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ABSTRACT

Recent advancements indicate that scaling up Multimodal Large Language Models
(MLLMs) effectively enhances performance on downstream multimodal tasks.
The prevailing MLLM paradigm, e.g., LLaVA, transforms visual features into
text-like tokens using a static vision-language mapper, thereby enabling static
LLMs to develop the capability to comprehend visual information through visual
instruction tuning. Unfortunately, the static paradigm shares the same parame-
ters to underly multi-task instruction tuning, inevitably introducing the potential
task interference or negative transfer, i.e., where an improvement in the perfor-
mance of one task reduces the performance of other tasks. In light of this, we
introduce HyperLLaVA, which in conjunction with a dynamic visual expert and
language expert, respectively adjusts the parameters of the projector and LLM
layers conditioned on diverse instruction semantics, thereby minimizing the task
interference. These experts are derived from HyperNetworks, which adaptively
generates dynamic parameter shifts through visual and language guidance, enabling
dynamic vision-language alignment and instruction tuning in two-stage training.
To deeply study the multi-task interference of MLLM, we build the Comprehen-
sive Multimodal Task benchmark (CMT), a comprehensive benchmark for the
evaluation of multidimensional multimodal tasks. The experiments demonstrate
that the superiority of the dynamic tuning paradigm for multi-task instruction
following on CMT and general MLLM benchmarks. Our project is available at
https://anonymous.4open.science/r/HyperLLaVA-D58E.

1 INTRODUCTION

The landscape of Large Language Models (LLMs) Devlin et al. (2018); Radford et al. (2018);
Ouyang et al. (2022) has undergone significant evolution, highlighting their exceptional versatility in
managing a wide variety of language-centric applications. To extend the capabilities of LLMs to a
wider array of modal inputs, Multimodal Large Language Models (MLLMs) have garnered increasing
attention Radford et al. (2021b); Li et al. (2022); Huang et al. (2023); Achiam et al. (2023); Li et al.
(2023c). MLLMs are crucial for the development of flexible, general-purpose assistants, as everyday
interactions encompass information from various modalities in addition to text.

Contemporary MLLMs (e.g., LLaVA Liu et al. (2023c;a)) typically adhere to a two-step static training
protocol: (i) Vision-Language Alignment: A static projector is trained by leveraging image-text
pairs to synchronize visual features with the language model’s word embedding space. The projector,
with static parameters, bridges the vision and language modalities by converting visual features into
visual tokens, allowing the LLM to understand visual content. (ii) Multimodal Insturction Tuning.
Next, multimodal instruction data are employed to fine-tune the LLM, enabling it to respond to
users’ varied requests involving visual content. This step is crucial for enhancing the capabilities
and controllability of MLLM for improving different zero-shot multimodal capabilities. Despite the
critical importance of the two-step process, the projector’s structure and the LLM tuning strategy
remain relatively underexplored in the literature. Quantitative analyses Wang et al. (2019) indicate
that a model with static parameters trained across diverse scenarios can introduce task interference or
negative transfer, where excelling in one task may impede performance on another. Furthermore,

1

https://anonymous.4open.science/r/HyperLLaVA-D58E


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Trainable ParametersVisual Tokens Textual Tokens Textual Response Tokens Fixed Parameters

Comparison on Benchmarks and CMTb

Visual 
Expert𝑬𝑬𝑽𝑽

Large Language Model
Vicuna v1.5

𝑭𝑭𝑳𝑳

Projector𝑭𝑭𝑷𝑷

Visual Encoder 𝑭𝑭𝑽𝑽

𝑣𝑣1 𝑣𝑣2 𝑣𝑣𝑇𝑇
Word 

Embedding
𝑭𝑭𝑾𝑾

𝑡𝑡1 𝑡𝑡2 𝑡𝑡𝑇𝑇…

Language 
Expert 𝑬𝑬𝑳𝑳

𝑣𝑣3 𝑣𝑣4 𝑣𝑣2

Multimodal Instruction

𝑟𝑟1 𝑟𝑟2 𝑟𝑟3 𝑟𝑟4 𝑟𝑟5 𝑟𝑟6 𝑟𝑟8 𝑟𝑟9 𝑟𝑟𝑇𝑇𝑟𝑟7 …

…

HyperLLaVA Frameworka

Visual
QA

Visual 
Captioning

Detailed 
Description

Visual 
Storytelling

Text-Rich 
Images QA

Knowledge 
OCR

Visual 
Grounding

LLaVA-7B

HyperLLaVA
-7B

LLaVA-13B

HyperLLaVA
-13B

Figure 1: (a) describes the simplified version of our HyperLLaVA. (b) shows that compared to LLaVA,
our method achieves superior performance across different MLLM and our CMT benchmarks.

an ideal MLLM should effectively comprehend a broader range of multimodal instructions and
harness generalizable reasoning capabilities across various multidimensional tasks. Building on the
aforementioned insights, our investigation seeks to optimize the two-stage training process in the
multi-task tuning scenario, i.e., aiming to simultaneously mitigate task interference and enhance the
MLLM’s diverse multimodal comprehension abilities.

In this paper, we propose HyperLLaVA (Figure 1(a)), transitioning from “static to dynamic
tuning paradigm” to achieve the stated objectives. The dynamic characterization benefits from a
carefully designed expert module, derived from HyperNetwork Ha et al. (2017), to generate the
dynamic parameters conditioned on instruction-aware semantics. Our bootstrapping philosophy
is to leverage the expert to adaptively generate the strongly correlated MLLM’s parameter shifts,
according to the visual and language input, thereby enabling positive transfer for projector and
LLM layers, respectively. By doing so, this dynamic characterization allows us to achieve the
best of both worlds by adjusting the MLLM’s parameters while encouraging the model to adapt to
each individual multimodal instruction. Notably, in HyperLLaVA, we tailor the HyperNetwork to
MLLM, incorporating input guidance-aware parameter generation and a stable learning framework
through an adapter. Based on the devised expert module, HyperLLaVA is learned following the two
steps: (i) In vision-language alignment, we divide the projector into static layers (original MLPs in
LLaVA) and dynamic layers (visual expert), where the parameters of static layers remain fixed and
the parameters of dynamic layers are dynamically generated based on visual features. The visual
expert leverages HyperNetwork to assist the static projector in developing a visual-specific projector
that adaptively models the visual features based on the visual guidance. Thus, the projector can
deliver adaptive visual tokens to the language semantic space. (ii) For multimodal instruction tuning,
we equip the LLM with a language expert, modeling dynamic parameters for LLM blocks. We
regard the intermediate output of the LLM as language guidance that guides the language expert to
offer an enhanced instruction-specific comprehension of the user’s request. By doing so, the MLLM
increases flexibility by generating unique parameters for each specific input, allowing the MLLM
to capitalize on similarities between samples across tasks and avoid potential interference among
different multimodal instructions.

To thoroughly investigate the issue of multi-task negative interference, we initially developed the
Comprehensive Multimodal Task (CMT) benchmark, grounded in different interference dimensions,
including multimodal processing, recognition, and comprehension. CMT encompasses 7 diverse
multimodal tasks, including Text-Rich Images QA, Spatial Inference, Knowledge OCR, among
others. We conducted a systematic evaluation of the proposed CMT. The results suggest that
HyperLLaVA’s performance is positively correlated with the number of training task types,
while the original LLaVA demonstrated the opposite trend, highlighting the superiority of “dynamic”
learning for multi-task instruction tuning. Additionally, we conducted experiments on several existing
MLLM datasets, which confirmed the effectiveness and generalizability of HyperLLaVA.

2 METHODOLOGY

2.1 PROBLEM FORMULATION

The primary objective of Multimodal Large Language Models (MLLMs) is to effectively leverage
the capabilities of both the pre-trained LLM and visual model. Images are considered an additional
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Figure 2: Overview of HyperLLaVA. (a) describes how the proposed visual expert assists the static
projector in dynamically converting the image features to adaptive tokens. (b) is the language expert-
integrated tuning that uses the output of the intermediate layer as language guidance to generate
dynamic instruction-specific features, (c) depicts the structure of the proposed expert module.

modality input to MLLMs, making the language model a receiver of both visual and textual (instruc-
tion) tokens, and generating text responses autoregressively. The network architecture, depicted in
Figure 2, comprises two steps: Step 1 (Figure 2(a)), given an RGB image x ∈ RH×W×3, where
H and W are the origin resolution. The vision encoder processes input images to obtain the visual
features. Subsequently, a projector is in charge of transferring the visual features to visual tokens
V = [v1, v2, · · · , vNv

] for the subsequent large language model (LLM), where Nv represents the
sequence length of visual tokens. Step 2 (Figure 2(b)), we concatenate the visual tokens V and text
tokens T = [t1, t2, · · · , tNt

], together and feed them into a LLMMl, then generate the language
responseR = [r1, r2, · · · , rNr

] by optimizing its auto-regressive training objective, where Nt and
Nr indicate the length of text tokens and textual response, respectively. In general, the two-step
learning paradigm for the MLLM modelM(·) can be described as below:

M(·)︸ ︷︷ ︸
MLLM

:Mp((V|x); Θp)︸ ︷︷ ︸
Projector

→Ml((R|V, T ); Θl)︸ ︷︷ ︸
LLM

, (1)

whereMp(·; Θp) is the projector andMl(·; Θl) LLM tuning with multi-modal instructions with
parameters Θp and Θl, respectively.

2.2 VISION-LANGUAGE GUIDED EXPERT MODULE

Original LLaVA’s Liu et al. (2023c) projector and LLM are trained with static parameters. We argue
that the static tuning paradigm may limit the flexible visual token delivery and introduce negative
transfer in different downstream multi-modal tasks. Thus, we propose to equip the original’s LLaVA
projector and LLM with a visual expert EV and a language expert EL: (i) the visual expert adaptively
fits the projector’s output according to the specific visual guidance (e.g, visual features); (ii) the
language expert dynamically modeling the posterior blocks of LLM through anterior LLM’s block
output. The expert module is derived from HyperNetwork, which is a neural network that generates
the parameters for another neural network. Specifically, HyperNetwork treats the parameters of the
multi-layer perception (MLP) as a matrix K(n) ∈ RNin×Nout , where Nin and Nout represent the
number of input and output neurons of the nth layer of MLP, respectively. Nin and Nout portray the
structure of the MLPs together. The generation of K(n) can be regarded as a matrix factorization:

K(n) = ξ(z(n); Θξ),∀n = 1, · · · , Nl . (2)

During the training procedure, ξ(·; Θξ) is an expert module used to model MLP. z(n) and Θξ are
randomly initialized, and z(n) represents the learned latent vector for the nth layer of the MLP.
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Gradients are backpropagated to both z(n) and Θξ, facilitating their update. Instead of saving K(n),
z(n) and Θξ will be retained.

As HyperNetwork dynamically generates a network conditioned on the input embeddings, i.e.,
the “dynamic characterization” can be modeled by HyperNetwork. However, directly utilizing the
HyperNetwork may not satisfactorily dynamic learning for MLLM for two key reasons:

• Weak Correlation. The original HyperNetwork learns the latent vector to generate another
model’s parameters. This approach lacks a strong correlation between MLLM’s dynamic
parameters and input multimodal instructions.

• Unstable Optimization. Using a HyperNetwork to generate the parameters for the projector
or LLM block results in a large parameter space, i.e., Dx × Nin × Nout, Dx represents
the input dimension of HyperNetwork. Optimizing such a vast number of parameters is
challenging, and the optimization process is inherently unstable.

To this end, we carefully tailor the HyperNetwork with the following adjustments:

Input-Parameters Correlation. To establish the convincing correlation between MLLM’s param-
eters and input instructions, we propose to generate the MLLM’s parameters by substituting the
learned latent vector z with the input’s embedding. Specifically, given the prior feature fx(i) of
sample x(i), we first develop a layer-specific encoder En(·) that encode the fx(i) as e(n). This vector
represents the nth layer parameters.

e(n) = En(fx(i)),∀n = 1, · · · , Nl , (3)

where Nl is the number of the modeled layers.

Then the HyperNetwork is used to convert the embedding e(n) into parameters, i.e., we input e(n)
into the following two MLP layers to generate parameters of dynamic layers.

K(n) = w(n) + b(n) s.t. w(n) = (W1e(n) +B1)W2 +B2, (4)

where K(n) denotes the nth layer parameters of dynamic layers. Two MLP layers’s weights are
denoted by W1 and W2, respectively. b(n), B1 and B2 represent the biases.

Unstable HyperNetwork Training. Adapters are sub-networks with small parameters that are
inserted after every attention and feed-forward layer in a model Houlsby et al. (2019). The original
adapter is a parameter-efficient learning approach that learns downstream tasks by updating only
a small number of parameters. The adapters consist of a pair of downsampling and upsampling
layers, and a residual connection. We found that using downsampling and upsampling strategies, the
HyperNetwork-generated parameters can be substantially reduced.

Given the visual and language guidance GV , GL , the vision-language guided expert is defined as:

EM (xM ) = Wu
M (SwiGLU(W d

M (xM ))) s.t. Wu
M ,W d

M = HM (GM ),whereM ∈ V,L (5)

where M indicate the modality, Wu
M ,W d

M respectively denote the weights for upsampling and
downsampling. SwiGLU Ramachandran et al. (2017) is the activation function: Gaussian Error
Linear Unit. HM is the shared HyperNetwork.

2.3 VISUAL EXPERT-ASSISTED PROJECTOR

In this stage, our objective is to adapt the image tokens to LLM, allowing the LLM to comprehend the
instances in the images. As shown in Figure 2, we divide the projector as static layers and dynamic
layers. Following LLaVA1.5 Liu et al. (2023a), we employ two-layer MLPs as the static layers. To
empower the projector’s expression, we develop a visual expert who learns the projector shifts to
model the dynamic visual tokens. Specifically, we regard the visual feature fV extracted from the
visual encoder as the visual guidance GV , the visual expert will adaptively assist the projector that
converts GV to dynamic visual tokens. As commonly known, deep neural networks encode visual
features with increasing abstraction, generally, becoming finer as we progress over levels. Given
two-layer MLPs, we introduce two selectable configurations for dynamic vision-language alignment:
dynamic anterior layer and dynamic posterior layer.
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Category: Visual Question Answer

Category: Detailed Description
Instruction: Give a detail description of the image.

”The image showcases a panoramic view of a coastal city. The city 
is densely populated with various buildings, both residential and 
commercial. A long stretch of beach is visible, bordered by a pier. 
The sea is calm, reflecting the sky above. In the sky, there's a 
helicopter flying, and the horizon shows a mix of urban and 
natural landscapes with hills and open fields”

Category: Spatial Inference
"Please provide a short 
description for this region: 
[0.74, 0.59, 0.98, 0.65]."

"Please provide the bounding 
box coordinate of the region 
this sentence describes: big 
white boat traveling in water."

"[0.6, 0.54, 0.68, 0.64]"

"Small wave in the water."

Instruction: Answer the following 
euqstion using a single word or phrase.

”What is lying on the ground?”

Category:  Visual QA

”Tree branch”

”What is the animal that the
brush is behind of?”

”Elephant”

Category: Visual Captioning

"Give a 
caption of 
the image."

"The Process of 
Turning Cocoa 
Beans into 
Chocolate"

Instruction: Based on the slides, please answer the following 
question. You must choose your answer from the Choice List.

"3.65"

"What percentage is the Grade A Office Cap Rate in 
the city in Japan where there is a Savills office?"

Category: Text-Rich Images QA

Category: Visual Storytelling
Instruction: With the narratives paired with the initial images, how would you conclude the story using the 
last picture?

3.2. "When Steve had got his food,his dog 
had jumped on him to play with him."

1. "Steve went inside the kitchen to 
get food from the fridge." 3.___________________________________

"The dog caused Steve to drop his food onto the florr and caused him to fall onto the ground."

Category: Knowledge OCR
"What does the text in the 

image say?"

"Is this quote related to any 
specific work or belief ? "

"The text says, ‘For even the 
Son of Man came not to be 
served but to serve others 
and to give his life as a 
ransom for many.’"

"Yes, this quote is related to the Christian faith. It is from 
the Bible, specifically in the book of Matthew 20:28. This 
quote emphasizes Jesus's selfless nature and mission, as 
he came to earth not to be served, but to serve others and 
ultimately sacrifice his life for the salvation of humanity."

Figure 3: Demonstrations and task taxonomy of the proposed CMT benchmark.

Dynamic Anterior Layer. Taking the visual guidance GV as input to 1st layer MLP and visual expert
EV1

(·), we then concatenate their output to 2nd layer MLP. By doing so, the adaptive visual tokens
can be obtained as V = Linear2(Linear1(GV ) + EV1

(GV )).
Dynamic Posterior Layer. Given the hidden representation of the 1st layer MLP for modeling the
visual guidance GV , we input the this representation to 2nd layer MLP and visual expert EV2

(·). The
dynamic modeled visual tokens can be represented as V = Linear2(Linear1(GV )) + EV2

(L1(GV )).
These visual experts learn to adjust the projector shift to adapt visual information, modeling dynamic
visual tokens and thus enhancing the projector’s expressiveness for downstream tasks.

2.4 LANGUAGE EXPERT-INTEGRATED TUNING

In this stage, LLM is adjusted to become an MLLM with multi-modal understanding. We use more
complex instructions to achieve a stronger multi-modal understanding. Previous studies have shown
that features provided by the intermediate layer may suffice to preliminarily understand the given input
samples Xin et al. (2020)and can serve as guidance hints to improve training Romero et al. (2014).
Thus, generating guidance in the intermediate LLM layer allows the model to form a preliminary
understanding of the given instruction. Therefore, we regard the output of the intermediate LLM layer
as language guidance that generates adaptive instruction-specific features that enhance the generation
accuracy. Taking the multimodal instruction as input to the language decoder, we then extract the
hidden representation of the last input token h

L
2 at L

2 -th layer, which can fully perceive the whole
multimodal context during the L

2 layers and contains comprehensive instruction-aware semantics. In
our situation, we regard the h

L
2 as the language guidance GL and propose two alternative strategies

of language expert tuning: attention-level integration and feedforward-level integration.

Attention-level Integration. The first language expert integration strategy is to modify the inputs of
the MSA layers with instruction-specific prompts. We split the prompt into two language sub-prompts

5
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K̂ and Q̂ and prepend them to the key and value vectors respectively. We denote the query, key and
value for the multi-head self-attention (MSA) layer as:

O = MSA([Q̂,Q], [K̂,K],V), s.t. Q̂ = EL1
(Q)⊤WQ, K̂ = EL1

(K)⊤WK (6)

where WQ and WK are the trainable weight matrice, EL1
is the language expert.

Feedforward-level Integration. Another integration approach is to add extra language expert
knowledge to the feedforward layer. We use the language expert EL2 to generate the complementary
information, which is integrated into the feedforward layer. The instruction-specific representation
can be calculated as below:

ÔL = OL +RMS(O) + FFN(SwiGLU(RMS(O))) s.t. OL = EL2(RMS(O)). (7)

Such language expert-integrated tuning enables the MLLM to measure the similarities between
different multimodal instructions and thus avoid potential multi-task interference.

3 EXPERIMENTS

3.1 CMT BENCHMARK.

To thoroughly investigate the issue of multi-task negative interference and comprehensively bench-
mark the diverse multimodal instruction following ability, we extensively gather and annotate a wide
variety of multimodal datasets from different fields and scenarios. As illustrated in Figure 3, CMT has
diverse forms of complex instructions and a vast range of instruction-following scenarios, covering 7
tasks across 22 scenarios, including Visual QA (VQA), Visual Captioning (VC), Spatial Inference
(SI), Detailed Description (DD), Visual Storytelling (VS), Knowledge OCR (KOCR), Text-Rich
Images QA (TQA). The tasks are selected that considered five interference dimensions: (i) Single
and Multiple Image Processing → Visual Captioning and Visual Storytelling; (ii) Pure Vision
and Multimodal Information→ Visual QA and Text-Rich Images QA; (iii) Visually Global and
Local Details Understanding→ Detailed Description and Spatial Inference; (iv) Visual and Textual
Recognition in Images→ Spatial Inference and Knowledge OCR; (v) Brief and Detailed Textual
Understanding→ Visual Captioning and Detailed Description. All task instances are transformed
into a unified instruction-response form for zero-shot evaluation, including {Task Instruction},
{Task Instance} and {Response}. In total, CMT includes 505,405 multi-round instruction-
response pairs conversations for training and randomly selected 1,149 instruction-response pairs for
evaluation. Please refer to Appendix 6 for more details of the developed CMT benchmark.

3.2 DATASET AND SETTING

Benchmark Datasets. We evaluate our proposed HyperLLaVA on five VQA datasets: VQA-
v2 Goyal et al. (2017b); GQA Hudson & Manning (2019b); VizWiz Gurari et al. (2018); SQAI:
ScienceQA-IMG Lu et al. (2022); VQAT Singh et al. (2019a): TextVQA and seven Benchmark
Toolkits: POPE Li et al. (2023e); MME Fu et al. (2023b); MMB: MMBench Liu et al. (2023d);
MMBCN: MMBench-Chinese Liu et al. (2023d); SEED: SEED-Bench Li et al. (2023b); LLaVAW:
LLaVA-Bench(In-the-Wild) Liu et al. (2023c); MM-Vet Yu et al. (2023).

Implementation Details. Our 7b model version takes approximately 18 hours to train on 8×A800
machine, while the 13b model version takes about 18.5 hours to train on 16×A800 machine. In the
training of the HyperLLaVA, we utilize the ADAMW Loshchilov & Hutter (2017) optimizer, adapting
hyperparameters to cater to the specific requirements of each phase. For the feature alignment stage,
parameters are set as B = 32, Lr = 0.001, while for the multimodal instruction tuning stage, we
adjust the parameters to B = 16, Lr = 0.00002. Additional details can be found in Appendix 7.1,
maintaining consistency with LLaVA-1.5.

Comparison of Methods. We compare HyperLLaVA with previous SOTA approaches for quantifying
the efficacy. We choose BLIP-2Li et al. (2023d), InstructBLIPDai et al. (2023a) based on Vicuna-
7B, InstructBLIPDai et al. (2023a) based on Vicuna-13B, Shikra Chen et al. (2023), IDEFICS-
9BLaurençon et al. (2023), IDEFICS-80B Laurençon et al. (2023), Qwen-VL Bai et al. (2023),
Qwen-VL-Chat Bai et al. (2023) and LLaVA-1.5 Liu et al. (2023a). More details refer to 7.2.
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Table 1: Comparison with SoTA methods on 12 benchmarks. For making a fair comparison, we use the
LLaVA’s data to train our model. Res, PT, IT indicate input image resolution, the number of samples in
the pretraining and instruction tuning stage, respectively. We color each row as the best and second best .
Improvement. ↑ indicates performance improvement compared with LLaVA-7B and LLaVA-13B.

Method LLM Res. PT IT VQA Datasets Benchmark Toolkits

VQAv2 GQA VizWiz SQAI VQAT POPE MME MMB MMBCN SEED LLaVAW MM-Vet
InstructBLIP Dai et al. (2023a) Vicuna-7B 224 129M 1.2M - 49.2 34.5 60.5 50.1 - - 36 23.7 53.4 60.9 26.2
IDEFICS-9B Laurençon et al. (2023) LLama-7B 224 353M 1M 50.9 38.4 35.5 - 25.9 - - 48.2 25.2 - - -
Qwen-VL Bai et al. (2023) Qwen-7B 448 1.4B 50M 78.8 59.3 35.2 67.1 63.8 - - 38.2 7.4 56.3 - -
Qwen-VL-Chat Bai et al. (2023) Qwen-7B 448 1.4B 50M 78.2 57.5 38.9 68.2 61.5 - 1487.5 60.6 56.7 58.2 - -
LLaVA-1.5 Liu et al. (2023a) Vicuna-7B 336 558K 665K 78.5 62.0 50.0 66.8 58.2 85.9 1474.0 64.3 58.3 58.6 63.4 30.5
HyperLLaVA (Ours) Vicuna-7B 336 558K 665K 79.1 62.7 51.9 70.4 58.5 86.3 1481.2 65.9 60.6 61.4 64.0 31.0
Improvement. ↑ - - - - +0.6 +0.7 +1.9 +3.6 +0.3 +0.4 +7.2 +1.6 +2.3 +2.8 +0.6 +0.5

BLIP-2 Li et al. (2023d) Vicuna-13B 224 129M - 41.0 41 19.6 61 42.5 85.3 1293.8 - - 46.4 38.1 22.4
InstructBLIP Dai et al. (2023a) Vicuna-13B 224 129M 1.2M - 49.5 33.4 63.1 50.7 78.9 1212.8 - - 58.2 - 25.6
Shikra Chen et al. (2023) Vicuna-13B 224 600K 5.5M 77.4 - - - - - 58.8 - - - - -
LLaVA-1.5 Liu et al. (2023a) Vicuna-13B 336 558K 665K 80.0 63.3 53.6 71.6 61.3 85.9 1531.3 67.7 63.6 61.6 70.7 35.4
HyperLLaVA (Ours) Vicuna-13B 336 558K 665K 80.1 63.8 54.6 73.8 61.1 86.4 1571.1 69.0 63.0 62.9 70.9 36.6
Improvement. ↑ - - - - +0.1 +0.5 +1.0 +2.2 - +0.5 +39.8 +1.3 - +1.3 +0.2 +1.2

3.3 OVERALL PERFORMANCE

Existing Benchmarks. We benchmark HyperLLaVA on a wide range of academic benchmarks,
including 5 VQA datasets and 7 Benchmark Toolkits in Table 1. In general, irrespective of
the different benchmarks, HyperLLaVA achieves the best performance on almost all the multimodal
scenarios across both datasets. Besides, compared to LLaVA, we show that HyperLLaVA achieves
the best performance across 12 out of 12 benchmarks (7B version) and 10 out of 12 benchmarks
(13B version). Such results benefit from the carefully designed dynamic visual and language expert,
which empowers the static projector and LLM to facilitate general multimodal tasks.

CMT Benchmark. To further measure the multimodal understanding capability, we conduct a
comprehensive evaluation of our HyperLLaVA and the recent advanced MLLMs on the proposed CMT
benchmark, which reveals several key findings: 1) HyperLLaVA consistently outperforms existing
models by a large margin across all categories, which demonstrates stronger generalizability in
following multimodal instructions with different types. 2) Despite existing vision-language models
have demonstrated comparable performance in following general multimodal instructions (e.g., Visual
QA and Visual Captioning), their competence seems to falter when simultaneously dealing with
the complex multimodal instructions (e.g., Spatial Inference and Knowledge OCR). Among these
widely varying multimodal tasks, this is perceived as a deficiency in multi-task interference, which
may introduce the negative transfer, thus attributing the performance discrepancy. In contrast, the
proposed visual and language experts can adapt MLLM’s parameters conditioned for every instruction
at two stages, alleviating the potential interference and improving multimodal comprehension across
different tasks. 3) The original LLaVA exhibits performance degradation when scaling up the LLM
size, however, our model shows consistent performance improvement for all tasks, indicating the
suitability and stability for different vision-language instruction understanding.

3.4 IN-DEPTH ANALYSIS

We further validate the effectiveness of the HyperLLaVA-7B through the experiments on VizWiz,
SQAI, MMB, SEED, Visual QA (VQA) and Spatial Inference (SI) on CMT benchmark+.

Task Interference Analysis. We systematically detail the explicit task interference in Figure 4 (a) and
(b), which display the experimental outcomes from training with combinations of different task data
for the Visual QA and Spatial Inference tasks. Interestingly, LLaVA achieves higher or comparable
performance to our proposed method when trained on single-task data. However, the results presented
in the figure also reveal that LLaVA obtains significant performance degradation as the number of
training task types increases, implying the limitations of LLaVA’s “static” learning in the multi-task
setting. In contrast, HyperLLaVA exhibits consistent performance enhancements across the two tasks
as the number of training task types increases. Our intuition is that the “dynamic” visual and language
expert modules effectively capture domain-specific knowledge by adaptively adjusting the MLLM’s
parameters, while the “static” component learns general knowledge across diverse multimodal tasks.
Consequently, as the number of training tasks increases, the static part effectively enhances general
knowledge, while the dynamic component mitigates potential interference, enabling positive transfer
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Table 2: Evaluation on each task category of developed CMT benchmark. † indicates the zero-shot
evaluation of the model. Notably, LLaVA and HyperLLaVA were both trained using the CMT data.

Method Visual
QA

Visual
Captioning

Spatial
Inference

Detailed
Description

Visual
Storytelling

Knowledge
OCR

Text-Rich
Images QA

BLIP-2† Li et al. (2023d) 8.4 8.7 0.0 17.4 8.9 21.0 16.0
InstructBLIP† Dai et al. (2023a) 35.2 7.1 0.0 2.7 10.5 20.1 17.3
MiniGPT-4† (Zhu et al., 2023) 0.0 17.4 0.0 29.0 9.2 17.9 17.1
mPLUG-Owl† Ye et al. (2023b) 71.0 15.0 9.9 30.3 9.7 31.3 14.1
Otter† Li et al. (2023a) 24.1 11.4 0.0 26.1 14.0 21.0 22.1
Qwen-VL-Chat† Bai et al. (2023) 53.1 13.0 13.1 21.4 13.7 31.0 20.1
LLaVA-7B Liu et al. (2023a) 77.5 15.3 32.7 31.2 10.9 43.5 29.0
HyperLLaVA-7B 79.0 21.3 36.9 32.2 15.2 46.3 30.1
LLaVA-13B Liu et al. (2023a) 77.8 15.0 37.5 32.0 11.6 48.2 31.9
HyperLLaVA-13B 79.6 21.6 39.0 35.9 15.2 52.1 32.8

Table 3: Three alternatives for dynamic vision-
language alignment. EV1 and EV2 denote the visual
expert for first and second MLP layer.

Methods VQA Datasets Benchmark Toolkits CMT Benchmark

VizWiz SQAI MMB SEED VQA SI
w/o EV 50.3 70.4 65.9 61.0 77.2 33.0
EV2 51.4 70.9 64.7 61.0 78.6 35.6

EV1
&EV2

48.2 70.6 63.3 58.0 78.2 36.1
EV1 51.9 70.4 65.9 61.4 79.0 36.9

Table 4: Different language expert tuning strate-
gies. ATT and FFN denote the attention-level and
feedforward-level integration.

Methods VQA Datasets Benchmark Toolkits CMT Benchmark

VizWiz SQAI MMB SEED VQA SI
w/o EL 51.1 70.2 65.7 60.8 77.7 34.2
ATT 45.4 70.2 66.2 61.5 78.7 35.3

ATT&FFN 45.5 70.3 66.5 61.3 77.3 35.5
FFN 51.9 70.4 65.9 61.4 79.0 36.9

across projector and LLM layers in a multi-task learning scenario. This showcases HyperLLaVA’s
suitability and stability for diverse vision-language instruction comprehension.

Dynamic Characterization Visualization. We investigate the dynamic characterizations of the
visual expert. Specifically, we have randomly selected 70 cases (10 cases per task) from the con-
structed CMT benchmark and visualized the parameters of visual and language experts using t-SNE
embeddings Van der Maaten & Hinton (2008) in Figure 4(c) and (d). This visualization demonstrates
the dynamic characterization of the generated parameter, e.g, the sample distribution is discrete in the
projector and LLM. Such dynamic characterization enables the MLLM to leverage the best of both
worlds, adjusting the limited MLLM parameters and encouraging the model to adapt to individual
multimodal instructions, consequently alleviating the multi-task interference.

Effectiveness of Each Component. We investigate the effectiveness of each component in Table 3
and 4. On the one hand, Table 3 builds the insights on the visual expert-assisted projector in
HyperLLaVA. According to our observation, using one visual expert to access the dynamic projection
yields the best results (Row 4). Besides, the other two plans (Row 2 and Row 3) also obtained
comparable results, indicating the effectiveness of dynamic vision-language projection. On the other
hand, Table 3 shows the different language expert integration strategies. Comparing ATT and FFN,
FFN (Row 4) shows a stable performance for all tasks, while utilizing ATT (Row 2 and Row 3) results
in noticeable performance degradation on VizWiz benchmark. Our intuition is that the attention-level
brings more parameter computation at all LLM blocks, and thus hurts the stability. Table 3 (Row 1)
and 4 (Row 1) also suggest that the improvement of using each expert module alone is distinguishable.
Combining all the components, our HyperLLaVA exhibits steady improvement over the baselines.

Analysis of Language Expert Integration for Different Blocks. To deeply analyze the effectiveness
of language experts, we study the language expert integration for different blocks in Table 7, including
anterior 16 blocks (before 1/2 LLM layers), all 32 blocks (all LLM layers) and posterior 16 blocks
(after 1/2 LMM layers). Generally speaking, leveraging the language expert integration for the
posterior 16 blocks obtained almost the best performance. Besides, Row 2 and Row 3 utilize the
initial language input as language guidance, obtaining suboptimal results compared with language
expert integration for the posterior 16 blocks. Our intuition is that the language guidance might not
have gathered sufficient contextual information for subsequent dynamic LLM layer modeling.

Analysis on the Inserted Blocks for Language Guidance. We investigate the impact of inserting
language guidance into different layers of LLMs. We report the evaluation score of VisWiz, MMB
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Figure 4: Deep analysis of HyperLLaVA. (a) and (b) report the results based on the combined
training data of different tasks on CMT benchmark. (c) and (d) respectively visualize the dynamic
parameters in the projector and LLM by using t-SNE Van der Maaten & Hinton (2008).

Table 5: Zero-shot object hallucination evaluation results on POPE dataset. ”Yes” indicates the proportion
of positive responses to the given question.

Method LLM Activated Adersarial Popular Random
Acc F1-Score Yes Acc F1-Score Yes Acc F1-Score Yes

mPLUG-Owl Ye et al. (2023a) LLaMA-7B 6.7B 82.4 81.6 45.2 85.5 84.3 42.1 86.3 85.3 42.3
MM-GPT Gong et al. (2023) LLaMA-7B 6.7B 50.0 66.7 100.0 50.0 66.7 100.0 50.0 66.7 100.0
LLaVA-1.5 Liu et al. (2023a) Vicuna-7B 7B 85.1 84.2 44.0 87.2 86.1 41.9 88.3 87.3 41.9

HyperLLaVA Vicuna-7B 7B 85.6 84.7 44.1 87.3 86.2 42.4 88.9 87.9 42.1

and VQA on CMT in Figure 5 (a), (b) and (c). We observe that the performance is low when we insert
language guidance too early (i.e., 4, 8) as the model might not have gathered sufficient contextual
information to generate effective guidance. Meanwhile, inserting language guidance too late (i.e.,
24, 28) degenerates the performance. We speculate this is due to the generated guidance being too
concentrated and there not being enough layers to integrate the language-aware details.

Analysis of Expert’s Structure. We systematically present the explicit benefits from the carefully
designed expert’s structure in Table 6. Simply using HyperNetwork performs worse, demonstrating
the unstable optimization with numerous parameters. The adapter-based HyperNetwork structure
surpasses MLP across all datasets, primarily because the generated MLP is no longer a lightweight net-
work to optimize, resulting in unstable performance. Compared with HyperNetwork+Adapter (Row
3 vs Row 5), our proposed vision-language guided expert structure achieved the best performance.
These results align with our assumption that the original HyperNetwork lacks a strong correlation
between input and parameter generation. Our method enables the exploitation of similarities between
samples across datasets and avoids potential interference among different instructions.

Effect of Dimension of Expert Input and Downsampling. Figure 5 (d) and (e) empirically provide
an appropriate dimension of input and downsampling, i.e, 128 and 64, respectively, either increasing
or decreasing this value results in a performance decay. According to our analysis, a bigger dimension
may result in an unstable HyperNetwork optimization, and a smaller value contains less language-
guided information for dynamic learning, thus yielding performance decay.

Object Hallucination Evaluation. We adopt the evaluation pipeline of POPE Li et al. (2023e),
a polling-based query method, to evaluate object hallucination in HyperLLaVA. The results are
presented in Table 5, where HyperLLaVA exhibits the best performance, indicating that HyperLLaVA
tends to generate objects consistent with the given image. Additionally, we observe that the “yes”
ratio of HyperLLaVA remains relatively balanced, indicating that our model is capable of providing
accurate feedback based on the questions.

Effect with Stronger LLM. To access the LLM generalizability of the proposed method, we have
conducted experiments using LLaVA-1.5 training data combined with the more powerful LLM
(LLaMA3-8B) utilized by LLaVA-1.61, as detailed in Table 13. These experiments demonstrate that
HyperLLaVA significantly outperforms the LLaVA 1.6 variant across all tasks, showcasing superior
generalizability in processing diverse multimodal instructions.

MMMU Benchmark Results. MMMU Yue et al. (2024) is a benchmark for evaluating MLLMs
across multiple disciplines, which serves as an alternative for diverse task learning of MLLMs. Thus,

1Due to LLaVA-1.6 has not yet fully open-sourced, we only replace the LLaMA2-7B to LLaMA3-8B.
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Figure 5: Analysis of HyperLLaVA’s hyperparameters. (a)(b)(c) depicts the effect of selected
blocks for language guidance. (d) and (e) demonstrates the performance on different benchmarks
with respect to the input and downsampling dimensions of the designed expert module.

Table 6: Deep analysis of expert structure.

Methods VQA Datasets Benchmark Toolkits CMT Benchmark

VizWiz SQAI MMB SEED VQA SI
Adapter 50.7 69.4 63.9 56.9 73.4 32.8
HyperNetwork 36.5 52.6 51.1 48.8 70.1 31.3

+Adapter 51.6 69.9 65.5 60.8 75.9 33.6
+MLP 51.0 68.8 64.1 59.7 74.3 32.9

Ours 51.9 70.4 65.9 61.4 79.0 36.9

Table 7: Analysis of language expert integration for
different LLM layers. L indicates the number of the
LLM blocks.

Methods VQA Datasets Benchmark Toolkits CMT Benchmark

VizWiz SQAI MMB SEED VQA SI
Anterior L

2 Blocks 49.3 69.4 65.0 59.8 78.2 35.3
All Blocks 47.8 69.5 66.1 59.8 78.0 35.5

Posterior L
2 Blocks 51.9 70.4 65.9 61.4 79.0 36.9

We conduct additional experiments to explore the other multi-modal understanding capabilities of
HyperLLaVA. As shown in Table 11 (in Appendix), the results we find that HyperLLaVA notably
surpasses LLaVA-1.5 on all the different tasks. The observations further reveal the superiority of
HyperLLaVA, which can effectively address the negative transfer in multi-task learning.

Human Evaluation. We further conduct a human evaluation on the OwlEval benchmark Ye et al.
(2023b), which contains 82 open-ended questions including advertisement and poem creation, diagram
and flowchart comprehension, and teaching, etc. Specifically, we recruit 8 well-educated people to
rank the randomly shuffled responses from MiniGPT-4, mPLUG-Owl, OpenFlamingo, InstructBLIP
and LLaVA. The scores range from 1 to 5 (5 means best) and are allowed to be equal for comparable
instances. As shown in Figure 6, HyperLLaVA also demonstrates better open-ended language
generation ability in various practical cases.

4 RELATED WORK

Multimodal Large Language Models (MLLMs). MLLMs leverage the power of LLMs, mitigating
extra computational cost and enhancing the efficacy of multimodal pre-training Zhang et al. (2024), to
bridge the gap between textual and multimodal data. Follow-up works of LLaVA (Liu et al., 2023b),
MiniGPT-4 (Zhu et al., 2023), InstructBLIP (Dai et al., 2023b), Qwen-VL-Chat Bai et al. (2023),
Flamingo Alayrac et al. (2022b), Otter Li et al. (2023a), mPLUG-Owl (Ye et al., 2023b) propose to
fine-tune MLLMs with multimodal instructions. To effectively benchmark the recent progress in
MLLMs, concurrent works of LVLM-eHub (Xu et al., 2023) and MME Benchmark (Fu et al., 2023a)
are proposed, while they mainly focus on instructions that only involve a single image with limited
instruction diversity. However, most of the pieces of literature focus on scaling up the pretraining data,
instruction-following data, visual encoders or language models to facilitate multimodal understanding.
How to alleviate the multi-task interference of MLLMs remains relatively underexplored. Thus, we
propose HyperLLaVA, addressing the task interference based on the novel dynamic tuning strategy,
yielding an improved understanding of diverse multimodal instructions.

5 CONCLUSION

Building upon HyperLLaVA’s innovative dynamic tuning strategy, our work paves the way for
groundbreaking advancements in multimodal learning systems. By adaptively tuning both projector
and LLM parameters, and integrating dynamical visual and language experts, we not only surpass
the performance benchmarks set by LLaVA but also introduce a comprehensive multimodal task
benchmark. This approach offers a new horizon for enhancing multimodal task performances through
personalized, dynamic adjustments. Future research could further explore the scalability of dynamic
tuning mechanisms, potentially unlocking new avenues for understanding multimodal instructions.
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This is the Appendix for “HyperLLaVA: Dynamic Visual and Language Expert Tuning for Multimodal
Large Language Models”. Table 8 summarizes the abbreviations and the symbols used in the main
paper.

Table 8: Abbreviations and symbols used in the main paper.

Abbreviation/Symbol Meaning
Abbreviation

LLMs Large Language Models
MLLMs Multimodal Large Language Models

CMT Comprehensive Multimodal Tasks
MLP Multi-Layer Perception
FC Fully-Connected

MSA Multi-Head Self-Attention

Symbol in Algorithm
V Visual Token Sequence
T Text Token Sequence
R Textual Response Token Sequence
Mv VIT Model
Mp Projector Model
Ml LLM
M MLLM
K Dynamic MLP Matrix
ξ Expert Module
z Learned Latent Vector
E Layer-Specific Encoder
e Layer-Specific Feature Embedding
M Modality Type
G Guidance
H HyperNetwork
E Expert
Q̂ Query Sub-Prompt
K̂ Key Sub-Prompt

This Appendix is organized as follows:

• Section 6 provides the detailed information of the proposed CMT benchmark.
• Section 7 reports more experimental settings of baselines, implementation details and

training process of HyperLLaVA.
• Section 8 shows the additional experiments to verify the effectiveness of HyperLLaVA.
• Section 9 lists the broader impact and limitations of this paper.

6 CMT BENCHMARK

The majority of the 12 benchmarks assessed in Table 1 are primarily centered on a specific
task/domain (e.g., Visual Question Answering (VQA)) or straightforward reasoning tasks (MME
Benchmark). We contend that these benchmarks may not effectively evaluate the nuanced interplay
between different tasks. Therefore, we developed the CMT benchmark, encompasses five interference
dimensions among various tasks, serving as a fundamental basis for investigating task interference.

Data format. All task instances are transformed into a unified instruction-response form for zero-shot
evaluation. Formally, each instance in CMT consists of the following components:

• Task_Instruction: provides a complete natural language definition of a given task, including
the input/output format and the task objective.
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Table 9: Detailed statistics of CMT benchmark.

Tasks Images Instructions Avg. Images / Instruction Avg. Words / Instruction
CMT for training 7 772,867 505,405 1.53 28.27
CMT for evaluation 7 2,01 1,149 1.74 32.72

• Task_Instance: is a concrete instance of a given task that consists of demonstrative image-text
sequential context (e.g., visually-rich textbooks, specific questions about the context).

• Response: represents the target output in natural language for a given task instruction and task
instance. For classification tasks, we convert the class labels as options into the instruction and ask
the model to output the option index in natural language as the response.

Without any specific emphasis, we use the term ”instruction” to refer to the combination of
Task_Instruction and Task_Instance.

Criteria for Task Selection. To thoroughly investigate the issue of multi-task negative interference,
we first established the Comprehensive Multimodal Task (CMT) benchmark, which is grounded in
five key interference dimensions:

• Interference of single and multiple image processing: Visual Captioning and Visual Storytelling;

• Interference between images with pure vision and multimodal information: Text-Rich Images
QA;

• Interference between understanding global and local details: Detailed Description and Spatial
Inference;

• Interference between visual and text recognition in images: Spatial Inference and Knowledge
OCR;

• Interference between brief and detailed textual understanding: Visual Captioning and Detailed
Description. Building upon the aforementioned criteria, we can effectively and comprehensively
benchmarking of diverse multimodal instruction capabilities across current MLLMs and our
proposed HyperLLaVA.

Task Collection and Categorization. To comprehensively benchmark the diverse instruction fol-
lowing ability, we extensively gathered a wide variety of multimodal datasets from different fields
and scenarios, and performed some processing to obtain the data we wanted, such as we used
CogVLM Wang et al. (2023) to generate detailed descriptions for LAION-COCO and CC12M Chang-
pinyo et al. (2021b). As illustrated in Figure 3, CMT has three important properties: 1) Demonstrative
vision-language context, all instructions contain sequences of (one or more) images and text that are
highly correlated and together construct context, such as a storyboard with scripts, a textbook with
diagrams. 2) Diverse forms of complex instructions, the instructions range from designing panels
for comics, to discovering differences between surveillance images, and to conversational embodied
tasks. 3) Vast range of instruction-following scenarios, the benchmark covers multiple practical
scenarios, including cartoons, albums, etc.

Evaluation Protocols. Thanks to the unified task format of CMT, all tasks can be evaluated in a
zero-shot manner. For the open-ended generation tasks, we adopt ROUGE-L for evaluation. For the
tasks that require the models to output option indexes, we take Accuracy as the evaluation metric.
While well-formated options are provided, we empirically observe that many MLLMs struggle to
strictly follow instructions to output the option indexes but generate free-form text. Thus, when
models do not exactly output the required options, we match their outputs to one of the given options.

Benchmark Analysis. Table 9 details the statistics. The CMT benchmark is divided into two parts:
training and evaluation. CMT for training and CMT for evaluation both covers 7 tasks. In total,
CMT for training includes 505,405 multi-round instruction-response pairs conversations and CMT for
evaluation includes randomly selected 1,149 instruction-response pairs. On average, each instruction
contains 1.53 images, 28.27 words and 1.74 images, 37.27 words, respectively.
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Table 10: Summary of the instruction-following tasks in CMT benchmark.

Task Scenario Dataset Metric
Visual QA
Visual Question Answer Realistic Scene VQAv2 Goyal et al. (2017a)

Accuracy

Visual Question Answer with Reasoning Realistic Scene GQA Hudson & Manning (2019a)
Visual Question Answer with External Knowledge VQA with External Knowledge OKVQA Marino et al. (2019)
Ambiguous Visual Question Answer with Knowledge Ambiguous VQA with Knowledge AOKVQA Schwenk et al. (2022)
Visual Question Answer Realistic Scene ShareGPT ShareGPT (2023)
Visual Question Answer Non-Realistic Scene JouneyDB Pan et al. (2023)
Visual Captioning
Text-Based Image Captioning Non-Realistic Scene TextCaps Sidorov et al. (2020)

ROUGE-L
Image Captioning Non-Realistic Scene JouneyDB Pan et al. (2023)
Spatial Inference
Visual Spatial Reasoning Realistic Scene RefCOCO Kazemzadeh et al. (2014)

IoU
Object Grounding Realistic Scene VG Krishna et al. (2017)
Detailed Description
Detailed Description Realistic Scene LAION-COCO Schuhmann et al. (2022)

ROUGE-L
Detailed Description Realistic Scene CC12M Changpinyo et al. (2021a)
Visual Storytelling
Animated Story Completion Cartoon AESOP (Ravi et al., 2021)

ROUGE-L
Animated Story Completion Cartoon PororoSV (Li et al., 2019)
Animated Story Completion Cartoon FlintstonesSV (Gupta et al., 2018)
Sequential Photo Storytelling Album VIST (Huang et al., 2016)
Sequential Photo Storytelling Cartoon DiDeMoSV (Maharana et al., 2022)
Knowledge OCR
Knowledge OCR Realistic Scene LLaVAR Zhang et al. (2023)

ROUGE-L
Knowledge OCR Realistic Scene TextVQA Singh et al. (2019b)
Text-Rich Images QA
Slide QA Slide SlideVQA Tanaka et al. (2023)

AccuracyOCR QA Book Cover OCR-VQA Mishra et al. (2019)
Document QA Document Image DocVQA Mathew et al. (2021)

7 EXPERIMENTAL SETTINGS

7.1 IMPLEMENTATION DETAILS

In the training of the HyperLLaVA, we utilize the ADAMW Loshchilov & Hutter (2017) optimizer,
adapting hyperparameters to cater to the specific requirements of each phase. For the feature
alignment stage, parameters are set as B = 32, Lr = 0.001, while for visual instruction tuning stage,
we adjust the parameters to B = 16, Lr = 0.00002. The configuration for the ADAMW optimizer
incorporates the following settings: β = (0.9, 0.999), ε = 1 × 10−8, and Wd = 0.0, ensuring a
bespoke optimization strategy that effectively addresses the unique demands of each training phase.

Besides, We train our model following the same training process as LLaVA-1.5. The process
includes two stages: (1) feature alignment stage: use 558K subset of the LAION-CC-SBU dataset
to connect a frozen pretrained vision encoder to a frozen LLM; (2) visual instruction tuning stage:
use a combination of 150K GPT-generated multimodal instruction-following data and approximately
515K VQA instances collected from academic-oriented tasks to guide the model in comprehending
multimodal instructions. In addition to leveraging the identical training dataset as LLaVA-1.5, we
introduce a supplementary CMT dataset comprising approximately 505K diverse data. This extensive
dataset enriches the model’s training regimen, bolstering its instruction-following performance and
tackling complex visual tasks with greater finesse.

It is noteworthy that while LLaVA-1.5 accounts for the number of images in the input visual instruction
task, it does not inherently possess the capability to comprehend intricate multi-image visual tasks.
Instead, it confines responses to a single image, thereby forfeiting multi -image contextual information.
HyperLLaVA extends this functionality by preserving all ¡image¿ tokens, sequentially substituting
¡image¿ tokens with image features , and employing corresponding masks to avoid loss impact. This
augmentation enables the model to effectively process and respond to complex multi- picture visual
task.
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7.2 COMPARED METHODS

Recent advancements in LLMs (OpenAI, 2023a;b) have heralded significant achievements across
various domains. Inspired by this success, many MLLMs (Li et al., 2023d; Liu et al., 2023b; Zhu et al.,
2023; Alayrac et al., 2022a; Ye et al., 2023b; Gao et al., 2023; Li et al., 2023a) have been proposed
to foster generalist vision-language reasoning. In our experiments, we conducted comparisons with
some of the most recent and representative MLLMs in the following.

• LLaVA-1.5 (Liu et al., 2023a) establishes a connection between the visual encoder ViT-
L/14 from CLIP (Radford et al., 2021a) and the language decoder LLaMA (Touvron et al.,
2023), utilizing a lightweight, Multilayer Perceptron (MLP) layer. Initially, the system
trains this MLP layer using 558K image-text pairs, while keeping both the visual encoder
and LLM static. Following this, LLaVA fine-tunes both the MLP layer and LLM using
a dataset comprising 665K instructional vision-language pairs. The tested version are
”LLaVA-1.5-7B” and ”LLaVA-1.5-13B”.

• MiniGPT-4 (Zhu et al., 2023) bridges the gap between the visual encoder and text encoder
using a fully-connected (FC) layer. Initially, this model trains the FC layer on a dataset
comprised of 5M image-text pairs before fine-tuning it on 3.5K instructional vision-language
data. Notwithstanding its simplicity, MiniGPT-4 requires the loading of a pre-trained vision
encoder from BLIP2, as well as a Vicuna LLM (Chiang et al., 2023). The tested version is
“minigpt4-aligned-with-vicuna7b”.

• BLIP2 (Li et al., 2023d) employs a dual-stage strategy to seamlessly bridge the modality
gap, utilizing a lean Q-Former pre-trained on 129 million image-text pairs. The initial stage
kick-starts the learning process of vision-language representation, leveraging a frozen image
encoder, the ViT-g/14 from EVA-CLIP (Fang et al., 2023). Subsequently, the second stage
harnesses a frozen LLM, the Vicuna (Chiang et al., 2023), to initiate the vision-to-language
generative learning. This innovative strategy effectively facilitates zero-shot instructed
image-to-text generation. The tested version is ”blip2-pretrained-vicuna13b”.

• mPLUG-Owl (Ye et al., 2023b) introduces a visual abstractor, fundamentally close the
Perceiver Resampler in Flamingo (Alayrac et al., 2022a), as a bridge between the pre-trained
visual encoder ViT-L/14 and the LLM (LLaMA (Touvron et al., 2023)). This model adopts
a two-stage fine-tuning procedure. In the initial phase, both the visual encoder and the
visual abstractor undergo comprehensive fine-tuning using a dataset of 204M image-text
pairs. Subsequently, in the second phase, mPLUG-Owl applies the 158K LLaVA-Instruct
dataset to fine-tune the pre-trained LLM in a parameter-efficient manner through the use of
LoRA (Hu et al., 2021a). The tested version is ”mplug-owl-llama-7b”.

• Otter (Li et al., 2023a) is a multimodal model that applies in-context instruction tuning based
on OpenFlamingo (Alayrac et al., 2022a). This model integrates a LLaMA-7B (Touvron
et al., 2023) language encoder and a CLIP ViT-L/14. While the visual and text encoders
remain static, Otter refines an additional 1.3 billion parameters. These parameters are
derived from adaptation modules and are trained using 158K instruction-following data.
The tested version is ”OTTER-Image-LLaMA7B-LA-InContext”.

• InstructBLIP (Dai et al., 2023a) originates from a pre-trained BLIP-2 model, which consists
of a ViT-g/14 image encoder, a Vicuna LLM, and a Q-Former to act as the bridge between
these two components. During the process of vision-language instruction tuning, only the
Q-Former undergoes fine-tuning, with the training process leveraging data from 13 distinct
visual question-answering datasets. The tested version is ”blip2-instruct-vicuna7b” and
”blip2-instruct-vicuna13b”.

• Shikra (Chen et al., 2023) utilizes CLIP ViT-L/14 as the visual encoder and Vicuna as LLM,
with a single fully-connected layer connecting the feature spaces of visual encoder and LLM.
In both stages, freeze the visual encoder and tune all parameters in LLM. The model is
trained in two stages, and freeze the visual encoder and tune all parameters in LLM in both
stages. Shikra is able to comprehend user input of Points/Boxes and support the output of
Points/Boxes, enabling seamless referential dialogue with humans. The tested version is
“shikra-vicuna13b”.

• IDEFICS (Laurençon et al., 2023) is an open copy of Flamingo, built on LLaMA and
OpenCLIP (Ilharco et al., 2021). In the initial phase, OBELICS, a dataset containing 353

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

million images, was used for training. Subsequently, instruction fine-tuning was performed
on 1 million data. The tested version are ”idefics-9b-instruct” and ”idefics-80b-instruct”.

• Qwen-VL (Bai et al., 2023) utilized Qwen-7B as the LLM, Openclip’s ViT-bigG as the
vision encoder, and a single-layer cross-attention as the Vision-language adapter. A three-
stage paradigm is used for training. In the first phase of pre-training on 1.4 billion data,
freeze the large language model and only optimize the vision encoder and VL adapter in
this stage. The second stage is multi-task pre-training, unlocked the large language model
and trained the whole model at this stage. In the last stage, the Qwen-VL pre-training
model is fine-tuned, freeze the visual encoder and optimize the language model and adapter
module, and the interactive QWEN-VL-Chat model is generated. The tested version are
“Qwen-VL-vicuna7b” and “Qwen-VL-Chat-vicuna7b”.

8 ADDITIONAL EXPERIMENTAL RESULTS

We conducted additional experiments to further verify the strength of HyperLLaVA.

Parameter-Efficient Fine-tuning. Our proposed language expert also can serve as a parameter-
efficient fine-tuning function. The structure is similar to the HyperNetwork+Adapter. However,
original hypernetwork-based approaches generally condition their parameters on a learned latent
embedding, implying the model is the same for every example, yielding performance decay. Summing
up, the proposed language expert is an effective and parameter-efficient way to share information
across multiple adapters to enable positive transfer to low-resource and related tasks.

Detailed Performance on MME. We report the detailed performance on the 14 subtasks of the MME
benchmark in Table 14. MME benchmark measures both perception and cognition abilities on a total
of 14 subtasks. We almost obtained the best score on each subtask compared to LLaVA 1.5, which
further indicates the effectiveness of our method for diverse multimodal instruction understanding.

Adaptation to other MLLM. To study the generalizability of dynamic tuning to other MLLMs,
we utilized our expert module to train MiniGPT-4. The outcomes of the vision-language tasks, as
presented in Table 15, employing MiniGPT-4, are as follows. Our approach seamlessly integrates
with MiniGPT-4, enabling it to proficiently tackle advanced vision-language tasks. For example, in
the case of memes, MiniGPT-4 with the expert module accurately deciphers the complex humor in 11
out of 25 instances. In comparison to the original MiniGPT-4, the expert module yields a significant
enhancement across all tasks, improving by 7 points for MiniGPT-4. These findings suggest that
other baseline models equip the expert module can boost the capability for multi-modal tasks.

Efficiency Comparsion. Table 16 reports the comparison of model parameter counts and training
time between HyperLLaVA and LLaVA. Notably, the parameters of the two models are similar in
quantity, both the 7B and 13B versions. However, our HyperLLaVA achieves faster convergence
in training time for the 7B version and comparable convergence training time for the 13B version,
suggesting improved training efficiency for following diverse and complex multimodal instructions.
We have not reported inference time, as the MLLMs produce outputs of varying lengths due to
differences in instruction understanding.

Qualitative Examples. We show the qualitative examples generated by our HyperLLaVA in proposed
CMT, including Detailed Description (Figure 7), Visual QA (Figure 8), Knowledge OCR (Figure 9),
Visual Captioning (Figure 10), Visual Storytelling (Figure 11), Spatial Inference (Figure 12) and
Text-Rich Images QA (Figure 13).
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Table 11: Comparison with LLaVA-1.5 (7B) and HyperLLaVA (7B) on MMMU benchmark Yue et al.
(2024).

Methods Art & Design Business Science-W Health & Medicine Human. & Social Sci. Tech & Eng

LLaVA-1.5-7B 46.7 27.3 27.7 32.3 43.6 31.0
HyperLLaVA-7B 48.8 27.9 27.9 34.2 46.1 32.5

Algorithm 1: Vision-Language Alignment Framework
Input: Raw images x and raw texts Tr from PT datasets; Pre-trained modelsMv(·; Θv) and

Ml(·; Θl) with parameters Θv and Θl respectively;
Output: Projector ModelMp(·; Θp);

1 Initialization: Randomly initialize the parameters Θp, including the visual HyperNetworkHv

and a 2-layer MLP; FreezeMv(·; Θv) andMl(·; Θl);
2 for i← 1 to number of epochs do
3 repeat
4 Randomly sample a mini-batch;
5 Process data in batches to obtain x and Tr;
6 Obtain GV from x usingMv(·; Θv) with Eq. (3);
7 ObtainHV using Eq. (4);
8 Merge GV andHV to obtain Ev(·;Wu

V (·;HV ),W
d
V (·;HV )) with Eq. (5);

9 Obtain V by integrating the output of Ev and a 2-layer MLP;
10 Obtain T andR with a tokenizer;
11 Concatenate V , T , andR as input tokens ofMl, obtain R̂ by forward propagation;
12 Calculate cross-entropy loss (CEL) betweenR and R̂;
13 Update parameters Θp;
14 until No redundant data;
15 end
16 returnMp(·; Θp)

Algorithm 2: Multimodal Instruction Tuning Framework
Input: Raw images x and raw texts Tr from instruct-FT datasets; Pre-trained modelsMv(·; Θv)

andMl(·; Θl) with parameters Θv and Θl respectively; Pre-trained projector model
Mp(·; Θp) with parameters Θp from Algorithm 1;

Output: Large Language ModelMl(·; Θl), Projector ModelMp(·; Θp);
1 Initialization: Randomly initialize the parameters ΘHL

,WQ,WK for Eq. (6); Randomly
initialize the parameters W,B for Eq. (4); FreezeMv(·; Θv);

2 for i← 1 to number of epochs do
3 repeat
4 Randomly sample a mini-batch;
5 Obtain visual tokens V , textual tokens T , and response tokensR using procedures

outlined in Algorithm 1;
6 Obtain hidden state token h from the L

2 -th layer through forward propagation;
7 Generate GL from h using Eq. (3);
8 Obtain dynamic MLP matrix K using Eq. (4);
9 Combine GL and K to obtain El(·;Wu

L(·;w, b),W d
L(·;w, b)) with Eq. (5);

10 Generate query sub-prompt Q̂ and key sub-prompt K̂ using Eq. (6) with WQ and WK ;
11 Generate R̂ through forward propagation of the next L

2 layers with dynamic MSA
module using Eq. (6) and dynamic FFN module using Eq. (7);

12 Calculate cross-entropy loss (CEL) betweenR and R̂;
13 Update parameters ΘHL ,W

Q,WK ,W,B and Θp;
14 until No redundant data;
15 end
16 return Fine-tuned modelMl(·; Θl),Mp(·; Θp);
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Table 12: Comparsion of parameter-efficient learning.

Methods VQA Datasets Benchmark Toolkits CMT Benchmark

VizWiz SQAI MMB SEED VQA SI
LoRa Hu et al. (2021b) 51.5 68.4 63.2 60.4 77.8 35.4

Adapter Houlsby et al. (2019) 51.0 67.8 63.6 61.3 76.6 35.0
HyperNetwork+Adapter Mahabadi et al. (2021) 45.1 53.8 51.3 49.3 68.0 28.3

Language Expert 51.6 71.0 65.5 61.0 79.0 36.9

Table 13: Comparison with LLaVA-1.6 variant and simple version of HyperLLaVA1.6.

Method Visual
QA

Visual
Captioning

Spatial
Inference

Detailed
Description

Visual
Storytelling

Knowledge
OCR

Text-Rich
Images QA

LLaVA1.6-8B† 81.5 22.7 35.3 34.8 20.7 49.6 32.3
HyperLLaVA1.6-8B† 83.1 23.3 37.5 35.2 22.9 50.6 33.1

Table 14: Detailed zero-shot performance on MME benchmark.
BLIP-2 InstructBLIP LA-V2 LLaVA MiniGPT-4 mPLUG-Owl Otter VPG-C LLaVA-1.5 HyperLLaVA

Existence 160.00 185.00 120.00 50.00 115.00 120.00 195.00 180.00 185.00 185.00
Count 135.00 143.33 50.00 50.00 123.33 88.33 50.00 96.67 155.00 165.00
Position 73.33 66.67 48.33 50.00 81.67 50.00 86.67 80.00 133.33 133.33
Color 148.33 153.33 75.00 55.00 110.00 55.00 113.33 116.67 170.00 180.00
Poster 141.84 123.81 99.66 50.00 55.78 136.05 138.78 147.28 160.54 159.18
Celebrity 105.59 101.18 86.18 48.82 65.29 100.29 172.65 164.12 152.94 168.53
Scene 145.25 153.00 148.50 50.00 95.75 135.50 158.75 156.00 161.25 161.25
Landmark 138.00 79.75 150.25 50.00 69.00 159.25 137.25 145.00 170.50 172.25
Artwork 136.50 134.25 69.75 49.00 55.75 96.25 129.00 113.50 117.75 127.50
OCR 110.00 72.50 125.00 50.00 95.00 65.00 72.50 100.00 125.00 140.00
Perception 1293.84 1212.82 972.67 502.82 866.57 967.34 1292.26 1299.24 1531.31 1592.05
Commonsense 110.00 129.29 81.43 57.14 72.14 78.57 106.43 98.57 127.86 133.57
Numerical 40.00 40.00 62.50 50.00 55.00 60.00 72.50 77.50 42.50 60.00
Text Translation 65.00 65.00 50.00 57.50 55.00 80.00 57.50 57.50 77.50 65.00
Code Reasoning 75.00 57.50 55.00 50.00 110.00 57.50 70.00 87.50 47.50 75.00
Cognition 290.00 291.79 248.93 214.64 292.14 276.07 306.43 321.07 295.36 333.57

Table 15: Experiments of the experts for MiniGPT-4.

Methods Meme Recipes Ads Poem Total

MiniGPT-4 8/25 18/25 19/25 20/25 65/100
MiniGPT-4+Expert 11/25 20/25 19/25 22/25 72/100

Table 16: Comparison of model parameter counts and training time.

Method Params Training Time
LLaVA-7B 7,062,902,784 ˜18 hours on 8 ×A800
HyperLLaVA-7B 7,192,424,080 (1.018 ×) ˜17.5 hours on 8 ×A800(˜0.972×)
LLaVA-13B 13,350,839,296 ˜18.5 hours on 16 ×A800
HyperLLaVA-13B 13,503,568,656 (1.011 ×) ˜18.5 hours on 16 ×A800(˜1×)
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Figure 6: Human evaluation on OwlEval benchmark Ye et al. (2023b).
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9 BROADER IMPACT AND LIMITATIONS

Broader Impact. The broader impact of HyperLLaVA, a general-purpose visual assistant, has
potential benefits and risks associated with its deployment and release. The proposed HyperLLaVA
serves as an upgrade version for LLaVA1.5, that enables dynamic projector learning and LLM tuning.
By adaptively tuning both projector and LLM parameters, and integrating dynamical visual and
language experts, we not only surpass the performance benchmarks set by LLaVA but also introduce
a Comprehensive Multimodal Tasks (CMT) benchmark.

Hallucination. Similar to LLMs, HyperLLaVA might generate outputs that aren’t grounded in facts
or input data. This raises concerns about inferences made, especially in critical applications (e.g.,
medical tasks).

Bias. Bias can be transferred from the base models to HyperLLaVA, both from the vision encoder
(CLIP) and the language decoder (LLaMA/Vicuna). This may lead to biased outcomes or unfair
representations of diverse content.
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Detailed Description

Instruction: Describe the image in detail.

The image captures a picturesque scene of a park with a large body of water, 
possibly a lake, surrounded by trees. The water is calm and reflects the 
surrounding greenery and the sky. The park is located in a city, as evidenced by 
the tall buildings visible in the background.

Instruction: Describe the image in detail.

The image depicts a cozy living room with a 
fireplace as the centerpiece. The fireplace is lit, 
creating a warm and inviting atmosphere. The 
room is adorned with various pieces of furniture, 
including a couch, a chair, and a dining table. 
There are several books scattered throughout 
the room, indicating a love for reading. A vase is 
placed on the dining table, adding a touch of 
elegance to the space. The room is decorated 
with a mix of colors, including red, yellow, and 
orange, which contribute to the overall vibrant.

Figure 7: Qualitative examples in detailed description task.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Visual QA

Context: Trade happens when people agree to exchange goods and
services. People give up something to get something else. Sometimes
people barter, or directly exchange one good or service for another.
Instruction: Greta and Allie open their lunch boxes in the school cafeteria.
Both of them could be happier with their lunches. Greta wanted broccoli in
her lunch and Allie was hoping for tomatoes. Look at the images of their
lunches. Then answer the question below.

What can Greta and Allie trade to each get what they want?
A. Greta can trade her tomatoes for Allie's sandwich.
B. Allie can trade her broccoli for Greta's oranges.
C. Allie can trade her almonds for Greta's tomatoes.
D. Greta can trade her tomatoes for Allie's broccoli."

D

Instruction: What can be seen in the
background of the image?

Options:
A: A beach B: A forest C: A street D: A
mountain.

C

Figure 8: Qualitative examples in Visual QA task.
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Knowledge OCR

Instruction: Who's comic is this?.

This is a comic book cover titled "Aftermath" 
by John Russell Fearn.

Instruction: what is the brand of the watch?

The brand of watch shown in the image is 
Ebel.

Figure 9: Qualitative examples in Knowledge OCR task.
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Visual Captioning

Instruction: Give a short caption.

A male model wearing a yellow and black 
inflatable technical shell, showcasing the 
intricate details of the outfit.

Instruction: Give a short caption.

Dark and eerie scenes 
capture the essence of 
nightmares, showcasing 
forest beasts in the mist.

Figure 10: Qualitative examples in Visual Captioning task.
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Visual Storytelling 

Instruction: With the narratives paired with the initial images, how would you 
conclude the story using the last picture?

Caption#1: a black bird flying back to its original spot to dig through the mud.
Caption#2: the black bird lands on the branches.
Caption#3:

The black bird flies off the branch.

Instruction: Taking the stories from the initial images into account, can you 
conclude the story using the elements of the final image?

Caption 1: the man in the white shirt begins clapping.
Caption 2: camera pans left to crowd.
Caption 3:

The camera pans to the right to show the audience.

Figure 11: Qualitative examples in Visual Storytelling task.
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Spatial Inference

Instruction: Please provide the bounding box 
coordinate of the region this sentence describes: 
The face mask is black.

[0.33, 0.1, 0.48, 0.22]

Instruction: Please provide the bounding box 
coordinate of the region this sentence 
describes: Black cat behind orange cat.

[0.34, 0.08, 0.65, 0.43]

Figure 12: Qualitative examples in Spatial Inference task.
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Text-Rich Images QA 

Instruction: For each group of pictures, there is a question. Please give a short 
answer to it. You must choose your answer from the Choice List. 

Question: Who is the AG buyer for purchase order G54391DB?

David.

Instruction: Based on the slides, please answer the following question. You must 
choose your answer from the Choice List.

Question: Which has a greater surface area, the country whose GNI per capita was 
higher than the USA in 2010 or Latvia

Latvia.

Figure 13: Qualitative examples in Text-Rich Images QA task.
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