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Abstract

Merging Low-Rank Adaptation (LoRA) mod-
ules is a problem gaining significance as LoORA
adapters proliferate. Despite various approaches
showing benchmark improvements, the field lacks
clear guiding principles for effective LoORA merg-
ing. Two predominant strategies exist: direct
merging (DM), which preserves a memory ef-
ficient two-matrix structure but sacrifices perfor-
mance, and multiplied merging (MM), which de-
livers superior results but abandons the memory-
efficient, low-rank architecture. In this paper, we
first show that DM introduces interfering cross-
terms that degrade performance, while MM ex-
hibits linear mode connectivity in the loss land-
scape, making it an optimal strategy for merg-
ing. Then we demonstrate that merging with an
SVD-based strategy combines MM’s performance
advantages with DM’s memory efficiency, deliv-
ering the best of both approaches.

1. Introduction

The rise of Large Language Models (LLMs) (Touvron et al.,
2023; Reid et al., 2024; Achiam et al., 2023) has popularized
their use as assistants for a variety of knowledge-intensive
tasks. However, for some tasks, users may find that an out-
of-the-box LLM is insufficient and requires additional train-
ing. Given that even the smallest usable models have billions
of parameters, the computational cost of training them can
be prohibitive. Thankfully, the recent rise of Parameter-
Efficient Fine-Tuning (PEFT) methods — like LoRA (Hu
et al., 2021) and DoRA (Liu et al., 2024) — enables LLMs
to train at a fraction of the cost.

In practical applications requiring models to handle diverse
queries, the development of specialized expert models for ev-
ery task is often infeasible. Furthermore, employing PEFT
for each task results in a number of models that scales
linearly with the quantity of target tasks. Consequently,
repositories like the Hugging Face Hub (Wolf et al., 2019)
now host an expanding collection of these specialized PEFT
modules. Serving this multitude of expert models presents

significant challenges, particularly under limited GPU mem-
ory constraints. Model merging (Tang et al., 2024) aims to
mitigate this limitation by consolidating multiple fine-tuned
PEFT modules into a single model, that generalizes across
many tasks.

Given a pre-trained base model parametrized by W, LoRA
fine-tunes the model by injecting two matrices: W+AW =
W + BA where W, BA € R**" B ¢ R"™ " and A €
R™*™, For LoRA merging, W remains consistent across all
models and the adapters BA are trained on different tasks
and then merged. In our setting, LoORA adapters are trained
in image classification tasks but merging LoRA adapters can
also extend to natural language processing and multimodal
domains (Tang et al., 2024).

LoRA merging has generally been done in two ways.
"Direct-Merge" (L pjs) directly combines As and Bs from
different adapters separately, while "Mutliplied-Merge"
(L arar) first multiples A and B from the same adapter into
BA before merging. For L,sys, the LoORA adapters lose
their shape as well as any memory-efficiency from LoRA’s
low-rank structure (such as memory-efficient storage). Ex-
amples of Lpjs include (Huang et al., 2023; Zhao et al.,
2024; Prabhakar et al., 2024) and examples of L, include
(Stoica et al., 2024; Shah et al., 2023; Wu et al., 2024).

Often, it is ambiguous which method is preferable. Lpas
retains the low-rank matrix structure of LoRA, which en-
ables better memory efficiency during the merging step and
during storage. It also makes multi-LoRA serving cheaper
as low rank matrices can be loaded and offloaded from the
GPU (Yadav et al., 2023a). Additionally, in settings such
as QLoRA (Dettmers et al., 2023), the shape of the original
LoRA must be preserved, as it is challenging to merge the
LoRA modules back to quantized base model weights. In
contrast, L ;s does not preserve this low-rank structure of
the LoRA matrices but often enables better performance.
But why is there a performance gap? and is there a better
way to retain LoRA’s shape without performance degrada-
tion?

We strive to answer both these questions by analyzing the
differences between Ly and Lpys. Our analysis reveals
that Lpjs introduces interference terms absent in Ljsas
which severely degrade performance - when merging 8 Lo-



LoRA Merging with SVD

RAs, we observe L s outperforms Lpps by an +50.15%
accuracy. Furthermore, we demonstrate how using SVD on
top of Ly can retain the memory-efficient LORA shape
with virtually no accuracy loss. We supplement this find-
ing mathematically by demonstrating that the error from
SVD will be less than the interference error in L pj;. Em-
pirically, our method outperforms state-of-the-art Ly ap-
proaches like LoRA LEGO by +7.12% on average. Finally,
we demonstrate that L, exhibits linear mode connectiv-
ity (Frankle et al., 2019) in the loss landscape while L pas
does not, providing additional theoretical justification for
preferring multiplied merging when combining LoRA.

2. Related Works

There are two main approaches to model-merging - data-
dependent and data-free. Data-dependant approaches
(Matena & Raffel, 2021; Yang et al., 2023; Prabhakar et al.,
2024) use data to adjust or train the mixture of models. In
our setting, we focus on the data-free setting. Model Soups
(Wortsman et al., 2022) simply averages the model weights
together. Task-Arithmetic merging (Ilharco et al., 2022)
sums the base model with scaled task vectors (the differ-
ence between the base model and the fine-tuned model).
TIES-Merging (Yadav et al., 2023b) merges models by min-
imizing the interference of parameters. DARE (Yu et al.,
2023) uses a dropout and rescale operation. More recent
model-merging methods (Matena & Raffel, 2021; Tam et al.,
2023; Mavromatis et al., 2024; Lu et al., 2024; Yang et al.,
2023; Feng et al., 2024; Daheim et al., 2023) have also ex-
plored fancier approaches to combining models. Methods
specific to merging LoRAs include KnOTS (Stoica et al.,
2024) which aligns the LoRA into a common subspace with
SVD prior to merging, LoORA Soups (Prabhakar et al., 2024)
which learns a linear combination of concatenated LoRAs,
LoRA LEGO (Zhao et al., 2024) which clusters LoRAs be-
fore merging, and ZipLora (Shah et al., 2023) which learns
optimal scaling coefficients. While these approaches are
each optimal in their own specific setting (e.g. data-free,
adaptable rank, post-hoc training etc), we articulate a frame-
work for approaching LoRA-merging in general.

3. Method

3.1. Preliminaries

LoRA Fine-Tuning. The shape and structure of LoRA was
described in the introduction. Without LoRA, the activation
for layer W; is z; = W, z;_1. With LoRA, this activation
becomes z; = W;z;_1 + ~BA, where « is a scalar and r
is the rank of the LoRA. During training, only BA is tuned
and all weights W are frozen.

Linear Mode Connectivity. Linear Mode Connectivity
(LMC) (Frankle et al., 2019) describes when two models

can be effectively combined through weight interpolation.
This is measured by the barrier function:

B(6:,02) = sup[L(aby + (1 — a)b;)] o
—[aL(01) + (1 — ) L(62)].

Here, sup indicates the supremum, #; and 65 represent
model parameters, L is the loss function, and B(61, 65)
quantifies the maximum elevation in loss along the linear
interpolation path relative to the convex combination of end-
point losses. When B(61,62) ~ 0, the models are LMC,
indicating they share the same loss landscape basin and are
ideal candidates for parameter averaging techniques (Fran-
kle et al., 2019; Entezari et al., 2021; Jordan et al., 2022).

3.2. Merging Notation

In our context, we assume LoRA modules are merged via
summation and is uniform across layers, but our results gen-
eralize to other merging functions as well. For simplicity,
we define everything in terms of a single layer across multi-
ple models. To merge N LoRA adapters, where subscript ¢
indicates the 7th LoORA module, MM and DM are defined:

N
Lyy = ZBi *Ay,Lpy = (Z Bi)(ZAi) 2)

i=1

3.3. Noise in Direct-Merge
Expanding L pjs from Equation (2) yields:

Lo = (Z BZ-)(Z Ai) =) (BiA)+ ) BiA; (3

i i£]

Let us also define M = Z#j B;A ;. Now, we rewrite (2) as
Lpy = Lym + M. Since M is composed of B; and A;
terms that originate from different adapters, we hypothesize
that their composition harms model performance. To test
whether this interference term degrades model performance,
we simulate M with gaussian noise and demonstrate that
the decrease in performance due to the M is greater than or
equal to the decrease resulting from the simulated noise.

3.4. Multiplied-Merge with SVD

Given the noise inherent to L pyy, it may be optimal to re-
tain the performance benefits of L s and then find a low
rank decomposition back into structure of Lp,s. Here, we
demonstrate that a simple SVD-based method can accom-
plish this. Let SV D,.(-) = UX VT indicate a function
that takes the SVD of a matrix and retains only the r largest
singular values. SV D,.(Lyspr) then defines A as X, VT
and Bas U.

Mathematically, we will show that the magnitude of the error
resulting from truncated SVD is bounded above by the mag-
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Figure 1. Linear Mode Connectivity Analysis (LMC) of Lasar and Lpas on all dataset pairs. Lines show loss at different interpolation
values. L s consistently exhibits LMC (loss below interpolated loss line), while L pas shows higher loss barriers.

nitude of M. Empirically, we then show that SV D,.(Lasar)
outperforms the SOTA Lp s methods.

Math Proof Here, we show SVD truncation is a closer
approximation to Lsps than Lpjs. Definitionally:

SVD,(Lyn) =SVD(Lyag) — SV Derr(Lainr)  (4)

where SV D,.-(Laras) is the error due to trunca-
tion. Specifically, SVD(Lypy) = UXVT and
SVDerr(Lyn) = UE[T_,_l;n]VT where ¥;.;) indicates
the ith through jth singular values.

The Eckart-Young-Mirsky theorem indicates that SVD
provides the closest rank r approximation to any ma-
trix. Since SV D,.(Lprpr) and LoRAp )y, are both rank
r, SV D, (L) is a closer approximation. Giving:

l[Larne — SV Dy (L)l < || Lyvns — Lom|] (5)
Substituting Equation (2) (right) and Equation (4) gives:

| Layine — (SVD(Lpipg) + SV Derr (Laraa))|| <
[[Larae — (L + M)||
[|SV Derr(Larar)l| < [|M]| N

Thus the error due to approximating Lpa;ps with SVD is
bounded above by the error due to using Lpjys.

(6)

4. Results

4.1. Experimental Setup

We use openai/clip-vit-base-patch32 as our base model. We
denote each dataset as D; where {D; = SVHN (Netzer
et al., 2011), Dy = GTSRB (Stallkamp et al., 2011), D3
= DTD (Cimpoi et al., 2013), D, = RESISC45 (Cheng
et al., 2017), D5 = Stanford-Cars (Krause et al., 2013), Dg
= Sun397 (Xiao et al., 2014), D, = Eurosat (Helber et al.,
2017), Dg = MNIST (LeCun & Cortes, 2005)}. We used the

LoRA adapters (rank=16) and evaluation benchmarks from
in (Tang et al., 2024). Out of the 8 available datasets, we
randomly select 4 pairs of datasets (D;, D;) and fix them for
each experiment. We also evaluate all eight datasets D; — Dg
merged together. For each dataset, we use the respective
LoRA. For each experiment, we apply four different merg-
ing methods: Averaging, Task-Arithmetic (TA) Merging,
TIES-merging, and DARE merging. For TA, TIES, DARE,
we tune the hyper-parameters via a linear search on the eight
combined datasets and fix them for all experiments.

4.2. Performance Comparison Between Multiplied
Merging and Direct Merging

First, we compare the accuracy of Ly, and Lpys for each
merging method across each pair of datasets. In Table
1, Lpys outperforms Lysps by +0.09% when using TA
merging on dataset pair (D5, D6), but has worse perfor-
mance in the remaining 19 comparisons. When merging
2 LoRA, Ly outperforms Lpys by +2.97% on average.
Notably, when merging 8 LoRA, L, achieves, on aver-
age, +50.15% accuracy compared to Lp s across all merg-
ing methods. This error in merging multiple LoRAs is more
thoroughly investigated in section 4.4.

4.3. Equivalence of SVD-Based Approximation to
Multiplied Merging

Since L pas lags behind Lz s, we hypothesize that merging
with Ly s and then reducing the rank with a truncated SVD
can help mitigate this gap. So, we compare SV D1g(Lasar)
with Lrps. We use r = 16 to match the rank of LoRApas.
In Table 2, SV D1¢(+) has a negligible performance drop
compared to Lysas. Lasas is on average +0.46% across
all methods on paired LoRAs, while SV D1¢(-) is +0.52%
compared to L7y when merging all 8 LoRAs.
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Dataset (—) (D1, D2) (D3, D4) (D5, D6) (D7, D8) Merge All

Method (|) MM DM Noise MM DM Noise MM DM Noise MM DM Noise MM DM Noise
Averaging 82.00 76.50 8191 6830 65.64 6827 69.60 6883 69.62 9390 89.33 9399 6440 61.31 64.10
Task Arithmetic 85.50 81.90 85.89 7220 7143 7228 70.60 70.69 70.57 9640 96.00 96.38 7330 620 71.50
TIES 81.40 73.51 81.54 6740 6190 6726 69.60 6646 69.64 9430 87.32 9399 6850 560 67.50
DARE 86.00 81.74 85.83 7240 7123 7224 70.60 70.73 70.61 96.40 9594 9638 73.50 6.00 70.80
Average 83.73 7841 8379 70.08 67.55 7001 70.10 69.18 70.11 9525 92.15 9519 6993 19.78 68.50

Table 1. Accuracy comparison between Model Merging (MM), Direct Merging (DM), and Noise Simulation

Dataset (—) (D1,D2) (D3, D4) (D5, D6) (D7, D8) Merge All

Method () MM SVD MM SVD MM SVD MM SVD MM SVD
Averaging 82.00 81.80 68.30 67.90 69.60 69.60 9390 9390 6440 64.10
Task Arithmetic 85.50 85.74 7220 71.82 70.60 70.47 96.40 963 7330 72.23
TIES 81.40 78.10 6740 66.06 69.60 69.27 9430 90.61 6850 73.23
DARE 86.00 85.68 7240 7199 70.60 7049 9640 9630 73.50 72.20
Average 83.73 82.83 70.08 70.00 70.10 70.08 9525 94.40 6993 70.44

Table 2. Accuracy comparison between of LoRAnras vs SV D1g(LoRAw ).

Rank () Method (|) (D1,D2) (D3,D4) (D5,D6) (D7,D8) All Average
8 Lora Lego 73.90 65.10 68.20 82.50 61.10 70.16
MM SVD 81.40 67.20 69.40 93.70 63.70 77.90
16 Lora Lego 77.90 64.90 68.40 82.30 61.90 71.08
MM SVD 81.80 67.90 69.60 93.90 64.10 78.30
32 Lora Lego 76.40 64.70 68.60 87.60 63.3 72.12
MM SVD 82.00 68.30 69.60 93.90 64.30 78.50

Table 3. Accuracy comparison between SV D, (LoRAns ) (LORA averaging) and LoRA LEGO.

4.4. Analysis

SVD-Based Approach Outperforms State-of-the-Art
Methods. Next, we compare SV D,.(Lysps) with a SOTA
LoRAp)s merging method. LoRA LEGO (Zhao et al.,
2024) is a method that decomposes LoRA modules into
rank-1 units and then clusters them together. The centroid
of each cluster contributes 1 rank to the final merged-LoRA,
thereby giving users fine-grain control of the merged rank.
However, LORA LEGO introduces the same noise present
in LoRAp) as LoRA units from different adapters are av-
eraged together. In our comparison, we select r = [8, 16,
32] and use simple averaging to compute Lp;ps. As shown
in Table 3, for rank 8, SV D,.(Lras) achieves 4+7.74% ac-
curacy compare to Lego LoRA, +7.22% at rank 16, and
+6.38% at rank 32. This indicates that SV D,.(Lasas) is
able to outperform SOTA L pj; methods, while retaining
the ability to dynamically select merged LoRA rank.

Linear Mode Connectivity Analysis We demonstrate that
Lysar is LMC while Lpys is not. For each task, we
interpolated the pairs of LoRAs with coefficients a €
[0.1,0.2,...0.9, 1.0], and calculate the average cross entropy
loss on the two test sets. We then plot the interpolated losses
and the loss of the interpolated models. Models are LMC

when the interpolated model’s loss is less than the interpo-
lated loss for all interpolation values. Fig. 1 shows that
Ly is LMC on all datasets, whereas L pjs is only LMC
on a single dataset.

Interference Impact and Scaling Effects As shown in
section 3.3, Lpys = Ly + M. To simulate the impact
of M, we sample a noise matrix N € R"*™ with N;; ~
N (mean(M), std(M)) and demonstrate that Lpsp + N
performs better than or equal to Lp)y, indicating that the
term M is source of degradation in merging performance. In
Table 1, adding N to Ljsps has a minimal effect on accuracy
(—0.025% difference on average), however, when merging
on eight LoRA, this noise actually does better by +0.143%.

5. Conclusion

We demonstrated that merging LoRA with Direct-Merge
can maintain a memory-efficient low-rank structure but
introduces interference terms that degrade model perfor-
mance and break LMC. By using truncated SVD on top of
Mutliplied-Merge, we show that it is easy to retain memory-
efficient structure with virtually no performance cost.
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