:

M N,
RMSEdeformation _ i 1 HC —é ||
- M 5 Nm E m,n m,nilg -

m=1 n=1
D.3 Computational Resources and Timings

While generating the results reported on the medium difficulty level of our benchmark, we measured
average training times per dataset and model architecture. While the total compute budget is difficult
to estimate due to distributed training runs across various hardware setups, we report standardized
average training times for 2000 epochs in Table 9, measured on a single NVIDIA H100 GPU using
batch size of 16.
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Table 9: Average training times (averaged for 2000 epochs) and parameter counts for each model on
the medium difficulty benchmark tasks. Times are measured on a H100 GPU using a batch size of 16.

Dataset Model # parameters Avg. training time (h)
PointNet 0.3M 1.2
Rolling GraphSAGE 0.2M 3
Transolver 0.57M 2.1
PointNet 0.3M 2.8
Forming  GraphSAGE 0.2M 8
Transolver 0.57M 4.4
PointNet 0.3M 5.6
Motor GraphSAGE 0.2M 11.5
Transolver 0.57M 6.5
PointNet 1.08M 4.9
Heatsink Transolver 4.07TM 5.3
UPT 5.7TM 5.5

E Dataset Details
E.1 Hot Rolling
Table 10: Input parameter ranges for the hot rolling simulations. Samples are generated by equally

spacing each parameter within the specified range using the indicated number of steps, resulting in
5 x 19 x 10 x 5 = 4750 total samples.

Parameter Description Min Max Steps
t (mm) Initial slab thickness. 50.0 183.3 5
reduction (—)  Reduction of initial slab thickness. 1.0 15.0 19
Teore (°C) Core slab temperature. 900.0 1000.0 10
Tout (°C) Surface slab temperature. 900.0 1077.77 5

E.2 Sheet Metal Forming

Table 11: Input parameter ranges for the sheet metal forming simulations. Samples are generated
by equally spacing each parameter within the specified range using the indicated number of steps,
resulting in 17 X 13 x 3 x 5 = 3315 total samples.

Parameter Description Min  Max  Steps
r (mm) Roll radius. 10.0  50.0 17
t (mm) Sheet thickness. 2.0 5.0 13
I (mm) Sheet length. 175.0 350.0 3
w(=) Friction coefficient between... 0.1 0.5 5
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774 E.3 Electric Motor Design

see DETAIL A

. peTAlL A

Figure 11: Technical drawing of the electrical motor. Sampling ranges for the shown parameters can
be found in Table 12.

Table 12: Input parameters for the electric motor design simulations. Since this simulation was
performed by domain experts, the parameters are not uniformly sampled as in the previous simulation
scenarios. In total, 3196 simulations were performed.

Parameter Description Min  Max
ds; (mm) Stator inner diameter. 150.0 180.0
hy (mm)  Magnet height. 6.0 9.0
ar (°) Angle between magnets. 120.0 160.0
ty1 (mm) Magnet step. 1.0 5.0
rr1 (mm)  Rotor slot fillet radius 1. 0.5 2.5
rro (mm)  Rotor slot fillet radius 2. 0.5 3.5
rr.3 (mm)  Rotor slot fillet radius 3. 0.5 5.0
rra (MM Rotor slot fillet radius 4. 0.5 3.0
trsp1 (mm)  Thickness saturation bar 1. 4.0 12.0
trsb2 (mm)  Thickness saturation bar 2. 1.0 3.0
trsp3 (mm)  Thickness saturation bar 3. 1.2 4.0
trsba (mm)  Thickness saturation bar 4. 5.0 12.0
dr1 (mm)  Rotor slot diameter 1. 60.0  80.0
dyo (mm)  Rotor slot diameter 2. 80.0 120.0
drs (mm)  Rotor slot diameter 3. 100.0 125.0
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775 E.4 Heatsink Design
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Figure 12: Technical drawing of the solid body in the heatsink design dataset. Some of the shown
parameters are varied for data generation (see Table 13).

Table 13: Input parameters for the heatsink design simulations. The simulation was performed by
domain experts and the parameters are not uniformly sampled as in the previous simulation scenarios.
In total, 460 simulations were performed.

Parameter Description Min Max
fins (—) Number of fins. 5 14
gap (m) Gap between fins. 0.0023 0.01625
height2 (m) Height 2. 0.053 0.083
T (solid) (K) Temperature of the solid fins. 340 400
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We implement baseline neural surrogate (Section 4.4), DA algorithms (Sec-
tion 4.2) and model selection strategies (Section 4.3) as stated in the abstract. Our datasets
were build are motivated by domain experts (Section 3). Claims on the findings are supported
by Section 5.

Guidelines:
¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.
* The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Limitations and issues with our benchmark are brought up in Section 6.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: We do not make any theoretical, but only empirical contributions.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: As outlined in Section 3, the preprocessed datasets are publicly hosted for
maximal reproducibility. Additionally, they can be re-generated as we provide a detailed
description of the numerical simulation setups in the technical supplementary material.
However, the hot rolling (Section 3.1) and sheet metal forming (Section 3.2) scenarios
were generated with the proprietary FEM software Abaqus, as stated in the main body. We
describe the benchmarking procedure in Section 4 and in detail in Appendix D, where we
describe the most important used hyperparameters for reproducibility.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Data is publicly released (Section 3 for details), as encouraged by the Datasets
and Benchmarks Track. Library code is provided with configuration files and step by step
instructions to reproduce the paper results. On top of this environment setup and tutorial
notebooks are also included.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Refer to Section 4.4 Appendix C, Section 4.5, Appendix D.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide error bars across all measures reported by running on four seeds
(see tables in Appendix A and error bars in Figure 6) and report mean and standard deviation
over metrics.

Guidelines:
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8.

10.

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Although the benchmark was produced on different hardware setups, Ap-
pendix D.3 contains average training time information for each baseline across all datasets.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: There is no societal or impact on privacy and potentially harmful consequences
coming neither from the presented dataset, nor from the methods, since we are treating
physical simulation data without any personal information associated with it.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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12.

Answer: [NA]

Justification: No societal impact will be made from the presented simulation datasets and
applied methods. There is to our knowledge no path to negative applications of the provided
data and methods.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our datasets and method only use simulation physical data.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer:

Justification: All datasets in the paper have been created specifically within this work
and a license is included. Original authors of models (see Section 4.4), UDA algorithms
(see Section 4.2) and unsupervised model selection strategies (see Section 4.3) are cited
accordingly.
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13.

14.

15.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Datasets are detailed in Sections 3.1 to 3.4 and the supplementary technical
appendix. Library code contains documentation and tutorials.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: -
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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1092 Answer: [NA]

1093 Justification: -

1094 Guidelines:

1095 * The answer NA means that the paper does not involve crowdsourcing nor research with
1096 human subjects.

1097 * Depending on the country in which research is conducted, IRB approval (or equivalent)
1098 may be required for any human subjects research. If you obtained IRB approval, you
1099 should clearly state this in the paper.

1100 * We recognize that the procedures for this may vary significantly between institutions
1101 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
1102 guidelines for their institution.

1103 * For initial submissions, do not include any information that would break anonymity (if
1104 applicable), such as the institution conducting the review.

1105 16. Declaration of LLLM usage

1106 Question: Does the paper describe the usage of LLMs if it is an important, original, or
1107 non-standard component of the core methods in this research? Note that if the LLM is used
1108 only for writing, editing, or formatting purposes and does not impact the core methodology,
1109 scientific rigorousness, or originality of the research, declaration is not required.

1110 Answer: [NA]

1111 Justification: LLMs have only been used to assist writing and plotting.

1112 Guidelines:

1113 * The answer NA means that the core method development in this research does not
1114 involve LLMs as any important, original, or non-standard components.

1115 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
1116 for what should or should not be described.
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