
Talking Trees: Reasoning-Assisted Induction of
Decision Trees for Tabular Data

George Yakushev∗ 2,1 Alina Shutova∗ 2,1 Ivan Rubachev∗ 1,2

Renat Sergazinov∗ 1 Artem Babenko1,2

Abstract

Tabular foundation models are becoming increasingly popular for low-resource
tabular problems. These models make up for small training datasets by pretraining
on large volumes of synthetic data. The prior knowledge obtained via pretraining
provides the exceptional performance, but the resulting model becomes a black
box that is difficult to interpret and costly to inference. In this work, we explore
an alternative strategy: using reasoning-capable LLMs to induce decision trees for
small tabular datasets in agentic setup. We design a minimal set of tools for con-
structing, analyzing and manipulating decision trees. By using these tools, LLMs
combine their prior knowledge with learning from data to create a lightweight
decision tree that outperforms traditional CART on low-resource tabular problems.
While a single decision tree does not outperform state-of-the-art black box models,
it comes with a human-readable reasoning trace that can be checked for biases and
data leaks. Furthermore, the reasoning-based LLM’s creation process allows for ad-
ditional human input: correcting biases or incorporating domain-specific intuition
that is not captured in the data. While a single decision tree does not outperform
state-of-the-art black box models, it comes with a human-readable reasoning trace
that can be checked for biases and data leaks. Furthermore, the reasoning-based
LLM’s creation process allows for additional human input: correcting biases or
incorporating domain-specific intuition that is not captured in the data.

1 Introduction

Tabular tasks often come with problem-specific context, such as domain meta-knowledge, data
collection caveats, and application constraints such as fairness, safety, and regulatory requirements.
This additional information is not always captured in the dataset, especially when the data is limited.

A standard ML strategy for problems with limited data is transfer learning: pre-train a model on large
quantities of diverse relevant data, then adapt it through fine-tuning or in-context learning [1, 2, 3].
For tabular data, this strategy is implemented by the recent tabular foundational models, such as
TabPFN [4], which currently represent the state-of-the-art on many low/medium-size benchmarks
[5, 6]. By pretraining on large collections of synthetic or real tabular tasks, such models achieve strong
performance in few-shot and small-to-medium scale data regimes, outperforming decision-tree based
models, such as Random Forests [7] and GBDTs [8, 9]. However, in practice, tabular foundation
models are effectively black-box predictors, which are also costly in terms of the compute [10, 5].

In this work, we explore a more interpretable and lightweight alternative: instead of tabular foundation
models, we employ a strong agentic LLM to construct an explicit decision tree via chain-of-thought
reasoning and tool use. This gives our approach several important advantages over black-box methods.
First, the decision tree is fast and lightweight. Second, both the LLM reasoning and the tree can be

*Equal contribution. 1Yandex 2HSE University. Correspondence to: yakushev-ga@yandex-team.ru

AI for Tabular Data workshop at EurIPS 2025.



Table 1: Comparison. †Interpretability mainly at the feature level.
Method Family Uses Prior Steerable Interpretable Light Inference

Agentic Tree (ours) Agentic Tree ✓ ✓ ✓ ✓

OCTree (2024) FE Agent ✓ ✓ ✓† ✓

CAAFE (2023/24) FE Agent ✓ ✓ ✓† ✓

LLM-FE (2025) FE Agent ✓ ✓ ✓† ✓

LLMBoost (2025) Booster ✓ ✗ ✗ ✗
TabLLM (2022) Direct LLM ✓ ✗ ✗ ✗
Tabula-8B (2024) Direct LLM ✓ ✗ ✗ ✗
TabPFN (2022→) Foundational ICL ✓ ✗ ✗ ✓
TabICL / LIMIX (var.) Foundational ICL ✓ ✗ ✗ ✗

manually or automatically checked for biases or leaks [11, 12]. Further, the users can specify any
additional problem-specific knowledge that is not captured in the training data through prompting. In
our tests on a set of real-world data, we observe our LLM-constructed models outperform CART
decision tree induction. Though individual agentic trees still do not outperform state-of-the-art
black-box methods, they provide a competitive baseline which is also steerable, interpretable and fast.

2 Related Works

Recent tabular work splits into three lines. Agentic LLMs for feature engineering (OCTree [13],
CAAFE [14], LLM-FE [15]) use language-model priors plus validation feedback to discover useful
transformations; they often pair with a conventional downstream learner, improving accuracy but
leaving the predictor itself opaque. LLMs as prediction machines (TabLLM [16], Tabula-8B [17],
LLMBoost [18]) bypass feature learning and produce predictions directly (or ensemble them), yielding
strong small-N performance but high inference cost and limited auditability. Foundational/ICL priors
for tabular (TabPFN family [4]; TabICL [19], LIMIX [6] approaches) pretrain on vast synthetic
tasks and adapt in-context, offering excellent data efficiency but remaining black-box. Our approach
occupies a complementary point: an agentic LLM that induces a symbolic predictor—a decision
tree—combining small-data performance gains over CART with interpretability, auditability, and
steerability that others largely lack.

3 Agentic Tree Induction

We reformulate the process of learning a decision tree as an agentic task [20, 21], giving the LLM
tools to expand, analyze and manipulate the decision tree. This way, the LLM agent does not generate
the entire tree in one go, but gradually refines it in small increments. We hypothesize that this
incremental process will allow LLMs to better harness their capacity for chain-of-thought reasoning
by testing their hypotheses against data and correcting their own errors.

To enable this type of agentic tree construction, we design a set of tools for analyzing and modifying
the tree. These tools are organized as a single-file1 Python library designed around the Tree class,
which can be created directly or converted from scikit-learn trees [25]. We implement the agent
using smolagents.CodeAgent [26], limiting execution to 20 steps. The model receives train and
validation data, but not the test set. We provide detailed setup description in Appenidx A.

Safety and human input. LLM agents raise safety concerns regarding potential misuse [27]. In high-
stakes settings, the tree-constructing agent can be fully air-gapped [28, 29], and reasoning traces can
be inspected to catch issues such as data leaks or undesirable biases [11]. Conversely, using general-
purpose LLM agents enables incorporating informal domain knowledge through prompts—from
explaining physical models to adjusting for known data biases. Section 4.2 explores two such use
cases.

4 Experiments

To recap, our main motivation for agentic decision tree learning is not to compete with state-of-the-art
black-box models, but to attain a lightweight, interpretable and flexible learner that can take into

1See editable_tree.py at https://github.com/yandex-research/TalkingTrees

2

https://github.com/yandex-research/TalkingTrees


account additional inputs. To that end, we organize this section as follows: we evaluate LLM-
constructed trees in section 4.1 and highlight how additional instructions can be incorporated in
Section 4.2. In addition, we also vary the LLM backbone in Appendix C, perform tool ablation in
Appendix D, and analyze LLM reasoning traces in Appenidx E.

4.1 Primary Evaluation

Table 2: Evaluating agent-constructed decision trees and advanced tabular methods on low-resource
tabular datasets. The datasets are split into three groups by task type. Gray values are adjusted
standard deviations over 5 splits (TabArena v0.1).

Method
Dataset Fitn

ess

M
ark

eti
ng

Cred
itG

Diab
ete

s

Cus
tom

er

QSARbio

Haz
eln

ut

Bloo
d

Ann
ea

l

M
ate

rna
l

Phis
hin

g

M
IC

Airf
oil

SN

Used
Fiat

50
0

Con
cre

te

Ins
ura

nc
e

QSARfish

Classification: Binary (ROC AUC↑) Multiclass (LogLoss↓) Regression (RMSE↓)

CART (default) 0.615
±0.015

0.672
±0.021

0.615
±0.029

0.676
±0.038

0.549
±0.017

0.781
±0.017

0.818
±0.017

0.554
±0.041

0.529
±0.277

5.44
±1.29

3.82
±0.42

6.89
±0.54

2.957
±0.098

1003.1
±14.85

7.67
±0.30

6380.9
±427.3

1.299
±0.034

CART (tuned) 0.800
±0.021

0.799
±0.026

0.700
±0.033

0.779
±0.026

0.698
±0.011

0.852
±0.025

0.895
±0.014

0.698
±0.028

0.321
±0.067

0.849
±0.141

0.674
±0.197

0.538
±0.025

2.988
±0.134

789.8
±31.59

7.65
±0.37

4494.3
±167.3

1.043
±0.047

Ours (single tree) 0.818
±0.017

0.820
±0.032

0.717
±0.011

0.799
±0.029

0.717
±0.018

0.854
±0.018

0.904
±0.013

0.716
±0.011

0.138
±0.108

0.739
±0.149

0.476
±0.202

0.467
±0.024

2.956
±0.180

790.9
±41.45

7.28
±0.34

4439.8
±159.1

1.018
±0.041

XGBoost (TabArena) 0.814
±0.016

0.907
±0.017

0.788
±0.011

0.839
±0.016

0.738
±0.017

0.934
±0.018

0.975
±0.005

0.719
±0.035

0.023
±0.017

0.423
±0.041

0.255
±0.016

0.446
±0.019

1.406
±0.091

745.1
±23.63

4.17
±0.08

4580.4
±517.7

0.870
±0.052

TabM (TabArena) 0.822
±0.013

0.917
±0.013

0.792
±0.021

0.838
±0.015

0.738
±0.010

0.935
±0.019

0.982
±0.005

0.723
±0.032

0.020
±0.015

0.450
±0.044

0.240
±0.033

0.438
±0.015

1.114
±0.093

753.6
±22.5

4.25
±0.35

4585.6
±472.2

0.886
±0.037

TabPFN v2 (TabArena) 0.824
±0.012

0.919
±0.016

0.761
±0.014

0.846
±0.007

0.738
±0.013

0.934
±0.019

0.988
±0.003

0.742
±0.033

0.021
±0.010

0.413
±0.043

0.223
±0.025

0.445
±0.025

1.045
±0.073

736.1
±31.7

4.00
±0.06

4717.3
±553.0

0.854
±0.063

TabPFN v2 + Ours 0.828
±0.017

0.917
±0.020

0.792
±0.013

0.843
±0.022

0.738
±0.015

0.937
±0.011

0.990
±0.003

0.740
±0.023

0.014
±0.004

0.426
±0.055

0.218
±0.028

0.445
±0.023

1.029
±0.092

722.8
±21.9

4.03
±0.07

4620.0
±596.9

0.849
±0.058

First, we evaluate on a range of low-resource tabular problems. Similarly to previous work [4], we
select tabular classification and regression problems from the OpenML platform [30, 31]. Namely,
we select all 17 supervised datasets from the tabarena-v0.1 [10] benchmark that contain no more
than 2500 samples. This includes 8 binary classification, 4 multiclass classification and 5 regression
datasets. Following the benchmark, we report ROC AUC for binary classification, LogLoss for
multiclass, and RMSE for regression problems. We provide full dataset names and identifiers in
Appendix B.

We summarize our findings in Table 2 (top panel). Overall, the LLM-made decision trees surpass
CART decision trees (default and tuned) in all but one dataset. We also report a number of advanced
(but not interpretable) baseline methods, including XGBoost [9] (tuned GBDT), TabM [32] (advanced
NN ensemble) and TabPFN v2 [4, 33] (tabular foundation model) to better illustrate the gap between
simple interpretable models and state-of-the-art. In addition, we also evaluate agentic decision trees
on top of TabPFN v2. In this setting, the LLM agent is tasked to learn the residual of TabPFN v2. The
results in Table 2 (bottom panel) show that black-box methods still outperform individual decision
trees on most problems, but the agentic tree learning can significantly reduce that gap. Additionally,
using agentic decision trees to correct TabPFN predictions leads to somewhat better performance in
most cases. While this two-staged pipeline is not interpretable (due to TabPFN), it can be useful for
tasks where the agentic decision tree can correct biases or incorporate additional inputs.

4.2 Additional Human Inputs

One of the unique advantages of LLM-based tree construction is that the task can be defined informally,
through the prompt. This allows the user to specify additional requirements that can be difficult or
impossible to formalize for traditional decision trees and even for more advanced tabular methods.

In this section, we consider two such scenarios: i) fairness: correcting the bias in the data and ii)
informal feature definition, where the system was just given access to a new feature that is not yet
present in historical data, but there is an informal description of how it affects the task.

4.2.1 Fairness

Fairness has become an important concern in machine learning, as predictive models are increasingly
deployed in socially sensitive domains [34, 35, 36]. The research community proposed several criteria
of fairness, such as group-based and individual statistical parity [34, 37], and practical algorithms
for incorporating fairness constraints into classifiers [38, 39]. We only conduct initial exploration of
this problem, evaluating how LLM agents control for fairness when building their decision tree if we
prompt them to do so, without any explicit algorithmic modifications.

3



Ours: with
fairness
prompt

Ours: no
fairness
prompt

CART
sklearn

0.6

0.7

0.8

0.9

1.0

M
et

ri
c

ROC AUC

Ours: with
fairness
prompt

Ours: no
fairness
prompt

CART
sklearn

−0.2

−0.1

0.0

Statistical Parity

Ours: with
fairness
prompt

Ours: no
fairness
prompt

CART
sklearn

−0.2

−0.1

0.0

Equal Opportunity

Ours:
feature
in data

Ours:
feature

in prompt

Ours:
no feature

CART
sklearn

0.6

0.7

0.8

0.9

1.0
ROC AUC

Fairness on Adult dataset Lost Feature on Diabetes Dataset

a) b)

Figure 1: a) Fairness evaluation on the Adult dataset across three setups: LLM-built trees with
and without the fairness prompt and the sklearn baseline. b) Training with experiment on the
Diabetes dataset: performance of trees trained with and without access to the «Glucose» feature.
Both experiments use GPT-5 backbone the setup from Section 4.1.

We evaluate fairness on the Adult binary classification dataset [40] known to contain gender-based
bias2. We report two widely used fairness metrics: Statistical Parity [34] and Equal Opportunity [42].
If Y ∈{0, 1} is the classification target, Ŷ is the model prediction, and A ∈ {a, b} is the protected
attribute (gender), then the Statistical Parity Difference (SPD) is: P (Ŷ = 1 | A = a)− P (Ŷ = 1 |
A = b). In turn, the Equal Opportunity Difference (EOD) is: P (Ŷ = 1 | A = a, Y = 1)− P (Ŷ =
1 | A = b, Y = 1). A perfectly fair model would yield SPD = EOD = 0.

We compare three configurations: (1) Ours: with fairness prompt – LLM-built tree with prompt
requesting gender-neutrality (Appendix F); (2) Ours: no fairness prompt – LLM-built tree without
fairness instructions (Section 4.1); (3) CART sklearn – scikit-learn decision tree with same
tuning protocol. We report our results in Figure 1 (a). To summarize, an informal request to adjust
for gender bias results in significantly reduced SPD and EOD. As expected, the bias-adjusted tree
also has somewhat lower AUC, but still outperforms a sklearn based tree.

4.2.2 Informal Feature Description

We consider a setup where a model has access to an additional feature during deployment but
not in training data. This can occur, for example, when: (1) newly introduced medical tests lack
historic patient data for model training, or (2) legal requirements prevent storing sensitive customer
information that can be used during interaction.

In such cases, important features are missing from training data, but informal domain knowledge
exists about their utility. We feed this knowledge in the LLM agent’s prompt and evaluate the final
tree on a dataset with the extra feature. We use the Diabetes dataset, hiding Glucose from training
data.

We compare four setups: (1) Ours: feature in data – LLM-built tree with feature in training data;
(2) Ours: feature in prompt – LLM-built tree without the feature but with a prompt (Appendix
F) describing its absence and relevance; (3) Ours: no feature – without feature in prompt or
data; (4) CART sklearn – decision tree without the feature. Figure 1 (b) shows both Feature in
prompt and Feature in data achieve similar performance, clearly outperforming trees without the
feature. Small datasets combined with LLM priors enable effective compensation for missing features,
demonstrating potential for incorporating human input or model priors in such settings.

5 Conclusion and Discussion

In this working paper, we have shown that LLM agents can construct and improve decision trees
without specialized training. Our results show that the LLM-guided decision trees can effectively
combine different sources of knowledge: the tabular data itself, feature description and informal
domain knowledge. While individual LLM-induced trees do not outperform black-box foundation
models, they offer a lightweight and interpretable alternative and can incorporate additional task-
specific demands.

2Adult also has known limitations [41] that can be important for dedicated fairness studies, but it is sufficient
for our simple analysis. See Appendix B for more details.

4



References
[1] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,

Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PmLR, 2021.

[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In North American Chapter of the
Association for Computational Linguistics (NAACL), 2019.

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In Conference on Neural Information Processing Systems (NeurIPS), 2020.

[4] Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. Tabpfn: A
transformer that solves small tabular classification problems in a second. arXiv preprint
arXiv:2207.01848, 2022.

[5] Ivan Rubachev, Akim Kotelnikov, Nikolay Kartashev, and Artem Babenko. On finetuning
tabular foundation models. arXiv preprint arXiv:2506.08982, 2025.

[6] Xingxuan Zhang, Gang Ren, Han Yu, Hao Yuan, Hui Wang, Jiansheng Li, Jiayun Wu, Lang
Mo, Li Mao, Mingchao Hao, et al. Limix: Unleashing structured-data modeling capability for
generalist intelligence. arXiv preprint arXiv:2509.03505, 2025.

[7] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[8] Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. The
Annals of Statistics, 29(5):1189–1232, 2001.

[9] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of
the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages
785–794, 2016.

[10] Nick Erickson, Lennart Purucker, Andrej Tschalzev, David Holzmüller, Prateek Mutalik Desai,
David Salinas, and Frank Hutter. Tabarena: A living benchmark for machine learning on tabular
data. arXiv preprint arXiv:2506.16791, 2025.

[11] Tomek Korbak, Mikita Balesni, Elizabeth Barnes, Yoshua Bengio, Joe Benton, Joseph Bloom,
Mark Chen, Alan Cooney, Allan Dafoe, Anca Dragan, Scott Emmons, Owain Evans, David
Farhi, Ryan Greenblatt, Dan Hendrycks, Marius Hobbhahn, Evan Hubinger, Geoffrey Irving,
Erik Jenner, Daniel Kokotajlo, Victoria Krakovna, Shane Legg, David Lindner, David Luan,
Aleksander Mądry, Julian Michael, Neel Nanda, Dave Orr, Jakub Pachocki, Ethan Perez, Mary
Phuong, Fabien Roger, Joshua Saxe, Buck Shlegeris, Martín Soto, Eric Steinberger, Jasmine
Wang, and Wojciech Zaremba. Chain of thought monitorability: A new and fragile opportunity
for ai safety. arXiv preprint arXiv:2507.11473, 2025.

[12] Benjamin Arnav, Pablo Bernabeu Perez, Nathan Helm-Burger, Tim Kostolansky, Hannes
Whittingham, and Mary Phuong. Cot red-handed: Stress testing chain-of-thought monitoring.
ArXiv, abs/2505.23575, 2025.

[13] Jaehyun Nam, Kyuyoung Kim, Seunghyuk Oh, Jihoon Tack, Jaehyung Kim, and Jinwoo Shin.
Optimized feature generation for tabular data via llms with decision tree reasoning. Advances
in Neural Information Processing Systems, 37:92352–92380, 2024.

[14] Noah Hollmann, Fabian Müller, and Frank Hutter. Context-aware automated feature engineering
(caafe). arXiv preprint, (2305.03403), 2023.

[15] Nikhil Abhyankar, Parshin Shojaee, and Chandan K Reddy. Llm-fe: Automated feature engi-
neering for tabular data with llms as evolutionary optimizers. arXiv preprint arXiv:2503.14434,
2025.

5



[16] Stefan Hegselmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi Jiang, and
David Sontag. Tabllm: Few-shot classification of tabular data with large language models.
In International conference on artificial intelligence and statistics, pages 5549–5581. PMLR,
2023.

[17] Josh Gardner, Juan C Perdomo, and Ludwig Schmidt. Large scale transfer learning for tabular
data via language modeling. Advances in Neural Information Processing Systems, 37:45155–
45205, 2024.

[18] Mayuka Jayawardhana, Samuel Dooley, Valeriia Cherepanova, Andrew Gordon Wilson, Frank
Hutter, Colin White, Tom Goldstein, Micah Goldblum, et al. Transformers boost the perfor-
mance of decision trees on tabular data across sample sizes. arXiv preprint arXiv:2502.02672,
2025.

[19] QU Jingang, David Holzmüller, Gaël Varoquaux, and Marine Le Morvan. Tabicl: A tabular
foundation model for in-context learning on large data. In Forty-second International Conference
on Machine Learning.

[20] Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
themselves to use tools. ArXiv, abs/2302.04761, 2023.

[21] Yujia Qin, Shi Liang, Yining Ye, Kunlun Zhu, Lan Yan, Ya-Ting Lu, Yankai Lin, Xin Cong,
Xiangru Tang, Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie, Jie Zhou, Marc H. Gerstein,
Dahai Li, Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language models to
master 16000+ real-world apis. ArXiv, abs/2307.16789, 2023.

[22] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824–24837, 2022.

[23] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. ArXiv, abs/2205.11916, 2022.

[24] Zhuosheng Zhang, Aston Zhang, Mu Li, and Alexander J. Smola. Automatic chain of thought
prompting in large language models. ArXiv, abs/2210.03493, 2022.

[25] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[26] Aymeric Roucher, Albert Villanova del Moral, Thomas Wolf, Leandro von Werra, and Erik
Kaunismäki. ‘smolagents‘: a smol library to build great agentic systems. https://github.
com/huggingface/smolagents, 2025.

[27] Feng He, Tianqing Zhu, Dayong Ye, Bo Liu, Wanlei Zhou, and Philip S. Yu. The emerged
security and privacy of llm agent: A survey with case studies. arXiv preprint arXiv:2407.19354,
2024.

[28] Yangjun Ruan, Honghua Dong, Andrew Wang, Silviu Pitis, Yongchao Zhou, Jimmy Ba, Yann
Dubois, Chris J. Maddison, and Tatsunori Hashimoto. Identifying the risks of lm agents with an
lm-emulated sandbox. arXiv preprint arXiv:2309.15817, 2023.

[29] Eugene Bagdasarian, Ren Yi, Sahra Ghalebikesabi, Peter Kairouz, Marco Gruteser, Sewoong
Oh, Borja Balle, and Daniel Ramage. Airgapagent: Protecting privacy-conscious conversational
agents. arXiv preprint arXiv:2405.05175, 2024.

[30] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. Openml: Networked
science in machine learning. SIGKDD Explorations, 15:49–60, 2013.

[31] Matthias Feurer, Jan N. van Rijn, Arlind Kadra, Pieter Gijsbers, Neeratyoy Mallik, Sahithya
Ravi, Andreas Müller, Joaquin Vanschoren, and Frank Hutter. Openml-python: an extensible
python api for openml. Journal of Machine Learning Research, 22(100):1–5, 2021.

6

https://github.com/huggingface/smolagents
https://github.com/huggingface/smolagents


[32] Yury Gorishniy, Akim Kotelnikov, and Artem Babenko. Tabm: Advancing tabular deep learning
with parameter-efficient ensembling. In Proceedings of the 2025 International Conference on
Learning Representations (ICLR 2025), 2025. arXiv:2410.24210 [cs.LG], version v3.

[33] Shi Bin Hoo, Samuel Müller, David Salinas, and Frank Hutter. The tabular foundation model
tabpfn outperforms specialized time series forecasting models based on simple features. arXiv
preprint arXiv:2501.02945, 2025.

[34] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness
through awareness. In Proceedings of the 3rd Innovations in Theoretical Computer Science
Conference (ITCS), pages 214–226, 2012.

[35] Alexandra Chouldechova and Aaron Roth. The frontiers of fairness in machine learning. arXiv
preprint arXiv:1810.08810, 2018.

[36] Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and Machine Learning: Limita-
tions and Opportunities. MIT Press, 2023.

[37] Shira Mitchell, Eric Potash, Solon Barocas, Alexander D’Amour, and Kristian Lum. Prediction-
based decisions and fairness: A catalogue of choices, assumptions, and definitions. arXiv
preprint arXiv:1811.07867, 2018.

[38] Alekh Agarwal, Alina Beygelzimer, Miroslav Dudík, John Langford, and Hanna Wallach. A
reductions approach to fair classification. In Proceedings of the 35th International Conference
on Machine Learning (ICML), volume 80, pages 60–69, 2018.

[39] Sorelle A. Friedler, Carlos Scheidegger, Suresh Venkatasubramanian, Sonam Choudhary, Evan P.
Hamilton, and Derek Roth. A comparative study of fairness-enhancing interventions in machine
learning. arXiv preprint arXiv:1802.04422, 2018.

[40] Ron Kohavi and Barry Becker. Uci adult data set. UCI Machine Learning Repository, 1996.
https://archive.ics.uci.edu/ml/datasets/adult.

[41] Frances Ding, Moritz Hardt, John Miller, and Ludwig Schmidt. Retiring adult: New datasets
for fair machine learning. In NeurIPS Datasets and Benchmarks Track, 2021.

[42] Moritz Hardt, Eric Price, Eric Price, and Nati Srebro. Equality of opportunity in supervised
learning. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 29. Curran Associates, Inc., 2016.

[43] Python Core Team. Python: A dynamic, open source programming language. Python Software
Foundation, 2019.

[44] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen,
David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern,
Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fer-
nández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler
Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array
programming with NumPy. Nature, 585(7825):357–362, September 2020.

[45] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J.
van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew
R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C. J. Carey, İlhan Polat, Yu Feng, Eric W.
Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A.
Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul
van Mulbregt, and the SciPy 1.0 Contributors. Scipy 1.0: Fundamental algorithms for scientific
computing in python. Nature Methods, 17(3):261–272, 2020.

[46] The pandas development team. pandas-dev/pandas: Pandas, February 2020.

[47] Miles Turpin, Julian Michael, Ethan Perez, and Samuel R. Bowman. Language models don’t
always say what they think: Unfaithful explanations in chain-of-thought prompting. arXiv
preprint arXiv:2305.04388, 2023.

7



[48] Barry Becker and Ron Kohavi. Adult [dataset]. UCI Machine Learning Repository, 1996.
https://archive.ics.uci.edu/ml/datasets/adult.

8

https://archive.ics.uci.edu/ml/datasets/adult


A Additional Method Details

The overall schematic illustration of the proposed agentic tree induction methods is illustrated in
Figure 2. Below we provide more detail regarding actual implementation. For full reproducibility we
also make the relevant code available.

Thought
-I hypothesize an explicit root split on x_1 will be

more stable and interpretable.
-The per-leaf diagnostics show a few
leaves with large val underprediction.

Observation
CURRENT BEST FINAL: 
Train RMSE=4061.137  

Val RMSE=5731.059

Prune
subtree

Select data
by tree node

Graft
subtree

View tree

Train
subtree from

data

Tree Editing Framework

Action
Python code with any functions from 

Tree Editing Framework / 
Sklearn / Scipy.

Figure 2: The informal summary of our approach. We prompt an LLM agent to construct a decision
tree in a thought-action-observation cycle (left). During the action phase, the agent can use a tree
editing framework (right) with tools for analyzing and modifying trees. The agent can combine these
tools in Python and print arbitrary diagnostics for the observation phase.

We reformulate the process of learning a decision tree as an agentic task [20, 21], giving the LLM
tools to expand, analyze and manipulate the decision tree. This way, the LLM agent does not generate
the entire tree in one go, but gradually refines it in small increments. We hypothesize that this
incremental process will allow LLMs to better harness their capacity for chain-of-thought reasoning
by testing their hypotheses against data and correcting their own errors.

To enable this type of agentic tree construction, we design a set of tools for analyzing and modifying
the tree. These tools are organized as a single-file3 Python library designed around the Tree class.
The tree can be created as follows:

Tree("feat1<=0.5", # if feat1 <= 0.5:
le=3.5, # return 3.5
gt=Tree("feat2<=9", # elif feat2 <= 9:

le=-2, # return -2
gt=+2)) # else: return 2

or converted from a scikit-learn tree4 [25].

We give the LLM agent access to the following tools for analyzing and modifying the tree:
1. View tree: print(tree) displays the tree or chosen subtree structure as text. The printed

tree includes node IDs that can be used via tree.find_node(id).
2. Prune subtree: converts a tree node into a leaf. This can be done manually, e.g.

tree.gt.prune(), or by node ID tree.find_node(id).prune().
3. Select data: run the tree on dataset X, select samples that pass through a given node ID:

tree.get_data_indices_for_node(id, X)
4. Graft subtree: replace the specified node (by ID) in the current tree with the new (manual

or learned) subtree: tree.replace_subtree(id, new_subtree)
These tools were designed to be composable, allowing the agent to implement more complex tree
manipulations:

sktree = DecisionTreeRegressor(max_depth=6)
sktree.fit(X_train, y_train)
tree = Tree.from_sklearn(sktree)

3See editable_tree.py in the supplemetnary code. The library was “vibe-coded” with GPT-5 via chatgpt.
com.

4sklearn stores trees as hard-to-edit packed data structures.

9

chatgpt.com
chatgpt.com


print(tree) # observe node IDs
tree.find_node(42).prune()
# manual tree editing
node = tree.find_node(43)
node.feature = "sepal_length"
node.threshold = 6.5
node.gt = Tree("width<=5", le=-3, gt=+3)
node.le = Tree(value=0) # leaf
# semi-automated manipulation
ix = tree.get_data_indices_for_node(

id=44, X=X_train
)
features = my_features(X_train.iloc[ix])
subtree = DecisionTreeRegressor(max_depth=2))
subtree.fit(

X=X_train.iloc[ix][features],
y=y_train[ix]

)
tree.replace_subtree(

44, Tree.from_sklearn(new_subtree)
)

Our framework also implements several smaller utility tools, such as accessing the node properties
(feature, threshold), re-indexing node IDs after edits and refitting tree leaves from data, and common
aliases, all included in the supplementary code. In addition to these tools, the python-based LLM
agent has access to NumPy [44], SciPy [45], pandas [46], scikit-learn [25] and common python
builtins such as math. We found that LLMs often define their own auxiliary functions depending on
the task, such as selecting “promising” leaves for expansion or fitting a subtree without outliers.

The LLM agent starts with a system prompt5 that explains the thought-action-observation cycle and
describes the available tools. The system prompt also describes the agent’s overall task (i.e. construct
and iteratively improve a decision tree with data) and specifies the desired output format.

When building a tree for a tabular dataset, the agent receives the training and validation subsets, but it
has no access to the test data. Additionally, we provide the LLM with a short description of the input
features and the objective.

We implement the agent using smolagents.CodeAgent [26], with a custom environment and system
prompt. We inject the data into the agent’s environment as pre-defined variables (e.g. X_train)
and expect it to return the final decision Tree. Aside from that, we use the default smolagents
hyperparameters up to 20 thought-code-observation cycles. The entire process takes around 3-10
minutes and ≤0.3$ API costs per tree even for state-of-the-art LLMs (e.g. GPT-5) and can be
parallelized for ensembling. In theory, an agent can fail to return the tree in the correct format, but
we found that modern LLMs almost always produce valid decision trees, albeit of varying quality
(see Section D).

Safety matters. More importantly, the LLM agents can potentially misuse this free-form communi-
cation to malicious ends, which raises important safety concerns [27]. In high-stakes settings, the
tree-constructing agent can6 be fully air-gapped [28, 29]. More specifically, the system’s Python
environment can run in an isolated container with no network. In addition, the output Tree needs
to be protected from potential malware injection. This can be achieved by serializing the tree in a
format that does not allow arbitrary code execution, e.g. only supporting the tree structure and limited
mathematical expressions for feature engineering. With a trusted (or local) LLM inference provider,
such air-gapped system ensures that the agent does not leak the data and does not inject malicious
code into the final model.

Another partial remedy to combat problematic behavior in LLM is to inspect the reasoning traces pro-
duced by the model during tree construction and refinement [11]. This kind of manual inspection can
catch issues such as data leaks exploitation, undesirable biases, or specification gaming for the target
metric. However, it must be noted that the lack of such problematic behaviors in model “thoughts” is
not a strong guarantee as LLMs do not always articulate their biases during reasoning [47].

5The full system prompt is included in the supplementary code.
6Note that our implementation is not fully air-gapped by default, but it can be done using existing smolagents

components.

10



Additional human input. Using general-purpose LLM agents comes with safety concerns, but it
also introduces an important new capability: harnessing informal domain knowledge (as prompt) in
addition to the training data. This covers a broad range of use cases from explaining the underlying
physical model for engineering problems to sharing intuition or adjusting for known problems in the
data. In Section 4.2, we explore two such use cases: correcting for a known bias and using a new
feature (e.g. new test for medical diagnosis) not available in historical training data.

B Evaluation Dataset Information

The main evaluation uses the following datasets (with OpenML task IDs).

• Fitness - Fitness_Club (ID 363671), 1500 samples

• Marketing - Marketing_Campaign (ID 363684), 2240 samples

• CreditG - credit-g (ID 363626), 1000 samples

• Diabetes - diabetes (ID 363629), 768 samples

• Customer - Is-this-a-good-customer (ID 363682), 1723 samples

• QSARbio - qsar-biodeg (ID 363696), 1054 samples

• Hazelnut - hazelnut-spread-contaminant-detection (ID 363674), 2400 samples

• Blood - blood-transfusion-service-center (ID 363621), 748 samples

• Anneal - anneal (ID 363614), 898 samples

• Maternal - maternal_health_risk (ID 363685), 1014 samples

• Phishing - website_phishing (ID 363707), 1353 samples

• MIC - MIC (ID 363711), 1699 samples

• AirfoilSN - airfoil_self_noise (ID 363612), 1503 samples

• UsedFiat500 - Another-Dataset-on-used-Fiat-500 (ID 363615), 1538 samples

• Concrete - concrete_compressive_strength (ID 363625), 1030 samples

• Insurance - healthcare_insurance_expenses (ID 363675), 1338 samples

• QSARfish - QSAR_fish_toxicity (ID 363698), 907 samples

B.1 Human Input

Additionally, we use the Adult dataset [48] for the fairness experiments, as it is the standard
benchmark for evaluating group fairness with respect to gender, and the Diabetes dataset for the
missing feature experiments, since it contains the clinically important Glucose variable that we
deliberately removed from train split in relevant setups.

We chose the Adult dataset despite its known limitations [41] such as class imbalance, demographic
biases, and potential label noise, because it is a widely used benchmark in fairness research. Its
prevalence enables direct comparison of our fairness metrics with prior work, and its protected
attribute structure (e.g., gender) is well suited for controlled experiments on fairness.

C LLM Backbone Ablation

Next, we take a subset of datasets from the previous section to perform a more detailed comparison
of different backbone LLMs. For clarity, we only vary the base LLM used within our agent while
keeping the agentic framework, toolset, and prompts fixed7. We evaluate two closed-source models
(GPT-5, Gemini 2.5 Pro) and three open-source models (GLM-4.5, Kimi K2 Instruct, DeepSeek
R1-0528). For each dataset, we run five random seeds and report the mean and the adjusted standard
deviation in Table 3.

7Concretely, only the reasoning model is swapped, while the following remain invariant across conditions:
identical system and user prompts, the same minimal tree-manipulation tools (split proposal, split scoring, node
expansion, pruning, and cross-validated evaluation), search budgets, and the same evaluation protocol.

11



Table 3: Comparison of base LLM models on
selected datasets with the same evaluation setup
as in Section 4.1.

Method
Dataset Fitn

ess

Ann
ea

l

Airf
oil

SN

AUC↑ LogL↓ RMSE↓

GPT-5 0.818
±0.017

0.138
±0.108

2.956
±0.180

Gemini-2.5-pro 0.800
±0.011

0.624
±0.552

4.004
±0.168

GLM 4.5 0.799
±0.015

0.224
±0.113

3.620
±0.394

Kimi K2 Instruct 0.808
±0.014

0.161
±0.056

3.764
±0.505

DeepSeek R1 0528 0.797
±0.011

0.410
±0.32

3.874
±0.733

Table 4: Additional evaluations of agent-
constructed tabular models on low-resource tab-
ular datasets with different tools and environ-
ment restrictions.

Method
Dataset Fitn

ess

Ann
ea

l

Airf
oil

SN

AUC↑ LogL↓ RMSE↓

Main method 0.818
±0.017

0.138
±0.108

2.956
±0.180

Unlimited (not tree-only) 0.807
±0.006

0.060
±0.056

1.621
±0.094

Agent-sklearn trees 0.795
±0.014

0.257
±0.230

2.943
±0.705

Main w/o description 0.813
±0.011

0.125
±0.043

3.508
±0.438

On more challenging or low-signal tasks (Anneal and AirfoilSN), we observe the greatest variability,
with GPT-5 achieving up to 30%–40% higher performance. Prior results from [10] and Table 2
confirm that these datasets exhibit sharp performance jumps across baseline families: from shallow
learners such as KNN and linear models (Anneal: logloss ≈ 0.5, AirfoilSN: RMSE ≈ 3), to default
gradient-boosted models (Anneal: logloss ≈ 0.02, AirfoilSN: RMSE ≈ 1.4), to state-of-the-art
neural models (Anneal: logloss ≈ 0.01, AirfoilSN: RMSE ≈ 1.07). On the relatively easier Fitness
dataset,the tool-augmented procedure appears to saturate performance, with model choice contributing
marginally compared to the variance between train/test splits. This is unsurprising: even tuned KNN
and linear models establish a stronger baseline on this task [10].

D Tool Ablation Analysis

In this section, we investigate the impact of the agent’s operational boundaries and input information
on final performance. We conduct three experiments: first, we grant the LLM unrestricted access
to the entire scikit-learn library, challenging it to construct advanced model ensembles not limited
to decision trees. Second, we replicate the tree-building experiments from Table 2 but using only
scikit-learn frameworks, i.e. without the tree editing framework from Section 3. Finally, we evaluate
the importance of supplementary dataset metadata provided to the LLM.

We summarize our results in Table 4. Unsurprisingly, the unrestricted LLM agent can outperform
individual trees on harder datasets (Anneal, AirfoilSN) by using ensembles. However, it still fails
to compete with advanced black-box methods in Table 2. In turn, the single tree agent without our
editing tools consistently underperforms across 3 datasets, exhibiting very high standard deviation
on AirfoilSN and Anneal tasks. In other terms, the agent utilizing our Tree Editing Framework
demonstrably yields more stable and reliable outcomes. Finally, the impact of dataset metadata
(description and feature names) varies between tasks. We found that giving the LLM access to
informal description significantly improves some datasets (AirfoilSN), but has much smaller effect
on others. More specifically, it slightly improves model on Fitness but worsens it on Anneal.

E Agent Analysis

In this section, we analyze the tree construction process in more detail to better understand current
agent behavior and inform potential future improvements. We analyze the code generated on during
each “action” phase, grouping function calls into categories.We categorize the agent’s actions into
the following five groups by their operational target (the model vs. the data) and their purpose
(modification vs. analysis): 1) tree modification for training or altering the model; 2) tree analysis
for model introspection; 3) data analysis for dataset-level exploration; 4) data modification for data
cleaning, feature engineering & similar; and 5) builtins for supporting functions.

We illustrate our findings in Figure 3. The distribution reveals two broad regularities: 1) exploratory
analysis and feature engineering together account for roughly half of all calls, and 2) generic
helper/builtins contribute a comparable share, while direct tree edits (grafting/pruning/growing)

12



0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

fu
nc

tio
n

ca
lls

AirfoilSNDee
pS

ee
k R1

Gem
ini

2.5

GLM
4.5

GPT-5

Kim
i K

2

AnnealDee
pS

ee
k R1

Gem
ini

2.5

GLM
4.5

GPT-5

Kim
i K

2

FitnessDee
pS

ee
k R1

Gem
ini

2.5

GLM
4.5

GPT-5

Kim
i K

2

Function category composition per run

Category: Builtins Data Analysis Data Modification Tree Analysis Tree Modification

Figure 3: Tool call distribution across LLM backbones and datasets categorized by functionality.

Category: Builtins Category: Data analysis Category: Data Modification

Category: Tree analysis Category: Tree modification

Figure 4: Word cloud of function calls by category.

remain a small tail, typically under 10%. In other words, the LLM agents typically performs a lot
of analysis and testing before every edit. We also observe substantial model- and dataset-specific
variability. GPT-5 exhibits the most balanced mix, with no single family dominating across tasks.
By contrast, Gemini-2.5 pro – the weakest model in this specific setting – leans heavily on feature
engineering and helper utilities, and consistently deprioritizes tree construction, with only about 5%
of its calls devoted to explicit tree modifications. GLM-4.5, Kimi K2 Instruct, and DeepSeek R1
(0528) similarly skew toward general data-analysis operations. For context, we also provide word
clouds for each function category in Appendix ??.

Linear regression analysis. To disentangle the factors driving performance, we conducted a multiple
linear regression analysis. We fit a regression that predicts a unified error score (lower is better, 1-AUC
for binary classification) based on the chosen LLM, the dataset, and the proportion of generated
function calls from five categories. This approach allows us to quantify the contribution of each
factor while holding the others constant. The results (Table 5) suggest two key insights. First, after
controlling for differences in strategy, GPT5 emerges as the most capable model (β = −1.55, p <
0.001), indicating a significant performance advantage attributable to its innate skill. Second, the
choice of coding strategy has a profound impact on outcomes. Relative to the baseline helper
category, a higher proportion of data analysis calls is significantly associated with better performance
(β = −1.01, p < 0.001). Conversely, relying heavily on tree modification (β = +8.80, p < 0.001)
and tree analysis (β = +7.99, p < 0.001) appears detrimental.

These results highlight that while top-performing models like GPT-5 succeed due to their superior
baseline capabilities, their performance can be further optimized by guiding them towards more

13



Table 5: Regression Analysis of LLM Performance Factors. Negative coefficients correspond to
reducing error (better).

Variable Coefficient↓ Std. Err.
Fixed Effects (vs. ‘Fitness‘ + ‘Deepseek R1 0528‘)

Intercept -2.011** ±0.098
Dataset: AirfoilSN 2.970** ±0.023
Dataset: Anneal -0.302** ±0.022
Model: GLM 4.5 0.681** ±0.047
Model: GPT-5 -1.555** ±0.059
Model: Gemini 2.5 Pro 0.809** ±0.047
Model: Kimi K2 Instruct 0.262* ±0.033

Function Category Proportions (vs. ‘Builtins‘ baseline)

Data Analysis -1.012* ±0.105
Data Modification 2.333* ±0.255
Tree Analysis 7.990** ±0.351
Tree Modification 8.799** ±0.557

Significance: ** p<0.001; * p<0.01

effective coding strategies. In particular, data analysis provides valuable information into the dataset
which allows the agent to make better informed and precise tree surgeries. Note that this is only an
preliminary analysis: in future, it would be interesting to consider non-code LLM outputs and expand
this analysis to more datapoints.

To visualize the most representative functions within each category, we generate a word cloud for
each group, as shown in Figure 4. The size of each function in the cloud corresponds to its total call
frequency, and a qualitative review confirms the semantic coherence of the automated categorization.

Prompt for Agent Call Classification

Help categorize the following functions into the following categories:
1. Tree modifications: ‘tree_mod‘ (key)
2. Tree analysis, visualization and debugging: ‘tree_eda‘ (key)
3. General feature engineering and transformations: ‘feat_engineering‘ (key)
4. General exploratory data analysis: ‘eda‘ (key)
5. Builtins: ‘builtins‘ (key)
Category descriptions:
1. Tree modifications: any operation that changes or trains the tree. Key-
words: DecisionTreeClassifier, DecisionTreeRegressor, min_samples_split,
max_depth, prune, replace_subtree, grow_subtree, repair, min_samples_leaf,
max_features, min_impurity_decrease, min_weight_fraction_leaf, ccp_alpha,
max_leaf_nodes, min_samples_leaf, min_samples_split, max_depth, max_features,
max_leaf_nodes, min_impurity_decrease, min_samples_leaf, min_samples_split,
min_weight_fraction_leaf, random_state, ccp_alpha.
2. Tree analysis: introspection of trained tree(s) such as paths,
leaves, importances, surrogate views, and plots. Keywords: is_leaf,
get_data_indices_for_node, print, decision_path, feature_importances_, ex-
port_graphviz.
3. General feature engineering and transformations: any input transformation
before training/inference. Independent of a specific trained tree. Keywords:
OneHotEncoder, PolynomialFeatures, clip, log1p, sign, datetime64.
4. General exploratory data analysis: dataset-level profiling and exploration
not tied to a specific model such as distributions, correlations, missingness,
leakage checks, class balance. Keyword: percentile, std, mean, tsne, umap,
train_test_split.
5. Builtins: infrastructure that doesn’t change data or models and isn’t
analysis such as I/O, seeding, logging, timing, config, small data wrangling
helpers. Keywords: check_random_state, asarray, dtype, save, load.

14



As an output provide a json-formattable dictionary of the form: category:
[function1, function2]. Specifcially, your answer will be directly plugged in
to the ‘json.loads(YOUR_ANSWER)‘. Please, respect the formatting.
Here are the functions: ‘set(defined_functions)‘.

F Human Input Prompts

The full prompts for all setups are available in our repository. Below we show the exact additional
instructions we provided to the LLM in our human input experiments. Each prompt is inserted as
an additional text to the base setup and is designed to inject domain knowledge or constraints that a
standard execution would not capture.

Prompt for Fairness Human Input

You should prioritize creating model that as gender-neutral as possible even if
it harms metrics.

The above directions were used in the fairness experiment (4.2.1) to explicitly guide the LLM toward
balancing outcomes across gender groups.

Prompt for Lost Feature Human Input

We forgot to collect ‘Glucose‘ data in the training set. This feature is ac-
tually very important for predicting diabetes, but you cannot see it in train.
Your task is to create a decision tree that may rely on this feature in the
test set, even though you have no Glucose data available during training.

The second instruction set was used in the lost feature experiment (4.2.2) to test whether the LLM
could integrate prior knowledge about the missing variable into the tree design.

G Tree Construction Examples

In this section we present example reasoning traces produced during the tree construction process.
These traces illustrate the step-by-step decisions made by the LLM while building or modifying
decision trees under different constraints. For all experiments we used GPT-5 as the underlying
model. In several examples code has been removed for readability. The following excerpts are shown
to highlight representative reasoning patterns rather than complete outputs.

G.1 Main Experiment Examples

As an illustration of the LLM’s workflow, we provide a reasoning trace consisting solely of the
model’s intermediate thoughts during a single run of tree construction. No code is shown, but the
trace remains internally consistent and reflects the step-by-step process followed in that run.

Trace example on Fitness dataset (redacted)

- Thought: I will start by inspecting the raw data: shapes, NaN counts, class
balance, and unique values for categorical features. Hypothesis: there are
NaNs in weight, and potentially unseen categories in validation (e.g., category
"-"), so I will need imputation and robust one-hot encoding.
- Thought: I will design a robust preprocessing pipeline: impute missing
weight with the train median and add a missing indicator; one-hot encode cat-
egorical features; ensure consistent columns between train/val. Then I will
train a few sensible baseline DecisionTreeClassifier variants (small set of hy-
perparameters, with class_weight balanced) and pick the best by validation AUC.
I will convert it to editable_tree.Tree and print structure to form hypotheses
for manual edits.

15



- Thought: I will inspect the current best tree’s leaves and internal nodes
by computing how many train/val samples route to each node and the mean tar-
get (attendance rate) within those nodes. Hypothesis: some large leaves may
still be heterogeneous (e.g., split further by days_before or time), offering
room for local grafting/growth to improve AUC. I will list all nodes, identify
leaves, print their stats, then propose targeted edits on the biggest/most
heterogeneous leaves.
- Thought: Hypothesis: within large leaves, days_before, time, or category may
provide additional separation to improve AUC. I will select the top-2 largest
leaves and try growing a small local subtree (max_depth=2, min_samples_leaf=20)
using a focused set of features, then graft it, evaluate AUC, and keep changes
only if validation AUC improves.
- Thought: I will analyze univariate relationships to guide targeted edits.
Hypothesis: days_before and time or category may add predictive power, espe-
cially within the lower-membership region (months_as_member <= 15.5). I’ll
compute univariate AUCs and attendance means by bins/levels. Then I’ll try
local growth at key internal nodes (ids 1, 10, 11, 13), training small subtrees
on the routed subsets and grafting them. I’ll keep any graft that improves
validation AUC.
- Thought: I’ll add a few interpretable engineered features that reflect plau-
sible behavior: weekend class indicator (Sat/Sun), early booking (>=10 and
>=7 days), high weight (>=85 kg), new member (<=12 months), and intense class
(HIIT or Cycling). Hypothesis: these features will help the tree form cleaner
splits with the same complexity and may improve AUC. Then I’ll retrain a tree
with the previously best hyperparameters, inspect AUC, and if better, convert
to editable_tree for potential small local refinements (focused threshold tun-
ing limited to weight-only splits on the right branch).

Next, we present several selected examples of thought–code pairs extracted out of their full experi-
mental context. These examples serve to illustrate what the agent is actually doing to achieve the
stated in thoughts goals in constructing decision trees.

Thought-Code Pair example of local graft

Thought: I will select the top-2 largest leaves and try growing a small local
subtree (max_depth=2, min_samples_leaf=20) using a focused set of features,
then graft it.
Code:

def try_local_grow(
tree, node_id, Xtr, ytr, Xva, yva,
feat_cols, max_depth=2, min_samples_leaf=20

):
ids_tr = tree.get_data_indices_for_node(node_id, Xtr)
ids_va = tree.get_data_indices_for_node(node_id, Xva)
if len(ids_tr) < 2*min_samples_leaf:

return None, None, None # not enough data to grow
# Fit a small subtree using a subset of features
clf = DecisionTreeClassifier(

random_state=0, class_weight="balanced",
max_depth=max_depth, min_samples_leaf=min_samples_leaf

)
clf.fit(Xtr.iloc[ids_tr][feat_cols], ytr[ids_tr])
# Evaluate partial AUC for diagnostics
part_auc = roc_auc_score(

yva[ids_va], clf.predict_proba(Xva.iloc[ids_va][feat_cols])[:,1]
) if len(np.unique(yva[ids_va]))>1 else np.nan
# Graft into a copy of the tree
new_tree = deepcopy(tree)
new_tree.replace_subtree(node_id, Tree.from_sklearn(clf))
# Evaluate global AUC
val_auc = roc_auc_score(yva, new_tree.predict(Xva))
train_auc = roc_auc_score(ytr, new_tree.predict(Xtr))

16



return new_tree, train_auc, val_auc

# Try local growth on top-2 leaves
candidates = []
for lid, ntr, nva, mtr, mva in leaf_stats_sorted[:2]:

print(f"\nAttempt local growth at leaf id={lid} (train n={ntr}, val n={nva})")
new_tree, tr_auc, va_auc = try_local_grow(

etree, lid, Xtr, y_train, Xva, y_val,
focused_feats, max_depth=2, min_samples_leaf=20

)
if new_tree is not None:

print(
f" Local growth result -> Train AUC={tr_auc:.4f}, Val AUC={va_auc:.4f}"

)
candidates.append((va_auc, tr_auc, lid, new_tree))

else:
print(" Not enough samples to grow here.")

Thought-Code Pair example of Leaf label smoothing

Thought: I’ll try three conservative, targeted tweaks and keep any that im-
prove or match validation AUC:
- Laplace-smooth leaf probabilities to reduce overconfident small leaves. Hy-
pothesis: small leaves on the right branch could be slightly overconfident;
smoothing might improve ranking.
Code:

def laplace_smooth_tree(tree_in, Xproc, y, alpha=1.0):
t = deepcopy(tree_in)
for leaf in get_leaf_nodes(t):

idx = t.get_data_indices_for_node(leaf.id, Xproc)
n = len(idx)
if n == 0:

continue
pos = float(y[idx].sum())
leaf.value = (pos + alpha) / (n + 2*alpha)

return t

sm_tree = laplace_smooth_tree(best_tree, Xtr, y_train, alpha=1.0)
sm_tr_auc = roc_auc_score(y_train, sm_tree.predict(Xtr))
sm_va_auc = roc_auc_score(y_val, sm_tree.predict(Xva))
print(f"Laplace(alpha=1): train AUC={sm_tr_auc:.4f}, val AUC={sm_va_auc:.4f}")
candidate_tree = deepcopy(best_tree)
cand_tr_auc, cand_va_auc = base_tr_auc, base_va_auc

if sm_va_auc >= cand_va_auc:
candidate_tree = deepcopy(sm_tree)
cand_tr_auc, cand_va_auc = sm_tr_auc, sm_va_auc
print("Adopted Laplace smoothing as candidate.")

G.2 TabPFN Correction Examples

Here we present examples of thought–code pairs extracted from the traces of the TabPFN Correction
experiments.

TabPFN Correction Thought-Code pair example

Thought: The numeric stump is close but slightly below baseline. Hypothesis:
adding a second split on credit_history on the high amount_per_month side can
capture stable residual bias (critical account slightly underpredicted, exist-
ing paid duly slightly overpredicted). I will:

17



- Manually build a 2-level tree: root split on amount_per_month; right child
splits on credit_history (critical vs existing duly vs others).
Code:

# Helper to build a manual tree given threshold and leaf values
def build_tree(thresh, v_low, v_crit, v_exist, v_other):

# Right branch: first check critical account,
# else check existing duly, else other

# One-hot column names (ensure they exist; if not, they will be zeros)
crit_col = "credit_history_critical account / other credits existing"
exist_col = "credit_history_existing credits paid duly till now"

# Construct right subtree
right = Tree(

id=10, feature=crit_col, threshold=0.5,
left=Tree( # not critical

id=11, feature=exist_col, threshold=0.5,
# not existing duly -> "other" categories
left=Tree(id=12, value=float(v_other)),
# existing duly
right=Tree(id=13, value=float(v_exist))

),
right=Tree(id=14, value=float(v_crit)) # critical account

)
root = Tree(id=0, feature="amount_per_month", threshold=float(thresh),

left=Tree(id=1, value=float(v_low)),
right=right)

return root

for t in thresholds:
m_left, m_crit, m_exist, m_other = residual_means(t)
for eta in etas:

tree_cand = build_tree(
t, eta*m_left, eta*m_crit, eta*m_exist, eta*m_other

)

# Evaluate AUCs when added to baseline
ytr_pred = y_train_baseline + tree_cand.predict(Xtr_ch)
yva_pred = y_val_baseline + tree_cand.predict(Xva_ch)
tr_auc = roc_auc_score(y_train, ytr_pred)
va_auc = roc_auc_score(y_val, yva_pred)
results.append((

t, eta, m_left, m_crit, m_exist,
m_other, tr_auc, va_auc, tree_cand

))
print(

f"MANUAL depth2 t={t}, eta={eta}: "
f"Train AUC={tr_auc:.6f} Val AUC={va_auc:.6f}"

)

G.3 Fairness Example

To better illustrate how the LLM incorporates fairness instructions into the tree-building process, we
show below a redacted internal reasoning trace on the Adult dataset. This is just one example of how
the LLM can approach the task; other strategies are also possible, such as first training a tree on the
full dataset (including the sex feature) and then pruning subtrees that heavily rely on it.

Fairness trace example on Adult dataset (redacted)

- Thought: I will inspect the raw data to understand dtypes, missing values ,
class balance, and categorical levels.

18



- Thought: The current tree relies heavily on marital-status at the root, which
is strongly correlated with gender outcomes via roles like Husband/Wife (even
though “relationship” itself is excluded). To improve gender neutrality, I
will first drop the relationship feature, then explicitly retrain while ex-
cluding both relationship and marital-status to reduce gender proxies. I will
iteratively adjust depth/regularization to avoid rediscovering proxy splits.
- Thought: I will try to reduce gender disparity without using sex as a feature
by reweighting the training samples to give higher weight to female records dur-
ing training. Hypothesis: upweighting females will increase their predicted
scores and narrow the positive-rate gap and AUC gap between sexes. I may also
try dropping occupation (a potential proxy) if needed.
- Thought: I will explore additional proxy feature removal to improve gen-
der neutrality without using the sex feature. Hypothesis: dropping occupa-
tion (and possibly workclass and race) will reduce gender proxy signals in the
splits, narrowing the male/female disparities in AUC and positive rate, at some
cost to overall AUC. I will try several drop sets (keeping numeric features,
education, native-country).
- Thought: Aim: reduce gender proxy effects further by removing numeric fea-
tures that may indirectly encode gender patterns, especially hours-per-week
(known to differ by sex). Hypothesis: dropping hours-per-week (and possibly
fnlwgt) will narrow positive-rate gaps and AUC gaps by sex, at some cost to
overall AUC.
- Thought: I will target fairness by increasing predicted probabilities at
leaves that predominantly contain female samples, without using sex as an input
feature. Hypothesis: modestly increasing leaf values for female-heavy leaves
will raise female positive rates more than male (since more females route to
those leaves), narrowing the gap while keeping ROC AUC nearly unchanged. Plan:
- Identify leaves and compute, for each leaf, the val-sample counts and female
share. - For candidate uplift deltas (0.02, 0.05, 0.08), adjust leaf values
where female share >= 0.6 (and also try >= 0.55) with clipping to [0,1]. -
Evaluate val AUC and fairness metrics; choose the best tree by fairness score,
tie-breaking by val AUC. - Keep everything reproducible and print diagnostics.

19


	Introduction
	Related Works
	Agentic Tree Induction
	Experiments
	Primary Evaluation
	Additional Human Inputs
	Fairness
	Informal Feature Description


	Conclusion and Discussion
	Additional Method Details
	Evaluation Dataset Information
	Human Input

	LLM Backbone Ablation
	Tool Ablation Analysis
	Agent Analysis
	Human Input Prompts
	Tree Construction Examples
	Main Experiment Examples
	TabPFN Correction Examples
	Fairness Example


