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Abstract

We aim to combine data and physics for designing more accurate and faster PDE
solvers. We reinterpret the data-driven machine learning approach of [16] through
a dynamical system perspective and draw a connection to neural ODE and implicit
layer neural network architectures. These in turn inspire a class of sample-efficient
spectral PDE solvers (with an encoder - processor - decoder structure) that can be
trained end-to-end in a memory-efficient way. The crucial benefit of the methods is
that they are resolution-invariant and guaranteed to be consistent.

1 General Framework: Dynamical system perspective

We begin by giving a systematic perspective for [16] that operates in physical space, and will use the
linear advection equation

∂tu(t, x) + c∇u(t, x) = 0, u(0, x) = u0(x) for (x, t) ∈ (0, 1)× (0, T ), (1)

as a running example. The dynamical system perspective entails that we try to learn the tunable
controls to drive the system to state uT at final time when initialized from state u0, using training
data from solved PDEs with a high-fidelity classical method.

Re-interpretation of the simplest set-up: On (1), the proposed three-point finite difference scheme
takes the following form (with fixed un

1 , u
n
J derived from periodic boundary condition):
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where un
j ≈ U(xj , t

n). With b0 = −1 − 2b−1 and b1 = 1 + b−1, g arbitrary, the scheme can be
proved to be consistent and conservative

∑
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j [16]. Several fixed choices of g, b−1

in fact recover classical numerical methods such as Backward Euler and Crank-Nicolson. The
machine-learned approach seeks to optimize over I data pairs {(u0,i, uN,i

ref ) ∈ RJ × RJ}Ii=1 a loss
of low-dimensional parameters:
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Note that the parameters g, b−1 are shared across time and the loss only depends on the final time. If
we substitute in the requirement on b0, b1, one ends up with for j ∈ [J ]
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which means if we put all the J grid points into a vector un, un+1, we have for tri-diagonal Aθ, Bθ
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n+1 = un +
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where θ = {b−1, g} is time-independent and ∆x,∆t are fixed a-priori. We recognize it as a dynamical
system update in RJ from time tn to tn+1, and can be approximated as a continuous update

lim
∆t→0
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giving for ut ∈ RJ , t ∈ (0, T ),

∂tu
t =

1

∆x
(Bθ −Aθ)u

t . (4)

One would recognize this as a Neural ODE [7] evolving a J-dimensional vector: ∂tu(t) =
f(u(t), t, θ), where we learn the dynamics (parameterized by θ) that match the ground truth so-
lution at time T . This can be thought of as an interpolation of the discrete dynamics, but the
dependence on g is gone when taking the ∆t → 0 limit in (4). The nice thing about the neural ODE
formulation is that one can solve an augmented ODE through adjoint method backward in time to
efficient propagate the gradients needed for updating θ [7]: (let a(t) := ∂E(uT )

∂ut )
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∫ 0
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General discrete dynamical system: More generally, the system can be modeled as a sequence of
N implicit layers with time-dependent θn (see Example 1 below), since from (3) we are looking for
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n = 0, ∀n ∈ [N ] . (6)

Each implicit layer can be described as finding un+1 such that f(un, un+1(un, θn+1), θn+1) = 0 1,
for which we can use implicit function theorem to directly compute gradient at the solution u∗

n+1:
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which gives us (written for 1 sample for simplicity, generally will have
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where everything on the right now can be computed with “traditional” automatic differentiation.
Above we work with a similar loss min E(gn, bn−1) as (2), which is only a function of uN at the final
time. The gradient computation calculated with (7) is cheap compared to naive autograd since one
doesn’t have to store the intermediate states from the iterative forward solver such as CG or truncated
Neumann series used in root-finding (6). The parameters θn are considered to be the "controls" at
each step n that drives the system towards uN

ref .
Example 1 (Adapted from [16]). Consider the ODE ∂tu(t) = −cu(t), u(0) = u0 for u : [0, T ] 7→
Rd. The analytical solution in this case is u(t) = u0e

−ct. If one were to deploy the three point BDF
scheme (1 + gn)un+2 − (1 + 2gn)un+1 + gnun = −c∆tun+2 with u0 = u0, u

1 = e−c∆tu0, then
the optimal

g∗0 = argmin
g∈R

∣∣∣∣( (1 + 2g)e−c∆t

1 + g + c∆t
− g

1 + g + c∆t

)
− e−2c∆t

∣∣∣∣2
depend on ∆t, c and more generally gn should be time-varying, instead of universally fixed at 0/0.5.

With this connection between the implicit layer / neural ODE and machine-learned numerical solver
drawn, we are ready to build on top and propose a few additional (spectral-based) algorithms coming
from this differentiable simulation perspective. We highlight that all proposed methods (1) guarantee
convergence to the true solution; (2) can evaluate solution uT (x) at any position x and the accuracy
is resolution-invariant beyond certain sampling rate in space.

1https://implicit-layers-tutorial.org/
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2 Spectral Methodology I: Fixed basis with prior knowledge

The above approach is inherently tied to a fine grid {xj} and operate entirely in physical space, and
while one can try to "learn" a better discretization grid in this differentiable programming pipeline, a
better way (i.e., sample-efficient way) is to employ spectral method. The difference from the Spectral
Neural Operator [8] is instead of mapping coefficients to coefficients in a non-parametric way we
model a dynamical system in the spectral domain by exploiting problem structure.

2.1 Deterministic

The most commonly used "spectral encoder" is probably the Fourier basis, which is efficient to
compute. DFT (and its inverse) is a linear operation but most often the PDE itself is nonlinear. In this
part, we use viscous Burgers’ equation

∂tu(t, x) + u(t, x)∇xu(t, x)− ϵ∂xxu(t, x) = 0, u(0, x) = u0(x) for (x, t) ∈ (0, 1)× (0, T ) (8)

with periodic boundary condition u(·, 0) = u(·, 1), ∂xu(·, 0) = ∂xu(·, 1) as the running example. By
exploiting orthogonality of the dictionary, the Fourier–Galerkin method prescribes that the solution
{u(t, x)}t stays in the fixed subspace spanned by colspace(A) := {eikx : k = −K/2, . . . ,K/2−1}.
Transforming the PDE evolution to the Fourier domain, one ends up with K coupled ODEs:

∂tûk = − ik

2

∑
p

ûpûk−p − ϵk2ûk ∀t > 0, k = −K/2, . . . ,K/2− 1 .

If we employ the three-point BDF on the resulting K-dimensional ODE involving {ûk(t)}k,

(1 + gn)ûn+2
k − (1 + 2gn)ûn+1

k + gnûn
k = ∆t[− ik

2

∑
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ûn+2
p ûn+2

k−p − ϵk2ûn+2
k ], ∀k

with ûn
k ≈ ûk(t

n) ≈ [A⊤un]k. Now each implicit layer, parameterized by gn, solves fgn(ûn+2)−
(1+2gn)ûn+1+gnûn = 0K for ûn+2 ∈ RK . One can optimize over {gn} using a similar loss as (2)
at time tN with j, J replaced by k,K again summed over I samples {(û0,i, ûN,i

ref ) ∈ RK × RK}Ii=1.
The gradient ∂E(ûN ; {gn})/∂gn needed for update follow easily from (7). Small ϵ in (8) poses
challenge as the solution can develop shock waves so in fact a multi-scale wavelet maybe more
appropriate for "compression". In practice we often know the mini-max optimal reconstruction
through K-term truncation of frames / RKHS [4] so these can be exploited as well for function class
approximation. Another benefit of working with Fourier basis is its rotation equivariance in SO(2),
which means if our PDE has rotation symmetry (u0 → uT imply Ru0 → RuT ), and our ODE solver
S obeys S(Rû0) = RS(û0) for its output, the methodology above will guarantee an equivariant PDE
solver. Such property is often desirable as it improves stability while being more data-efficient [9].

2.2 Randomized

Spectral methods based on hand-crafted deterministic basis such as Fourier, Chebyshev orthogonal
polynomial encounter "Kolmogorov n-widths" bottleneck [12, 20] since they form linear approxima-
tion (i.e., the solution lies in a fixed, finite-dimensional subspace oblivious to the input). One way to
get around is to employ (regularized) Random Features model [17]. We consider a general ansatz
space: ut(x) = A(x)vt for vt ∈ RJ assumed K-sparse, where the matrix A is random as opposed to
e.g., DFT matrix. For each input u0,i, one option is to pick Ai as a random Fourier matrix, the other
is to let it be NN with random weights:

(a) [Ai(x)]lj = exp(iωjxl), ωj ∼ N (0, 1); (b) [Ai(x)]lj = σ(ωju
0(xl)), ωj ∼ N (0, 1) . (9)

With such construction, we randomly sampled L points, denoted as {u0(xl)}Ll=1 and solve for
v0 ∈ RJ by ℓ1 minimization such as Lasso, where L ≈ K ≪ J . Assuming I observations, we
evolve these {v0,i}Ii=1 to get {vN,i}Ii=1 by noting that the spectral ODE for e.g., the linear advection
equation in this case becomes (ω is re-sampled for each i so Ai differs):

Ai(x)∂tv
i(t) + c∇xA

i(x)vi(t) = 0L , i = 1, . . . , I . (10)

Above ∇xA
i(x) is analytical, and we optimize over the time marching parameters {gn} using

three-point BDF on I samples similar to Section 2.1. Since the random projection matrix Ai is not
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trained, the loss is imposed in a reduced ≈ K-dim spectral domain. To obtain vN,i
ref for training, we

randomly sample {uN,i
ref (yl)}Ll=1 and use a least square fit on the same support as v0,i. Crucially the

input/output can be sampled on different grids and distinct across the i’s. The Lasso LP is only solved
once for each data pair on {u0,i(xl)}l outside the differentiable programming pipeline. We note that
the decoder is non-linear due to the randomness in Ai, hence the search is not over a fixed subspace.

We offer some intuitions on the choices behind the random embedding of u in (9): (a) is related
to random Fourier features and can be thought of as an approximate kernel method [17]; (b) is a
one-layer NN and is related to Nerual Tangent Kernel [11] in the lazy training regime where the
weights don’t move far from the random initialization. The algorithm has the structure of encoder
- processor - decoder, where the encoding from infinite-dimensional u0(x) to finite-dimensional
v0 (resp. uN (y) and vN ) will be lossless under standard Compressed Sensing assumptions. The
dynamics in the spectral domain leverages physics knowledge and is known to be consistent, while
data is used to learn a better time-stepping scheme {gn} for solving (10).

3 Spectral Methodology II: Learn the basis with differentiable programming

One can generalize further and consider data-driven encoder-decoder pair to integrate these learning
components to the dynamical system pipeline. The matrix A can still take the same form as (9) but
with trainable parameters ωj : the former setup now is akin to compressed-sensing off-the-grid [21]
and the latter becomes a shallow NN. Assuming again ut(x) = A(x)vt for vt ∈ RJ K-sparse, the
following algorithm can then be trained end-to-end with gradient updates: with randomly initialized
A (i.e., ωj) and fixed gn that recovers classical numerical method (e.g., gn = 0.5), repeat

• Randomly sample L points {u0(xl)} instead of fixed collocation points to avoid aliasing 2

• With the current projection matrix A(xl;ω)
L
l=1 ∈ RL×J for L ≪ J , solve Lasso to get

v0 ∈ RJ : min ∥v0∥1 s.t. Av0 = u0(xl)
L
l=1

• Transform the PDE dynamics to a coupled-ODE dynamics in J-dimension. After time
discretization, the resulting numerical scheme involves solving a (nonlinear) system (param-
eterized by gn) at each step for advancing time as {vn} → {vn+1} similar to Section 2

• After N steps, form the loss in physical domain with {uN (yl)}l = A(yl;ω)v
N by randomly

evaluate at L points. The above procedure is done on each sample i ∈ [I] with the loss
aggregated over {uN,i(yl), u

N,i
ref (yl)}l,i to update the free parameters {gn}, {ωj}

To train the "representation matrix" A consisting of J parameters {ωj}, we only need to work out
one additional derivative for back-propagation (written below for 1 sample):

∂E(uN ; {gn}, A)
∂A

∂A

∂ωj
=

∂E

∂uN
(
∂uN

∂vN

N−1∏
i=0

∂vi+1

∂vi
∂v0

∂A
+
∂uN

∂A
)
∂A

∂ωj
=

∂E

∂uN
(A

N−1∏
i=0

∂vi+1

∂vi
[−e⊤1 F

−1 ∂G

∂A
]+vN )

∂A

∂ωj

Above ∂v0/∂A involves differentiate through the convex optimization Lasso solver mapping
{A(xl;ω), u

0(xl)}Ll=1 to v0, which can be viewed as a layer solving the KKT system: (λ is the dual)

∂∥v0∥1 −A⊤λ = 0, Av0 − u0 = 0 ⇒ G(v0∗(A, u0), λ∗(A, u0), A, u0) = 0 ,

implying [1] (matrix F can be easily computed from the definition of G, so does ∂G/∂A)[
∂G
∂v0∗

∂G
∂λ∗

] [∂v0∗

∂A
∂λ∗

∂A

]
= −∂G

∂A
⇒ ∂v0∗

∂A
= −e⊤1

[
∂G
∂v0∗

∂G
∂λ∗

]−1 ∂G

∂A
=: −e⊤1 F

−1 ∂G

∂A
. (11)

The benefit of (11) comes from not needing to back-propagate through the numerical LP solver
and unroll the updates as naive autograd would (i.e., we only leverage the optimality condition at
v0∗, λ∗), therefore significantly saving memory and compute. Since A is learned it’s data-adaptive,
at the price of solving multiple Lasso through the training passes. The random grids {xl}, {yl} are
not re-sampled after the first pass, but can differ across the I samples. Compared to the algorithm
proposed in [16], one can think of it as performing super-resolution with sampling / updating only
on a coarse grid / lower dimensional space. A pictorial comparison of the methods is shown in
Appendix A, along with discussions of the current work in relation to previous work in the literature.

2For e.g., band-limited function, there is a duality between Fourier coefficients {ûk}Kk=−K , and values of the
function on the uniform grid {u( k

2K+1
)}Kk=−K , and these completely characterize the continuous function u(t).
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A Related Work & Discussion

Compared to the traditional numerical PDE solvers, machine learning based methods such as Fourier
Neural Operator [13], DeepONet [14] rely on data to learn a surrogate mapping between infinite-
dimensional function spaces to amortize the cost. By incorporating appropriate problem structure
instead of being fully-generic, our proposed data-driven methods hold promise for being more
sample-efficient. On the contrary, methods such as PINN [18] explicitly use the PDE information but
doesn’t leverage the availability of data one might have on similar problems. Neural Galerkin [6]
attempts to learn a "better" sampling measure over time in the spirit of active learning however also
doesn’t take as input a priori data about the PDE solutions.

Some additional recent work seeking to address data & physics incorporation include:

• [22, 10] aim to learn the residual / correction term from low-fidelity traditional numerical
solver but is typically more expensive to train with long roll-outs compared to our method.

• [15] extracts a learned "basis" from DeepONet output for expansion in spectral domain
which means it is not trained end-to-end. This prevents the error from the representation to
interact with the error from the solver for optimizing the performance.

• [2] learns discretization stencil directly in the physical space and deviates from the "learning
representation basis" approach that we take here, which can be more data-efficient.

• The works of [5] and [19] follow similar encoder-processor-decoder paradigm but leverage
a different architecture, namely graph neural network (GNN), which is motivated by the fact
that message-passing neural networks representationally contain several classical solvers.
These reply on the fact that locally

[∂(n)
x u]i ≈

∑
j∈N (i)

α
(n)
j uj

for train-able αj’s which essentially adopts a particle-based representation of the physical
system. Such architecture choice maybe more conducive to enforcing equivariant properties.

In our work, we adopt the encoder-processor-decoder paradigm that a lot of the traditional numerical
methods do, but put learning components into each of the 3 modules using available data.

Our method is an example of ReNO [3] which admits equivalence between neural operator and its
discrete representation under compressed sensing conditions. By blending Harmonic Analysis with
Differentiable Programming, we are able to propose a resolution-invariant and memory-efficient
algorithm that holds promise in terms of both speed and accuracy. We plan to systematically evaluate
them on large-scale problems in the future.
Remark 1. One rationale behind such low-frequency Fourier basis in Section 2.1 is that if one
assumes the initial condition u(0, ·) is drawn according to a Gaussian random field, the Karhunen-
Loève decomposition entails that approximation of the function would involve a few leading random
Fourier coefficients.
Remark 2. We further remark that for the methodology in Section 2.2, it is possible to have an
input-adaptive (Ai, v0,i) for each u0,i, while learning the {gn} across all I samples. This would
involve formulating the convex optimization over the (infinite-dimensional) space of measures for
each sample in the sense of

inf
µ

∥µ∥TV = ∥v0∥1

s.t. Φµ = u0(xl)
L
l=1

and solve a SDP as done in [21]. In the above

ϕ(β) = [σ(β · u0(xl))]l=1,...,L, µ(β) =

K∑
k=1

v0k · δβk
,

and

Φµ =

∫
R
ϕ(β)dµ(β) = [

K∑
k=1

v0k · σ(βk · u0(xl))]l=1,...,L .
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Put differently, we are trying to recover K spikes given L measurements of the continuous function u0

randomly sampled at {u0(xl)}Ll=1. Theory exists in this case supporting that L ≈ K suffices under
mild assumptions. This program will be more computationally intensive compared to the Lasso LP
solver employed in Section 2.2 for random features, although this is a one-time pre-processing cost
(i.e., outside the differentiable programming tape). The advantage is having now βi ∈ RK being
data-dependent instead of random, with non-linear encoder/decoder pair (note the basis ϕ depends
on u0 and the recovered {βi

k} will generally vary across the I samples). The training loss, posed
in the spectral (i.e., µ) domain, can be optimized over {gn} to identify the best updates as done in
Section 2.2.

Remark 3. One can draw connection of our method in Section 3 to DeepONet [14] architecture
uN (y) := G(u0)(y) = ⟨g(u0(x1), . . . , u

0(xl)), f(y)⟩, where the two learned embeddings f, g
depend on y and {u0(xl)}. In contrast we have uN (y) = A(y;ω)vN , but (1) we place more
constraints on the e.g., {u0(xl)} → v0 → vN mapping by exploiting the PDE structure; (2) A in
our case can depend on u0 as well (c.f. option (b) in (9)) and not simply a function of y.

Below in Figure 1 we give a comparison of the methods discussed in the paper.
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Figure 1: Algorithmic pipeline with end-to-end training (trainable components are shaded in blue).
The crux of our efficient implementation comes from implicit function theorem, either by defining
implicit layer or convex optimization layer.
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