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Abstract

Medical question answering requires advanced reasoning that integrates domain
knowledge with logical inference. However, existing large language models
(LLMs) often generate reasoning chains that lack factual accuracy and clin-
ical reliability. We propose Ranked Preference Reinforcement Optimization
(RPRO), a novel framework that uniquely combines reinforcement learning with
preference-driven reasoning refinement to enhance clinical chain-of-thought (CoT)
performance. RPRO differentiates itself from prior approaches by employing
task-adaptive reasoning templates and a probabilistic evaluation mechanism that
aligns outputs with established clinical workflows, while automatically identi-
fying and correcting low-quality reasoning chains. Unlike traditional pairwise
preference methods, RPRO introduces a groupwise ranking optimization based
on the Bradley–Terry model and incorporates KL-divergence regularization for
stable training. Experiments on PubMedQA and MedQA-USMLE show consis-
tent improvements over strong baselines. Remarkably, our 1.1B parameter model
outperforms much larger 7B–13B models, including medical-specialized variants.
These findings demonstrate that combining preference optimization with quality-
driven refinement offers a scalable and effective approach to building more reliable,
clinically grounded medical LLMs.

1 Introduction

Recent advances in large language models (LLMs) signal significant promise for medical applications,
especially in clinical reasoning and diagnostic support systems Singhal et al. [2023a], Thirunavukarasu
et al. [2023]. However, deploying AI in medicine requires exceptional reliability, making factual
accuracy and thorough coverage of the data paramount. Medical reasoning introduces challenges
distinct from those in general domains: clinical decisions require a comprehensive consideration
of relevant factors, strict factual accuracy, and the avoidance of redundant information that could
obscure critical insights.

Current approaches to medical reasoning primarily rely on chain-of-thought (CoT) prompting tech-
niques Wei et al. [2022a], Kojima et al. [2022], which have shown effectiveness in improving
reasoning capabilities across various domains. However, these methods typically generate single rea-
soning chains without systematic quality assessment or iterative refinement mechanisms. Moreover,
existing evaluation frameworks often rely on overly simplistic binary metrics that fail to capture the
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nuanced quality required for medical reasoning or require extensive human annotation, limiting their
suitability for automated quality control where domain expertise is essential.

Recent work in preference learning and reinforcement learning from human feedback (RLHF) Ouyang
et al. [2022], Christiano et al. [2017] shows promise in aligning AI systems with human preferences.
Direct Preference Optimization (DPO) Rafailov et al. [2023] has shown promising results by learning
from preference data. However, these methods typically rely on pairwise comparisons, which fail to
capture all the ranking information in human preference datasets. Many real-world scenarios involve
humans ranking multiple candidates, not just providing binary choices. For example, when they
evaluate reasoning chains, mathematical solutions, or creative content, evaluators assign rankings
that reflect nuanced quality differences. Reducing this rich data to pairwise comparisons can lose
valuable training signals and lead to suboptimal solutions.

Specifically, these approaches face significant challenges in medical domains. First, the require-
ment for extensive expert annotation is prohibitively expensive. Additionally, preference judgments
often lack the granularity needed for medical reasoning assessment. Furthermore, generic prefer-
ence models fail to capture the domain-specific quality dimensions that are critical in healthcare
applications.

To address these limitations, we introduce a novel framework that enhances medical reasoning
through probabilistic refinement for quality assessment and RPRO (Ranked Preference Reinforcement
Optimization), which optimizes over ranked groups of candidates using the Bradley-Terry model.
We combine domain-adaptive reasoning templates with automated quality assessment and targeted
revision mechanisms. Unlike existing methods, which use single reasoning chains or expensive
human evaluation, our framework automatically generates multiple reasoning candidates. It evaluates
their quality using probabilistic metrics and performs targeted improvements when needed. Our
approach incorporates several key innovations:

• A probabilistic framework for automated medical reasoning quality assessment that captures
multi-dimensional evaluation criteria through conditional probability modeling;

• Domain-specific CoT enhancement templates that adapt reasoning structures to different
medical contexts;

• A novel linear reward learning framework that provides a stable policy gradient for ranked
preference optimization;

• A method for generating high-quality preference data suitable for Ranked Preference Rein-
forcement Optimization (RPRO) fine-tuning, enabling continual improvement of medical
reasoning capabilities.

2 Related Work

2.1 Medical LLMs: QA, Diagnosis, and EHR

Large language models (LLMs) have been used for medical tasks like knowledge-based question
answering, diagnostic reasoning on clinical vignettes, and patient-specific reasoning over electronic
health records (EHR) [Jin et al., 2019, 2021b, Shi et al., 2024, Zakka et al., 2024]. Domain-
structured prompts and chain-of-thought (CoT) approaches consistently improve auditability and
reduce unsupported claims by clearly separating decomposition and background from justification or
diagnosis [Wei et al., 2022b, Singhal et al., 2023d,c]. In patient-specific contexts, retrieval-augmented
generation (RAG) and citation-style evidence tracing help ensure faithfulness to chart data and
guidelines Lewis et al. [2020], Shi et al. [2024], Zakka et al. [2024]. Recent work extends beyond
answer accuracy, emphasizing multidimensional evaluation such as coverage of relevant findings
and alignment with context, thereby better matching clinical expectations for completeness and
correctness. In this work, we use domain-specific CoT templates (QA and diagnosis), automatically
score rationales on coverage, factuality, and redundancy with an LLM judge, and make light score-
guided revisions.

2.2 Reinforcement-Learned Medical LLMs

Reinforcement learning from human feedback (RLHF) and related preference-based methods have
become central to aligning LLM behavior beyond supervised fine-tuning Christiano et al. [2017],
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Ziegler et al. [2019], Ouyang et al. [2022]. In reasoning-heavy domains, variants that regularize
to a reference policy while optimizing rewards derived from preference ordering or task-specific
outcomes have shown improved stability and faithfulness.

In the medical domain, reinforcement-learned LLMs have been applied to tasks such as clinical
question answering and diagnostic reasoning Singhal et al. [2023b], Nori et al. [2023]. These methods
typically employ reinforcement learning techniques such as policy optimization with preference
feedback Christiano et al. [2017], Ouyang et al. [2022] to guide models toward multi-step clinical
reasoning, integration of biomedical knowledge, and reliable elimination of alternative diagnoses.
Nevertheless, prior studies also emphasize persistent challenges in maintaining stability and factual
grounding in high-stakes clinical scenarios, indicating that preference-optimized training plays an
important role in reducing hallucination risks Singhal et al. [2023b].

Building on these advances, we introduce Ranked Preference Reinforcement Optimization (RPRO), a
ranking-based extension of preference optimization. RPRO samples multiple responses per prompt
and computes relative advantages, thereby reducing variance through group-level aggregation and
providing more robust training signals for reasoning-intensive tasks like medical question answering.

2.3 Ranking-based Optimization in Clinical Reasoning

Recent studies have expanded preference alignment for LLMs from pairwise to listwise settings.
Most methods focus on pairwise comparisons. Yet, listwise approaches have shown effectiveness
in other domains Liu et al. [2025], Pesaran zadeh et al. [2025], Cai et al. [2025]. For example,
ALMupQA by Yang et al. [2024] integrates multi-perspective ranking alignment for code QA. IRPO,
introduced by Wu et al. [2025], is a framework that incorporates graded relevance and positional
importance. These works highlight the impact of ranking-based feedback on aligning LLM outputs
with diverse user expectations. However, medical multiple-choice QA often needs more sophisticated
explanatory discourse and clinical reasoning. In this work, we evaluate our framework on multiple
medical reasoning benchmarks. We use a probabilistic refinement mechanism, generate preference
data with RPRO, and combine linear rewards for ranked candidate optimization.

Figure 1: Overview of the proposed pipeline. The framework distinguishes between medical QA and
diagnosis tasks, applies chain-of-thought (CoT) reasoning with multi-dimensional quality assessment
and probabilistic refinement, and further improves through ranked preference reinforcement optimiza-
tion (RPRO) with dataset construction.
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3 Methodology

3.1 Overview

In this work, we provide an overview of a systematic framework for generating high-quality Chain-of-
Thought (CoT) reasoning pairs optimized for Ranked Preference Reinforcement Optimization (RPRO)
training in medical question answering. The framework follows a four-step pipeline (1) Based on
medical task identification, we employ CoT reasoning for general medical Q&A and diagnostic tasks
(2) For each chain instance, our process involves question decomposition, background knowledge
integration, logical connection, and final justification for clinical assessment (3) We score each
generated chain using probabilistic rules for assessment(4) After steps 1-3, we select high-quality
reasoning chains and discard the lowest-quality onesThis results in a curated dataset for RPRO
learning, enabling the model to learn from exemplary clinical reasoning patterns while avoiding
reinforcement of suboptimal decision-making processes.

3.2 Problem Formulation

We begin by formulating medical questions into two complementary task types to enable domain-
appropriate reasoning. We define τQA as general medical question-answering, which targets questions
requiring factual medical knowledge and logical reasoning about biomedical concepts, treatments,
or underlying mechanisms. Conversely, τDiag represents medical diagnosis tasks involving clinical
scenarios that necessitate systematic diagnostic reasoning through detailed patient presentation
analysis and comprehensive differential diagnosis consideration. This dual-task framework establishes
our task space T = {τQA, τDiag}. Let X and Q represent the spaces of structured medical records
and natural-language prompts, respectively. Each task instance is an input pair z = (x, q) ∈ X ×Q,
where x is a medical record and q is the corresponding prompt. A task classifier determines the
appropriate task τ ∈ T for each instance.

3.3 Task-Adaptive Chain-of-Thought Generation

Given z and τ , a conditional policy πθ(· | z, τ) generates K = 5 candidate CoTs C = {ck}5k=1 and
ck ∼ πθ(· | z, τ) for each medical question. Then, we present each candidate ck four reasoning chain
steps as:

ck =
(
u
(1)
k , u

(2)
k , u

(3)
k , u

(4)
k

)
, (1)

where the j-th component u(j)
k depends on the task category τ and is defined as

u
(j)
k =

s
(j)
k , if τ = τQA,

t
(j)
k , if τ = τDiag,

j = 1, 2, 3, 4. (2)

For τ = τQA, the components include four clinical factor s(1) : Question Decomposition, s(2) :

Background Knowledge, s(3) : Logical Connection and s(4) : Final Justification to determine
generated sequence medical QA chain is correct. Similarly, the τ = τDiag focus on diagnosis
task include t(1) : Case Summary, t(2) : Clinical Significance, t(3) : Differential Diagnosis and
t(4) : Most Likely Diagnosis. Those criteria can better align the reasoning process with standard
diagnostic procedures, thereby tailoring the CoT representation to the requirements of clinical
decision-making. Thus, the unified formulation ck = (u

(1)
k , u

(2)
k , u

(3)
k , u

(4)
k ) provides a task-agnostic

representation of CoT candidates, while retaining the ability to specialize the semantic meaning
of each reasoning step according to the task label τ . After generation, the set of five candidates is
reduced to M = 4 by retaining the top four according to subsequent evaluation and discarding the
lowest-ranked one.

3.4 Medical Prompt Instruction and Reasoning

Previous research shows that effective prompt template instructions can improve model performance
on CoT reasoning Zhu et al. [2024], Wei et al. [2022a], Kojima et al. [2022]. We use structured
reasoning templates based on established clinical and biomedical reasoning patterns. Table 3 presents
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a general medical QA template that applies a four-step reasoning process, using binary classification
at each step according to the validation criteria from Section 3.3. Specifically, background knowledge
retrieval gathers relevant biomedical facts and principles from medical literature. Logical connection
links the retrieved knowledge to the question context. The justification step synthesizes the reasoning
to support the conclusion.

In parallel, our diagnostic reasoning template mirrors the clinical diagnostic workflow used by
medical professionals. The process begins with a case summary, which extracts and organizes key
clinical findings from patient presentations. Clinical significance analysis then examines symptom
patterns and diagnostic indicators to understand their medical relevance. Differential diagnosis
systematically considers alternative diagnoses and establishes criteria for elimination. Finally, the
most likely diagnosis step concludes with an evidence-supported diagnostic decision based on the
available clinical information.

3.5 Reasoning Refinement Method

3.5.1 Multi-Dimensional Quality Assessment Evaluation

To evaluate reasoning quality across three key dimensions, we propose a joint-probability-based
evaluation framework for assessing multiple candidate reasoning paths and selecting the optimal
subset from C = {c1, c2, . . . , cn}. For each candidate c ∈ C, we define three scoring functions
Si : C → S where i ∈ {cov, fact, red}, corresponding to coverage Scov(c), factual accuracy Sfact(c),
and redundancy Sred(c), each evaluated on a 5-point scale. These raw scores are mapped into
probabilistic indicators pi(c) = π

(
Si(c)

)
via a normalization mapping π : S → [0, 1].

3.5.2 Probabilistic Reasoning Refinement

Unlike traditional additive scoring approaches, our objective is to simultaneously ensure adequate
coverage of the source content and maintain factual accuracy, while also suppressing redundancy
during generation. To achieve this, we formulate the decoding objective as the maximization of a
multiplicative acceptance function that integrates these three criteria. Specifically, the each question
of optimal candidate c∗ is defined as

c∗ = argmax
c

[
pcov(c) · pfact(c) ·

(
1− pred(c)

) ]
, (3)

where pcov(c) denotes the probability of coverage, pfact(c) denotes the probability of factual accuracy,
and pred(c) measures the likelihood of redundancy in the generated content. Next, we introduce the
selection operator with acceptance function Paccept(c) as:

Φk(C) = Top -k
c∈C

Paccept(c), (4)

where Φk(C) is extracts the top k candidates with the highest acceptance probabilities to be used for
subsequent training or decision-making. Intuitively, we can effectively unifies multi-dimensional
quality assessment into a probabilistic formulation and provides a mechanism for ranking and optimal
subset selection in reasoning tasks.

4 Training Framework

4.1 Ranking Preference Optimization Algorithm

In this section, we propose RPRO, a flexible optimization method that differs from traditional
approaches such as DPO and PPO-RLHF, which rely solely on pairwise comparisons (i.e., c1 ≻ c2).
Our proposed method leverages complete ranking information (i.e., c1 ≻ c2 ≻ c3 ≻ . . . ≻ cn) to
optimize model performance. Our goal is to learn a policy πθ(· | z, τ) that assigns higher likelihood
to preferred responses. For each candidate CoT sequence cj given medical question z and temperature
τ , we define the preference score as the conditional log-probability:

sj = log πθ(cj | z, τ) =
1

|cj |

|cj |∑
t=1

log πθ(cj,t | z, τ, cj,<t) (5)
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where |cj | denotes the sequence length of the CoT, and cj,t represents the token at position t in the
reasoning chain. Following the Bradley-Terry model Bradley and Terry [1952], the probability that
CoT sequence ci is preferred over sequence cj is:

P (ci ≻ cj | z, τ) = σ

(
si − sj
τBT

)
=

1

1 + exp
(
− si−sj

τBT

) (6)

where τBT > 0 is a Bradley-Terry temperature parameter (distinct from the generation temperature
τ ) controlling the sharpness of the preference distribution. Then, we can construct the ranking loss
for the K = 5 candidate CoT sequences extends the Bradley-Terry model to handle complete expert
rankings. The LCoT−rank can be rewritten as:

LCoT−rank =
1(
K
2

) K−1∑
i=1

K∑
j=i+1

log

(
1 + exp

(
−si − sj

τBT

))
. (7)

4.2 Linear Rewards From Rank

GRPO is one of the widely used algorithms that employs entropy regularization to stabilize policy
gradient–based learning processes. However, it still exhibits sensitivity to parameter tuning, which
can lead to unstable convergence performance or even divergence during training Leahy et al. [2022],
Schulman et al. [2017], Mnih et al. [2016]. To translate the complete ranking of candidate reasoning
chains into effective training signals, we adopt a linear reward shaping scheme. We then define the
advantage value aj of candidate cj as:

aj = (K − rj)−
K − 1

2
, j = 1, . . . ,K s.t.

K∑
j=1

aj = 0. (8)

where each candidate is assigned a rank rj ∈ {1, . . . ,K}, with rj = 1 denoting the highest-quality
candidate and rj = K the lowest. Intuitively, the linear reward can improve the model by incentivizing
it to shift probability mass from poorly ranked reasoning paths toward higher-quality ones. Compared
with pairwise-only preference optimization, RPRO efficiently incorporates full ranking information
within each group of candidates, while retaining simplicity and stability during optimization. We
then incorporate these linear rewards to increase the probability of higher-ranked candidates (positive
aj) and decrease the probability of lower-ranked ones (negative aj) can be present as:

LLinear = − 1

K

K∑
j=1

aj sj . (9)

4.3 KL-Divergence Regularization for Medical Reasoning

To prevent the medical reasoning policy from deviating too far from a reference model πref (· | z, τ),
we incorporate KL-divergence regularization. The sequence-level KL divergence for CoT sequence
cj is:

DKL(cj | z, τ) =
1

|cj |

|cj |∑
t=1

DKL,t (10)

The KL regularization term across all K candidates is:

LKL = β · 1

K

K∑
k=1

DKL(ck | z, τ) (11)

where β ≥ 0 controls the regularization strength for medical reasoning stability. Here, the DKL,t is
token-level KL divergence at position t in the CoT sequence be expressed as:
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DKL,t =
∑
v∈V

πθ(v | z, τ, c<t) log
πθ(v | z, τ, c<t)

πref (v | z, τ, c<t)
(12)

where V is the set of all possible tokens in language model. During training, we combine the
LCoT−rank and LKL to form LRPRO−CoT so that the final objective becomes:

Ltotal = LRPRO−CoT + LKL + LLinear (13)

5 Experiments

5.1 Experimental Setting

Datasets. We evaluate our approach on two benchmark medical QA datasets. PubMedQA Jin
et al. [2019] contains biomedical research questions derived from PubMed abstracts, requiring
yes/no/maybe answers based on scientific evidence. MedQA-USMLE Jin et al. [2021a] consists of
multiple-choice diagnostic questions from the United States Medical Licensing Examination, testing
clinical reasoning and diagnostic capabilities. These datasets represent complementary aspects of
medical reasoning: research-oriented knowledge synthesis and clinical diagnostic decision-making.

Implementation Details. Our base model is LLaMA 1.1B, chosen for computational efficiency
while maintaining competitive performance. We generate five CoT reasoning variants per question
and select the four highest-ranking candidates based on their acceptance probabilities for RPRO
training. The acceptance threshold τ is set to 0.6 based on preliminary experiments. All models are
trained with AdamW optimizer using a learning rate of 5e-5, batch size of 16, and 3 training epochs.
Training is performed on NVIDIA A100 GPUs with mixed precision.

5.2 Baselines

We compare against several established language models across different scales and medical special-
izations. General-purpose models include Gemma 2B and 7B Mesnard et al. [2024], and Mistral
7B Jiang et al. [2023]. Medical-specialized models include MedAlpaca 7B and 13B Han et al.
[2023], fine-tuned specifically for medical tasks, and BioMistral 7B Labrak et al. [2024], trained
on biomedical corpora. These baselines represent the current state-of-the-art in both general and
domain-specific language modeling for medical applications.

5.3 Comparison with DPO and SFT

We compare our RPRO approach against two established training paradigms. Supervised Fine-Tuning
(SFT) employs standard next-token prediction on the highest-quality reasoning chains. DPO utilizes
pairwise preference learning between high- and low-quality reasoning pairs. RPRO implements
group-wise ranking optimization across multiple quality levels, enabling more nuanced preference
learning from ranked reasoning chains.

5.4 Evaluation Metrics

We use two complementary metrics to assess model performance: accuracy, which measures the
proportion of correctly answered questions for direct factual assessment, and macro F1 score, which
computes the unweighted average of F1 scores across answer categories to ensure balanced evaluation
and address class imbalance. This dual-metric approach captures both overall performance and
category-specific reasoning quality.

5.5 Quantitative Results

Main Results. Table 1 presents the performance comparison across all evaluated models. Our method
achieves substantial improvements over baseline models on both datasets. On PubMedQA, we obtain
61.95% accuracy and 50.88% Macro F1, outperforming the best baseline (Gemma 7B) by 3.87%
and 2.86%, respectively. On MedQA-USMLE, our approach reaches 27.92% accuracy and 20.41%
Macro F1, surpassing the strongest baseline (MedAlpaca 7B) by 3.91% accuracy. Remarkably, our
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Table 1: Comparison of different models on PubMedQA and MedQA-USMLE. Best results are in
bold.

Models Method PubMedQA MedQA-USMLE
ACC (%) Macro F1 (%) ACC (%) Macro F1 (%)

Gemma 2B - 51.03 52.61 17.78 9.21
Gemma 7B - 58.08 48.02 20.37 10.18
Mistral 7B - 51.43 47.11 22.66 11.78
MedAlpaca 7B - 44.83 42.41 24.01 16.37
BioMistral 7B - 38.89 37.98 19.89 7.47
MedAlpaca 13B - 52.61 46.16 23.15 22.42
Our Method (LLaMA 1.1B, RPRO) RPRO 61.95 50.88 27.92 20.41

Table 2: Ablation study comparing different training methods and refinement strategies on PubMedQA
and MedQA-USMLE. Best results are in bold.

Method PubMedQA MedQA-USMLE
ACC (%) Macro F1 (%) ACC (%) Macro F1 (%)

SFT (with Refinement) 57.46 41.37 24.81 13.52
DPO (with Refinement) 60.90 41.92 25.83 15.65
RPRO (No Refinement) 61.43 38.11 23.33 13.27
Our Method: RPRO (with Refinement) 61.95 50.88 27.92 20.41

1.1B parameter model achieves better overall performance than much larger models, including 7B
and 13B variants, demonstrating the effectiveness of our reasoning refinement approach.

Ablation Studies. Table 2 analyzes the contribution of key components in our framework. The
comparison between "No Refinement + RPRO" and "RPRO (with Refinement)" reveals that reasoning
refinement provides substantial improvements, particularly for Macro F1 (38.11% → 50.88%),
while maintaining similar accuracy levels. This suggests that refinement enhances the quality of
reasoning beyond mere correctness. Comparing different training paradigms, RPRO with refinement
outperforms both SFT and DPO variants, validating the effectiveness of group-wise preference
optimization for multi-candidate reasoning scenarios.

In Fig. 2, we investigate the impact of different regularization coefficients β on performance, revealing
that moderate β values can enhance Macro F1 while maintaining accuracy, thereby achieving a
balance between factual correctness and reasoning comprehensiveness. Excessively low β values
cause the model to deviate from the reference distribution and lose stability, while excessively high β
values over-constrain the model and suppress reasoning diversity. These findings validate the critical

Figure 2: Performance comparison on PubMedQA and MedQA-USMLE under different β values.
Accuracy (solid blue line) and Macro F1 (dashed orange line) are reported.
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Figure 3: Performance across different confidence thresholds on (a) PubMedQA and (b) MedQA-
USMLE datasets. Accuracy (solid blue line) and Macro F1 (dashed purple line) are reported.

Figure 4: Training loss curves on MedQA-USMLE (left) and PubMedQA (right) datasets. The plots
show KL divergence, pairwise loss, ranking loss, and total loss across training steps.

importance of appropriate KL regularization for enhancing robustness and generalization capabilities
in clinical reasoning tasks.

Threshold and Convergency Analysis. Figure 3 examines the impact of the acceptance probability
threshold τ on model performance. Lower thresholds (0.2, 0.4) result in excessive refinement,
potentially degrading reasoning quality through over-correction. The optimal threshold of 0.6
balances the necessity for refinement with the preservation of reasoning. Higher thresholds (0.8) show
marginal accuracy improvements but decreased Macro F1, suggesting that conservative refinement
may miss opportunities for quality enhancement while maintaining correctness.

To evaluate the robustness of our training, we further analyze our RPRO training loss as shown
in Fig. 4. The results demonstrate that RPRO exhibits stable and convergent training loss curves
across both MedQA-USMLE and PubMedQA datasets, evidencing the robust training stability of the
ranking-based preference optimization approach in medical reasoning tasks. Furthermore, the group-
level ranking signals effectively mitigate the high variance issues inherent in pairwise preference
methods.

Reasoning Results from PubMedQA and MedQA-USMLE Tasks. The reasoning examples shown
in Table 3 in Appendix A.2 provide representative cases generated by our model using the proposed
prompt templates. These examples demonstrate how our approach enables structured, interpretable,
and domain-specific reasoning across both biomedical and clinical question answering tasks.

6 Conclusion and Future Work

In this paper, we present a novel approach for enhancing medical reasoning by combining ranked
preference reinforcement optimization with probabilistic reasoning refinement. Our method intro-
duces task-adaptive Chain-of-Thought generation, employs domain-specific reasoning templates, and
incorporates a probabilistic quality assessment framework that enables targeted self-reflection and
refinement. We evaluate our 1.1B parameter model on PubMedQA and MedQA-USMLE, demon-
strating substantial improvements over much larger baseline models. These results validate that
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quality-driven reasoning enhancement is more effective than simple parameter scaling. Ablation
studies further highlight the critical roles of reasoning refinement and ranked preference optimization.

In future work, we plan to extend our approach to additional medical reasoning tasks, integrate
external medical knowledge bases, and explore optimal trade-offs between model scale and reasoning
refinement quality. Moreover, conducting human evaluation studies with domain experts and real-
world clinical assessments will provide valuable insights into practical utility and safety implications,
ultimately advancing the deployment of AI in healthcare settings.
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A Prompt Templates and Reasoning Outputs

A.1 Prompt Templates

To improve the interpretability and reliability of model outputs, we introduce task-adaptive prompt
templates that guide the generation of structured reasoning traces. Instead of relying on a one-size-
fits-all format, each task type is paired with a reasoning scaffold that reflects its unique characteristics
and objectives. This design choice serves two purposes: first, it enforces a step-by-step decomposition
of the reasoning process, which makes the model’s decision pathway easier to trace and evaluate;
second, it provides an inductive bias that steers the model towards domain-appropriate styles of
justification.

The overarching principle behind these templates is to encourage multi-step reasoning that remains
interpretable to human evaluators, while ensuring both factual accuracy and alignment with domain-
specific norms. By providing explicit structures for reasoning, such as decomposition, background
recall, logical connection, and justification, the templates reduce ambiguity in how the model
organizes its answers. In turn, this structured approach facilitates both automated scoring and human
assessment, making the reasoning process not only more transparent but also more consistent across
different tasks.

General QA (PubMedQA-style)

This template is specifically tailored for biomedical question answering tasks such as PubMedQA,
where the objective goes beyond producing a short answer. Instead, the emphasis is placed on gener-
ating an explicit reasoning trace that makes the answer both interpretable and verifiable. Biomedical
questions often involve complex study designs, statistical results, or methodological considerations,
and thus require reasoning that can bridge raw evidence with a clear conclusion.

By decomposing the reasoning into four stages: question decomposition, background knowledge,
logical connection, and final justification, the prompt provides a structured scaffold that encourages
the model to move progressively from understanding the question to constructing a justified answer.
This explicit structure reduces the risk of shallow or incomplete responses and ensures that each step
in the reasoning process contributes to the overall coherence of the final output.

Such a design is not only beneficial for improving factual accuracy, but also for enhancing trans-
parency: human evaluators can more easily trace how the model arrived at its decision, identify
possible reasoning gaps, and assess the quality of the justification. In this way, the prompt template
serves as an inductive bias that steers the model toward producing consistent, domain-appropriate,
and interpretable reasoning outputs.
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Prompt Template (PubMedQA style)

You are a medical reasoning expert. Based on the question, context,
and final answer, produce a 4-step reasoning process:

1. Question Decomposition: Identify what the question is asking.
2. Background Knowledge: Recall relevant biomedical facts.
3. Logical Connection: Link knowledge to the question logically.
4. Final Justification: Conclude the answer with reasoning support.

Ensure factual consistency, no hallucination.

Clinical QA (USMLE-style, as in MedQA)

For clinical question answering tasks that involve USMLE-style medical exam questions, such as
those featured in the MedQA dataset, the prompt template is explicitly designed to emulate the
diagnostic reasoning process of physicians. Unlike general QA, clinical cases demand not only
factual recall but also structured interpretation of patient data, prioritization of differential diagnoses,
and justification of the most plausible outcome. The reasoning scaffold is therefore organized into
four stages: case summarization, where essential patient demographics and presenting symptoms
are distilled; evaluation of clinical significance, which highlights the findings most relevant for
decision-making; differential diagnosis, where possible explanations are systematically compared;
and justification of the most likely diagnosis, which consolidates evidence in support of a single
conclusion. By mirroring this stepwise diagnostic workflow, the template provides the model with
an inductive bias towards producing reasoning that is aligned with clinical practice. This design
facilitates both transparency and evaluability, enabling human experts to trace how the model arrives
at its conclusions and to assess whether the reasoning follows medically sound logic.

Prompt Template (MedQA-USMLE style)

You are a clinical reasoning expert. Given the patient case and
final diagnosis, produce a 4-step diagnostic reasoning process:

1. Case Summary: Summarize the key patient information.
2. Clinical Significance: Explain the important findings.
3. Differential Diagnosis: Consider possible alternatives.
4. Most Likely Diagnosis: Justify the final diagnosis.

Ensure medical accuracy, no hallucination.

A.2 Model-Generated Reasoning Cases

The following reasoning cases, shown in Table 3, present representative outputs generated by our
model using the proposed prompt templates. These cases demonstrate how our approach enables
structured, interpretable, and domain-specific reasoning across both biomedical and clinical question
answering tasks.

B Scoring Examples

We illustrate how candidate CoTs are scored in our pipeline. Each candidate is systematically
evaluated on three complementary criteria, using a 0–5 scale for each dimension: Coverage, which
measures how comprehensively the reasoning process addresses the key aspects of the question;
Factual Accuracy, which assesses whether the statements made are medically or scientifically
correct; and Redundancy, which captures the extent of unnecessary repetition or irrelevant content
that may obscure the clarity of the reasoning.

This tripartite scoring framework is designed to balance both the completeness and reliability of
model-generated reasoning. By combining a positive dimension (coverage), a correctness dimension

13



(accuracy), and a negative dimension (redundancy), we obtain a holistic view of quality that goes
beyond whether the final answer is correct. In particular, the redundancy criterion ensures that verbose
or circular explanations are not mistakenly rewarded, while the factual accuracy criterion penalizes
hallucinations or incorrect claims even if the answer happens to be correct.

To make the evaluation process more concrete, we provide illustrative examples from two widely
used benchmark datasets, PubMedQA and MedQA-USMLE. For each dataset, we present three
representative CoTs: one high-quality, one medium-quality, and one low-quality. These examples are
synthetic and included solely to demonstrate how our scoring framework operates, rather than being
actual model outputs. Through these examples, it becomes clear that evaluating reasoning requires
attention not only to the final answer but also to the intermediate steps that support it.

B.1 PubMedQA

In PubMedQA, models are required to answer biomedical research questions and justify their
predictions with evidence-based reasoning. To illustrate how our scoring framework operates, we
present synthetic examples that highlight the distinction between comprehensive, factually grounded
reasoning and superficial or vague chains of thought.

Example 1: High-quality CoT

Question: Systematic use of patient-rated depression severity monitoring: is it helpful and
feasible in clinical psychiatry? Answer: Yes
Generated CoT:

1. Measurement-based care is key for achieving depression remission.
2. PHQ-9 was implemented in 19 psychiatric practices.
3. 93% of 6,096 patient contacts influenced by PHQ-9, 40% led to treatment changes.
4. Thus, PHQ-9 is both helpful and feasible in clinical psychiatry.

Scores: Coverage = 4.7, Factual Accuracy = 4.9, Redundancy = 0.1

Example 2: Medium-quality CoT

Question: Systematic use of patient-rated depression severity monitoring: is it helpful and
feasible in clinical psychiatry? Answer: Yes
Generated CoT:

1. PHQ-9 is sometimes used in psychiatry.
2. It measures depression symptoms.
3. Some patients changed treatment after using it.
4. Therefore, it is helpful.

Scores: Coverage = 3.2, Factual Accuracy = 3.5, Redundancy = 0.6

Example 3: Low-quality CoT

Question: Systematic use of patient-rated depression severity monitoring: is it helpful and
feasible in clinical psychiatry? Answer: Yes
Generated CoT:

1. Depression is bad.
2. Patients answer questions.
3. Doctors see results.
4. So it helps.

Scores: Coverage = 1.2, Factual Accuracy = 1.5, Redundancy = 0.1
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B.2 MedQA-USMLE

For MedQA-USMLE, the task involves answering clinical questions in the USMLE style with precise
diagnostic reasoning. To illustrate our scoring framework, we present examples showing that the
same final answer can be supported by reasoning of very different quality. Our evaluation criteria
capture whether the reasoning correctly contextualizes the case, enumerates differential diagnoses,
and avoids vague or trivial statements.

Example 4: High-quality CoT

Question: A 48-year-old man with chronic alcoholism presents with seizure, confusion, and
severe hyponatremia. What is the most likely complication of urgent treatment? Answer:
Osmotic myelinolysis
Generated CoT:

1. Case Summary: 48M, seizure, confusion, history of alcoholism, hyponatremia.
2. Clinical Significance: Hyponatremia with seizure suggests electrolyte disturbance.
3. Differential Diagnosis: Possible complications include cerebral edema, arrhythmia,

Wernicke encephalopathy.
4. Most Likely Diagnosis: Rapid correction of sodium can cause osmotic myelinolysis.

Scores: Coverage = 4.8, Factual Accuracy = 5.0, Redundancy = 0.1

Example 5: Medium-quality CoT

Question: A 48-year-old man with chronic alcoholism presents with seizure, confusion, and
severe hyponatremia. What is the most likely complication of urgent treatment? Answer:
Osmotic myelinolysis
Generated CoT:

1. Patient had seizure and alcoholism.
2. Hyponatremia is dangerous.
3. Could be related to brain swelling or nerve problems.
4. So the answer is osmotic myelinolysis.

Scores: Coverage = 3.0, Factual Accuracy = 3.2, Redundancy = 0.5

Example 6: Low-quality CoT

Question: A 48-year-old man with chronic alcoholism presents with seizure, confusion, and
severe hyponatremia. What is the most likely complication of urgent treatment? Answer:
Osmotic myelinolysis
Generated CoT:

1. Patient sick.
2. Sodium problem.
3. Bad outcome.
4. Answer: osmotic myelinolysis.

Scores: Coverage = 1.0, Factual Accuracy = 1.5, Redundancy = 0.1

C Dataset Format (JSONL Example)

We adopt a JSONL format for our training data in the RPRO pipeline. Each entry corresponds to a
single PubMedQA-style example, and contains the following fields:

• id: unique identifier of the example.
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• question: the biomedical question to be answered.
• context: supporting abstract or passage (from PubMedQA).
• answer: the gold label.
• ranked: a list of candidate reasoning chains ranked from better to worse.
• scores: numerical quality scores corresponding to each reasoning chain.
• breakdowns: fine-grained evaluation dimensions (coverage, factual accuracy, redundancy).

Below is an illustrative JSONL example (truncated for brevity):

{
"id": "PMQA_001",
"question": "Can patient coaching reduce disparities?",
"context": "This study evaluated whether structured patient coaching

improves adherence and reduces disparities ...",

"answer": "Yes",

"ranked": [
"1. Key clinical features suggest ...\n4. Disparities were

eliminated.",
"1. Coaching is sometimes used ...\n4. May not fully resolve

disparities.",
...

],

"scores": [
0.90,
0.65,
...

],

"breakdowns": [
{"coverage": 4.5, "factual_accuracy": 4.7, "redundancy": 0.2},
{"coverage": 3.5, "factual_accuracy": 3.2, "redundancy": 0.7},
...

]
}
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Table 3: Reasoning results for PubMedQA and MedQA-USMLE tasks.

Question Reasoning & Prediction
PubMedQA

Does body mass index (BMI) influence mor-
bidity and long-term survival in gastric can-
cer patients after gastrectomy?

Reasoning CoT:
1. Question Decomposition: Determine if BMI is
a predictor of morbidity and long-term survival in
gastric cancer patients.
2. Background Knowledge: BMI is a predictor of
morbidity and long-term survival in gastric cancer
patients.
3. Logical Connection: If BMI is significantly
associated with these outcomes, it can serve as a
predictive factor.
4. Final Justification: Based on the results of the
study, BMI is a predictor of morbidity and long-
term survival in gastric cancer patients.
Answer: yes
Final Prediction: yes

MedQA-USMLE
A 35-year-old man with itchy, watery eyes,
recurrent in spring; conjunctival injection
and watery discharge. Most appropriate
treatment?
Options:
A. Erythromycin ointment
B. Ketotifen eye drops
C. Warm compresses
D. Fluorometholone eye drops
E. Latanoprost eye drops

Reasoning CoT:
1. Case Summary: 35M with itchy, watery eyes
and sneezing, recurrent in spring, exam shows con-
junctival injection with watery discharge.
2. Clinical Significance: These findings suggest
allergic conjunctivitis rather than infection.
3. Differential Diagnosis: Bacterial conjunctivitis
usually has purulent discharge, viral can be acute
but less itchy, seasonal pattern fits allergy.
4. Most Likely Diagnosis: Allergic conjunctivitis,
treatment is with antihistamine/mast cell stabilizer
eye drops such as ketotifen.
Answer: Ketotifen eye drops (B)
Final Prediction = Ground Truth: B
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