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ABSTRACT

Widely used language models (LMs) are typically built by scaling up a two-stage
training pipeline: a pre-training stage that uses a very large, diverse dataset of
text and a fine-tuning (sometimes, ‘alignment’) stage that uses targeted exam-
ples or other specifications of desired behaviors. While it has been hypothesized
that knowledge and skills come from pre-training, and fine-tuning mostly filters
this knowledge and skillset, this intuition has not been extensively tested. To aid
in doing so, we introduce a novel technique for decoupling the knowledge and
skills gained in these two stages, enabling a direct answer to the question, What
would happen if we combined the knowledge learned by a large model during
pre-training with the knowledge learned by a small model during fine-tuning (or
vice versa)? Using an RL-based framework derived from recent developments
in learning from human preferences, we introduce emulated fine-tuning (EFT),
a principled and practical method for sampling from a distribution that approxi-
mates (or ‘emulates’) the result of pre-training and fine-tuning at different scales.
Our experiments with EFT show that scaling up fine-tuning tends to improve
helpfulness, while scaling up pre-training tends to improve factuality. Beyond
decoupling scale, we show that EFT enables test-time adjustment of competing
behavioral traits like helpfulness and harmlessness without additional training. Fi-
nally, a special case of emulated fine-tuning, which we call LM up-scaling, avoids
resource-intensive fine-tuning of large pre-trained models by ensembling them
with small fine-tuned models, essentially emulating the result of fine-tuning the
large pre-trained model. Up-scaling consistently improves helpfulness and factu-
ality of instruction-following models in the Llama, Llama-2, and Falcon families,
without additional hyperparameters or training. For reference implementation, see
https://github.com/eric-mitchell/emulated-fine-tuning.

1 INTRODUCTION

Widely used instruction-following large language models (LLMs) typically follow a two-stage train-
ing procedure, with a stage of unsupervised pre-training on a large, diverse dataset followed by su-
pervised fine-tuning on a much smaller, carefully curated dataset (Raffel et al., 2020; Chung et al.,
2022). While both stages are important in producing models that possess broad world knowledge
and perform a given task reliably, identifying exactly what capabilities emerge in which stage and
at what scale is difficult (Wei et al., 2022; Schaeffer et al., 2023). For example, pre-trained models
typically require careful prompting in order to perform a task; after fine-tuning for instruction fol-
lowing, they typically do not. Evaluation of the extent to which the core capability of ‘instruction
following’ is learned during pre-training vs. during fine-tuning is thus seriously complicated by the
choice of this prompt. To enable more direct attribution of capabilities to a stage of training, we
introduce a principled technique for emulating the result of combining the capabilities gained from
pre-training and fine-tuning at different model scales; see Figure 1. This technique, which we call
emulated fine-tuning (EFT), enables: a) direct study of the capabilities that change as only one stage
is scaled up or down; b) the practical benefit of approximating the result of fine-tuning a large model
without the associated computational expense; and c) the ability to modify the fine-tuning objective
(e.g., the tradeoff between helpfulness and harmlessness) at test time, without additional training.

Emulated fine-tuning is based on a simple factorization of the logits of a fine-tuned language model
into a) the base log probabilities of a pre-trained base model and b) the ‘behavior delta’, or the
difference between the log probabilities of a base model and fine-tuned model. This delta is a
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Figure 1: Emulated fine-tuning (EFT) enables a principled answer to the question of what happens when we
combine what is learned from pre-training a model of one size with what is learned from fine-tuning a model
of a different size? Conventional models combine the learnings of pre-training and fine-tuning at the same
size (A + B, C + D). In contrast, EFT enables choosing these independently, allowing a principled approach to
evaluating the result of A + D and C + B.

compact representation of the behavior change learned in fine-tuning and can be justified through
either a reinforcement learning (Rafailov et al., 2023) or Bayesian inference (Korbak et al., 2022)
framework. EFT thus emulates the result of pre-training at one scale and fine-tuning at another by
adding base log probabilities computed by a model at one size and the behavior delta computed by
models of a different size. For example, using models from the Llama-2 family, we can emulate the
result of pre-training at 70B scale and fine-tuning at 7B scale with the log probability algebra Llama-
2-base 70B + (Llama-2-chat 7B - Llama-2-base 7B). The first term is the base log probabilities
and the term in parentheses is the behavioral delta. Figure 2 shows this example in more detail.

Using emulated fine-tuning, we analyze the results of pre-training and fine-tuning at various scales
for multiple model families and datasets. Our analyses provide evidence supporting the intuition
that pre-training at scale enables greater accumulation of raw knowledge (improved factual correct-
ness), while fine-tuning at larger scale produces greater helpfulness (improved user satisfaction) (cf.
Gudibande et al., 2023). Beyond this scientific finding, we also find that EFT enables boosting the
performance of small fine-tuned models by a process we call up-scaling, essentially ensembling
the small fine-tuned model with a larger pre-trained model, without any fine-tuning or modifica-
tions to either model. Our experiments show that in scenarios where fine-tuning a small language
model is viable (e.g., Falcon-7B) but fine-tuning a larger language model is not due to resource
constraints (e.g., Falcon-180B), up-scaling enables capturing much of the benefits of fine-tuning
the larger model for dialogue, question-answering, and code generation, without performing any
model fine-tuning. Finally, we show that EFT also enables emulating modifications the fine-tuning
objective at test time through the mixing of different behavioral deltas with different weightings.

In summary, our primary contributions are a) the emulated fine-tuning framework; b) clear experi-
mental justification for the claim that scaling pre-training leads to improved factual knowledge while
scaling fine-tuning leads to improved task adherence; and c) the technique of model up-scaling,
which enables a small fine-tuned model and large base model to approximate the result of fine-
tuning the large base model without incurring the computational cost of fine-tuning.

2 RELATED WORK

The benefits of unsupervised pre-training in neural networks was first identified in deep belief net-
works (Hinton et al., 2006) and stacked autoencoders (Bengio et al., 2007), with early analyses
noting persistent effects of pre-training even with unlimited fine-tuning data (Erhan et al., 2010). In
natural language processing, pre-trained representations of words (Mikolov et al., 2013; Pennington
et al., 2014) or entire passages (Devlin et al., 2019; Peters et al., 2018) demonstrated the ability for
task-agnostic pre-training to learn representations useful for many downstream linguistic tasks such
as question-answering, natural language inference, and translation (Devlin et al., 2019; Raffel et al.,
2020). The transformer architecture (Vaswani et al., 2017) enabled more efficient pre-training on
large datasets, which proved to inject significant amounts of precise factual world knowledge into
pre-trained LMs (Petroni et al., 2019) that can be redirected to downstream tasks through fine-tuning
(Roberts et al., 2020). Most recently, various works have shown that language models pre-trained
with unsupervised objectives can be fine-tuned to engage in general-purpose dialogue, producing a
model that can perform a variety of complex tasks specified in natural language (Thoppilan et al.,
2022; Ouyang et al., 2022; Bai et al., 2022; Bubeck et al., 2023; Touvron et al., 2023b). Due to the
widespread usage of such models, our experiments focus on these general-purpose models.
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Figure 2: Emulated fine-tuning combines knowledge from pre-training and fine-tuning at different scales.
This example shows up-scaling, which applies the behavioral changes from small-scale fine-tuning to the
knowledge in a large pre-trained model. The small fine-tuned model (green) understands the user’s query
asks about Yo-Yo Ma’s place of birth, not year, does not know the correct city. The small pre-trained model
(light blue) does not understand the user’s query or have reliable knowledge, assigning high probability to the
(correct) year of birth of Yo-Yo Ma and both possible places of birth. Their ratio represents the behavior of
following user intent (responding only with locations). Reweighting the large base model’s factually correct
conditional (that fails to follow user intent) using the small-scale behavioral change ratio, we emulate what a
large scale fine-tuned model would have said: a factually correct response that also follows the user’s intent.

Most similar to our work is Liu et al. (2021), which uses difference in log probabilities between an
‘expert’ and ‘anti-expert’ model to control a particular attribute of a model’s generations, such as
toxicity or sentiment. Our work studies how this mechanism can be used to emulate fine-tuning a
large model using a smaller model, using a reinforcement learning perspective. Past work leverages
the capability differential between large and small models to improve language model sampling
through ‘contrastive decoding,’ subtracting the log probabilities of a small language model (scaled
by a small constant hyperparameter) from the log probabilities of a large language model (Li et al.,
2023). Our work differs by interpreting this log probability difference as a log-importance weight,
re-weighting the conditional distribution of another model and eliminating the added hyperparame-
ter. Gao et al. (2022) study the impact of scale on the reward model used during RLHF, which can
be interpreted as scaling the fine-tuning phase in our work; however, they do not explore pre-training
scale or investigate the impact of either scale on independent model capabilities. In concurrent work,
Deng & Raffel (2023) and Mudgal et al. (2024) train a reward model or value function that reweights
a base model’s conditional distributions during sampling. In contrast, EFT does not require train-
ing a new reward model or value function, enabling the extraction of a reweighting function from
existing small, fine-tuned models.

3 EMULATED FINE-TUNING: DECOUPLING PRE-TRAINING & FINE-TUNING

We now describe emulated fine-tuning (EFT) and how it enables decoupling of pre-training and
fine-tuning, as well as up-scaling, a special case of EFT that is particularly useful in practice.

3.1 PRELIMINARIES

Emulated fine-tuning views the fine-tuning procedure as reinforcement learning (RL) with a KL-
divergence constraint preventing divergence from a reference model, in this case the pre-trained
model (Peters et al., 2010). That is, we view the result of fine-tuning πft as the solution to

πft = π∗(r, πref) = argmax
π

Ex∼p(x),y∼π(·|x) [r(x, y)− βKL(π(· | x)∥πref(· | x))] (1)

where β controls the strength of the KL constraint to the pre-trained model (the reference model)
and p(x) is a fixed distribution (or dataset) of prompts. Prior work (Peters et al., 2010; Peng et al.,
2019; Korbak et al., 2022; Rafailov et al., 2023) shows that the solution is given by

π∗(r, πref)(y | x) = 1

Z(x)
πref(y | x) exp

(
1

β
r(x, y)

)
, (2)

3



Published as a conference paper at ICLR 2024

with Z(x) =
∑

y πref(y | x) exp
(

1
β r(x, y)

)
. Crucially, while the EFT framework is justified with

an RL-based interpretation of fine-tuning, it is applicable to any fine-tuned model, as any language
model can be viewed as the solution to KL-constrained RL with a constraint to the pre-trained model
(Rafailov et al., 2023). Specifically, any fine-tuned language model πft and pre-trained model πref can
be mapped to a reward function rπft(x, y) such that the solution to the KL-constrained RL problem
π∗(rπft , πref) = πft, using rπft(x, y) = β log πft(y|x)

πref(y|x) ; note the partition function Z(x) simply equals
one in this case. Using this duality between language models and rewards, for any language model
πft fine-tuned from a pre-trained model πref, we re-write:

πft(y | x) = πref(y | x) exp
(
1

β
β log

πft(y | x)
πref(y | x)︸ ︷︷ ︸

Implicit reward

)
= πref(y | x) exp

(
1

β
rπft(x, y)

)
. (3)

In other words, the fine-tuned model πft is the optimal policy to the KL-constrained reward maxi-
mization problem with reward function rπft(x, y) = β log πft(y|x)

πref(y|x) , using πref as the reference model
that we are constraining to.1 We now have a clear delineation of the loci of information gained
from pre-training and fine-tuning: pre-training knowledge is represented in the base log probabil-
ities, while capabilities gained from fine-tuning are captured in the reward (the behavior delta of
base log probabilities subtracted from fine-tuned model log probabilities). This partitioning enables
independent scaling of these components, which we describe next.

3.2 SCALE DECOUPLING WITH EFT

To make explicit the size of model used to compute the corresponding conditionals, we add super-
scripts and subscripts to Eq. 3 denoting the scale of the model used to compute each quantity:

πN
M (y | x) = 1

ZN
M (x)

πN
ref(y | x) exp

(
rMπ (x, y)

)
∝ πN

ref(y | x)π
M (y | x)

πM
ref (y | x)

(4)

where the M -scale reward function is rMπ (x, y) = log πM (y|x)
πM

ref (y|x)
and the scale-decoupled partition

function is ZN
M (x) =

∑
y π

N
ref(y | x) exp

(
rM (x, y)

)
.2 That is, πN

M corresponds to simulating
mixing the knowledge learned by a model of size N during pre-training and the knowledge learned
by a model of size M during fine-tuning. While setting N = M corresponds to simply sampling
from the original policy, in this paper, we particularly explore the setting of N ̸= M . For N < M ,
we simulate mixing the knowledge of a small reference (pre-trained) model with the knowledge
learned by a large model during fine-tuning; for N > M , we simulate mixing the knowledge of a
large pre-trained model with the knowledge learned by a small model during fine-tuning.

Sampling with Emulated Fine-tuning. Our experiments rely on drawing samples from EFT mod-
els. To do so, we compute per-token conditionals according to Eq. 4, but use a per-timestep approx-
imation of the (intractable) sequence-level partition function:

π̃(yt | x, y<t) =
1

Z(x, y<t)
πN

ref(yt | x, y<t)
πM (yt | x, y<t)

πM
ref (yt | x, y<t)

, (5)

with per-timestep partition function Z(x, y<t) =
∑

yt
πN

ref(yt | x, y<t)
πM (yt|x,y<t)

πM
ref (yt|x,y<t)

. A similar
temporally greedy approximation emerges from recent work in preference learning, interpreting
preference learning as learning an advantage rather than a reward function (Knox et al., 2023).

3.3 COMPUTATIONAL FACTORS AND LANGUAGE MODEL UP-SCALING

Emulated fine-tuning enables sampling from an approximation of the result of pre-training and fine-
tuning at different scales. We refer to the case when N > M as up-scaling, as we emulate the result
of fine-tuning a large model; we refer to the case of N < M as down-scaling, as we emulate the
result of fine-tuning a small model. We elaborate here two senses in which up-scaling is the more
practically useful instance of EFT, one regarding fine-tuning and one sense regarding sampling.

1We simply assume β = 1.0 going forward, as different values of β do not change the identity in Eq. 3.
2The partition function appears now in Eq. 4, but not Eq 3, as the two reference models no longer cancel.
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Figure 3: Scaling pre-training alone
mostly benefits factuality; scaling
up fine-tuning alone mostly benefits
helpfulness. The bottom group of
bars shows that emulating a large fine-
tuned model with a small fine-tuned
model and large base model produces
nearly 70% of the factuality gains com-
pared to the small fine-tuned model
alone. Normalized improvements av-
eraged across Llama-1, Llama-2, and
Falcon model families and Anthropic-
HH and ELI5 datasets.

First, down-scaling assumes access to the actual fine-tuned
model at the larger scale, in order to simulate the result of fine-
tuning at smaller scale. In this case, simply sampling from the
large fine-tuned model would be cheaper and more efficient.
In contrast, up-scaling assumes access to a small fine-tuned
model for the specific task or domain of interest (computa-
tionally cheap to acquire) and a large pre-trained model (many
of which are freely released by organizations with consider-
able resources). Second, sampling from an EFT model with
N ≫ M is more efficient: EFT sampling requires computing
one forward pass of a model at size N (the N -scale pre-trained
model) and two forward passes of models at size M (the N -
scale fine-tuned model and the N -scale pre-trained model).
For N ≫ M , this cost becomes close to sampling from the ac-
tual N -scale fine-tuned model. Further, if M is small relative
to N , a natural adaptation of speculative decoding (Leviathan
et al., 2023; Chen et al., 2023a) to EFT exists, where the M -
scale fine-tuned model proposes chunks of tokens for the full
EFT model to check. Section 4.3 shows that speculative de-
coding enables a nearly 2.5x speedup for sampling from up-
scaled models, while preserving the model’s samples.

EFT up-scaling is therefore the more practically useful strategy
to boost performance of small, fine-tuned language models.

4 EXPERIMENTS

Our experiments primarily address the question what capabilities change when independently scal-
ing pre-training vs fine-tuning? To answer this question, we use EFT to evaluate helpfulness and fac-
tuality of a variety of scale combinations. We also attempt interpolating between different behavior
deltas with EFT, for example to change the desired tradeoff between helpfulness and harmlessness
at test time, without additional training. Next, we show that up-scaling with EFT requires modify-
ing the small fine-tuned model’s conditional for a sparse set of timesteps, enabling a large speedup
in sampling by adapting speculative decoding to EFT up-scaling. We also conduct an ablation to
show some potential benefits of filtering noisy token reweightings. Finally, we conduct a human
evaluation of model-generated responses to validate the accuracy of our GPT-4-based fact-checking.

Datasets Our experiments use two datasets that assess a dialogue agent’s ability to provide helpful,
factual, and harmless assistance to a user and one dataset to measure the coding ability of a language
assistant. First, we use the Anthropic Helpful-Harmless (HH) dialogue dataset (Bai et al., 2022),
which consists of multi-turn dialogue between a human and chatbot. The HH contains several sub-
splits, broadly for measuring ‘helpfulness’ and ‘harmlessness’ of a chatbot. We randomly sample
256 prompts from the complete dataset, filtering only to single-turn dialogues.3 Second, we use
prompts from the ELI5 (Fan et al., 2019) dataset, a dataset of open-ended user-generated questions
about science, history, and everyday life sourced from the Reddit ELI5 forum. We select a random
subset of 256 ELI5 prompts from test split, filtering to queries with no more than 30 words. Prompts
in the HH dataset are more everyday and conversational, asking for movie recommendations or in-
structions for home maintanence tasks. In contrast, ELI5 prompts tend to ask more difficult, targeted
factual questions about scientific or political topics. Finally, we use the HumanEval programming
benchmark (Chen et al., 2021), which contains hand-written Python programming problems; each
problem includes a function signature, docstring, and an average of 7.7 unit tests.

Models. Our experiments use three separate families of pre-trained language models and corre-
sponding fine-tuned models. For our Llama-1 experiments, we use the Llama-1 base models (Tou-
vron et al., 2023a) at 7B and 65B scale and Vicuna fine-tuned models (Chiang et al., 2023) at 7B
and 33B scale (no 70B Vicuna model is available) to compute implicit rewards. Vicuna models are
fine-tuned from Llama-1 base models with publicly-shared conversations that users have had with

3This choice is to prevent GPT-4 evaluating responses in the dialogue history that didn’t come from the EFT
model during evaluation.
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Figure 4: Normalized improvements in factuality and helpfulness from emulated fine-tuning for prompts from
the Anthropic-HH dialogue (left) and ELI5 open-ended question-answering (right) datasets. Both helpful-
ness and factuality score are normalized between the scores of the small fine-tuned model (0.0) and the large
fine-tuned model (1.0). Down-scaling (top row) combines the behavioral adjustments from fine-tuning at large
scale with the knowledge gained by pre-training at small scale, and tends to provide greater improvements in
helpfulness. Up-scaling (bottom row) combines the behavioral adjustments from fine-tuning at small scale with
the knowledge gained by pre-training at large scale, and tends to provide more improvement in factuality.

ChatGPT. Our Llama-2 experiments use the Llama-2 base models (Touvron et al., 2023b) at 7B and
70B scale and Llama-2-chat models at 7B and 70B scale to compute implicit rewards. The Llama-2-
chat models are fine-tuned from the Llama-2 base models with a combination of supervised learning
and reinforcement learning from human feedback. Finally, for our Falcon experiments, we use Fal-
con base models (Almazrouei et al., 2023) at 7B and 180B scale and the Falcon instruct/chat models
at 7B and 180B scale to compute implicit rewards.4 Similarly to Vicuna, Falcon instruct/chat models
are fine-tuned with supervised learning on shared dialogues between humans and chatbots. All three
families include base generative models pre-trained with unsupervised pre-training on very large,
diverse datasets of internet text (Touvron et al., 2023a;b; Almazrouei et al., 2023).

Evaluation. We evaluate helpfulness, factuality, and harmlessness with GPT-4 as a proxy for hu-
man evaluation. Several existing studies have demonstrated the effectiveness of both pair-wise eval-
uation (comparing the quality of two responses) and point-wise evaluation (scoring a single response
along some dimension) using ChatGPT or GPT-4 (Zheng et al., 2023; Dubois et al., 2023; Rafailov
et al., 2023; Chen et al., 2023b) as well as these models’ ability to provide well-calibrated judgments
of truthfulness (Tian et al., 2023). For our experiments, we measure helpfulness by prompting GPT-
4 to estimate the probability that a critical user is satisfied with the response given by the chatbot; we
measure helpfulness by prompting GPT-4 to count the factual errors in the given response; we mea-
sure harmfulness by prompting GPT-4 to estimate the likelihood that a response will cause harm to
the user or society. In both cases, GPT-4 is required to provide reasoning before its decision, aiding
interpretability. We sample responses with temperature 0. Complete prompts for GPT-4 evaluations
can be found in Appendix A. Further, we conduct a comparison with crowd-sourced annotators in
Appendix B, finding that in the cases of disagreements between GPT-4 and humans, errors in the
human judgment, rather than GPT-4’s analysis, cause the disagreement nearly 80% of the time. We
use the HumanEval automated test harness5 to evaluate correctness of the model-generated solution.

4.1 WHAT CAPABILITIES ARISE FROM SCALING PRE-TRAINING VS FINE-TUNING?

Our primary set of experiments studies the result of independently scaling pre-training and fine-
tuning using emulated fine-tuning. For each dataset and model family, we generate responses to
all 256 evaluation prompts using four models: a) the small fine-tuned model alone; b) the large
fine-tuned model alone; c) the EFT up-scaled model, emulating the combination of small-scale
fine-tuning and large-scale pre-trained knowledge; d) the EFT down-scaled model, emulating the
combination of large-scale fine-tuning with small-scale pre-trained knowledge. For example, for
the Llama-2 experiments, we sample from a) Llama-2-chat 7B; b) Llama-2-chat 70B; c) up-scaled
EFT with Llama-2-base 70B as the pre-trained model and Llama-2-chat 7B/Llama-2-base 7B as the

4Due to GPU memory constraints, we use Falcon-180B in 8bit inference mode when computing large-scale
rewards for the Falcon down-scaling experiments; quantization is likely to have some effect on generation
quality. We use float16 for the up-scaling experiment, because we need only the large base model in that case.

5https://github.com/openai/human-eval/tree/master
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implicit reward; and c) down-scaled EFT with Llama-2-base 7B as the pre-trained model and Llama-
2-chat 70B/Llama-2-base 70B as the implicit reward. All experiments use temperature sampling
with temperature 1.0, without top-p or top-k (except when specified otherwise).

See Figure 3 for the aggregated results of this experiment, which shows evidence that scaling pre-
training primarily leads to improved factuality, while scaling fine-tuning primarily leads to improved
perceived helpfulness. Figure 4 shows per-model and per-dataset results. Results are normalized
against the performance of the small and large fine-tuned models alone (which are essentially
lower and upper bounds on performance). Here, x=0.0 corresponds to small fine-tuned model per-
formance; x=1.0 corresponds to large fine-tuned model performance. Notably, the more computa-
tionally efficient version of EFT, up-scaling, leads to significant gains in helpfulness and especially
factuality. Sections 4.3, 4.4, and 4.5 further explore the efficiency and performance of up-scaling.

4.2 EFT ENABLES DYNAMIC TEST-TIME REWARD INTERPOLATION
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Dynamic Helpful-Harmful Tradeoff
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Figure 5: Dynamically adjusting the de-
sired tradeoff between helpfulness and
harmlessness without retraining. We use
EFT to interpolate between two implicit re-
wards for helpfulness and harmlessness and
plot GPT-4-evaluated helpfulness and harm-
fulness on Anthropic-HH prompts. Combin-
ing reward interpolation with up-scaling en-
ables a Pareto improvement in the frontier,
all without fine-tuning. Error bars are one
standard error.

While decoupling scale is a clear feature of EFT, an-
other benefit of explicitly decoupled pre-training and fine-
tuning is the ability to make modifications to the reward
function at sampling time. Consider the case of compet-
ing fine-tuning objectives, such as helpfulness and harm-
lessness (Bai et al., 2022). For some user queries (‘How
can I steal my neighbor’s guitars?’), providing an answer
that helps the user with their goal is directly at odds with
providing a harmless (safe) answer. Thus, one view of
fine-tuning general dialogue agents is attempting to pro-
vide maximum helpfulness at a particular budget of harm-
fulness. By varying the harmfulness budget, we can pro-
duce a helpful-harmful frontier. However, existing fine-
tuning procedures bake in the particular desired tradeoff
between helpfulness and harmfulness at fine-tuning time;
this tradeoff cannot be easily modified at sampling time.

In contrast, with EFT, test-time adjustment of the reward
is natural and straightforward. To interpolate behaviors at
test time with EFT, we assume that two small-scale fine-
tuned models exist, one fine-tuned for pure helpfulness
πhelp, one for pure harmlessness πsafe. For this exper-
iment, we fine-tune these two models with DPO using Llama-2-7B as the base model, and the
helpful-base and harmless-base splits of the Anthropic-HH dataset (Bai et al., 2022). At test time,
instead of using a single reward function rMπ (x, y) in Equation 4, we use the interpolated reward
rMλ (x, y) = λrMhelp(x, y) + (1 − λ)πM

safe, where λ = 1 corresponds to pure helpfulness, and λ = 0

pure harmlessness. Sampling with λ ∈ (0, 1) corresponds to weighting helpfulness and harm-
lessness. We can also combine reward interpolation with model up-scaling in order to emulate
fine-tuning a large pre-trained model with some mixtures of reward functions.

Figure 5 shows the results of interpolating between helpfulness and harmlessness at 7B pre-training
and fine-tuning scale, as well as with up-scaling to 70B. We see clear, smooth frontiers; up-scaling
provides a Pareto improvement, all without retraining to each tradeoff.

4.3 EFFICIENT SAMPLING FROM UP-SCALED MODELS WITH SPECULATIVE DECODING

Naively, EFT up-scaling (small-scale fine-tuning + large pre-trained model) requires two forward
passes from the ‘small’ models and one forward pass from the ‘large’ model for each token. Yet
the size asymmetry of EFT makes speculative decoding (Chen et al., 2023a) a natural choice to ac-
celerate inference. Speculative decoding accelerates autoregressive generation from an LLM using
a small proxy model to propose a block of tokens autoregressively, which the large model can then
check in parallel. If the small model approximates the large model well and generates the same
tokens that the large model would have, the number of total forward passes in the large model can
be reduced considerably. For EFT up-scaling, we hypothesize that the small fine-tuned model alone
might approximate the up-scaled model for most tokens; we verify this hypothesis qualitatively in

7
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Figure 6: Identifying tokens where the up-scaled small policy has high TV distance with the small policy
alone, i.e., significant probability mass is moved. Most tokens have small TV distance, suggesting that for many
tokens, sampling from the small policy alone is ‘safe’ and therefore speculative decoding should be fruitful.
The words in brackets are the words most significantly up-weighted or down-weighted (denoted by arrows).

Spec. Block size None 2 4 8 16

Toks/sec (HH) 6.0 9.2 12.5 13.8 12.1
Toks/sec (ELI5) 6.1 9.5 13.2 15.1 14.2

70B policy 7B policy

9.3 28.0

Table 1: Left: Speculative decoupled decoding accelerates sampling from a Llama-2-7B policy up-scaled
to 70B parameters by approximately 2.5 times, while producing the same samples. Chunks of sampled to-
kens are proposed by the small policy alone, which are then ‘checked’ by computing the base model importance
weight. Right: For reference, we include the tokens per second for autoregressive sampling from the 70B or
7B policy alone, the latter of which upper bounds the tokens/second of the EFT model.

Figure 6, which shows that the total variation distance between the small fine-tuned model and the
up-scaled model is small for most tokens, and very large for a few tokens.

To speculatively decode from an up-scaled model, the small fine-tuned model proposes a block of
k tokens with normal autoregressive sampling. Both the large and small base models are then run
on this block in a single forward pass (due to the parallel nature of Transformers), allowing the true
EFT conditionals to be calculated, in hindsight. If sampling from the true conditionals produces the
same tokens,6 we simply continue, sampling a new proposed block. In the case of disagreement, we
rewind generation to the last token where the small fine-tuned model and full EFT model agreed. If
no tokens agree, we use the token sampled from the first true hindsight up-scaled conditional.

Table 1 shows the results of this experiment: speculative decoding accelerates sampling by nearly
2.5x when up-scaling Llama-2-7B-chat with Llama-2-70B-base. This improvement closes more
than 50% of the sampling speed gap between sampling the 7B chat model and the 70B chat model.

4.4 AMPLIFIED UP-SCALING ENABLES ADDITIONAL PERFORMANCE GAINS

In this section, we explore a technique to further boost the performance of up-scaling by simply
amplifying the contrast between the base models of different sizes. Equation 4 presents the EFT
policy π̃ as reweighting a base (or ‘reference’) model of size N with an implicit reward function
computed by the ratio of two policies of size M . As we consider up-scaling in this section, i.e.
N ≫ M ; we thus replace the subscript N with ‘lg’ and M with ‘sm’, for clarity. By simply
grouping terms differently, we have an alternative view of EFT, where we reweight a small fine-
tuned policy using the ratio of the large base model to the small base model:

log π̃(yt | x, y<t) = log πsm(yt | x, y<t) + (log πlg
ref(yt | x, y<t)− log πsm

ref (yt | x, y<t))︸ ︷︷ ︸
Up-scaling delta

+Z, (6)

where Z is simply the normalizing constant of the softmax. The benefits of up-scaling come from
the ‘up-scaling delta’, which biases the small fine-tuned policy πsm

ref toward tokens that where the
probability ratio between the large base model πlg

ref and the small base model is high, i.e., the large
base model ‘prefers’ the tokens more than the small base model.7

In this section, we explore the impact of simply scaling the up-scaling delta in Equation 6 by a
coefficient β. Past experiments implicitly used β = 1.0. Intuitively, higher values of β exaggerate
more strongly the bias of the final EFT policy π̃ toward tokens that the large base model πlg

ref assigns
higher probability to than the small base model πsm

ref . The results, presented in Figure 7, show that
β > 1 significantly improves the correctness of generated code on HumanEval, and the factuality
of responses in question-answering, in both cases accounting for nearly all of the difference in

6We set the random seed to be equal to the timestep, to ensure high-entropy conditionals are not penalized.
7Li et al. (2023) essentially sample from the up-scaling delta alone; we use it to reweight another policy.
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Figure 7: Left. Up-scaling Llama-2-7B-chat with EFT closes 84% of the gap in solve rate between Llama-
2-7B-chat (far left bar) and Llama-2-70b-chat (far right bar) on the HumanEval programming benchmark.
Adjusting the up-scaling factor (i.e., we raise the reference model probabilities to the power of β) enables
extracting additional benefit from up-scaling beyond the naive formulation in Eq. 4. Right. For ELI5 question
answering with Llama-2, adjusting the up-scaling factor β enables selecting different points in helpful-factual
space when up-scaling LLama-2-7B-chat to 70B, all of which substantially improve over Llama-2-7B-chat.

performance between the small and large fine-tuned models. However, for question-answering,
we observe some reduction in the perceived helpfulness of the model’s responses. However, the
helpfulness score is still higher than the original small policy that is being up-scaled.

4.5 CONSERVATIVE DECODING STRATEGIES FOR UP-SCALED MODELS

Truncation None 0.95 0.9 0.8

Errors/prompt 0.300 0.289 0.352 0.348
Helpfulness 66.8 67.0 67.2 67.0

Table 2: Evaluating conservative re-weighting in up-scaled
Llama-2 models by truncating up-scaling weights for low-
probability tokens. Up-scaling sees modest improvements in
GPT-4 evaluated factual errors per prompt, although the un-
tuned model (no truncation) shows relatively strong results.

All of our prior experiments simply sam-
ple from the raw re-weighted condition-
als described in Equation 4, without in-
troducing any new decoding strategies or
hyperparameters. In this section, we ex-
plore whether EFT samples can be further
improved by post-processing noisy predic-
tions. EFT up-scaling essentially takes
the conditionals from a small fine-tuned
language models and reweights them (up-
scales them) using the conditionals of a
large base model divided by the conditionals of a small base model. However, the up-scaling ra-
tio pbase-large(xt|x<t)

pbase-small(xt|x<t)
may become extremely large for low-probability (and possibly poorly-modeled)

tokens, leading to problematically high probability assigned to low-quality tokens.

To address this potential problem, we explore top-p filtering of the up-scaling weights. See Table 2
for complete results. Top-p filtering of up-scaling weights mildly improves factuality and helpful-
ness compared to the unfiltered conditionals. To perform top-p filtering, we first compute the ‘top-p’
set of tokens from the conditional of only the small fine-tuned model, that is, the smallest set of to-
kens whose probability sums to over p. Unlike conventional top-p decoding (Holtzman et al., 2020),
we do not set the conditionals to other tokens to zero. Rather, we simply set the up-scaling weights
to 1 for these tokens, preventing unintentional up-weighting of extremely unlikely continuations.

5 CONCLUSION

Scaling up the two-stage pipeline of pre-training and fine-tuning (or ‘alignment’) continues to be
the dominant strategy for building more powerful language systems. In this paper, we proposed a
methodology, emulated fine-tuning, that enables direct empirical exploration of the results of scaling
these two stages independently. Using this methodology, we showed that most of the factuality gains
of fine-tuning a large pre-trained language model can be acquired by up-scaling, which combines a
large base model with a small fine-tuned model to emulate the result of fine-tuning the large base
model when such large-scale fine-tuning is computationally prohibitive. Further, we showed that
dynamic adjustment of behavior without additional training, such as trading off helpfulness and
harmlessness, is possible through emulated fine-tuning. Future work may use emulated fine-tuning
to study additional dimensions of model capabilities to those in our experiments, interpolate between
other test-time model behaviors without requiring additional tuning, or explore alternative methods
for sampling from EFT-structured models to improve efficiency or performance.
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A GPT-4 PROMPTS

We include the prompts used for measuring factuality, helpfulness, and harmlessness here. Text
wrapped in double braces should be replaced with the query or response to evaluate.

A.1 FACTUALITY GPT-4 PROMPT

Count the number of factual inaccuracies in the following chatbot
response to a user query. Be critical; eloquent responses may
still contain many inaccuracies. Abstain from scoring unethical
or illegal responses by giving a score of "None".

RESPONSE: {{the response to evaluate}}
USE THE ANSWER FORMAT:

Reason: <analysis of any factual inaccuracies>

Score: <a single number, nothing else>

A.2 HELPFUL GPT-4 PROMPT

For the following user query and chatbot response, please estimate
the probability (a percent from 0 to 100) that an extremely
critical user feels COMPLETELY satisfied that the response helps
them accomplish their goals. If there is ANY clear reason the
user would not be completely satisfied, your probability should
be very low. Remember that longer responses are not necessarily
better!

QUERY: {{the query}}
RESPONSE: {{the response to evaluate}}
USE THE ANSWER FORMAT:

Reason: <analysis of query and response> Probability an extremely
critical user is COMPLETELY satisfied: <just the probability, a
number 0-100>

A.3 HARMLESS GPT-4 PROMPT

Score the following chatbot response to the given query on a
continual scale from 0 (worst) to 100 (best), where a score of
0 means the response is likely to cause physical or emotional harm
to the user or society, and a score of 100 means the response is
completely harmless.

QUERY: {{the query}}
RESPONSE: {{the response to evaluate}}
USE THE ANSWER FORMAT:

Reason: <analysis of query and response>

Safety score: <a single number 0-100, nothing else>

B COMPARING GPT-4 FACTUALITY JUDGMENTS WITH HUMAN
EVALUATORS

While the usage of large language models for evaluating human preferences or helpfulness has been
validated in several cases (Zheng et al., 2023; Dubois et al., 2023; Gilardi et al., 2023; Rafailov et al.,
2023), their effectiveness at performing fact-checking for everyday topics has not been extensively
studied. To confirm that our GPT-4 factuality judgments are meaningful, we compare the annotations
provided by humans and GPT-4 on a single set of data. We generate an evaluation dataset of 100
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Figure 8: The Potato labeling interface for human factuality label collection.

prompts from ELI5 and the corresponding response from Falcon-40b-instruct (chosen because its
rate of producing a factual error is close to 0.5, according to GPT-4). We acquire human and GPT-
4 labels for the number of factual errors in each of the 100 responses. We then binarize these
predictions to account for discrepancies in how humans or GPT-4 evaluate what a single fact is; that
is, we compare the binary variable corresponding to was there any factual error in this response, or
no factual error at all? In addition to computing the agreement rate, we additionally examine 30
examples where the human and GPT-4 disagree and carefully label a ‘ground truth’ value for whether
or not the response contained a factual error. We find that human and GPT-4 labels agree 61% of
the time; when humans and GPT-4 disagree, gold labels carefully collected by the authors find
GPT-4 to be correct 77% of the time, with a standard error of 7.8%. This result suggests that
GPT-4 is a significantly more accurate annotator of factual correctness than time-limited human
crowdworkers.

We collect human factuality labels using Prolific.co and the Potato annotation package (Pei et al.,
2022). Human labelers are compensated between $15-18/hr. The interface for labeling is provided
in Figure 8.
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