Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

CODESTEER: SYMBOLIC-AUGMENTED LANGUAGE
MODELS VIA CODE/TEXT GUIDANCE

Yongchao Chen Yilun Hao Yueying Liu
MIT / Harvard MIT ulucC
yongchaochen@fas.harvard.edu yilunhao@mit.edu yl1l36@illinois.edu
Yang Zhang Chuchu Fan
MIT-IBM Watson Al Lab MIT
Yang.Zhang2@ibm.com chuchu@mit.edu

ABSTRACT

Existing methods fail to effectively steer Large Language Models (LLMs) between
textual reasoning and code generation, leaving symbolic computing capabilities
underutilized. We introduce CodeSteer, an effective method for guiding LLM
code/text generation. We construct a comprehensive benchmark SymBench com-
prising 37 symbolic tasks with adjustable complexity and also synthesize datasets
of 12k multi-round guidance/generation trajectories and 5.5k guidance comparison
pairs. We fine-tune the Llama-3-8B model with a newly designed multi-round su-
pervised fine-tuning (SFT) and direct preference optimization (DPO). The resulting
model, CodeSteerLLM, augmented with the proposed symbolic and self-answer
checkers, effectively guides the code/text generation of larger models. Augmenting
GPT-40 with CodeSteer raises its average performance score from 53.3 to 86.4,
even outperforming the existing best LLM OpenAl ol (82.7), ol-preview (74.8),
and DeepSeek R1 (76.8) across all 37 tasks (28 seen, 9 unseen). Trained for GPT-
40, CodeSteer demonstrates superior generalizability, providing an average 41.8
performance boost on Claude, Mistral, and GPT-3.5. CodeSteer-guided LLMs fully
harness symbolic computing to maintain strong performance on highly complex
tasks.

1 INTRODUCTION

While the reasoning and planning capabilities of LLMs have improved significantly (Wang et al.,
2024} |Chen et al.,[2024c; [Li et al.} 2023), they still fail in ostensibly simple tasks (Zhou et al.| |2024a)).
Crucially, many tasks in existing benchmarks—such as Blocksworld (Valmeekam et al., 2024} and
Game 24 (Zhou et al., [2023a)—can be completely solved with code solutions. Text-based reasoning
excels at semantic understanding and commonsense inference but is less suited for exact computation,
symbolic manipulation, optimization, and algorithmic processing (Valmeekam et al., 2022). In
contrast, symbolic computing via code generation is adept at handling rigorous operations and can
easily leverage specialized tools (e.g., equation solvers). In many tasks, prompting LLMs to generate
and execute code outperforms purely textual reasoning (Madaan et al., 2022} Liang et al.| 2022} Chen
et al.,[2022).

A key challenge is guiding LLMs to decide when to rely on textual reasoning versus programmatic
solutions, given that most input questions lack explicit cues about which approach is best. Recent
OpenAl GPT models address this by providing a Code Interpreter module, allowing the model to
iteratively generate and execute code, then further reason with the output (Achiam et al., 2023).
Multi-agent frameworks like AutoGen (Wu et al., [2023)) adopt a specialized system prompt to steer
LLM for code generation when needed. However, recently (Chen et al.[|(2024¢) finds that all these
existing methods struggle to effectively steer between textual reasoning and code generation, failing
to fully leverage symbolic computing capabilities.

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

= 28 Seen Tasks Game 24 BoxLift

BN 9 Unseen Tasks Question: Use numbers and basic arithmetic Question: You are given a list of boxes with the
operations (+ - % /) to obtain 24. Input: 3, 4, 4, 6.| | following weights: [312,..,120]. And a list of lifters
. s ith the following maximum lifting capacities:
CodeSteer Guidance 1: Utilize your it < s : .
programming expertise to address tasks.. [68..,109]. Your task is to assign the lifters to lift

all the boxes in multiple steps, following rules..
I:f}?";’: A:S:;rcz',;b;"aff;nvj S Tl s CodeSteer Guidance 1: Suggest python code (in a
Y : python coding block) for the user to execute..

- (6x4)-(3%4)=24

. TaskLLM Answer 1: To solve this problem, we need
***python to assign lifters to boxes, .<omitted text>..

Given numbers ***python

SymBench Score

a, b,c,d=1,3, 4,6 <omitted code>..
steps = []

Calculate the result while boxes:

result = (d - a) * (c - b) step = [
remaining_lifters = lifters[:]
i=0

40 se N oL = ‘en | # Print the final answer in the required format
T raor T GrT AN 0eers®® 01" | print(frcc<({d} - {a}) * ({c} - {b}) = {result}>>>") while i < len(boxes):
\okerPe Code . box = boxes[i]
CodeSteer Guidance 2: The current approach is used_lifters = []
- incorrect because... To solve the problem, consider total_capacity = 0
Number Multiply, (1) using a more complex and systematic approach to for j, lifter in
. . explore all possible combinations... Implement a enumerate(remaining_lifters):
Question: What is the result of -35%177 search algorithm that... if total_capacity + lifter >= box:
CodeSteer Guidance 1: Acquire the final answer TaskLLM Answer 2: ..<omitted texts. used_lifters.append(j)
with step by step textual analysis.. **~python <omitted code>..
TaskLLM Answer 1: Let's break down th # filename: find_24.py C i i
odeSteer Guidance 2: The current code runs into
nultiplication step by step, .<onittedf® M. LA LU LI L IR I LI infinite loop. Try to use more efficient searching..
The final answer is: -595 o L)) ¥ 5
= lef find_24(numbers): TaskLLM Answer 2: I understand, . d text>.
CodeSteer Guidance 2: Return Answer ops = ['+', '=', 'x', '/'] \ud **python anderstan e N7
for num_perm in permutations(numbers): .<omitted code>.. "'
for op_perm in product(ops, repeat=3):
- # Generate all possible ways to CodeSteer Guidance 3: This code still runs time
Number Multiply, (2) parenthesize the expfessmﬂ[out. Consider i ing a constraint sati
expressions =
Question: What is the result of -5343235+1434333277 " ({nun_perm[0]} {op_perm[0]} ??Sk';';‘" Answer 3: Here is the, <omitigd tegt>.
i 5 i {nun_perm[1]}) {op_pern([1]} ({num_perm[2]} python
CodeSteer Guidance 1: Generate code to solve it. {op_pern(2]} {num_pern(3]})", .<omitted code>..
TaskLLM Answer 1: (({num_pern (0]} {op_perm[0]} n
*>*python ') {num_perm(1]}) {op_perm(1]} {num_perm(2]}) CodeSteer Guidance 4: It seems you cannot write
Define the numbers ~ {op_perm[2]} {num_perm(3]}", the correct code. Directly use textual reasoning to..
numl = -5343235 f"({num_perm[@]} {op_perm[0]} TaskLLM Answer 4: Let us analyze it step by step,
num2 = 143433327 ({num_perm[1]} {op_perm[1]} {num_perm[2]})) .<omitted text>..
result = numl * num2 {op_perm[2]} (numﬁperMIiH”, Step 1: [(400, [3, 1, 0]), (231, [4, S)dEi89, [2))]
print("The result of -5343235 % 143433327 is:", f"{num_perm[0]} {op_perm([@]} Step 2: [(359, [4, 1, 0]), (230, [2, 8 EB9R(2)]
result) -<omitted code>. Step 3: .<omitted text>. &
CodeSteer Guidance 2: Return Answer C Guidance 3: Return Answer CodeSteer Guidance 5: Return Answer

Figure 1: Examples and performance of CodeSteer on guiding LLM code/text generation to integrate
symbolic computing. At each interaction with TaskLLLM, it reviews current and previous answers,
then provides guidance for the next round. CodeSteer returns final answers when it deems them ready.
With CodeSteer, GPT-40 outperforms OpenAl Code Interpreter, ol, and ol-preview models.

Our work tries to bridge this gap by developing an assistant framework (CodeSteer) to guide the
code/text generation of the LLM solving the task (TaskLLM). By fine-tuning a small model (Llama-
3-8B (Dubey et al [2024)) to be the assistant, we enable large models (GPT-40 (Achiam et al.
[2023)) to fully leverage symbolic computing via code generation while preserving other capabilities.
Recognizing that iterative “executing and exploring” is the most effective way to solve tasks, we
build CodeSteer to generate prompts that guide the TaskLLM through multiple rounds of interaction
before finalizing answers.

To achieve a comprehensive evaluation, we gather and develop a benchmark with 37 symbolic tasks,
referred as SymBench. On SymBench, augmenting GPT-40 with CodeSteer greatly improves its
average performance score from 53.3 to 86.4, even outperforming the current leading pure-text
model, OpenAl ol (82.7) and DeepSeek R1 (76.8) 2025). Although
trained for GPT-40, CodeSteer shows great generalizability, delivering an average 41.8 performance
gain on Claude-3-5-Sonnet, Mistral-Large, and GPT-3.5. By fully leveraging symbolic computing,
CodeSteer-guided LLMs maintain strong performance on highly complex tasks even when o1 fails in
all testing cases. Our key contributions are:

1) Developing and publishing SymBench: Prior works by |Chen et al.|(2024¢) and |Gui et al.|(2024)
gathered and developed 14 and 31 tasks, respectively, targeting challenges in computation, symbolic

manipulation, logic, optimization, spatial reasoning, and constrained planning. However, neither
study published the complete code for question/solution synthesis or the full datasets. From these 45
tasks, we select 37 that remain challenging for GPT-40 and redevelop their generation code to produce
samples with adjustable complexity. We refer to this newly published benchmark as SymBench.

2) New methods for dataset construction and model fine-tuning of SFT and DPO: We fine-tune
Llama-3-8B with the synthesized datasets of 12k multi-round guidance/generation trajectories (SFT)
and 5.5k guidance comparison pairs (DPO). Unlike standard multi-step settings, in CodeSteer’s
multi-round guidance, the TaskLLM outputs a complete answer each round rather than only at the
end. Consequently, we introduce novel components to both the dataset construction and training
processes for SFT and DPO, such as data synthesis of dynamic guidance adaptation, emphasis on
the final two rounds in SFT, comparison score design, and efficient answer sampling in DPO. These

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

modifications result in better performance. Both the final CodeSteer model and created datasets will
be released.

3) Symbolic checker and self-answer checker: Observing that TaskLLM frequently produces
text-like code that hardcodes answers, neglecting efficient symbolic computation, we introduce a
Symbolic Checker to help CodeSteerLLM evaluate code complexity and efficiency. Since most
reasoning and planning tasks can be better verified with coding, we add a Self-answer Checker for
better judgment of answer correctness of CodeSteerLLM. These two new checkers have been proven
to significantly improve the efficiency of dataset synthesis and CodeSteerLLM fine-tuning.

4) Proposed CodeSteer Outperforms Nine Baselines and o1: CodeSteer’s superior performance
highlights the importance of enhancing LLM reasoning and planning with symbolic computing.
This also demonstrates the potential for steering large models to generate smarter code and text by
leveraging specialized smaller models.

2 SYMBOLIC TASKS AND SYMBENCH

Challenges in Code/Text Choices For tasks requiring computation, symbolic manipulation, logic,
optimization, spatial reasoning, and constrained planning, coding-based symbolic computing is often
more effective than text-based approaches. However, (Chen et al.|(2024¢e) found that steering LLM
code/text generation poses significant challenges, even in tasks with apparent symbolic characteristics.
The main bottlenecks are: 1) Deciding whether code or text is simpler depends on task type, task
complexity, and the LLM’s capabilities, which is hard to judge (see Appendix Sec.[B). 2) LLM-
generated code often appears as text-like scripts that merely hard-code answers rather than enabling
efficient symbolic computation, echoing the phenomenon described in [Yang et al. (2024) (see
Appendix Sec.[C).

SymBench [Chen et al.|(2024¢)) and |Gui et al.| (2024)) collected 14 and 31 tasks with symbolic
factors from various benchmarks such as|Suzgun et al.|(2022); Chen et al.| (2024d); Yao et al.| (2024);
Cobbe et al.| (2021); [Hendrycks et al.| (2021), but their question-generation code and complete
datasets remain private. We redevelop the generation code to automatically synthesize questions with
adjustable complexity. Our resulting set of 37 tasks covers reasoning, planning, and execution, testing
competencies in mathematics, spatial reasoning, logic, order reasoning, optimization, and search.
Details and categorization are provided in Appendix Sec.[D]and Table]

3 CODESTEER FRAMEWORK

Fig|l|illustrates how CodeSteer guides the LLM’s code/text generation. At each round, CodeSteer
reviews the TaskLLM’s current answer and the guidance/answer history, then decides whether to
offer new guidance or finalize the response. It performs three key functions:

1) Initial Method Selection In the first round, it chooses whether to solve the task with code or text
(e.g., use textual reasoning for small-number multiplication, and code for large-number multiplication
in the task Number Multiply).

2) Dynamic Adaptation In subsequent rounds, it refines guidance or switches methods if issues
arise (e.g., encouraging more sophisticated symbolic approaches in Game 24, or switching to textual
reasoning after multiple incorrect code attempts in BoxLift).

3) Answer Finalization When Ready

The main components of CodeSteer are as follows:

CodeSteerLLM is the primary model fine-tuned and used to guide TaskLLLM in code/text generation.
The input prompt formats for the first and subsequent rounds are presented in Appendix Sec.
To facilitate answer evaluation, CodeSteerLLM is equipped with two checkers—Self-answer and
Symbolic—whose design is inspired by the inherent features of symbolic tasks.

Self-answer Checker re-queries TaskLLM to generate and execute code for verifying its current
answer, then returns the evaluation results and explanations to CodeSteerLLM. Since many symbolic
tasks benefit from code-based verification, this approach often provides a more reliable perspective.
The prompt format for the Self-answer Checker is provided in Appendix Sec. [F]

Symbolic Checker is a rule-based script to analyze the generated code for iteration, search, numeric
handling, permutations, and combinations, then returns a complexity summary and score. This

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

helps CodeSteerLLM determine whether the code is sufficiently sophisticated for the task at hand.
Since TaskLLLM often produces text-like code prone to errors, the Symbolic Checker’s complexity
assessment aids, but does not solely dictate, CodeSteerLLM’s decisions. Further details on the
checking code and prompt are in Appendix Sec. [G]

Beyond enhancing CodeSteerLLM’s performance, the Self-answer and Symbolic Checkers also
streamline dataset synthesis for SFT and DPO fine-tuning, as discussed in the following sections.

4 FINE-TUNING THE CODESTEERLLM

Among the three modules of CodeSteer, the CodeSteerLLM needs to be fine-tuned to perform the
complicated task of steering. The fine-tuning is performed on a subset of SymBench. Specifically,
we randomly select 28 of the 37 SymBench tasks, using a distinct set of samples without overlap
with the test samples. This setup allows us to evaluate CodeSteer on 28 seen tasks (with different
test samples) and on the remaining 9 unseen tasks. The fine-tuning consists of two steps. We first
fine-tune the Llama-3.1-8B model with SFT, then further optimize it using DPO. Both processes
are fine-tuned with full parameter on 4*H100 GPUs for 4-10 epochs. The detailed parameter and
hardware settings for fine-tuning and inference processes are discussed in Appendix Sec. [l We
synthesize 12k multi-round guidance/generation trajectories for SFT and 5.5k guidance comparison
pairs for DPO. The specific data number for each task is in Appendix Sec.

4.1 MULTI-ROUND SFT

To generate supervision data for SFT, we prompt the GPT-40 to serve as both the guiding LLM (i.e.,
the CodeSteerLLM) and the TaskLLLM to generate multiple guidance/generate trajectories. We then
filter the trajectories keeping only those that produce correct answers. To improve success rates,
CodeSteerLLM’s prompt is more detailed and includes pre-set knowledge or hints. To increase
dataset diversity and enable dynamic adaptation of guided thoughts, this prompt also has different
versions. For example, we may let GPT-40 choose all guidance styles, or enforce transitions from
code to text or text to code. We set the maximum guidance rounds to be 5 and return the final answer
once that limit is reached.

Multi-round Gradient Cancellation Issue In multi-round trajectories, the SFT process incor-
porates gradients from each round. This can lead to gradient cancellation in the early rounds. For
example, in one task, both [code, return answer] and [text, code, return answer] produce correct
results, so if both trajectories are used for fine-tuning, the SFT cannot learn that code is the better
first step.

Data Augmentation To mitigate this issue, we leverage the fact that the final two rounds of guid-
ance are most influential, as the TaskLLM produces new answers each round while earlier rounds
primarily provide background. Consequently, we augment the SFT dataset by doubling the weights
of the final two rounds.

4.2 MULTI-ROUND DPO

Because many correct trajectories in the SFT dataset are still suboptimal, we need to further fine-tune
the CodeSteerLLM on pairs of trajectories labeled with preferences. Here we use rule-based scores
to assign preferences. Figure 2] illustrates our framework for sampling DPO guidance pairs in a
multi-round setting. The main challenge is sampling and selecting guidance pairs that exhibit clear
performance differences across various rounds while minimizing the number of samples to conserve
resources. We use a tree structure where each node represents a guidance, with a branching factor of
2 or 3. To compare guidance pairs from the same parent node, we calculate their Performance Scores
using the following equation:

15—1 ending round/correct,
Score; = ¢ —1 ending round/incorrect, D
m > jec(i Score; otherwise.

Here, Score; represents the score for a node at round ¢, where ¢ is the current round number, and
C'(4) is the set of child nodes of node 4. If the current round is the final one, Score; is set to 15 — i

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Question

Figure 2: Schematic of multi-round DPO data sampling: blue squares represent intermediate (non-
final) rounds, and brown ovals mark finalizing rounds. Guidance responses from the same parent
node in CodeSteerLLM are compared to generate the DPO data.

for correct answers and —¢ for incorrect ones. This incentivizes CodeSteerLLM to achieve correct
answers in the fewest rounds possible. For non-final rounds, Score; is calculated as the average
of its child nodes’ scores. This ensures that each non-terminal round’s score reflects the average
performance of its potential subsequent actions, i.e., the expectation.

DPO data is collected from guidance pairs within the same parent node at each level that have a score
difference greater than 2. To prevent reward hacking (Skalse et al.,[2022)—where CodeSteerLLM
might bypass exploration and return incorrect answers quickly (e.g., preferring a score of —2 over
—5)—we include only pairs where at least one guidance has a positive score. To obtain diverse
guidance answers, we set the inference temperature to 1.5 for the SFT fine-tuned CodeSteerLLM and
use three models fine-tuned at different epochs (6, 8, and 10) to compare their guidance responses for
the same parent node.

5 EXPERIMENTS

Experimental settings We use GPT-40 as the TaskLLLM to test 28 seen and 9 unseen tasks, each
with 100 samples of varying complexity. The samples for the 28 seen tasks are different from those
used to train CodeSteerLLM. Additionally, we evaluate other LLM types to assess CodeSteer’s
generalizability.

We compare CodeSteer to six training-free and three training-based baselines, with methods 1, 36,
and 9 originally proposed in|Chen et al.| (2024e).

Training-free Baselines 1) No extra modifications but only input the original question (Only
Question); 2) Our framework in Sec. @ to synthesize SFT dataset, where GPT-40 works as
CodeSteerLLM with extra hints (Symbolic Agent); 3) Prompting LLMs to answer with only text
with CoT (All Text + CoT); 4) Prompting LLMs to first analyze the question with CoT and then
output the code answer (All Code + CoT); 5) Concatenating the input question with AutoGen’s
original system prompt in Appendix Section [M| (AutoGen Conca.); 6) Implement a multi-agent
framework that first queries LLMs to answer the question with All Text + CoT and All Code +
CoT methods, respectively. Then the final solution is obtained by combining and summarizing both
versions of the answers by the same LLM but prompted differently (Code + Text + Sum.1).
Training-based Baselines 7) Fine-tune Llama-3.1-8B as a summarizer based on the Code + Text
+ Sum.l method using SFT on correct summary data (Code + Text + Sum.2); 8) We fine-tune
Llama-3.1-8B as a one-step evaluator to choose between text or code generation (Code/Text Choice);
9) OpenAlI GPT Code Interpreter with the original input question (Code Interpreter). Method 7 and
8 are fine-tuned on the same data number and task types as CodeSteer.

Comparison with CoT LLMs We also compare with the current best models: OpenAl ol and
ol-preview (Jaech et al.|[2024) and DeepSeek R1 (Guo et al.l 2025). These models enhance reasoning
and planning by using textual search, reflection, and exploration during answer generation. However,

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 1: Experimental results on SymBench. Methods with the highest scores are highlighted blue.

Methods CoT LLMs Training-free Methods Training-based Methods
~ N i
S £ F 4 £
g = =& & 9 A 2 5 %
H = § § 5 8 g +r +r £ B 3
g ¥ x5 < Y 7 S5 F F g B9
S ot - I o = B & g o +
z g 5 ¢ 2 5 3 ¢ Fr + £ = 3
< s £ 2 £ £ J 8 3 2 3 ¢ ¢
S T4 5336 & < < < ¢ &8 & & o
Ave., Seen 83.8 79.3 779 59.3 77.0 56.7 71.6 73.2 66.7 658 79.7 733 88.1
Ave.,Unseen 794 69.1 65.1 34.5 679 379 63.2 59.5 519 51.7 721 619 813
Ave., Total 82.7 76.8 74.8 53.3 74.8 52.1 69.6 69.9 63.1 624 779 70.5 864
Seen Tasks
Game 24 80 65 78 17 37 23 11 8 33 43 43 18 93
Path Plan 74 60 56 65 43 44 76 71 66 61 73 54 75
BoxLift 95 92 8 69 58 56 68 20 65 60 73 49 77
BoxNet 45 43 54 37 30 30 1 12 23 21 23 37 29
Blocksworld 100 100 77 43 60 52 32 50 50 48 44 42 52
Date Under. 87 88 8 90 89 8 72 65 8 84 8 76 87
Web of Lies 100 100 98 96 99 86 91 78 77 80 98 94 98
Logical Dedu. 100 98 97 89 93 91 83 82 94 90 94 8 92
Navigation 100 100 100 98 93 95 99 91 96 94 92 98 99
GSM-Hard 79 77 71 78 76 80 83 81 81 78 77 79 77
MATH Geo. 94 91 9 76 73 73 74 73 77 76 76 73 5
MATH C.&P. 9% 97 95 8 8 8 8 91 8 8 84 89 93
Logical Equ. 100 100 100 52 50 52 40 48 30 33 56 71 78
New Ope. 44 39 25 42 39 45 39 47 56 38 48 48 40
Pooling 46 40 42 54 46 60 57 55 43 47 40 49 46
Light Puzzles 100 100 92 62 56 56 69 56 92 78 73 95 68
Mahjong 9% 98 93 66 77 73 8 94 72 74 9% 64 90
Statis. Count. 25 72 78 34 93 32 95 93 93 8 95 8 97
Matrix Trans. 87 100 98 94 96 76 97 97 96 92 97 90 98
Logical Puzzle 88 80 86 48 58 51 41 39 44 50 44 68 70
Cons. Linear 74 62 81 82 71 84 60 79 72 71 77 72 86
Pattern Recog. 100 100 100 70 90 44 89 100 56 60 94 100 93
String Insert. 9% 49 72 6 100 8 100 100 67 75 100 89 100
Letter Logic 50 54 28 2 30 0 12 21 8 9 31 8 45
Str. Del.&Modi. 60 37 34 4 90 0 64 37 5l 65 8 49 93
String Syn. 2 0 2 0 20 0 11 0 7 5 6 12 29
Reversi 46 29 28 8 36 15 49 60 20 23 45 23 52
Stan. Sudoku 0 0 0 0 98 0 100 94 12 14 100 100 100

Unseen Tasks
Letters 61 52 49 12 91 11 100 93 84 87 89 89 96
Eight Queen 84 79 o4 8 73 0 35 51 40 45 52 44 78
Number Multi. 43 46 28 11 87 8 100 100 68 65 100 75 95
Crypt. 60 21 49 20 15 24 20 13 16 20 27 0 24
String Split. 9 91 90 28 52 25 48 47 37 35 48 43 56
Combi. Calcul. 57 98 35 16 45 60 55 48 70 67 80 57 86
Synth. Decom. 57 96 53 52 53 72 71 35 44 38 69 72 66
2048 52 0 37 44 43 40 28 37 25 20 39 49 56
Permu.&Combi. 100 100 100 66 89 48 64 60 40 46 80 75 93

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

our analysis shows that these CoT LLMs have not yet integrated code-based symbolic computing to
further improve their performance.

Evaluations Answers are evaluated using predefined rules, with GPT-40 assisting in adjusting
formats as needed. Beyond the Code Interpreter method, some approaches have the LLM output code
as the final answer. We extract and execute this code using predefined algorithms to obtain the final
result or facilitate further reasoning. To prevent infinite loops, code execution is limited to 30 seconds.
If this limit is exceeded, the task is marked as failed or returns errors for subsequent rounds. We
utilize success rate as the metric for each task. To compare each method, we calculate the Average
Normalized Score over all the tested tasks by the following equation:

N
1 Sz
AveNorm; = — 3 —4__ 2
veNorm; N;max(si) 2

where AveNorm; is the Average Normalized Score for method j, s;; is the score of method j for task
i, max(s;) is the maximum score for task ¢, IV is the total number of tasks. This equation normalizes
each score relative to the maximum score in the respective task, and then averages the normalized
scores over all tasks. Apart from the task performance, in later sections we also discuss the costs of
token lengths and runtime for each method.

5.1 OVERALL BETTER PERFORMANCE

(a) Combinatorial Calculation (b) Number Multiplication
100 100

80

Score Distribution of 01 and GPT-40 + CodeSteer

23
[/ o1 22|
50 3 GPT-40 + CodeSteer

—e— 01

60 Ol-preview
—e— GPT-4o

40 =~ Code Inter.

~o— GPT-40+C.S.

Success Rate (%)
Success Rate (%)

20

ok 0
>15 30 (518 \6‘100\ 05300\ a“ﬁ,um @n @® \17“7" \16‘\6\ \1020\
E (Num_numbers, Target_value) (Digit_num, Digit_num)
(] (c) Game 24 (d) Letters
=]
o 100 100
o 10
e g 80 R 80
7.7 P 3
5 60 = 60
5 4 4
40 40
1 11 1 © 20 <20
0 ﬂﬂ 0 0 [o [| ol t— o
0.0 0125 025 0375 05 0.625 0.75 0.875 M h n® e B (0 o100 a0 1000
Scores Target_value (Str_min_len, Str_max_len)

Figure 3: Normalized score distribution of Figure 4: Method performance across four repre-

CodeSteer+GPT-40 and ol in 37 SymBench sentative tasks as task complexity increases from

tasks. left to right on the x-axis controlled by value
scales. C.S. and Inter. represent CodeSteer and
Interpreter.

Table[T] presents the full results of all methods on SymBench, including individual task scores and the
Average Normalized Score. The key findings are:

1) CodeSteer maintains similar relative performance on seen and unseen tasks, indicating no
overfitting.

2) Augmenting GPT-40 with CodeSteer significantly boosts its performance, raising the Ave. Norm.
Total Score from 53.3 to 86.4—outperforming all 9 baselines (best baseline: Code/Text Choice at
77.9).

3) GPT-40 + CodeSteer surpasses ol (82.7), R1 (76.8), and ol-preview (74.8), highlighting the
importance of integrating symbolic computing into LLMs. Figure 3| compares the score distribution
of GPT-40 + CodeSteer and ol, showing that CodeSteer reduces instances of extremely low scores
(near 0), demonstrating its robustness to varied tasks.

4) Compared to other training-based methods (Code + Text + Sum.2 and Code/Text Choice) with the
same data number and tasks, CodeSteer’s better performance validates the framework’s effectiveness
(further discussed in Sec.[6)).

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 2: Experimental results of Claude-3-5-sonnet-20241022, Mistral-Large, and GPT-3.5 with
or without augmented CodeSteer (C.S.). Methods with the higher scores of the same model are
highlighted blue.

Methods Claude Claude + C.S. Mistral Mistral + C.S. GPT-3.5 GPT-3.5+C.S.
Combinatorial Calcu. 48 66 25 34 12 29

Eight Queen 4 87 60 41 0 16
Reversi 0 45 0 33 0 32

Cons. Linear Arran. 73 90 47 48 25 9
Standard Sudoku 0 100 0 100 0 95

Ave. Norm. Score 29.1 92.0 31.0 59.8 8.6 42.3

5.2 SCALABILITY AND GENERALIZABILITY

To assess the impact of symbolic computing, Fig. 4 tracks the performance of five methods across
four tasks of increasing complexity. As critical task-specific properties escalate, ol, ol-preview,
and GPT-4o fail in highly complex cases, while symbolic-augmented methods (CodeSteer, Code
Interpreter) sustain performance. Notably, CodeSteer proves more robust across tasks than Code
Interpreter.

In our study, CodeSteerLLLM is fine-tuned on synthesized datasets where TaskLLM is always GPT-4o.
To assess its transferability and generalizability, we test it with three popular models: Claude-3-5-
Sonnet, Mistral-Large, and GPT-3.5-Turbo. We evaluate them on five representative tasks based
on GPT-40’s results in Table [T} two where text outperforms code and three where code is superior.
CodeSteer has shown apparent effects when guiding GPT-40 on these tasks. The results in Table
confirm that CodeSteer generalizes well across other LLMs types. This is expected, as its core
mechanisms—code/text guidance and dynamic adaptation—are essential to all general-purpose
LLMs. Notably, we observe that CodeSteer is particularly effective when applied to stronger LLMs,
such as Claude. This is likely because more powerful models possess superior self-reflection
capabilities and can generate complex code with greater precision. Thus, they benefit more from
CodeSteer’s additional structured guidance, unlocking their full potential.

5.3 CoOST OF TOKENS AND RUNTIME

(a)oo (b)9o .
CodeSteer, 4¥*H100 }r, 1*H100 | | CodeSteer, 4¥*H100 | | CodeSteer, 1¥*H100
- - -
01
¢
8(Code/Text Choice 80 Code/Text Choice |

DeepSeek R1

DeepSeek R1 b bbbl
- Symbolic A¢O1-preview | -
e

| Symbolic Agent |
-

E M‘Code Interpreter | E | AutoGe Code Interpreter
O 701 —g< = O 7042 ;
@ A
(Code + Text + Sum. 2|Sum. 1 |Cod(Code + Text + Sum. 2
60 60
ONlai a5 1 Cor ST or
0 = 50 = ,
0 1500 3000 4500 6000 0 20 40 60 80
Token Length Runtime (s)

Figure 5: Score vs. token and runtime costs for each method, highlighting CodeSteer, R1, o1, and
ol-preview in red. We display CodeSteer results separately for inferences using single or four H100
GPUs. Specific values are in Table@

Figure [5 shows Score versus Token Length (including input and output tokens) and Score versus
Runtime (covering both LLM inference and code execution) for all methods. Complete data is
provided in Appendix Table [f] Token counts include only those used by TaskLLM, excluding
small and open-source models fine-tuned on Llama-3.1-8B. For the ol and ol-preview models, only
runtime is plotted since their thinking chains are unavailable. While achieving superior performance,
CodeSteer uses more tokens than baseline methods due to its multi-round generations. Most of these

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

tokens are consumed by multiple interaction rounds that ultimately fail. CoT LLM R1 consumes
more tokens than CodeSteer due to the inefficient textual iteration.

In terms of runtime, CodeSteer is faster than ol and R1 while delivering better performance. Ad-
ditionally, since most of CodeSteer’s runtime comes from the inference of the 8B CodeSteerLLM
on our workstation, hardware and system optimizations can significantly reduce it. For example,
running CodeSteerL.LLM on four HI00 GPUs instead of one decreases the average runtime from 63.8
to 45.4 seconds. CoT LLMs consume excessive runtime and tokens due to their extensive and often
redundant reasoning chains. Textual iteration is inherently inefficient for search. Appendix Sec. [K]
shows examples of text answers of R1 and GPT-40, in which both models attempt to find the correct
equation for the Game 24 task by listing all possible combinations, leading to uncontrolled iterations
and endless generation. This highlights the importance of code augmented symbolic computing.

6 ABLATION STUDIES

Table 3: Ablation studies on CodeSteer. WO DPO: CodeSteer with SFT but without DPO fine-tuning.
WO DPO WO Data Augment: Same as WO DPO, but without data augmentation in the last two
rounds. Agent represents the Symbolic Agent.

Methods 1.Code 2.WO 3.WODPO 4.WO 5.WO 6. 7.Agent WO 8.Agent WO
Steer DPO WO Data Symbolic Self-answer Agent Symbolic Self-answer
Task succ. rate % Augment. Checker Checker Checker Checker
Ave., Seen 88.1 80.0 79.7 80.1 78.5 77.0 71.9 70.1
Ave., Unseen 81.3 76.2 70.9 68.6 64.2 67.9 62.0 574
Ave., Total 864 79.1 77.6 77.3 75.0 74.8 69.5 67.0

The CodeSteer framework comprises SFT and DPO dataset synthesis, CodeSteerLLM fine-tuning, a
symbolic checker, and a self-answer checker. Here we do the ablation studies on these components
and their related modifications. The added experimental results are shown in Table 3| with the whole
result table of 37 SymBench tasks in Append Sec. [[]

DPO Effects In Table|3} 1.CodeSteer outperforms 2.WO DPO, showing the effectiveness of the
DPO process.

SFT Data Augmentation As discussed in Sec. we do the data augmentation of the last two
rounds in each trajectory to prevent multi-round gradient cancellation. In Table [3] 2.WO DPO
achieves higher score than 3.WO DPO WO Data Augment., which means this extra attention on the
last two rounds does enhance the SFT process.

Symbolic and Self-answer Checkers We evaluate the effects of the Symbolic and Self-answer
Checker in two parts: 1) Dataset Synthesis Efficiency: Comparing Group 6 with Groups 7 and 8
in Table [3|shows that integrating these two checkers increases the Symbolic Agent’s success rates,
thereby enhancing the efficiency of the dataset synthesis process. 2) CodeSteer Performance:
Comparing Group 1 with Groups 4 and 5 demonstrates that augmenting with these two checkers
improves CodeSteer’s final performance.

Multi-round Guidance CodeSteer uses a multi-round interaction strategy with TaskLLM. In
contrast, the Code/Text Choice method in Table[I]relies on single-step guidance and performs worse
than CodeSteer. This demonstrates that the multi-round design enhances guidance effectiveness,
aligning with the common intuition that the best methods for many tasks emerge from iterative
“executing and exploring” processes accompanied with dynamic adaptation.

Guide Not Summarizer CodeSteer primarily serves as the guidance generator for TaskLLM rather
than directly generating answers, summarizing, or selecting among multiple answers. This design
choice accounts for the limitations of the open-source LLM we use compared to the more capable
closed-source LLM that supports TaskLLM. By focusing on guidance, CodeSteer reduces task
complexity and data space requirements. The Code + Text + Sum.2 approach in Table [T] attempts to
fine-tune an answer summarizer using the same data volume but fails, highlighting that summarization
imposes a significant burden on Llama-3.1-8B due to the unique characteristics of each task.

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

7 DISCUSSION

Our work underlines the significance of augmenting LLM reasoning and planning capabilities
with symbolic computing and shows great potentials of steering large models for smarter code/text
generation with specialized small models. We introduce novel modifications to dataset synthesis and
fine-tuning (SFT/DPO) to support a multi-round guidance framework, which has proven effective.
Unlike CoT LLMs like OpenAl ol and DeepSeek R1, which rely solely on textual reasoning for
exploration, symbolic computing offers greater efficiency, robustness, and scalability. Since coding is
a core LLLM capability, generating symbolic tools via code writing preserves generalization across
tasks.

10

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

APPENDICES: CODESTEER: SYMBOLIC-AUGMENTED LANGUAGE MODELS VIA
CODE/TEXT GUIDANCE

ALREIAtEd WOTK ..ottt 12
B. Impacts of task types, task complexities, and LLM capabilities on code/text choices [13]
C. Varied code versions of the same LLM i i
D. Description of SymBench tasks [L6]
E. Prompt for CodeSteerLLM i
F. Prompt for Self-answer Checker i 20]
G. Code for Symbolic CheCKeroiuiiuoit it
H. Synthesized dataset number of each task for SFT and DPO 22
I. Parameter and hardware settings of SFT/DPO fine-tuning and inference processes
J. Score-cost table foreachmethod
K. Example Text Answer of DeepSeek R1 and GPT-4o0inGame 24
L. Full experimental results of ablation studiesl 26|
M. System prompt of AUOGENttt e

11

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

A RELATED WORK

Code Generation and Symbolic Computing in LLM Tasks LLMs are widely used for general
agent tasks, such as interacting with softwares and websites (Zhou et al.| 2023c; Hao et al.| 2024a3bj
Xu et al., [2024)), planning robot actions (Chen et al.| 2024d; |Ahn et al} [2022)), and inferring with
logic (Suzgun et al.l |2022). Literally, many test tasks in previous works can be solved with direct
coding (Suzgun & Kalai, 2024; |Gao et al.l |2023). Some recent works also further extend the
applications of coding into tasks involving commonsense reasoning and semantic analysis (L1 et al.,
2023 Weir et al.|, 2024). Most of previous works mainly utilize text (Yao et al., [2024; |Ahn et al.,
2022; |Lin et al., [2023)) or code (Liang et al.,|2022; |Bairi et al., |2024} |[Zhou et al.,|2023b)) as the only
output modality. |Chen et al.|(2024¢e) highlights the importance of smartly switching between code
and text generation in LLMs but notes current methods have clear drawbacks.

LLM Self-reflection and CoT Models LLM-generated feedback via self-evaluation can improve
performance on a variety of tasks (Yang et al., 2022 Welleck et al., [2022; [Madaan et al., [2023]).
The OpenAl ol (Jaech et al., 2024) and DeepSeek R1 (Guo et al., [2025) models demonstrate the
potential of agentic LLMs that use Chain-of-Thought (CoT) text generation to explore and self-reflect,
enhancing reasoning and planning. However, they lack symbolic computing and code generation
capabilities, leading to weaker performance on complex symbolic tasks and consuming substantial
tokens and time (Chen et al.| [2024a)).

LLM Fine-tuning with Multi-step SFT and DPO SFT (Chen et al.,[2024f) and DPO (Rafailov
et al., |2024)) are extensively implemented for LLM fine-tuning. To enhance LLM’s capability in
multi-step agent tasks, these methods are further modified with multi-step goals and rewards (Zhou
et al.l 2024b; [Zhai et al., |2024; Zhang et al., |2024). LLM self-generated data have become in-
creasingly important for model improvement when combined with search algorithms and rejection
sampling (Zhou et al.;|2023a} |Guan et al., 2025).

12

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

B IMPACTS OF TASK TYPES, TASK COMPLEXITIES, AND LLM CAPABILITIES
ON CODE/TEXT CHOICES

The phenomenon and challenges of steering LLM code/text generation are first proposed by |Chen
et al| (2024¢). Here we discuss these phenomenon in details for the motivation of our work. Fig|6]
presents two typical examples of the recently popular topics of ’9.11” and ’9.9’ numerical comparison
and 1’ letter count in ’strawberry’, that the ChatGPT of GPT-40 makes mistakes by direct textual
reasoning but easily solves the problem after prompted to use code. Meanwhile, Fig[/|displays the
example that GPT-40 makes mistakes to solve the question by code generation but partially solve the
question by textual reasoning. The above two examples show that whether code or text is simpler
highly depends on the task types and LLM own capabilities and characteristics.

The OpenAl GPT-40 Code Interpreter is trained to steer LLM code/text generation. However, the
study of|Chen et al|(2024¢) finds many limitations of this method. In Fig[8] they observe an intriguing
property of GPT Code Interpreter: its decision to use code depends on the complexity of the task, as
shown in Fig[§] GPT-40 Code Interpreter chooses to handle simple Number Multiplying questions
with text and complex questions with code, resulting in correct answers. However, it fails in medium-
difficulty questions since it tends to be overconfident and chooses to answer the question via textual
reasoning, which sometimes is wrong. Hence, whether to implement symbolic computing depends
on task complexities even for the same type of the task.

(a) ‘ x 911 and 9.9, which is bigger? (b) . x How many s in strawberry and the positions?

© Theword "strawberry” contains two 'r's. Their positions are:

@ 9Misbigger than 9.9.
« 6thleter

© Sthletter

Use code to answer the following question
— ————— o~

0 answer the following question

9.11and 9.9, which is bigger?
0) How many r's in strawberry and the positions?

© Hereis the Python code that counts the number of *x* s in "strawberry" and identifies their

positions:

Output:

bigger_number =

bigger_number

Let's execute this code to find out. Explanation:

3 * There are three 'r' sin "strawberry."
9.9 is bigger than 9.11. ()

o Their positions are at indices 2, 7, and 8 (0-based indexing)

Figure 6: The cases that GPT-40 makes simple mistakes by direct textual reasoning but can reliably
solve the problem with prompted to use code.

13

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

BoxLift

Partial-Correct answer from
All text + CoT

step 1: [(296,
step 2: [(263,
Step 3: [(251,
Step 4: [(216,
Step 5: [(196,
step 6: [(132,

lo, 1]), (288,
lo, 21), (247,
[0, 21), (236, [1, 31)]
[0, 21), (206, [1, 31)]

0, 41), (145, [1]), (136, [2])]
[e]), (124, [31), (121, [2])]

step 7: [(111, [1]), (106, [2]), (91, [31)]

Step 8: [(87, [21), (58, [31), (62, [11), (43, [4])]

2, 3, 41
1, 311

Achieve a score of 0.5!

Wrong answer from All code + CoT

1. Sort the boxes in descending order of their weights.
2. Sort the lifters in descending order of their capacities.

5. Repeat the process until all boxes are lifted.
Let's implement this in Python:

“pyth,
lifters = [124, 144, 40, 155, 130]

Sort boxes and lifters in descending order
boxes. sort (reverse=True)
lifters.sort(reverse=True)

steps = []
while boxes
step = [1
remaining_lifters = lifters(:]
i=e
while i < len(boxes):
box = boxes[i]
used_lifters = []
total_capacity = 0
for j, lifter in enumerate(remaining_lifters):
if total_capacity + lifter >= box:
used_Lifters.append(j)
total_capacity += lifter
if total_capacity >= box:
break
if total_capacity >= box:
step.append((box, used_lifters))
for index in sorted(used_lifters, reverse=True):
del remaining_lifters [index]
boxes. pop(i)
else:
4=

i 1
steps.append (step)

Print the steps

print("<<<")

for step_num, step in enumerate(steps, 1):
print(f"Step {step_num}: {step}")

print(">>>")

To solve this problem, we need to assign lifters to boxes in such a way that we minimize the number of steps,
required to lift all the boxes. We will use a greedy algorithm to achieve this. The steps are as follows:

3. In each step, try to lift the heaviest boxes first using the available lifters.
4. If a single lifter cannot lift a box, combine multiple lifters to lift it.

on
boxes = [62, 251, 196, 216, 247, 206, 263, 296, 288, 136, 145, 121, 111, 106, 58, 91, 132, 43, 87, 236]
30

Run into infinite loop!

Figure 7: Representative answers of BoxLift task. The left figure is the partially correct answer of
GPT-40 with All Text + CoT method. The right figure is the wrong code answer from All Code +
CoT method. The text and code parts are colored in blue and green, respectively. The All Code +
CoT method generates the wrong code that runs into an infinite loop.

Simple question
Text as answer

]
© Theresultof 12 x 56 is 672. ()

what is the result of 12*56?

Hard question
Code as answer

|

Analysis

what is the result of 124354536*5607425632?

@ Theresultof 124354536 x 5607425632 is 697, 308, 812, 621, 866, 752. [-) /
L)
A

Medium question
Text as answer
6969501

(GRS

@ Theresultof 1243 x 5607 is 6,969, 801.

® X

what is the result of 1243*5607?

Figure 8:

GPT-40 Code Interpreter tends to handle simple Number Multiplying tasks with text

and complex tasks with code. However, it often fails with medium-difficulty questions, where it is
overconfident and chooses not to use code when needed.

14

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

C VARIED CODE VERSIONS OF THE SAME LLM

Game 24

Correct code answer of GPT-40 Wrong code answer of GPT-40
To solve the problem ..<omitted text>.. To solve the problem of using the numbers 3, 5, 8, and 13
Let's write a Python script to perform these steps. to obtain 24, we need to find a combination of arithmetic
" python operations that will result in 24. Each number must be
filename: find_24.py used exactly once.
from itertools import permutations, product Let's break down the approach:
Identify possible operations: We can use addition,
def find_24(numbers): subtraction, multiplication, and division.
ops = ['+', '=', %', /']
for num_perm in permutations(numbers): Try different combinations: We need to experiment with
for op_perm in product(ops, repeat=3): different groupings and operations to see which
Generate all possible ways to parenthesize the expression combination yields 24.
expressions = [
" ({num_perm[0]} {op_perm[@]1} {num_perm[1]1}) {op_perm[1]1} Ensure all numbers are used: The solution must
({num_perm[2]1} {op_perm[2]} {num_perm[31})", incorporate all four numbers exactly once.
' (({num_perm[0]} {op_perm[@]1} {num_perm[1]1}) {op_perm[1]}
{num_perm[2]}) {op_perm[2]} {num_perm[3]}", After testing various combinations, we find that the
" ({num_perm[@]} {op_perm[0]} ({num_perm[1]} {op_perm[1]} following equation works:
{num_perm[2]1})) {op_perm[2]} {num_perm[3]}",
f{num_perm[01} {op_perm[@1} (({num_perm[1]} {op_perm[1]} (3x8)-(13-5)=24
{num_perm[2]}) {op_perm[2]} {num_perm[3]})",
f*{num_perm[0]} {op_perm[0]} ({num_perm[1]} {op_perm[1]} Now, let's write the Python code to compute and display
({num_perm[2]} {op_perm[2]} {num_perm[3]}))" this result:
1
for expr in expressions: **python
try: # Define the numbers
if abs(eval(expr) - 24) < le-6: # Check if the result is 24 a=3
return f'<<<{expr} = 24>>>" b=5
except ZeroDivisionError: c=8
continue d=13

return "No solution found."
Calculate the result using the identified equation

result = (a x ¢) - (d - b)

numbers = [3, 5, 8, 13]

print(find_24(numbers)) # Print the result in the required format

print(“<<<", result, ">>>")

w<omitted text>..

Figure 9: Representative code answers of Game 24 task. The left figure is the correct code of GPT-40
with extra AutoGen prompt in Appendix Sec.[M]for guiding code/text choices. The right figure is
the wrong code after prompting GPT-40 to answer with code ‘Think of an algorithm to solve the
task and implement it in python’. The text and code parts are colored in blue and green, respectively.
In both cases, GPT-40 is prompted to solve this task with code. The only difference is the guiding
prompts. However, GPT-40 answers with different types of codes, with or without efficient symbolic
computing. This phenomenon shows that LLM code generation is unstable under varied prompts,
tasks, and LLM types.

15

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

D DESCRIPTION OF SYMBENCH TASKS

Here we describe the 37 testing tasks. They require strong symbolic, mathematical, logical, geometri-
cal, scientific, and commonsense reasoning capabilities. The first 14 tasks originate from Chen et al.
(2024e)), while the last 23 are from Gui et al.| (2024)). Note that both these two previous works do not
release the full question datasets and codes for these 37 tasks. The released question dataset in |Gui
et al.| (2024)) only contains 8 or 16 questions for each task. Hence, we develop codes to automatically
synthesize the questions for each task with tunable complexities. Both our developed codes and
question datasets are released.

Number Multiplying This task involves querying LLMs to compute the product among integers.
It represents a classic problem that LLMs are not able to solve through pure textual reasoning.

Game 24 This task involves querying LLMs to use a given set of integers to generate an equation
that evaluates to 24. This task is tested in previous work Tree-of-Thought (Yao et al., 2024)).

Path Plan This task involves querying LLM:s to plan the robot trajectory waypoints based on human
task instructions and environments. This task originates from AutoTAMP (Chen et al., [2024b).

Letters This task involves querying LLMs to count the total number of specific letters in a long
word and specify their positions. An example question can be "How many 1’s in the word strawberry
and what are their positions?’. This task has recently gained significant attention because current
LLMs struggle to perform it effectively and accurately.

BoxLift This task involves coordinating robots of various types to lift boxes of different sizes and
weights. Each robot has a specific lifting capacity and can collaborate with others to lift a single
box. A box can only be lifted if the combined lifting capacity of the robots exceeds the box’s weight.
The objective is to lift all the boxes in the minimum number of time steps. This task originates from
Scalable-Robots (Chen et al.,[2024d).

BoxNet This task involves coordinating robot arms to move colored boxes (squares) into corre-
sponding colored goal locations (circles) in the fewest time steps. Each robot arm is assigned and
restricted to a cell indicated by the dotted lines. The arms have two possible actions: (1) move a box
within their cell to a neighboring cell, or (2) move a box within their cell to a goal location within the
same cell. The objective is to ensure all boxes are placed in their matching goal locations efficiently.
This task originates from Scalable-Robots (Chen et al., 2024d).

Blocksworld In Blocksworld, the objective is to stack a set of blocks (brown) according to a specific
order. The robot can perform four actions: (1) pick up a block, (2) unstack a block from the top of
another block, (3) put down a block, (4) stack a block on top of another block. A robot can only pick
up, unstack, or stack a block if it is clear, that is, the block has no other blocks on top and is not
currently being held. This task originates from PlanBench (Valmeekam et al., 2024).

Date Understanding Given a small set of sentences referring a specific date, the task involves
querying LLMs to answer a provided question based on the information in these sentences (e.g., ‘The
concert was scheduled for 06/01/1943, but was delayed by one day to today. What was the date
yesterday in MM/DD/YYYY?’). This task originates from BIG-Bench-Hard (Suzgun et al., 2022).

Web of Lies This task involves querying LLMs to determine the truth value of a random Boolean
function presented as a natural-language word problem. This task originates from BIG-Bench-
Hard (Suzgun et al.| 2022).

Logical Deduction This task involves querying LLMs to deduce the order of a sequence of objects
using clues and information about their spacial relationships and placements. This task originates
from BIG-Bench-Hard (Suzgun et al., 2022).

Navigate This task involves querying LLMs to determine whether the agent would return to its
initial starting point after following a series of navigation steps. This task originates from BIG-Bench-
Hard (Suzgun et al.| 2022).

GSM-Hard (Gao et al.| [2023) This is the more challenging version of GSM8K (Cobbe et al.,[2021)
math reasoning dataset, where the numbers in the original questions of GSMS8K are replaced with
larger, less common values.

16

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

MATH-Geometry This is the math reasoning dataset from MATH dataset (Hendrycks et al., 2021)),
with specific focus on geometry questions.

MATH-Count&Probability This is the math reasoning dataset from MATH dataset (Hendrycks
et al.| 2021)), with specific focus on counting and probability questions.

The following 23 tasks originate from LogicGame (Gui et al., [2024)).

Logical Equation The task is to assign a specific numeric value to each letter from a given set, using
a predefined range of numbers and a set of inequalities. Each letter corresponds to a unique number,
and the relationships between the letters are defined by mathematical equations or constraints.

New Operator This task introduces custom mathematical operations involving two numbers,
defined with unique formulas. The goal is to use the given definitions of these operations to compute
the result of a specific expression.

Pooling This task involves applying a pooling operation on a numerical N x N grid. The pooling
operation uses an n X n sliding window (n < V) that moves across the grid from left to right and
top to bottom. The results from each window are then arranged based on their positions to create a
new output matrix.

Light Puzzles In this task, you are given an n x n grid representing a network of lights, where a lit
light is represented by 1" and an unlit light by ”0”. Several buttons control the state of these lights
by turning them on or off in certain positions. The state of each light can be affected by multiple
buttons. The task is to follow a series of button presses and determine the final state of the grid.

Mahjong Given an initial set of letter cards, in each round, a new card is added and one card is
removed. Some effects may happen when specific combinations of the cards appear after introducing
the new card. A result is determined based on these specific conditions. The goal is to determine a
result based on a series of rounds

Statistical Counting Calculate the total score of a string by scanning it from left to right, where
consecutive identical letters earn points (for example, two or more consecutive A’s add 1 point, B’s
add 2 points, etc.). The task is to start with a score of 0 and return the final summing value.

Matrix Transformation Rotate a given matrix of characters based on given instruction (e.g., 90
degrees clockwise), preserving each character’s position relative to others in the transformed output.
The input matrix can be of any size and contain any character.

Logical Puzzle The task involves querying LLMs to select a specified number of different values
from a grid of numbers, ensuring that certain mathematical constraints (sum or product) are satisfied
for selected numbers for each row and column.

Constrained Linear Arrangement In a two-player card game, the task is to deduce your opponent’s
moves based on the game’s rules, your played cards, and the announced results of each round. Each
card can only be used once, and the game follows specific interaction rules between different card
types, where certain cards can defeat, be defeated by, or draw with others according to predefined
relationships.

Pattern Recognition The task involves querying LLM:s to find all squares in a character matrix
where each square consists of identical characters and has a side length of at least 3.

String Insertion The task is to transform a string by scanning it from left to right and inserting
specific characters after certain character patterns (e.g., each pattern WXYZ requires inserting W
immediately after it occurs). All operations are performed simultaneously on the original string.

Letter Logic Diagram The task is to complete an incomplete grid by selecting from a list of letters,
where each row and column must contain each letter exactly once, and all cells on the minor diagonal
(top-right to bottom-left) must contain the same letter. Some cells are already filled in as constraints.

String Deletion and Modification The task is to transform a string by repeatedly applying a set
of ordered string manipulation rules until no more changes are possible, where each rule modifies
the string based on specific patterns or conditions present in the current string state. For example, a
modification rule can be “If the string ends with ‘ba’, replace it with ‘ab’.”

17

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

String Synthesis Given an initial set of blocks and a set of synthesis rules that combine different
types of blocks, the task is to determine the final block(s) after repeatedly applying these rules in
order until no more combinations are possible.

Reversi In this game similar to Reversi, players take turns placing pieces on an n X n grid. After
placing a piece, any of the opponent’s pieces located between two of the player’s pieces (in the same
row, column, or diagonal) will be flipped. The task is to determine the state of the board after rounds,
starting from a given configuration.

Standard Sudoku Given a partially filled Sudoku grid, the task is to fill the remaining empty cells
with numbers between 1 and 9, ensuring that no number repeats in the same row, column, or 3 x 3
subgrid.

Eight Queen Given a grid with some queens already placed, the task is to place the remaining
queens such that no two queens share the same row, column, or diagonal, while avoiding positions
with obstacles in the grid.

Cryptanalysis In this task, you are provided with a combination lock consisting of numbers and
letters, where neither the numbers nor the letters repeat. Using a series of guesses and feedback, the
goal is to deduce the correct password based on the given conditions.

String Splitting A dismantling engineer has old machines and can obtain machine parts through
a set of predefined methods. By continuously cycling through these methods in a specific order,
the engineer dismantles machines or combines parts to create new components, and the task is to
determine the total number of parts and remaining machines after all possible cycles.

Combinatoral Calculation Given a set of integers, the goal is to use arithmetic operations (addition,
subtraction, multiplication, division) and parentheses to arrange the numbers in such a way that the
final result matches a specified target value. Each number must be used exactly once, and the order of
the numbers cannot be changed.

Synthesis Decomposition A farmer grows various crops and can exchange them for agricultural
products. Using a set of methods, he can trade specific combinations of crops for products, following
a cyclic pattern until no further exchanges are possible. The goal is to determine the synthesis result
for each round.

2048 Similarly to the 2048 game, in a grid, numbers representing powers of 2 can move in any
direction, combining when they encounter a matching number to form the next power of 2. Given
a starting position and a sequence of movements, the goal is to determine the resulting grid after
executing the moves.

Permutation and Combination Given a set of objects with specific positioning constraints, the
task is to determine the correct arrangement of the objects on a shelf. Each object must be placed in a
position according to the rules provided, ensuring that the conditions on adjacency, order, and specific
positions are met. For example, a rule about adjacency could be ‘Book A must be adjacent to book I.

18

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 4: The evaluated capabilities of all tasks, classified as Execution, Planning, and Reasoning
tasks.

Categories | Tasks Mathe Spatial Logical Order Optimi | Search
matics | Reasoning | Reasoning | Reasoning | zation
Number Multi. v X X X X X
New operator v X X X X X
Pooling v v X X X X
Light Puzzles X 4 X X X X
Mahjong X X X v X X
Statis. Count. 4 X X v X X
Matrix Transform. X v X X X X
Execution | Pattern Recog. X v X X X 4
String Insert. X X v v X v
String Del. &Modi. X X v v X 4
String Synthe. X X v v X v
Reversi X 4 X X X X
String Splitting X X 4 v X v
Synthesis Decom. X X v v X v
2048 v v v X X X
Game 24 4 X X v 4 X
Path Plan X v X v X v
Letters X v X X X 4
BoxLift X X v X 4 X
BoxNet X X v X 4 X
Blocks. X 4 v X v X
Logical Equ. v X v X X v
Planning | Logic Puzzle v v X X X v
Const. Linear Arr. X X v X X X
Letter Logic Diag. X v v X X X
Standard Sudoku v v X X X 4
Eight Queen X v X X X X
Cryptanalysis X X v X X X
Combi. Calcu. 4 X X X v X
Permu.&Combi. X 4 v v X X
Date Under. X X v/ X X X
Web of Lies X X 4 X X X
Logical Dedu. X X 4 X X X
Reasoning | Navigate X 4 X 4 X X
GSM-Hard v X 4 X X X
MATH-Geo. v v X X X X
MATH-C.&P. v X 4 X X v

19

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

E PROMPT FOR CODESTEERLLM

The input prompts of CodeSteerLLM follow a multi-round dialogue, i.e., previous rounds of prompts
and responses will be included as history prompts for following generation of response guidance.
Since we set the maximum rounds of guidance to be 5 for each task, the total addition of prompt and
output lengths of CodeSteerLLM does not surpass maximum context window 8k. The formats for the
first round of prompt and following rounds of prompts are as follows. Note that ‘The summary of
generated code complexity is: {code_complexity_summary}’ is not included if the generated answer
by TaskLLM does not have code.

Round 1 prompt to CodeSteer LLM

You are guiding another TaskLLM to solve a task. You will be presented with a task that can
potentially be solved using either pure textual reasoning or coding. Your goal is to determine
which method will be most effective for solving the task. Follow these steps:

Respond with the chosen approach but not the solution. You can choose between the
following options:

- If you choose coding, explain the reasons and respond the final returned guidance with the
format <<<guidance prompt content>>> inthe end of your response.

- If you choose textual reasoning, explain the reasons and respond the final returned guidance
with the format <<<guidance prompt content>>> inthe end of your response.
Now, here is the task:

Following Rounds of prompts to CodeSteer LLM

The response from TaskLLM is: {response}

The feedback from the checking agent is: {check_result}

The summary of generated code complexity is: {code_complexity_summary }

The final returned guidance prompt should be of the format <<<guidance prompt
content>>>,

F PROMPT FOR SELF-ANSWER CHECKER

Prompt for Self-answer Checker

Given the following question and the answer from other LLMs, write a python code block
to check the correctness of the answer. Try to generate the code to check the correctness
of the answer. Try your best to check whether the answer satisfy all the constraints of the
given question. If the answer is correct, return the text ”Correct”. If the answer is incorrect,
return the reason why the answer is wrong, like what condition or constraint is not satisfied.
Question: {question}

Answer: {answer}

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

G CODE FOR SYMBOLIC CHECKER

The following code checks the factors of iteration, search, numeric, permutations, and combinations in
the answered code by TaskLLLM and returns the summary of code complexity and the complexity score.
We directly return the summary of code complexity as ‘code_complexity_summary’ to CodeSteerLLM
for further guidance. If the complexity score less than 2.0, the returned ‘code_complexity_summary’
concatenates with ‘The generated code may not be complex enough to carry out symbolic computing
for solving the task.’

def analyze_code_and_explain(code_string):
"""Analyzes Python code for computational approaches and provides explanation."""
import ast, re
try:
tree = ast.parse(code_string)
analysis = {'search': False, 'symbolic': False, 'numeric': False, 'expl': [], 'score': 0}

Check patterns
for node in ast.walk(tree):
if isinstance(node, (ast.For, ast.While)):
analysis['search'] = True
analysis['expl'].append("Contains loops for systematic search")
elif isinstance(node, (ast.Import, ast.ImportFrom)) and 'itertools' in node.names[0].name:
analysis['search'] = True
analysis['expl'].append("Uses itertools for combinatorial search")
elif isinstance(node, ast.BinOp):
analysis['numeric'] = True
analysis['expl'].append("Contains direct mathematical operations")
analysis['score'] += 0.25

Check symbolic patterns

if any(x in code_string for x in ['eval(', ‘'exec(', 'f"', "f'", '.format(']):
analysis['symbolic'] = True
analysis['expl'].append("Uses string operations for expression handling")

Calculate complexity
analysis['score'] += sum(len(re.findall(pattern, code_string))
for pattern in ['for|while', 'if|elif|else', 'try|except'])

Generate explanation
result = []
for comp_type, detected in [('SEARCHING', analysis['search']),
('SYMBOLIC', analysis['symbolic']),
('NUMERICAL', analysis['numeric'])]:
if detected:
result.append(f"\n{comp_type} APPROACH detected:")
result.extend([f"- {exp}" for exp in analysis['expl']
if any(x in exp.lower() for x in [comp_type.lower()[:6], 'operation', 'loop'l)])

return "\n".join(result + [f"\nComplexity score: {analysis['score']}"]), analysis['score']

except Exception as e:
return f"Invalid Python code: {str(e)}", @

Figure 10: Code for checking the symbolic factors of the generated code by TaskLLM.

21

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

H SYNTHESIZED DATASET NUMBER OF EACH TASK FOR SFT AND DPO

Table 5: Synthesized dataset number of each task for SFT and DPO fine-tuning processes.

Dataset number SFT success trajectory number ~ DPO pair number
Game 24 792 320
Path Plan 442 215
BoxLift 345 163
BoxNet 330 186
Blocksworld 406 248
Date Understanding 497 238
Web of Lies 492 204
Logical Deduction 489 241
Navigation 503 170
GSM-Hard 332 125
MATH Geometry 342 115
MATH Count&Prob. 346 127
Logical Equation 396 213
New Operator 394 189
Pooling 404 187
Light Puzzles 406 259
Mahjong 421 230
Statistical Counting 402 223
Matrix Transform. 391 214
Logical Puzzle 454 148
Constrained Linear Arrangement 432 155
Pattern Recognition 414 135
String Insertion 409 128
Letter Logic Diagram 500 226
String deletion&Modification 504 230
String Synthesis 397 185
Reversi 403 194
Standard Sudoku 400 212
Total 12043 5480

I PARAMETER AND HARDWARE SETTINGS OF SFT/DPO FINE-TUNING AND
INFERENCE PROCESSES

We utilize four H100 80GB GPUs for full-parameter fine-tuning of the Llama-3.1-8B models. The
model is trained for 10 epochs in the SFT stage and 6 epochs in the DPO stage. The learning rate is
setto 1 x 1075 for SFT and 5 x 10~% for DPO. We use a batch size of 4 for training. In DPO, the
loss function follows the standard sigmoid loss (Rafailov et al., [2024), with the hyperparameter /3 set
to 0.1.

In most cases, we perform the inference of CodeSteerLLM using a single H100 80GB GPU. However,
to analyze the impact of hardware configurations on CodeSteer runtime, as shown in Fig.[5] we also
conduct inference using four H100 GPUs for comparison.

For the generation of guidance answers in the DPO dataset creation, we utilize three different SFT
fine-tuned Llama-3.1-8B models, trained for 6, 8, and 10 epochs, respectively. For each question and
stage, we query all three models and compare their generated guidance answers.

22

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

J SCORE-COST TABLE FOR EACH METHOD

Table 6: Score-cost table for each method.

Average Norm.

Average score (1)

Average token length (])

Average runtime (s) (J.)

Baseline Methods

Only Question 53.3 566.1 8.2
Symbolic Agent 74.8 1192.5 27.3
All Text + CoT 52.1 1110.7 153
All Code + CoT 69.6 949.8 8.9
AutoGen Conca. 69.9 1295.9 10.6
Code + Text + Sum. 1 63.1 3931.6 24.2
Code + Text + Sum. 2 62.4 2808.6 324
Code/Text Choice 719 587.4 20.1
Code Interpreter 70.5 1175.9 23.8
CoT LLMs

DeepSeek R1 76.8 6396.6 68.6
ol 82.7 N/A 70.5
ol-preview 74.8 N/A 37.7
Proposed Methods

CodeSteer, 1*H100 86.4 4693.3 63.8
CodeSteer, 4*H100 86.4 4693.3 45.4

23

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

K EXAMPLE TEXT ANSWER OF DEEPSEEK R1 AND GPT-40 IN GAME 24

Okay, let's see. I need to use the numbers 1, 3, 13, and 13 to make 24. Each number has to be used exactly once. Hmm. Let's start by listing out all the possible
operations and combinations.
First, the numbers are 1, 3, 13, 13. Wait, there are two 13s. Oh, but the problem says each number has to be used once. But since both 13s are the same, maybe that gives
some flexibility. But I need to use both of them, right?
So let's think. Maybe I can combine the 13s in some way. Like 13 divided by 13 is 1. But then I already have a 1. Hmm. So if I do 13/13 =1, then I have 1 and 1 and 3
But then how to get 24 from 1, 1, 3. That might not help. Maybe subtract them? 13 -13 =@, which probably isn't useful here.
Alternatively, adding them: 13 +13 =26. Then I have 26, 3, 1. How to get from 26,3,1 to 24. 26 - (3 -1) =247 Let's check: 26 -2 =24. But that would require 26 - (3-1
=24. So that would be (13+13) - (3 -1) =24. Let me verify: 13+13 is 26. 3-1 is 2. 26-2 is 24. Yes! But wait, have I used all the numbers? Let's check. 13,13,3,1. Yes
Each is used once. So the equation would be (13 +13) - (3 -1) =24. Let me write that with parentheses correctly: ((13 +13) - (3 -1)) =24. Alternatively, it's (13+13)-(3-
1) =24. That works. Let me check again: 13+13=26, 3-1=2, 26-2=24. Yep. So that's a possible solution. Let me see if there are other ways
Alternatively, maybe using multiplication. Let's see: 3 x something. For example, 3x8=24. So if I can make 8 with the remaining numbers 1,13,13. Let's see. 13 - (13/1
=0. Not helpful. 13 -1=12. 12 +13=25. Not 8. Hmm. Alternatively, 13 - (13 -1) =1. Still not 8
What about 13 divided by 13 is 1, then 3-1=2. Then 1x2=2. No, that's not enough. Maybe 3x(1 + ...). Let me think. 3x(8) =24. So how to get 8. Let's see. Maybe 13 - (13 -
(1+...)). Hom. Not sure. Let's try another approach.
What if I do 13 = (something) to get close to 24. 13x2=26. 26 — 2=24. But where does 2 come from? 3-1=2. So 13%x2 -2=24. Wait, but how to structure that. Let's see
13%(3-1) - (13 - ?). Wait, maybe not. Let's see. If I use 3-1=2, then 13#2=26. Then 26 — (13 - x) where x is the remaining number. But the remaining number is already
used? Wait, perhaps not. Let's re-examine. If I use 13x(3-1), that uses 13,3,1. Then subtract the other 13? So 13x(3-1) -13 =26-13=13. Not 24. Hmm
Alternatively, 13«(something) divided by something. Let me think. 13 x (3) is 39. Then 39 - (13 +1) =25. Not 24. Close. 13#3 -13 -1 5. Not_enough. Hmm.
Wait, another idea: 13 + 13 =26. Then subtract 3 and add 1. 26-3+1=24. So that's 26-3+1=24. But how to arrange that. The expression would be (13+13) -3 +1. That uses all
numbers: 13,13,3,1. Each once. So (13+13) -3 +1 =24. Let's compute: 26-3 is 23, plus 1 is 24. Yes. So that works. So another possible solution is 13+13-3+1=24. But the
problem is that sometimes the order of operations might require parentheses. Let's check: 13+13 is 26, minus 3 is 23, plus 1 is 24. So the order is left to right, so no
parentheses needed. So 13+13-3+1=24. But does that fit the required format? The previous examples used parentheses, but maybe it's allowed. Let me check the previous
answers. For example, the first input's answer was ((10-9)x(11+13)) =24, which uses parentheses. But in another example, the answer was (2-(6-(10+18))) which simplifies
to 2 -6 +28 =24. So maybe parentheses can be adjusted as needed. So in this case, 13+13-3+1=24. Let me confirm. 13+13 is 26, minus 3 is 23, plus 1 is 24. Correct. That
uses all numbers once. So that's a valid solution
But wait, maybe the problem expects some grouping. Let me see. If I write (13+13) -3 +1, but that's the same as 13+13-3+1. Alternatively, ((13 +13) - (3 -1)) which we
thought of earlier. Both are correct. Which one is better? Let's see. Let's compute the second version: (13+13) - (3-1) =26 -2=24. So that uses all numbers. So either
way, there are two possible solutions here.
But the problem says "each number has to be used in the equation”. So as long as all four numbers are used once, either solution is okay. Let's check both

First solution: 13 +13 -3 +1 =24. Numbers used: 13,13,3,1. Correct
Second solution: (13+13) - (3-1) =24. Numbers used: 13,13,3,1. Correct
So both are valid. Which one to choose? Maybe the second one uses parentheses, which is more in line with the examples given, where parentheses are used. For example
the first example was ((10-9)%(11+13)), so grouping operations. The second example: ((4x11)-(10+10)). So perhaps the answer should be written with parentheses to show
the grouping. But since both are correct, either could be acceptable. However, perhaps the second one is more explicit about the order of operations, even though in the
first case, left to right works. Let's verify if the first solution is correct without parentheses. Let me see: 13+13-3+1. Since addition and subtraction have the same
precedence, it's evaluated left to right. So 26 -3 is 23, plus 1 is 24. Correct. So that's a valid expression. So the answer could be either (13+13-3+1) or ((13+13)-(3-
1)), or similar variations. Let's check if there are other possibilities.
Another approach: 3x(13 - (13/1)). Let's compute that. 13/1 is 13. 13-13=0. 3%0=0. No good. Alternatively, (13 -1) * (3 - (13/13)). 13/13 is 1. 3-1=2. 12 *2=24. Oh
wait, that's a possible solution. Let's break it down:

(13 -1) is 12.

(3 - (13/13)): 13/13=1, so 3-1=2

Then 12 *2 =24. So the equation is (13 -1) % (3 - (13/13)) =24. Let's check the numbers: 13,1,3,13. ALl used once. Correct. So that's another valid solution. Let me
verify:

13-1=12, 13/13=1, 3-1=2, 12#2=24. Yes. So that's another way. This might be a better solution because it uses multiplication and division, which might be necessary for
some other combinations. So this could be the intended answer. Let me check again

(13 - 1) * (3 - (13 / 13)) =12 * (3-1)=12¥2=24. Correct. So that uses all numbers once. So this is another valid solution

So now I have three possible solutions:
1. 13 413 -3 +1 =

2. (13 +13) - (3 -1) =24

3. (13 -1) * (3 - (13/13)) =24

ALl of them are valid. Which one should I choose? The third one involves multiplication and division, which is similar to some of the examples. For instance, the third
example: ((5 - (13/13)) *6) = (5-1)%6=24. So the third solution here is similar in structure. So maybe that's the expected answer. Let's see. Let me check the numbers
again for solution 3: 13,1,3,13. All used once. Yes. Each number is used exactly once. So yes. So this is valid

So the answer could be either of these. But since the examples tend to use grouping, perhaps the third solution is the one to go with. Let me write it properly

((13 -1) * (3 - (13/13))) =24

Breaking it down:

3/13

9-1.

S

12 *2= 24 Correct.

Alternatively, another way to write it: (13-1)x(3 - (13/13)) =24. That's correct.

Alternatively, maybe even without the inner parentheses: (13-1)%(3 -13/13). But division has higher precedence, so it's the same as (3 - (13/13)).

So the answer is ((13 -1) * (3 - (13 / 13))) =24. Which is the third solution.

Alternatively, another possible solution: 13x(3 -1) - (13 - something). Wait, no. Let's see. 13x(3-1) =26. 26 -2=24. But how to get 2 from 13 and 1. 13 - (1) is 12,
which doesn't help. Wait, 13-1 is 12. 26 - (12) 4. No. Not helpful. So that approach might not work.

So the third solution seems solid. Let me check if there are any other possible combinations.

Another idea: 13 * ((3 -1) + (13 /13)). Let's compute that. 13/13=1. 3- . 2+41=3. 13%3=39. No, not 24. Hmm.

Alternatively, (13 + 1) * (3 - (13/13)). 13+1=14. « 14%2=28. Not 24.

Hom. What about (13 - 3) % (13 -1)/something? Let's see. 13-3=10. 13-1=12. 10%12=120. 120 divided by something. 120/5=24. But we don't have a 5. So that doesn't help
Alternatively, (13 % 3) - (13 +1). 39 -14=25. Not 24. Close.
Another idea: 13 % ((3 +1) - (13/13)). Let's compute. 13/13=1. 3+
Alternatively, 3 * (13 - (13 -1)/something). Not sure. Let's see: 13-
Alternatively, (13 #1) + (13 -3) =13 +10=23. No. Not 24.

Wait, what if we do 13 * (1 + (3 - (13 /13)))? Let's break it down. 13/13=1. 3-1=2. 142=3. 13%3=39. No. Not helpful.

Ham. Let's go back to the earlier solutions. The third solution seems the most plausible, using multiplication and division, which are common in the examples. For
example, the first example uses multiplication, the second subtraction and addition, the third uses division and multiplication, etc. So the third solution fits that
pattern.

So the answer is ((13 -1) * (3 - (13 /13))) =24. Let me confirm again:

13/13=1

370

+ 4-1=3. 13%3=39. No.
=12. 13-12=1. 3%1=3. Not helpful.

2
12 %2=24. Correct.
Yes. That's a valid equation using all four numbers once. Each number is used exactly once. 13 is used in (13-1) and in (13/13), 3 is used in (3 - ...), and 1 is from
the initial 1. Wait, wait. Wait, the input numbers are 1,3,13,13. So in this solution:
- The first 13 is used in (13 -1)
- The 1 is used in (13 -
- The second 13 is used 1n 113/131
- The 3 is used in (3 -
Yes, each number is used unce The two 13s are both used, each in different parts. So that's correct.
Alternatively, if the problem had said that the two 13s are considered the same number and can't be used twice, but the problem says each number should be used once.
Since the input is 1,3,13,13, then each of the four numbers (including both 13s) must be used once. So the solution is valid.
Therefore, the answer should be ((13 -1) * (3 - (13 /13))) =24.

Figure 11: Example text answer of R1 in the task Game 24. R1 searches possible answers with the
continuous back-and-forth textual reasoning process. This search process still fails in the end.

24

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Game 24, GPT-4o text answer

To solve for 24 using the numbers 2, 3, 5, and

12, we can try different combinations of
arithmetic operations. Let's explore the
possibilities:

1L\(12-2
2.\(10-5=
3. \ls\umess

o \)
\)
15 \) (This doesn't work)

Let's try another conbination:
1. \(12 \diy \)

2.\(4 \umes 5=
3.0\(2

Another atteapt:
L\(12-5=7\)

2.\(7 \umes ERAY

(2w 3 \) (This doesn't work)
Let's try a different approach:

1.\(12 \div 2 \1

2. \(6 \tines

3.\(18+5=23 \) mus doesn't work)

Another attespt:
(1

b \(by \t)mes N 8 \!
3.\(18+5=23\) mus doesn't work)

Let's try another conbination:
N12-5=71\)

b \(7\ume52 4\)
3.\(14 + 3 =17 \) (This doesn't work)

Anather attenpt:
\(

\)
3.\(13+5= H \) (This doesn"t work)

Let's try another combination:
1. \(12 \div 3 \)

2. \(4 \times 5 = 20 \)

3.\(26 +2 =22 \) (This doesn't work)

Another attempt:

iv5 =2\
3. \(2 \times 3 = 6 \) (This doesn't work)

Another attempt:

18 \)
3.\(18 + 5 =23 \) (This doesn't work)

Ancther stteapt:
(12-5=

b \(7\nmesz 4 \)
3.\(14 + 3 =17 \) (This doesn't work)

Another attenpt:
L\(12-2=10

2.\(10+3=13\)

3.\(13 +5 =18 \) (This doesn't work)
Another attempt
1. \(12 \div 3
2. \(4 \tines 5
3\(20+2=22 \» mus doesn't work)

Annther 2teemts
\(12 -2 =10 \)

b \() \div 5
3. \(2 \times 3 = 6 \) (This doesn't work)

Another attempt:
1.\(12 \div 2
2. \(6 \tines 3 \)

3.\(18+5=23 \» (This doesn't work)

Annther 2reempt:
.\(1

2.\(7 \nmes z
3L\(14+3=17 \) mus doesn't work)

Another attenpt:
S \L

3.\(13+5= 18 \) (This doesn't work)

Another attempt:
1.\(12 \div 3
2. \(4 \tines 5

3\(208+2=22 \» (Thxs doesn't work)

Another attenpt:
L1z -2 <0)
2 16 e s

21\)
3. \(2 \tines 3 = 6 \) (This doesn"t work)

Another attempt:
1.\(12 \div 2 =
2. \(6 \times 3 = 18 \)

3.\(18+5=23 \» (This doesn't work)

a\y

Annther 2teemt:
\(

b \(7 \Umes 2t \)
3\14+3=17 \» (This doesn't work)

Another attempt:
L\(12-2=10
2.\(10+3
3.\(13+5

13 \)
18 \) (This doesn't work)

20 \)
22 \) (This doesn't work either)

Another attemp
1.\(12 \div 3 = 4 \)

2.\(4 \nmes s)

3.0\(2 =22 \) (This doesn't work)

Another attempt:
L\(12-2= m \)
2. \(10 \div
3. \(2 \times 5

6 \) (This doesn't work)

Another attenpt:
L\(zdwz-6

2. \(6 \times 3 =

526 T8 35700 s doesnt work)

Another attemp
PN REAUN

2. \(7 \times 2 =

EINE ANy lTMs doesnt work)

Another attempt:
S\N(12-2=10\)
2.\(10 +3
3.\(13+5

131\)
18 \) (This doesn't work)

Another attempt:
1.\(12 \div 3 =
2. \(4 \times 5 = 20 \)

3.\(20 + 2 =22 \) (This doesn't work)

4\)

Another attempt:
L2 o2z 00
2. \(10 \div 5 =

3. \(2 \times 3 = %6 \) (This doesn’t work)

Ancther atteap
1.\(12 \div 2 = 6 \)
2. \(6 \times 3 = 18 \
3.\(18+5=231\) mus doesn"t work)

Anther attespt:
L\(12-5=7\)
2.\(7\Ume52 4 \)

3.\(14 + 3 =17 \) (This doesn't work)

Another atteapt:
(1

-2=10\)
NETPEREN

SASBTEIY (his doesnrt vork)

Another attenpt:

1\(12 \div 3= 4 \)

2. \(4 \tines 5 = 20 \)

350 30\ (s doesne vork)

Another tteap

LA 1

BINET RPN

3. \(2 \times 3 = 6 \) (This doesn't work)

Another attempt:

L2y 2 <6 \)

2 M 6 \tises 3«
+5

8 \)
3.\(1 \) (This doesn't work)

Mnother ottempt:
(12-5=7\)

2.\(7 \nmes 2214 \)

3.\(1 7 \) (This doesn't work)

Another attempt:
L\(12-2=10\
13\)
18 \) (This doesn't work)

Another attemp
1.\(12 \div 3
2. \(4 \tines 5 =

520 E5 2000 s doesnt vork)

Another attemp
L\(12-2=10
2.\(10 \div 5 =

3. \(2 \tines 3 =

3
2\
6 \) (This doesn't work)

Another attempt:

\)
3.\(18+5=23 \) (This doesn't work)

Another attespt:
1.\(12 - 7\

2.\(7 \nm:s 2.=14\)
3.\(1 =17 \) (This doesn't work)

Another attempt:
L\(12-2=101\)

13\)
=18 \) (This doesn't work)

2.\(10 +3
3.\(13+5

Ancther attomp
1.\(12 \div 3 = 4 \)
2. \(4 \times 5 = 20 \
3\(20+2=221\) lTMs doesn"t work)

Another ettespt:
\(12-2=10\)
b \(16 \div 5 = 2 \)
3. \(2 \times 3 = 6 \) (This doesn't work)
Mnother ottempt:
\(12 \div 2 = 6 \)
2 \(6 \times 3 = 18 \)
3.\(18 + 5 =23 \) (This doesn't work)

Another attempt:

Figure 12: Example text answer of GPT-40 in the task Game 24. GPT-40 continues the textual
reasoning process until reaching the maximum token generation length but never returns the answer.

25

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

L FULL EXPERIMENTAL RESULTS OF ABLATION STUDIES

Table 7: Full experimental results of ablation studies on the components in CodeSteer framework.

Methods 1.Code 2.WO 3.WODPO 4.WO 5.WO 6. 7.Agent WO 8.Agent WO
Steer DPO WO Data Symbolic Self-answer Agent Symbolic Self-answer
Task succ. rate % Augment. Checker Checker Checker Checker
Ave., Seen 88.1 80.0 79.7 80.1 78.5 77.0 71.9 70.1
Ave., Unseen 81.3 76.2 70.9 68.6 64.2 67.9 62.0 574
Ave., Total 864 79.1 77.6 773 75.0 74.8 69.5 67.0
Game 24 93 93 46 62 57 37 41 28
Path Plan 75 76 74 72 74 43 41 29
BoxLift 77 65 76 66 72 58 47 39
BoxNet 29 21 31 13 17 30 24 15
Blocks. 52 50 50 54 51 60 45 41
Date Under. 87 83 86 80 83 89 84 92
Web of Lies 98 94 92 95 92 99 95 97
Logical Dedu. 92 92 95 91 89 93 91 87
Navi. 99 90 95 85 80 93 94 88
GSM-Hard 77 74 72 79 74 76 73 70
MATH Geo. 75 74 70 71 69 73 68 70
MATH C.&P. 93 92 86 84 81 88 85 82
Logical Equ. 78 58 56 61 56 50 52 56
New Ope. 40 38 40 24 52 39 28 20
Pooling 46 43 51 47 45 46 44 52
Light Puzzles 68 71 52 51 52 56 56 60
Mahjong 90 88 88 92 95 77 85 79
Statis. Count. 97 98 92 95 84 93 90 96
Matrix Trans. 98 100 97 96 95 96 92 96
Logical Puzzle 70 58 56 52 44 58 53 54
Const. Linear 86 66 65 76 81 71 64 52
Pattern Recog. 93 96 95 95 93 90 92 100
String Insert. 100 100 100 100 100 100 100 100
Letter Logic 45 20 35 35 35 30 25 23
Str. dele.&Modi. 93 88 92 90 88 90 86 76
Str. Synth. 29 12 21 30 26 20 12 14
Reversi 52 49 39 52 24 36 28 36
Stand. Sudoku 100 100 95 100 100 98 100 100
Letters 96 85 88 87 84 91 79 75
Eight Queen 78 74 72 72 52 73 64 52
Number Multi. 95 90 92 94 95 87 80 74
Crypt. 24 22 15 4 12 15 12 7
String Split. 56 56 31 43 41 52 42 40
Combi. Calcu. 86 76 88 65 76 45 60 56
Synthe. Decom. 66 62 64 44 60 53 56 44
2048 56 56 44 53 44 43 32 40
Permu.&Combi. 93 86 80 92 56 89 82 78

26

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

M SYSTEM PROMPT OF AUTOGEN

System prompt of AutoGen (Wu et al., 2023)

You are a helpful Al assistant. Solve tasks using your coding and language skills. In the
following cases, suggest python code (in a python coding block) or shell script (in a sh coding
block) for the user to execute. 1. When you need to collect info, use the code to output the
info you need, for example, browse or search the web, download/read a file, print the content
of a webpage or a file, get the current date/time, check the operating system. After sufficient
info is printed and the task is ready to be solved based on your language skill, you can solve
the task by yourself. 2. When you need to perform some task with code, use the code to
perform the task and output the result. Finish the task smartly. Solve the task step by step if
you need to. If a plan is not provided, explain your plan first. Be clear which step uses code,
and which step uses your language skill. When using code, you must indicate the script type
in the code block. The user cannot provide any other feedback or perform any other action
beyond executing the code you suggest. The user can’t modify your code. So do not suggest
incomplete code which requires users to modify. Don’t use a code block if it’s not intended to
be executed by the user. If you want the user to save the code in a file before executing it, put
filename: filename inside the code block as the first line. Don’t include multiple code blocks
in one response. Do not ask users to copy and paste the result. Instead, use ’print’ function
for the output when relevant. Check the execution result returned by the user. If the result
indicates there is an error, fix the error and output the code again. Suggest the full code instead
of partial code or code changes. If the error can’t be fixed or if the task is not solved even
after the code is executed successfully, analyze the problem, revisit your assumption, collect
additional info you need, and think of a different approach to try. When you find an answer,
verify the answer carefully. Include verifiable evidence in your response if possible. Reply
"TERMINATE” in the end when everything is done.

—

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Ramakrishna Bairi, Atharv Sonwane, Aditya Kanade, Arun Iyer, Suresh Parthasarathy, Sriram
Rajamani, B Ashok, and Shashank Shet. Codeplan: Repository-level coding using llms and
planning. Proceedings of the ACM on Software Engineering, 1(FSE):675-698, 2024.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588, 2022.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the overthinking of
ol-like llms. arXiv preprint arXiv:2412.21187, 2024a.

Yongchao Chen, Jacob Arkin, Charles Dawson, Yang Zhang, Nicholas Roy, and Chuchu Fan.
Autotamp: Autoregressive task and motion planning with llms as translators and checkers. In 2024
IEEE International Conference on Robotics and Automation (ICRA), pp. 6695-6702. IEEE, 2024b.

Yongchao Chen, Jacob Arkin, Yilun Hao, Yang Zhang, Nicholas Roy, and Chuchu Fan. Prompt
optimization in multi-step tasks (promst): Integrating human feedback and preference alignment.
arXiv preprint arXiv:2402.08702, 2024c.

Yongchao Chen, Jacob Arkin, Yang Zhang, Nicholas Roy, and Chuchu Fan. Scalable multi-robot
collaboration with large language models: Centralized or decentralized systems? In 2024 I[EEE
International Conference on Robotics and Automation (ICRA), pp. 4311-4317. IEEE, 2024d.

27

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Yongchao Chen, Harsh Jhamtani, Srinagesh Sharma, Chuchu Fan, and Chi Wang. Steering large
language models between code execution and textual reasoning. arXiv preprint arXiv:2410.03524,
2024e.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
converts weak language models to strong language models. arXiv preprint arXiv:2401.01335,
2024f.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In Infernational Conference on Machine
Learning, pp. 10764-10799. PMLR, 2023.

Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang, Youran Sun, Yi Zhu, Fan Yang, and Mao Yang.
rstar-math: Small llms can master math reasoning with self-evolved deep thinking. arXiv preprint
arXiv:2501.04519, 2025.

Jiayi Gui, Yiming Liu, Jiale Cheng, Xiaotao Gu, Xiao Liu, Hongning Wang, Yuxiao Dong, Jie Tang,
and Minlie Huang. Logicgame: Benchmarking rule-based reasoning abilities of large language
models. arXiv preprint arXiv:2408.15778, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Yilun Hao, Yongchao Chen, Yang Zhang, and Chuchu Fan. Large language models can plan your
travels rigorously with formal verification tools. arXiv preprint arXiv:2404.11891, 2024a.

Yilun Hao, Yang Zhang, and Chuchu Fan. Planning anything with rigor: General-purpose zero-shot
planning with llm-based formalized programming. arXiv preprint arXiv:2410.12112, 2024b.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv preprint
arXiv:2412.16720, 2024.

Chengshu Li, Jacky Liang, Andy Zeng, Xinyun Chen, Karol Hausman, Dorsa Sadigh, Sergey Levine,
Li Fei-Fei, Fei Xia, and Brian Ichter. Chain of code: Reasoning with a language model-augmented
code emulator. arXiv preprint arXiv:2312.04474, 2023.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control. arXiv preprint
arXiv:2209.07753, 2022.

Kevin Lin, Christopher Agia, Toki Migimatsu, Marco Pavone, and Jeannette Bohg. Text2motion:
From natural language instructions to feasible plans. Autonomous Robots, 47(8):1345-1365, 2023.

Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang, and Graham Neubig. Language models of
code are few-shot commonsense learners. arXiv preprint arXiv:2210.07128, 2022.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. arXiv preprint arXiv:2303.17651, 2023.

28

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Joar Skalse, Nikolaus Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and characterizing
reward gaming. Advances in Neural Information Processing Systems, 35:9460-9471, 2022.

Mirac Suzgun and Adam Tauman Kalai. Meta-prompting: Enhancing language models with task-
agnostic scaffolding. arXiv preprint arXiv:2401.12954, 2024.

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati. Large language
models still can’t plan (a benchmark for 1lms on planning and reasoning about change). In NeurlPS
2022 Foundation Models for Decision Making Workshop, 2022.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambham-
pati. Planbench: An extensible benchmark for evaluating large language models on planning and
reasoning about change. Advances in Neural Information Processing Systems, 36, 2024.

Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang, and James Zou. Mixture-of-agents enhances
large language model capabilities. arXiv preprint arXiv:2406.04692, 2024.

Nathaniel Weir, Muhammad Khalifa, Linlu Qiu, Orion Weller, and Peter Clark. Learning to reason
via program generation, emulation, and search. arXiv preprint arXiv:2405.16337, 2024.

Sean Welleck, Ximing Lu, Peter West, Faeze Brahman, Tianxiao Shen, Daniel Khashabi, and Yejin
Choi. Generating sequences by learning to self-correct. In The Eleventh International Conference
on Learning Representations, 2022.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen 1lm applications via
multi-agent conversation framework. arXiv preprint arXiv:2308.08155, 2023.

Tianqi Xu, Linyao Chen, Dai-Jie Wu, Yanjun Chen, Zecheng Zhang, Xiang Yao, Zhigiang Xie,
Yongchao Chen, Shilong Liu, Bochen Qian, et al. Crab: Cross-environment agent benchmark for
multimodal language model agents. arXiv preprint arXiv:2407.01511, 2024.

Kevin Yang, Yuandong Tian, Nanyun Peng, and Dan Klein. Re3: Generating longer stories with
recursive reprompting and revision. In Proceedings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pp. 4393—-4479, 2022.

Yuan Yang, Siheng Xiong, Ali Payani, Ehsan Shareghi, and Faramarz Fekri. Can llms reason in the
wild with programs? arXiv preprint arXiv:2406.13764, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in Neural
Information Processing Systems, 36, 2024.

Yuexiang Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Shengbang Tong, Yifei Zhou, Alane Suhr, Saining
Xie, Yann LeCun, Yi Ma, et al. Fine-tuning large vision-language models as decision-making
agents via reinforcement learning. arXiv preprint arXiv:2405.10292, 2024.

Xuan Zhang, Chao Du, Tianyu Pang, Qian Liu, Wei Gao, and Min Lin. Chain of preference
optimization: Improving chain-of-thought reasoning in llms. arXiv preprint arXiv:2406.09136,
2024.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language

agent tree search unifies reasoning acting and planning in language models. arXiv preprint
arXiv:2310.04406, 2023a.

29

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun Luo, Zipeng Qin, Shaoqing Lu, Anya Jia,
Lingi Song, Mingjie Zhan, et al. Solving challenging math word problems using gpt-4 code
interpreter with code-based self-verification. arXiv preprint arXiv:2308.07921, 2023b.

Lexin Zhou, Wout Schellaert, Fernando Martinez-Plumed, Yael Moros-Daval, Cesar Ferri, and José

Hernandez-Orallo. Larger and more instructable language models become less reliable. Nature,
pp. 1-8, 2024a.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Yonatan Bisk, Daniel Fried, Uri Alon, et al. Webarena: A realistic web environment for building
autonomous agents. arXiv preprint arXiv:2307.13854, 2023c.

Yifei Zhou, Andrea Zanette, Jiayi Pan, Sergey Levine, and Aviral Kumar. Archer: Training language
model agents via hierarchical multi-turn rl. arXiv preprint arXiv:2402.19446, 2024b.

30

	Introduction
	Symbolic Tasks and SymBench
	CodeSteer Framework
	Fine-tuning the CodeSteerLLM
	Multi-round SFT
	Multi-round DPO

	Experiments
	Overall Better Performance
	Scalability and Generalizability
	Cost of Tokens and Runtime

	Ablation Studies
	Discussion
	Contents of Appendices
	Related Work
	Impacts of task types, task complexities, and LLM capabilities on code/text choices
	Varied code versions of the same LLM
	Description of SymBench tasks
	Prompt for CodeSteerLLM
	Prompt for Self-answer Checker
	Code for Symbolic Checker
	Synthesized dataset number of each task for SFT and DPO
	Parameter and hardware settings of SFT/DPO fine-tuning and inference processes
	Score-cost table for each method
	Example Text Answer of DeepSeek R1 and GPT-4o in Game 24
	Full experimental results of ablation studies
	System prompt of AutoGen

