
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MP-MAT: A 3D-AND-INSTANCE-AWARE HUMAN
MATTING AND EDITING FRAMEWORK WITH
MULTIPLANE REPRESENTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Human instance matting aims to estimate an alpha matte for each human instance
in an image, which is challenging as it easily fails in complex cases requiring
disentangling mingled pixels belonging to multiple instances along hairy and thin
boundary structures. In this work, we address this by introducing a novel 3D-
and-instance-aware matting framework with multiplane representation, where the
multiplane concept is designed from two different perspectives: scene geometry
level and instance level. Specifically, we first build feature-level multiplane repre-
sentations to split the scene into multiple planes based on depth differences. This
approach makes the scene representation 3D-aware, and can serve as an effec-
tive clue for splitting instances in different 3D positions, thereby improving inter-
pretability and boundary handling ability especially in occlusion areas. Then, we
introduce another multiplane representation that splits the scene in an instance-
level perspective, and represents each instance with both matte and color. We
also treat background as a special instance, which is often overlooked by existing
methods. Such an instance-level representation facilitates both foreground and
background content awareness, and is useful for other down-stream tasks like im-
age editing. Once built, the representation can be reused to realize controllable
instance-level image editing with high efficiency. Extensive experiments validate
the clear advantage of MP-Mat in matting task. We also demonstrate its superi-
ority in image editing tasks, an area under-explored by existing matting-focused
methods, where our approach under zero-shot inference even outperforms trained
specialized image editing techniques by large margins. Code will be released to
inspire relevant fields.

1 INTRODOCTION

Human matting is one of the foundation tasks in computer vision that can widely serve for applica-
tions such as image editing, image compositing, and film post-production (Zhu et al., 2017; Chen
et al., 2018; Sengupta et al., 2020; Lin et al., 2021; 2023). Despite the development of effective
algorithms, most methods focus on human matting under single-instance scenarios, which cannot
fully align with real-world applications, where multiple instances could exist in a complex scene. In
recent years, InstMatte (Sun et al., 2022) formally introduced the multi-instance matting fomulation,
which separates the image into a combination of multiple instance layers and background layer:

I =

n∑
i=1

αiCi +

(
1−

n∑
i=1

αi

)
B (1)

where αi ∈ [0, 1] denotes the opacity (alpha matte) of the i-th foreground, whose value is the
ultimate task goal. The task is actually an ill-defined problem since the foreground color Ci , back-
ground color B and the alpha value αi are left unknown. Compared with single-instance assumption,
multi-instance matting poses additional challenges. Specifically, the algorithm should be instance-
aware (i.e., can localize and distinguish different human instances), and also needs to preserve com-
plex and fine instance edges. Maintaining the integrity of each instance without blurring the edges
is particularly challenging in cases where instances are in contact or occluded (Ke et al., 2021).

A core motivation of this work is to establish layered representation to facilitate instance matting in
complex scenarios, where we split the scene into different layers based on 2 different perspectives:
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Figure 1: The proposed MP-Mat can perform well in both instance matting and editing tasks, out-
performing existing state-of-the-art specialist models designed for individual tasks. Distinguished
areas are highlighted with bounding boxes, where MP-Mat preserves finer details and better retains
regions that should remain semantically unchanged.

depth-oriented and instance-oriented. Our design of such layered concept is partially inspired by
the idea of Multiplane Image (MPI) (Tucker & Snavely, 2020), a learnable 3D representation that
is proposed for novel view synthesis. MPI aims to learn a 3D scene representation with multiple
RGBA planes from source image, which can then be used to synthesize different novel views of
the scene. The learned multiple RGBA planes can split the scene based on the depth difference.
We argue that such a depth-oriented plane-splitting idea could be potentially helpful for matting in
multi-instance scenarios. Specifically, different instance may lie in different depth positions, so they
can be effectively distinguished by grouping them into different planes that represent a distinct depth
level, which could be potentially helpful for handling occlusions under complex scenes. However,
we argue that naively using MPI for instance matting is not feasible, as it is build on low pixel-level
based on depth differences for only pixel-level novel view synthesis and without instance-awareness.

Based on the aforementioned analysis, we propose MP-Mat, a 3D-and-instance-aware matting
framework that is built on meticulously designed multiplane representations. Specifically, our for-
mulation mainly consists of 2 parts: scene geometry-level multiplane representation (SG-MP) and
instance-level multiplane representation (Inst-MP). The SG-MP is built to split the scene into multi-
ple planes based on the depth differences, making the scene representation 3D-aware, and can serve
as an effective clue for splitting instances in different 3D positions. Different from the existing MPI
representations, the proposed SG-MP is built on feature-level, rather than the low pixel-level. The
benefits lie in 2 aspects: (1) Compared with low-level RGBA, building MP features on high-level
deep features can contain more semantic information to better represent the scene geometry as well
as fine-grained texture context, which can be useful for the subsequent instance-level analysis based
on it; (2) When optimized together with subsequent instance-level Inst-MP for instance-level per-
ception tasks (e.g., instance localization and matting), the SG-MP feature will also receive relevant
gradient, making the plane division and scene representation become more instance-aware.

Besides the built SG-MP, we also introduce an instance-level multiplane representation (Inst-MP)
that splits the scene in an instance-level perspective, and represent each instance with both matte
and color (as shown in Fig. 2). Our formulation has several benefits: (1) Different from most mat-
ting methods that only predict alpha matte, our proposed representation additionally estimates the
color of each foreground, enabling better foreground content awareness, resulting in a higher mat-
ting accuracy; (2) Besides foreground instances, Inst-MP also explicitly models the background as
a special instance. Such formulation is different from existing works that only focus on foreground
matte modeling, and enables better handling of the boundary of instance and background, especially
when occlusion occurs; (3) The proposed instance-level multiplane representation obeys the inte-
gration property for image rendering (i.e., the integral of the representation equals the whole RGB
image), and thus can be easily used for downstream tasks like image editing where instance-level
manipulation can be directly processed on separate feature planes. Once built, the representation
can be reused to realize controllable instance-level image editing with very high efficiency.
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We conduct extensive experiments to demonstrate the superiority of the proposed framework.
Specifically, for instance matting, our MP-Mat outperforms existing methods by large margins (i.e.,
at least 2.76 SAD in HIM-100K dataset (Liu et al., 2024) and 4.16 SAD in SMPMat dataset (Jiao
et al., 2024)). Besides, we also take a further step to explore the capacity of MP-Mat on image
editing task that is actually under-explored by existing matting-focused methods. We found that our
method can also perform well on this potential downstream task and even outperforms existing spe-
cialized image editing techniques by large margins and with high efficiency, even under zero-shot
inference. A qualitative comparison is shown in Fig. 1, where distinguished regions are highlighted
with bounding boxes. For both types of tasks, MP-Mat can actually preserve finer details and better
retains regions that should remain semantically unchanged. We hope our work can inspire future
research in related fields, including but not limited to image matting and image editing.

2 RELATED WORK

2.1 INSTANCE MATTING

Elder matting works (Xu et al., 2017; Tan et al., 2018; Lu et al., 2019; Zhang et al., 2019; Qiao et al.,
2020; Li & Lu, 2020; Sun et al., 2021; Yu et al., 2021b; Ke et al., 2022; Li et al., 2022; Ma et al.,
2023) assume a single-instance condition without multi-instance awareness, which remains a gap
with many real-world scenarios. Human instance matting is a recently emerged task that differs from
the traditional one, as it requires simultaneously localizing multiple instances and distinguishing
their mattes in an instance-level manner. Such a task poses more challenges as it easily fails in
complex cases requiring disentangling mingled pixels belonging to multiple instances along hairy
and thin boundary structures. Mainstream methods (Hu & Clark, 2019; Sun et al., 2022; Huynh
et al., 2024) for this task typically rely on instance-level masks (He et al., 2017; Wang et al., 2020)
as input and gradually refine them to predict the matte. While these methods provide a certain level
of instance-awareness, it is relatively weak as they largely depend on a pre-set instance segmentation
module. Although a recent work (Liu et al., 2024) achieves independent instance-aware capability,
its performance still falls short of the SoTA methods in the mainstream setting, primarily due to the
lack of external guidance. Different from these works, we build layered representations to emphasize
3D and full instance awareness. Specifically, the build SG-MP decomposes the scene based on depth
variation, thereby improving interpretability and boundary handling ability especially in occlusion
areas. Our Inst-MP, besides representing the matte of foreground instances, also explicitly models
the background and color of each instance, resulting a better context awareness for both foreground
and background. Inst-MP also processes good properties for downstream image editing tasks that
are under-explored by existing matting-focused methods.

2.2 INSTANCE CONTROLLABLE IMAGE EDITING

The task aims to impose instance-level editing (e.g., instance removal or dragging) on the image in
a harmonious way. Recently, diffusion models (Yildirim et al. (2023); Shi et al. (2024); Ekin et al.
(2024); Sheynin et al. (2024); Yang et al. (2024)) have brought significant breakthroughs in image
editing tasks. Despite their effectiveness, they generally need more denoising steps to generated high
quality result, which is usually more time costly. Existing methods are also of weak instance-aware
capabilities and cannot fully guarantee that theoretically unchanged regions remain unaffected, re-
sulting in poor performance on instance-level editing tasks. In this work, the intrinsic property of our
proposed instance-level multiplane representation (Inst-MP) can also enable an easier and more di-
rect way to achieve instance-level editing, where accurate instance-level feature manipulation can be
done on separate feature planes without affecting other regions, thereby enhancing the consistency
of the edited image. Experiments show that our approach, even under zero-shot inference, signifi-
cantly outperforms trained specialized image editing techniques. Another distinguished advantage
is that once Inst-MP is built, subsequent editing of the image takes negligible time. Besides, we also
explore our potential in image editing tasks, which, to our knowledge, has not been well concerned
by previous matting-focused works. We hope our work can inspire future research in related fields,
including but not limited to image matting and image editing.

2.3 3D SCENE REPRESENTATION

3D scene representation has been widely used for tasks like 3D reconstruction (Mescheder et al.,
2019; Wu et al., 2024) and view synthesis (Kong et al., 2024; Luiten et al., 2024). In this work, one of
our motivations is to make instance matting become more 3D-aware. Our design is partially inspired
by the idea of Multiplane Image (MPI) (Tucker & Snavely, 2020), a learnable 3D representation that
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Figure 2: The overall framework of the proposed MP-Mat. ⊕ indicates concatenation operation.

is proposed for novel view synthesis. MPI aims to learn multiple planes that decompose the scene
according to depth variations. We argue that such a depth-oriented plane-splitting idea could be
potentially helpful for matting in multi-instance scenarios. However, naively using MPI for instance
matting is not feasible, as it is build on low pixel-level based on depth differences for only pixel-level
novel view synthesis and without instance awareness. On the contrary, our formulation differs to it
within 3 aspects: (1) MPI split the planes based on depth variations, while we design the multiplane
representation from 2 different perspectives (scene geometry level and instance level) to be better
aware of both depth and instance-level information; (2) MPI is built on low pixel-level, while our
scene geometry level representation is built on high-level deep features, which is of better capacity
for understanding scene geometry as well as fine-grained texture context. It also enables flexible
end-to-end training with the subsequent instance-level task to enrich its instance-awareness ability;
(3) MPI is generally used for low pixel-level tasks like novel view synthesis (Tucker & Snavely,
2020) and bokeh rendering (Peng et al., 2022; Rao, 2023) that lack of instance awareness, while our
goal is to solve instance-level perception problems, with different formulation from original MPI.

3 METHOD

As shown in Fig. 2, our MP-Mat framework mainly consists of 2 parts: scene geometry-level mul-
tiplane representation and instance-level multiplane representation. In the following, we will first
introduce MP-Mat for instance matting in detail. Then, we will also describe how our method can
be applied for instance-controllable image editing tasks.

3.1 SCENE GEOMETRY-LEVEL MULTIPLANE REPRESENTATION (SG-MP)

We first build multiplane representations to split the scene into multiple planes based on depth dif-
ferences. This approach makes the scene representation 3D-aware, and can serve as an effective clue
for splitting instances in different 3D positions, thereby alleviating occlusion effects. To be specific,
we introduce plane-distinctive masks to represent plane information, which is obtained by a plane
generation network. They will be concated with the deep feature encoded from RGBD input, to
form the so-called scene geometry-level multiplane representation.

3.1.1 PLANE GENERATION NETWORK (PGN)

This network aims to generate the plane-distinctive masks based on the input single view RGBD
image, for plane information representation. To be more specific, we first define N planes that aim to
split the scene based on distinction in depth and instance-level information, which we represent them
using what we call plane-distinctive masks. The PGN will gradually generate N plane-distinctive
masks {Mi}Ni=1 based on a set of predefined initial depths {d′i}

N
i=1 (uniformly sampled according

to the scene depth map) and the actual RGBD image inputs, where the final refined masks will
simultaneously possess scene depth-distinctive and instance-aware characteristics. Note that the
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input depth map here can be easily estimated using off-the-shelf depth estimators, and the actual
cost is comparable to pre-instance mask generation in existing mainstream mask-guided instance
matting methods (Sun et al., 2022; Huynh et al., 2024).

As illustrated in Fig. 2, we first use a shared lightweight CNN Ed to extract a global featuref ′
i for

plane i at the initial depth d′i:
f ′
i = Ed (I,D, d′i) (2)

Then we apply the self-attention operation to {f ′
i}

N
i=1 to obtain {fi}Ni=1:

{fi}Ni=1 = Self-Attention
(
{f ′

i}
N
i=1

)
(3)

The intuition here is to adjust the corresponding depth information of each plane at the feature level
by exchanging the geometry and appearance information among {f ′

i}
N
i=1. The adjusted feature fi is

then decoded to the adjusted depth di using a shared MLP Dd:

di = Dd(fi) (4)

After plane depth adjustment, we then use an interpreter to generate the plane-distinctive masks
based on the adjusted plane depths and the original RGBD inputs:

{Mi}Ni=1 = Softmax({H(I,D, di)}Ni=1) (5)

where H is a UNet-like architecture, and the spatial resolution of Mi aligns with the extracted deep
feature from the scene encoder. The mask delicately allocates every visible pixel from the source
viewpoint to each plane. We concat the plane-distinctive masks and the deep scene feature to form
the so-called scene geometry-level multiplane representation.

3.2 INSTANCE-LEVEL MULTIPLANE REPRESENTATION (INST-MP)

Given the obtained scene geometry-level multiplane representation, we subsequently use it to derive
instance-level multiplane representation {(ci, αi)}Si=0, where i serves as the plane index, with i = 0
corresponding to the background plane, and i ranging from 1 to S representing instance-level plane
for each distinct human instances within the image.

Actually, the ultimate prediction of instance matting task (i.e., instance-level matte {αi}Si=1) is a
sub-set of our instance-level multiplane representation. Our formulation has several benefits: (1)
Different from most matting methods that only predict alpha matte, our proposed representation ad-
ditionally estimates the color of each foreground, enabling better foreground content awareness; (2)
Different from existing works that only focus on foreground matte modeling, our representation also
explicitly model the background by regarding it as a special foreground instance. Such formulation
enables better handling of the boundary of instance and background, especially when occlusion oc-
curs; (3) The proposed instance-level multiplane representation obeys the integration property for
image rendering:

I =

S∑
i=0

ciαi (6)

Based on this property, we can reuse the built representation to realize controllable instance-level
image editing with very high efficiency (please refer to Sec. 4 for details). In the following of this
sub-section, we will introduce how to obtain the instance-level multiplane representation in detail.

3.2.1 INSTANCE QUERY

Here we use learnable queries {Qi}Ki=1 (K > S + 1) to capture instance-level features, where
S denotes the actual instance amount within image and we also regard background as a special
instance, resulting in the total number as S+1. The queries will collect the corresponding instance-
level features from the obtained scene geometry-level multiplane representation, through a standard
multi-layer transformer decoder that consists of multi-head self-attention and cross-attention with
fully-connected feed-forward networks (FFNs). Then, we use different prediction heads (composed
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of MLP) to map the query feature Qi into distinct embeddings: opacity embeddings Om
i ∈ RC that

gauge transparency, and color embeddings Oc
i ∈ RC that capture hue information, where C is the

feature dimension. We also derive an uncertainty map Ou
i ∈ RC×H×W (H ×W corresponds to the

spatial resolution of input image) to estimate the uncertainty of the predictions, which will be used
for subsequent feature refinement.

3.2.2 REFINEMENT MODULE

We design a refinement module that utilizes the uncertainty map {Ou
i }

K
i=1 to enhance {Oc

i }
K
i=1 and

{Om
i }Ki=1, and finally output the instance-level multiplane representation. Specifically, given the

acquired uncertainty map, the top T% (i.e., 10% in our implementation) of pixels with the highest
uncertainty values are selected, yielding filtered guidance masks {Ri}Ki=1 for refinement. The mask
Ri is subsequently concatenated with Om

i and Oc
i to indicate the region of high uncertainty for each

instance-level representation. Then, self-attention is adopted among different instance-level features
to refine (reconsider) the representations of each instance:

{Om
i }Ki=1 = Self-Attetion({Om

i , Ri}Ki=1)

{Oc
i }Ki=1 = Self-Attetion({Oc

i , Ri}Ki=1)
(7)

Finally, we predicts the alpha matte αi and the color ci based on Om
i and Oc

i :

{αi}Ki=1 = MattePredictor (Om
i )

{ci}Ki=1 = ColorPredictor (Oc
i )

(8)

where both MattePredictor and ColorPredictor are two-layer MLPs that decode the alpha/color em-
beddings to predict the final alpha matte/color.

3.2.3 MODEL TRAINING

The whole MP-Mat framework is trained in an end-to-end manner. We employ a multi-task loss,

L = λ1LDetect + λ2LMatting

LMatting = Lalpha + Llap + Lcomp
(9)

where LDetect is the loss for instance detection, including localization and classification loss. The
detection predictions are derived from instance-level matte results (the bounding box that can tightly
cover the pixel with m > 0). We then perform bipartite matching (Carion et al., 2020) between the
instance-level detection predictions and GTs to obtain the correspondence between predictions and
GTs, and then calculate the standard matting loss LMatting , which encompasses alpha loss, pyramid
Laplacian loss and composition loss following standard formulation (Sun et al., 2022).

4 MP-MAT FOR INSTANCE CONTROLLABLE IMAGE EDITING

Due to the good properties of Inst-MP as mentioned in Sec. 3.2, MP-Mat can achieve instance-level
image editing in a direct, accurate, and nearly free manner. The overarching idea is that instance-
level editing can be achieved by directly processing on separate instance-level planes within Inst-MP.
Once the Inst-MP is built, subsequent image editing will only take negligible time, and the editing
process is training-free. Here we will describe how it works for 3 different sub-tasks in detail.

Instance removal aims to delete specified foreground instance from the image without affecting its
overall harmony. This problem can be treated as reassigning the alpha matte of the removed instance
j to its backward instances (including background). For target instance j, We first define Ωj as the
set of pixel (x,y) where αj(x, y) > 0. For every pixel in Ωj , we assign its alpha to the instance plane
t that is closest behind j (can be estimated by the average depth of the plane):

αt(x, y) = αt(x, y) + αj(x, y). (10)

Then, the edited image can be represented as:

I ′ =

S∑
i=0,i̸=j

ciαi. (11)

6
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Occlusion reordering aims to switch the occlusion relationship between the source instance and
target instance (e.g., changing from instance p occluding q to q occluding p). We first consider a
simplified case where no additional instances are positioned between p and q (indicated by depth
position) for demonstration purposes. In this case, the task can be done by swapping the alpha values
of the two instances within their intersection regions:

α′
q(x, y) = αp(x, y), (12)

α′
p(x, y) = αq(x, y), (13)

where (x,y) refers to the pixel position that satisfy (cq(x, y) > 0) ∧ (cp(x, y) > 0). The edited
image can be then synthesized with the updated αi:

I ′ =

S∑
i=0,i̸=p,i ̸=q

ciαi + cpα
′
p + cqα

′
q. (14)

For general cases where other instances may exist between p and q, we first sort the plane based on
their depth from the closest to the fastest to the camera plane, resulting in a sorted plane index set
{...,p, p+1, p+2, ..., q−1,q, ...}. Then, we perform the aforementioned alpha swap between each
pair of adjacent planes iteratively until the desired order is achieved (i.e., {...,q, p+1, p+2, ..., q−
1,p, ...}). We provide more detailed description and pseudo code in the supplementary material.

Instance dragging aims to drag a target instance to a new desired position, which can be divided
into two categories: drag across images and drag within one image. The drag across image task
can be divided into three steps: (1) Feed the reference image Iref into MP-Mat to get its Inst-MP,
and separate the plane t (ct, αt) that corresponds to the target instance. (2) Crop (ct, αt) to form
(c′t, α

′
t) by extracting the rectangular region that tightly covers the pixels with positive alpha value.

(3) Set up a new plane (cnew, αnew) with zero initialization (i.e., all pixel values are 0), and add the
cropped (c′t, α

′
t) to it at the desired position on the target image, resulting in (c′new, α

′
new). Note

that additional transformations, such as rescaling and rotation, can also be applied to (c′t, α
′
t) before

adding. (4) Add the resulting new plane to the target image I:

I ′ = c′newα
′
new + (1− α′

new)I. (15)

For dragging within one image, it can be regarded as a combination of instance removal and dragging
across images when the target image remains the same as source.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

For both training and testing, we obtain the input depth map through an off-the-shelf monocular
depth estimator (Yin et al., 2023). We train MP-Mat on 4 NVIDIA RTX 2080Ti GPUs with a total
batch size of 4 (1 per GPU). The training employs the SGD optimizer with a momentum of 0.9
and a weight decay of 0.0005 for 50,000 iterations. The learning rate is initialized at 0.01 and is

adjusted by multiplying with
(
1− iter

max−iter

)0.9
. Additional implementation specifics are detailed

in the supplementary material. For the uncertainty map generation, the hyperparameter K is set to
5. In the loss function, the hyperparameters are λ1 = 1 and λ2 = 5.

5.2 TASK, DATASET, AND METRICS

Instance matting. We first validate MP-Mat on the multi-instance matting task, where we conduct
experiments on 2 datasets: the real image subset of the HIM-100k dataset (Liu et al., 2024), which
contains 47,980 real images with ground truth manually annotated, and the SMPMat dataset, a recent
synthetic matting dataset containing 40,000 synthetic images. We evaluate different models using
two major quantitative metrics: sum of absolute differences (SAD) and mean square error (MSE,
we report the 102 scaled value). Lower values for these metrics indicate better alpha matte results.

Instance editing. This is one of the potential downstream applications for matting, but existing
matting-focused research has not explored their actual usability and performance on related tasks. To
fill this gap, we conduct extensive experiments on 3 sub-tasks with compelling application value: (1)

7
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Table 1: Quantitative comparison of instance matting.

Method
Dataset

HIM-100k SMPMat
SAD MSE SAD MSE

Instance-agnostic
FBA(+Mask RCNN) 38.25 0.95 42.36 1.12
FBA(+SOLO) 38.18 0.94 41.23 0.96
FBA(+EVA) 37.76 0.91 39.82 0.95
MG(+Mask RCNN) 40.51 0.97 41.58 1.06
MG(+SOLO) 39.26 0.95 40.79 0.95
MG(+EVA) 38.19 0.94 39.73 0.95
Instance-aware
InstMatte 37.34 0.93 40.19 0.96
E2E-HIM 32.22 0.84 38.55 0.93
Maggie 29.48 0.78 37.41 0.91
MP-Mat (Ours) 26.75 0.49 33.25 0.81

Table 2: Effects of SG-MP and
Inst-MP in a global perspective.

SG-MP Inst-MP SAD MSE
35.85 0.87

✓ 33.78 0.86
✓ 29.46 0.60
✓ ✓ 26.75 0.49

Table 3: Components effects
within SG-MP extraction.

Depth PGN SAD MSE
33.78 0.86

✓ 31.82 0.74
✓ ✓ 26.75 0.49

Table 4: Component effect in Inst-MP extraction.
Background Estimation Color Estimation Refinement SAD MSE

29.46 0.60
✓ 28.53 0.55
✓ ✓ 27.79 0.52
✓ ✓ ✓ 26.75 0.49

Instance removal that aims to delete specified foreground instances from the image without affecting
its overall harmony; (2) Occlusion reordering that aims to modify the occlusion relationships among
foreground instance in a controlled and harmonious manner; (3) Instance dragging that aims to move
any instance to the desired position harmoniously. conduct experiments on the GQA-inpaint dataset
(Yildirim et al., 2023) for the instance removal task and use Mean L1 Loss, Mean L2 Loss, and PSNR
metrics for evaluation, where lower values for Mean L2 Loss and Mean L1 Loss are preferable,
while higher PSNR values indicate better quality. For occlusion reordering task, due to the lack
of data with ground truth, we construct a synthetic dataset ORHuman that can theoretically ensure
the correctness of the derived ground truth (see supplementary material for details). For instance
dragging task, we only give qualitative comparisons due to the lack of evaluation benchmarks.

5.3 INSTANCE MATTING

Compared methods. Our method is compared with the methods designed for this tasks, including
InstMatte (Sun et al., 2022), E2E-HIM (Liu et al., 2024) and Maggie (Huynh et al., 2024). We
also compared with composite approaches following Liu et al. (2024). Specifically, we tailor the
mask-guided matting model MG (Yu et al., 2021a) and FBA (Forte & Pitié, 2020) with off-the-shelf
instance segmentation models (Mask-RCNN He et al. (2017), SOLO Wang et al. (2020), and EVA
Fang et al. (2023)) to adapt it to the multi-instance matting task.

Main results. The main performance comparison on HIM-100K and SMPMat dataset is shown in
Tab. 1. It can be observed that the proposed MP-Mat outperforms existing methods by large margins
on both datasets (i.e., at least 2.76 SAD in HIM-100K dataset and 4.16 SAD in SMPMat dataset),
demonstrating the superiority of the proposed method.

Qualitative analysis. We also give some qualitative results in Fig. 1 and Fig. 3. It can be observed
that our method is superior in (1) distinguishing fine-grained boundaries such as hair regions, and (2)
with better instance-aware ability, especially under occlusion areas caused by human interactions.
More results can be found in the supplementary material.

5.4 ABLATION STUDIES

Here we conduct ablation studies on the HIM-100K dataset to analyze the effectiveness of the pro-
posed components. Specifically, we first validate the individual effects of the proposed multiplane
representations (i.e., SG-MP and Inst-MP) from a global perspective. Then, we go deeper to analyze
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Maggie GTE2E-HIMInstMatteInput EVA+MG MP-Mat

Figure 3: Qualitative comparisons among different methods. Distinguished areas are highlighted
with bounding boxes.

the effect of each component within the proposed SG-MP and Inst-MP, demonstrating their effects
while also revealing insights for further research. Besides, we also conduct parameter analysis used
in the proposed refinement module.

Effects of the proposed multiplane representations. Here we analyze the individual effect of the
proposed scene geometry-level multiplane representation (SG-MP) and instance-level multiplane
representation (Inst-MP) from a global perspective. From Tab. 2, it can been seen that: (1) Without
SG-MP, the performance drops drastically (SAD from 26.75 to 33.78). This validates the importance
of explicit 3D scene representation for multi-instance matting task. Our designed SG-MP makes the
scene representation 3D-aware, and can serve as an effective clue for splitting instances in different
3D positions, thereby alleviating occlusion effects; (2) Inst-MP can further boost SAD by a large
margin (i.e., 2.71), verifying its effectiveness. Another benefits of such design is for its flexibility
and high efficiency on down stream tasks like instance-level image editing, as discussed in Sec. 5.5.

Component effects within SG-MP extraction. From Tab. 3, it can be summarized that: (1) Depth
information is useful, as it can bring auxiliary 3D information; (2) Only sending depth map as
input is not sufficient enough. With our proposed Plane Generation Network (PGN) for multiplane
representation at feature level, the performance further boosts by 5.07 in SAD, which is much larger
than the performance gain solely from depth input (1.96 in SAD). This essentially demonstrates the
effectiveness of our explicit multiplane feature representation extraction design.

Component effects within Inst-MP extraction. From Tab. 4, it can be summarized that: (1)
Besides focusing on foreground instances, adding explicit background estimation is beneficial for
matting accuracy, as it enables better handling of the boundary of instance and background, es-
pecially when occlusion occurs; (2) Besides matte estimation, adding color estimation for each
instance can enable better content awareness and thus boost the performance; (3) The proposed
uncertainty guided refinement can further facilitate performance, as it can adjust ambiguity at fine-
grained boundaries.

5.5 INSTANCE EDITING

For all tasks mentioned in Sec. 5.2, we compare our method with SOTA image editing-focused
methods (Yildirim et al., 2023; Shi et al., 2024). We finetune the image editing-focused methods on
the target dataset for higher performance, while our MP-Mat adopts a zero-shot inference manner.

Instance removal. From Tab. 5, we can observe that: (1) MP-Mat significantly outperforms existing
editing-based methods and with high efficiency (also refer to Fig. 4 (a) for qualitative comparison).
(2) When combined with an off-the-shelf background inpainting model (Yu et al., 2018), the per-
formance of MP-Mat can be further boosted by large margins, we attribute this to the inadequate
background modeling capacity of our matting-based methods that is also partially caused by a lack
of training data for such themes. (3) The editing time cost within the same image becomes negligible
once Inst-MP is constructed in MP-Mat, further verifying the superiority of our design.
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Table 5: Quantitative comparison on instance removal. BI refers to an off-the-shelf background
inpainting method used to enhance the inpainting of the corresponding region. Bold text indicates
the best performance, and underlined text represents the second-best performance.

Editing Method Mean L1 Loss (↓) Mean L2 Loss (↓) PSNR (↑) Time per editing (s)
Inst-inpaint 12.69% 2.58% 23.09db 0.1982

Dragon Diffusion 12.13% 2.49% 22.17db 0.2139
Matting Method Mean L1 Loss (↓) Mean L1 Loss (↓) PSNR (↑) Time per image (s) Time per editing (s)

Ours 9.37% 1.96% 23.58db 0.1117 0.0003
Ours (w/ BI) 3.73% 0.84% 25.79db 0.1117 0.0169

Table 6: Quantitative comparison on occlusion reordering.

Method Mean L1 Loss (↓) Mean L2 Loss (↓) PSNR (↑) Speed (s)
Inst-inpaint 12.65% 3.42% 21.2db 0.2547

Dragon Diffusion 13.85% 3.66% 19.82db 0.2849
Ours 3.26% 0.79% 28.32db 0.1739

Input Inst-inpaint DragonDiffusion MP-Mat

(b) Occlusion reordering (       )

(c) Instance dragging within image (    )

DragonDiffusion MP-MatInput image

(d) Instance dragging across images (        )

Reference imageTarget image DragonDiffusion MP-Mat

(a) Instance removal (    )

Input Inst-inpaint DragonDiffusion MP-Mat MP-Mat+BI

Figure 4: Qualitative comparisons for editing tasks. Yellow boxes highlight the distinguished areas.

Occlusion reordering. From Tab. 6, we can also observe the significant superiority of MP-Mat
in both effectiveness and efficiency (i.e., more than 10% advantage on Mean L1 Loss, 8.5db on
PSNR, and 68% on speed). From Fig. 4 (b), we can observe that when editing target semantics,
exiting SOTA methods will also unintentionally alter content that should remain unchanged, such
as human faces. In contrast, our method better preserves these elements, supported by stronger
theoretical guarantees derived from our mathematical transformations, as detailed in Sec. 4. This
further demonstrates the superiority of our approach and highlights its potential in editing tasks.

Instance dragging. Here we only gave qualitative comparison due to the lack of benchmark
datasets. As in Fig. 4 (c) and (d), MP-Mat can preserve finer details such as hair and watch af-
ter dragging, which highlights another advantage of our approach. Overall, the results highlight the
potential of our matting-focused methods for image editing tasks.

6 CONCLUSIONS AND LIMITATIONS

In this work, we propose MP-Mat, a 3D-and-instance-aware matting framework that is built on
meticulously designed multiplane representations. Specifically, we design layered representations
from two perspectives: the scene geometry-level multiplane representation (SG-MP), which em-
phasizes scene decomposition based on depth differences, and the instance-level multiplane rep-
resentation (Inst-MP), which focuses on instance-level modeling. These representations excel in
handling occlusion effects and are better aware of both foreground and background content, leading
to a significant performance improvement for instance matting. Additionally, our design demon-
strates strong potential for instance-level image editing, a relatively underexplored area in existing
matting-focused methods. Remarkably, our approach, even under zero-shot inference, outperforms
specialized image editing techniques by large margins and with high efficiency. Despite the effec-
tiveness, our work mainly focuses on human instances. This is partially due to the lack of data
for multi-instance matting for other categories. We think that mixed training could be a potential
workaround to alleviate this, and we left those aspects to our future works.
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