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ABSTRACT

Designing antibody sequences to better resemble those observed in natural human
repertoires is a key challenge in biologics development. We introduce IgCraft:
a multi-purpose model for paired human antibody sequence generation, built on
Bayesian Flow Networks. IgCraft presents one of the first unified generative mod-
eling frameworks capable of addressing multiple antibody sequence design tasks
with a single model, including unconditional sampling, sequence inpainting, in-
verse folding, and CDR motif scaffolding. Our approach achieves competitive
results across the full spectrum of these tasks while constraining generation to the
space of human antibody sequences, exhibiting particular strengths in CDR mo-
tif scaffolding (grafting) where we achieve state-of-the-art performance in terms
of humanness and preservation of structural properties. By integrating previously
separate tasks into a single scalable generative model, IgCraft provides a versatile
platform for sampling human antibody sequences under a variety of contexts rele-
vant to antibody discovery and engineering. Model code and weights are publicly
available at https://github.com/mgreenig/IgCraft.

1 INTRODUCTION

Monoclonal antibodies are an important class of therapies that comprise an increasingly large share
of the global pharmaceutical market (Ecker et al., 2015). Key to the success of these molecules
as therapeutics lies not only in their ability to selectively bind their target with high affinity, but
also in their favorable developability, a property that broadly describes the suitability of a functional
compound to become a viable drug, often a function of immunogenicity, solubility, and a number
of other factors. Conventional antibody discovery typically relies on either animal immunization
(Lee et al., 2014) or high-throughput screening of large sequence libraries (Bradbury et al., 2011) to
isolate potential candidates. While in vitro screening methods are faster, cheaper, and have ethical
advantages compared to immunization, naturally-derived antibodies tend to exhibit better developa-
bility properties, including favorable pharmacokinetics, high specificity, and low immunogenicity
(Jain et al., 2017). It is therefore no surprise that machine learning models trained on large natural
sequence databases have been successfully developed for many specific tasks in antibody devel-
opability engineering, including de-novo sequence generation (Turnbull et al., 2024), conditional
design of subsequences (Olsen et al., 2024), structure-conditioned sequence design (Dreyer et al.,
2023; Høie et al., 2024), and grafting of mouse complementarity-determining regions (CDRs) into
suitable human frameworks (Ma et al., 2024). However, the deployment of multiple task-specific
models introduces additional complexity into computational workflows and can hinder their scalabil-
ity and broader adoption. Here, we present a unified generative modeling framework that addresses
multiple antibody engineering challenges simultaneously, achieving performance in most cases that
is competitive with or surpasses state-of-the-art task-specific models.

IgCraft is a generative model that uses a Bayesian Flow Network (BFN) (Graves et al., 2023; Atkin-
son et al., 2025) to sample paired human antibody sequences under a variety of contexts relevant
to therapeutic antibody development. Similar to diffusion models, BFNs perform a denoising pro-
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cess jointly across all sequence positions, decoupling the number of generation steps from sequence
length and enforcing no particular generation order amongst the tokens (unlike autoregressive mod-
els). Crucially, the BFN’s lack of a specific generation order enables flexible sequence inpainting
(conditional generation of subsequences) from a single model trained only to generate full-length
sequences, as was demonstrated in ProtBFN (Atkinson et al., 2025) with a sequential monte carlo
approach. The ability to perform inpainting for arbitrary sequence regions is especially attractive
given the multitude of design scenarios encountered in therapeutic antibody development, including
developability optimisation, humanisation, and affinity maturation. As a model that can efficiently
perform both unconditional and conditional sequence sampling with the flexibility to incorporate
structural data (when available), IgCraft offers substantial practical advantages as a single tool that
can be used for a variety of tasks in real-world antibody engineering workflows.

2 METHODS

2.1 BAYESIAN FLOW NETWORKS

A discrete-variable Bayesian Flow Network (BFN) is a generative model over discrete tokens {xi ∈
V }Di=1 for some vocabulary V of size K. BFNs are conceptually similar to diffusion models (Ho
et al., 2020; Austin et al., 2021), but instead of modeling a discrete denoising process over tokens
themselves, BFNs model a continuous denoising process over vectors of logits for different token
categories {zi ∈ RK}Di=1. Specifically, the BFN generative process for any given token can be
formulated in terms of an SDE in logit space (Xue et al., 2024):

dz = α(t) [Kê(z(t), t)− 1] dt+
√
Kα(t)dw (1)

Where ê(z(t), t) ∈ ∆K is a predicted vector of probabilities over token categories and α(t) ∈ R+

is an accuracy schedule, playing a similar role to the variance schedule in a diffusion model. In
practice, ê is a neural network that is given the current logits for all sequence positions as input and
uses learned relationships between these noisy variables to make a prediction for each token’s value
x. We use α(t) = 2t for all experiments as in the original BFN paper (Graves et al., 2023). We also
introduce a temperature parameter that scales the network’s output logits before they are converted
into probabilities via softmax and use T = 1.05 for unconditional sampling and T = 0.1 for all
other (conditional) sampling tasks. To solve the SDE in (1), we implement a second-order solver
similar to that proposed by Xue et al. (2024) and perform sampling in 20 steps. For conditional
sampling, we use the particle filtering method outlined in ProtBFN (Atkinson et al., 2025) with 32
particles. More details on IgCraft’s sampling methodology can be found in Appendix A.

2.2 NETWORK ARCHITECTURE

Since the BFN is agnostic to choice of network architecture, we introduce a two-track transformer
configuration designed to model paired antibody sequences (Figure 1). To process sequence tokens
within each antibody chain individually, the architecture makes use of standard transformer blocks
with gated self-attention (Chai et al., 2020), rotary positional embeddings (Su et al., 2021), pre-
layer normalization (Xiong et al., 2020), and SwiGLU transition layers (Shazeer, 2020), with one
transformer stack allocated to process VH sequence tokens and the other to process VL sequence
tokens. After each transformer block, token embeddings for both the VH and VL chains are fed
into an interaction block that uses gated cross-attention, adaptive layer normalization (AdaLN) (Xu
et al., 2019), and conditional SwiGLU transition layers (Abramson et al., 2024) to integrate infor-
mation from tokens in the other chain. For the AdaLN and conditional SwiGLU layers, the mean
token embedding from the other chain’s sequence is used as conditioning data for each token’s up-
date. The output of the interaction block is projected via a sigmoid-gated linear unit and fed into a
residual connection with the transformer stack’s embeddings after processing. To encode structural
information, we use the geometric multi-head attention architecture from ESM3 (Hayes et al., 2025)
with separate embedding layers for VH, VL, and epitope residues. All together IgCraft contains
approximately 300M trainable parameters.
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2.3 DATASETS AND TRAINING REGIME

To obtain variable region annotations (FWR1, CDR1, etc. according to IMGT definition), we
merged the set of paired and unpaired antibody sequences from Turnbull et al. (2024) with the
Observed Antibody Space database (Olsen et al., 2021). We enforced minimum and maximum
length cutoffs per-region (Figure 1, bottom right), with values determined by qualitative analysis
of the distribution of region lengths in OAS. To enable the model to generate sequences of varying
length under different conditional design scenarios, we perform padding within each variable do-
main region of each input sequence, right-padding to a maximum length per-region. The model is
then trained to generate pad tokens (as well as amino acid tokens) to control the length of gener-
ated sequences. Using the same train/test/validation splits as in Turnbull et al. (2024), our filtering
process yielded training sets of 118M unpaired VH sequences, 135M unpaired VL sequences, and
1.5M paired VH/VL sequences. For testing we use a similarly filtered subset of the paired test
sequences from Turnbull et al. (2024), which yielded a test set of 63,705 paired sequences. To ob-
tain structural data for fine-tuning, we clustered the training set of 1.5M paired VH/VL sequences
(concatenated) at 40% minimum sequence identity using MMSeqs2 (Steinegger & Söding, 2017),
folded each cluster’s representative sequence using ABodyBuilder3-LM (Kenlay et al., 2024), and
removed structures with mean H-CDR3 pLDDT <70, producing a set of approximately 30,000 pre-
dicted structures. We merged these predicted structures with a curated set of approximately 2,800
non-redundant human paired VH/VL structures extracted from SAbDab (Schneider et al., 2021)
(details in Appendix A). For bound SAbDab structures, a maximum of 128 non-antibody (target)
residues with the lowest Cα atom distance to the antibody are included in each structure. For inverse
folding tasks we use the subset of chains from our set of 2,800 unique human paired antibody struc-
tures whose PDB IDs appear in the test set but not the training/validation sets of AbMPNN (Dreyer
et al., 2023), leaving 98 structures for testing. CDR grafting was tested on a holdout set of 27 paired
mouse antibody structures deposited in the PDB from February 2024 onwards.

Training IgCraft consists of three stages. First, each chain’s transformer stack (Figure 1, blue) is
pre-trained on unpaired sequences. Then, the model is fine-tuned on paired sequences, for which
the pre-trained weights for both transformer stacks are loaded into the network and the interaction
blocks (Figure 1, green) are randomly initialized. However, we initialize the bias term in the output
gate of each interaction block to a value of −5.0, negating its contribution to the token embeddings
at the start of fine-tuning and effectively initializing the model as two unpaired sequence models that
do not communicate. All weights are updated during this stage of fine-tuning, including the weights
initialized from pre-training. Finally, the model is fine-tuned using paired antibody structures as con-
ditioning information for the model’s sequence predictions, initializing the output gate of the struc-
ture encoder to −5.0. During structure-fine-tuning, the framework regions of input structures are
masked stochastically in 50% of training examples to train the model to perform CDR-conditional
framework generation. In this stage, only the weights in the structure encoder are updated to ensure
that the main trunk retains its capabilities as a pure sequence generative model. This approach is
conceptually similar to the approach proposed by Zheng et al. (2023) for performing inverse folding
by augmenting a protein language model with a lightweight structural adapter.

3 RESULTS

3.1 UNCONDITIONAL SEQUENCE GENERATION

We first evaluated the model’s ability to sample human-like paired antibody sequences. Specifically,
we generated 2000 paired sequences unconditionally using both IgCraft and p-IgGen (Turnbull et al.,
2024) and calculated statistics between each sample and the test set of native paired sequences. For
IgCraft sampling we used a temperature of 1.05 and for p-IgGen all sampling defaults were used,
including removing the bottom 5% of sequences (ranked by perplexity). In addition, a set of 2,000
real paired antibody sequences were held out from the test set and treated as samples to calculate
reference statistics. Results for IgCraft, p-IgGen, and the reference set are shown in Table 1.

3.2 SEQUENCE INPAINTING

To evaluate the model’s conditional sampling capabilities we performed sequence inpainting on the
same 2000 held-out test sequences from paired OAS. For each of these sequences, we masked-out
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Figure 1: IgCraft’s two-track transformer architecture. Layers are color-coded by the stage of training during
which they are updated. The main backbone (blue, green) receives noisy logits for the VH/VL sequences as
input and outputs predicted probabilities for the amino acid identity at each position. Shown in the bottom right
corner are the minimum/maximum lengths (both sides inclusive) per variable domain region of each antibody
chain type. MHA: Multi-head attention; MLP: Multi-layer perceptron; SwiGLU: Swish-gated linear unit.

Table 1: Unconditional paired human antibody sampling results. To measure novelty, we calculate each se-
quence’s minimum edit distance to any sequence in the test set, while for diversity, we calculate each sequence’s
minimum edit distance to any sequence in its own set of samples. Displayed are the means of these values over
all samples in each set, shown separately for the VH and VL chains. As in p-IgGen (Turnbull et al., 2024),
VH/VL pairing compatibility is estimated via the pearson correlation between germline sequence identities of
the heavy and light chains.

Samples Novelty (VH / VL) Diversity (VH / VL) VH/VL mut. corr.
IgCraft 10.5 / 2.7 13.0 / 3.4 0.49

Reference 10.2 / 2.7 12.8 / 3.4 0.55
p-IgGen 10.4 / 3.1 12.7 / 3.7 0.51

and inpainted each variable region individually as well masking and inpainting multiple regions
jointly. Joint inpainting was performed for CDRs and framework regions separately, both on the
heavy and light chains individually (where the entire other chain was provided as conditioning in-
formation) and on both chains jointly. Sampling was performed using IgCraft with a temperature of
0.1, with AbLang2 (Olsen et al., 2024) and ESM3 (Hayes et al., 2025) as benchmarks. We used de-
fault sampling parameters for AbLang2 and sampled in 10 steps with temperature 0.1 for ESM3. For
IgCraft, if the generated sequence was of the incorrect length, we performed a pairwise alignment
with the ground truth and calculated amino acid recovery as the percentage of matching positions
normalized by the total length of the alignment, including gaps. The mean AARs for single-CDR
inpainting as well as VH/VL joint inpainting for all CDRs and all framework regions are shown in
Table 2, with additional data in appendix A.

3.3 INVERSE FOLDING AND STRUCTURE-GUIDED SEQUENCE DESIGN

To assess the model’s ability to conditionally generate antibody sequences in the presence of struc-
tural information, we sampled a single sequence for each of the 98 test structures using IgCraft
with a temperature of 0.1, providing the antibody and target backbone structures as input to the
model’s structure encoder but exposing no sequence information from the antibody (target sequence
identities are used as input features). For comparison, we also performed inverse folding (also us-
ing temperature 0.1) using ProteinMPNN (Dauparas et al., 2022), AbMPNN (Dreyer et al., 2023),
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Table 2: Mean amino acid recovery (AAR) for sequence inpainting on the holdout set of 2000 paired sequences.
Shown are the AARs for inpainting each of the heavy chain CDRs individually as well as jointly inpainting all
CDRs and all framework regions on both chains. Since ESM3-open only accepts single-chain inputs, to model
paired antibody sequences we concatenate the heavy and light chains with the commonly-used (G4S)3 linker
sequence for single-chain paired antibodies (Huston et al., 1988). We were not able to determine if this test set
overlaps with the training sets of AbLang2 and ESM3.

Samples H-CDR1 (%) H-CDR2 (%) H-CDR3 (%) All CDRs (%) All FWRs (%)
IgCraft 91.6 89.4 41.1 74.2 96.7

AbLang2 92.0 90.4 45.5 76.3 83.3
ESM3-open 77.7 58.4 34.1 54.1 13.0

Table 3: Mean amino acid recovery (AAR) and developability metrics for sequences generated by inverse
folding models on a holdout set of 98 paired human antibody structures. Statistics are calculated using a single
sample from each method with a temperature of 0.1. For the framework (FWR) AAR statistics we report the
mean AAR over all VH/VL framework positions. To measure developability potential we estimate humanness
and solubility using the AbNatiV (Ramon et al., 2024) and CamSol (Sormanni et al., 2015) scores respectively
and report the mean scores for the VH and VL chains over all 98 sequences. We also calculated these scores
for the 98 ground-truth test set antibodies and obtained VH / VL scores of 0.87 / 0.93 for AbNatiV and 0.05 /
0.45 for CamSol, demonstrating that IgCraft was the only method to improve both metrics for both chains.

Samples H-CDR1 (%) H-CDR2 (%) H-CDR3 (%) FWR (%) Humanness
(VH / VL)

Solubility
(VH / VL)

IgCraft 73.5 66.7 45.0 91.2 0.91 / 0.97 0.08 / 0.49
Antifold 77.1 75.3 58.1 92.7 0.89 / 0.95 0.01 / 0.47

AbMPNN 74.0 65.0 55.6 87.8 0.85 / 0.90 0.02 / 0.42
ProteinMPNN 48.9 46.4 31.9 58.9 0.51 / 0.51 -0.12 / 0.11

and Antifold (Høie et al., 2024). While the target was cropped to 128 residues when sampling
with IgCraft, the full target chains were provided as input to all other inverse folding methods. To
measure performance, we calculate the amino acid recovery for each variable domain region and es-
timate two properties related to the developability potential of the generated sequences: humanness
and solubility. Humanness scores for the generated sequences are obtained using AbNatiV (Ramon
et al., 2024) while solubility is scored with CamSol (Sormanni et al., 2015; Rosace et al., 2023),
both of which have been supported by experimental validation. Results are shown in Table 3.

3.4 CDR GRAFTING AND HUMANISATION

Scaffolding (”grafting”) of CDRs from mouse or other non-human antibodies into human antibody
framework regions is a key task in antibody engineering (Jones et al., 1986; Kim & Hong, 2012),
since non-human antibodies are often easier to obtain but can induce pathological anti-drug immune
responses when administered as therapeutics (Khazaeli et al., 1994). Traditional CDR grafting work-
flows typically rely on sequence homology searches to select an existing human framework similar
to the input antibody (Kim & Hong, 2012). However, these approaches are inherently limited by
the availability of similar framework sequences and often substantially decrease binding affinity by
altering key interactions between the CDR and framework regions (Pavlinkova et al., 2001). HuD-
iff was recently proposed as an ML-driven solution for this task (Ma et al., 2024), which uses a
discrete diffusion model to conditionally generate framework sequences given a set of input CDR
sequences, and is fine-tuned specifically on mouse antibodies to sample mutations that improve the
AbNatiV humanness score (Ramon et al., 2024) of generated sequences. The authors include im-
pressive experimental evidence demonstrating that the binding properties of an existing high-affinity
mouse antibody (<1nM kD) were largely preserved after humanisation. However, HuDiff provides
no mechanism for integrating structural information for the input CDRs.

Given IgCraft’s strong performance in generating human framework sequences and its capacity to
condition on structural inputs, we sought to evaluate the model’s ability to generate human frame-
work sequences for scaffolding mouse CDRs. We performed conditional sampling with IgCraft
using 27 mouse antibodies from SAbDab as input and generating framework sequences for both
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Table 4: Evaluation of mouse CDR grafting on a test set of 27 paired mouse antibody structures from SAbDab
(20 bound, 7 unbound). We report the mean sequence identity (%) between the grafted and original mouse
sequences, the mean OASis humanness score (Prihoda et al., 2022), the mean AbNatiV humanness scores
per-chain (Ramon et al., 2024), the mean H-CDR3 Cα RMSD between the AlphaFold3 predictions and each
corresponding ground-truth PDB, and the fraction of the sequences for the 20 bound structures correctly docked
by AF3 (DockQ >0.23). The reference samples refer to the original 27 mouse sequences. We note that HuDiff
is specifically fine-tuned to maximize AbNatiV score, while IgCraft is not.

Samples % Seq. id.
(VH / VL)

Humanness
(OASis)

Humanness
(AbNatiV, VH / VL) H-CDR3 RMSD (Å) DockQ >0.23

IgCraft 77.6 / 77.5 77.9 0.88 / 0.90 2.04 10/20
HuDiff 81.4 / 80.3 74.6 0.87 / 0.82 1.99 9/20

Reference 100.0 / 100.0 47.3 0.68 / 0.64 1.87 11/20

chains, providing the CDR structures as conditioning information as well as the CDR sequences ±2
residues on each side. For each set of mouse CDRs, we also sampled a single paired sequence from
HuDiff (Ma et al., 2024) as a benchmark. The effectiveness of CDR grafting is measured in two
ways: first, the extent to which the humanness of the antibody is improved after grafting (compared
to the parental antibody), and second, the extent to which the binding properties of the antibody are
preserved. We evaluated humanness using AbNatiV (Ramon et al., 2024), an autoencoder-based
deep learning method, and OASis (Prihoda et al., 2022), an approach that estimates humanness
using 9-mer peptide frequences in OAS. To test how well both grafting methods maintained the
structure and binding properties of the wild-type CDRs, we applied AlphaFold3 (Abramson et al.,
2024) to fold each generated sequence (and its target, if applicable) with 10 seeds, as well as the
27 original mouse sequences for comparison. For each structure prediction we measure the RMSD
of the H-CDR3 loop (superimposing only on the framework region), and for bound antibodies,
determine whether the antibody was docked to the correct epitope on the target protein using the
widely-applied DockQ score threshold of 0.23 (Mirabello & Wallner, 2024; Abramson et al., 2024).
Results are shown in Table 4. We also include an ablation study in Appendix A in which CDR
grafting was performed using IgCraft without structural information, demonstrating that providing
CDR structures as input significantly improves the model’s ability to propose framework sequences
that preserve the structural features of the input CDRs.

4 CONCLUSION

This work presents, to the best of our knowledge, the first generative model for paired antibody
sequences that can natively perform both unconditional and conditional sequence generation and
flexibly condition on structural information. We demonstrate that IgCraft’s unconditionally gen-
erated sequences recapitulate patterns of variation observed in natural human antibody repertoires
(Table 1), and further show that inference-time conditional sampling can be used to achieve competi-
tive sequence inpainting results, with IgCraft exhibiting state-of-the-art performance in particular for
inpainting framework regions conditional on CDRs (Table 2). In inverse folding, IgCraft achieves
amino acid recovery rates competitive with leading approaches, with performance on H-CDR3 being
notably lower than state-of-the-art antibody-specific tools but superior to ProteinMPNN (Table 3).
Importantly, IgCraft’s generated sequences in inverse folding attain better humanness and solubil-
ity profiles than competing methods and demonstrate improvement over the wild-type sequences
on all fronts, highlighting the tool’s potential to perform structure-guided sequence design in the
context of antibody developability optimisation. Finally, we demonstrate using a test set of mouse
antibody structures that IgCraft’s conditional framework generation is capable of grafting mouse
CDRs into human antibody framework regions to increase humanness while maintaining function-
ality (Table 4). Compared to another leading ML-based grafting approach (Ma et al., 2024), IgCraft
achieves better humanisation while achieving equal or better preservation of the functional features
of the parental antibody (as assessed by AlphaFold3 structure prediction). We hope to explore in
future work how the aggressiveness of the humanisation strategy (and its structural properties) can
be controlled by modulating sampling parameters or providing additional conditioning information.
All in all, we present promising initial results indicating that a wide variety of antibody sequence
generation tasks can be accomplished using a unified, scalable model architecture.
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A APPENDIX

A.1 GENERATIVE MODEL DETAILS

A.1.1 BACKGROUND ON BAYESIAN FLOW NETWORKS

For discrete tokens (x1, ...,xD), a Bayesian Flow Network attempts to approximate the following
SDE over logits for each token (z1, ..., zD) (Xue et al., 2024):

dzi = α(t) [Ke(xi)− 1] dt+
√
Kα(t)dw (2)

Where e(xi) ∈ RK is a one-hot encoding of the token’s value and θi = softmax(zi) gives a probabil-
ity distribution over token categories. From the boundary condition z(0) = 0 (uniform probabilities
over token categories at the start of generation), this SDE transforms an uninformed ”prior” into a
distribution that becomes progressively more concentrated around the token’s true value as t → 1.
We can obtain the conditional distribution p(z(t)|x, t) in closed form as:

β(t) =

∫ t

0

α(s)ds

z(t) ∼ N (β(t)[Ke(x)− 1],Kβ(t)I) (3)

A single training step of the BFN is performed by sampling t uniformly, sampling z(t) ∼
p(z(t)|x, t) (3) for each token in the input, and performing a gradient step on the mean-squared
error between the predicted probabilities ê(z(t), t) and the ground-truth one-hot encoding for each
token, i.e.:

L(x) = Et∼U(0,1),z(t)∼p(z|x,t)

[
α(t)

2
∥ê(z(t), t)− e(x)∥2

]
(4)

For a detailed derivation of the loss in (4) as a variational lower bound on the model likelihood for a
given observation, readers should consult the original BFN work (Graves et al., 2023).

A.1.2 BFN SAMPLING

Sampling from a trained BFN involves solving the SDE in (1). The exact solution over some interval
[ti−1, ti] ⊆ [0, 1] is:

z(ti) = z(ti−1) +K

∫ ti

ti−1

α(s)

[
ê(z(s), s)− 1

K

]
ds+

√
K(β(ti)− β(ti−1)u (5)

With u ∼ N (0, I). In their original work, Graves et al. (2023) proposed a first-order solver:

z(ti) = z(ti−1) +K(β(ti)− β(ti−1))

[
ê(z(ti−1), ti−1)−

1

K

]
+

√
K(β(ti)− β(ti−1)u (6)

In subsequent work, Xue et al. (2024) implemented a second-order solver for the original discrete-
variable BFN accuracy schedule α(t) = 2tβ1 from Graves et al. (2023), with β1 as a hyperparameter.
Here, we derive a simpler and more flexible form of their solver with a straightforward approxima-
tion. Using the shorthand ê(z(ti), ti) := êi, we start with the same second-order approximation to∫ ti
ti−1

α(s)
[
ê(z(s), s)− 1

K

]
ds using finite differences:

∫ ti

ti−1

α(s)

[
ê(z(s), s)− 1

K

]
ds ≈

∫ ti

ti−1

α(s)

[
êi−1 −

1

K
+

êi−1 − êi−2

ti − ti−1
(s− ti−1)

]
ds (7)

=

[
êi−1 −

1

K

]
(β(ti)− β(ti−1)) +

êi−1 − êi−2

ti − ti−1

∫ t

ti−1

α(s)(s− ti−1)ds (8)
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Integrating by parts the second term in (8) gives:

∫ ti

ti−1

α(s)(s− ti−1)ds = β(ti)(ti − ti−1)−
∫ ti

ti−1

β(s)ds (9)

≈ β(ti)(ti − ti−1)−
(β(ti) + β(ti−1))(ti − ti−1)

2︸ ︷︷ ︸
Trapezoid approximation

(10)

=
(β(ti)− β(ti−1))(ti − ti−1)

2
(11)

The trapezoid approximation is expected to be highly accurate since β(t) is monotonically increas-
ing in time. This slight modification not only simplifies the final form of the solver; it also allows
for arbitrary accuracy schedules to be used in place of α(t) = 2tβ1 since it only requires point
evaluations of β(t). Other work has investigated new accuracy schedules for the BFN (Tao & Abe,
2025), and the original BFN developers noted that α(t) = 2tβ1 was chosen primarily as a heuristic,
with further investigations left to future work (Graves et al., 2023).

Putting it all together and simplifying, our second-order BFN solver is:

z(ti) = z(ti−1) +K(β(ti)− β(ti−1))

[
3êi−1 − êi−2

2
− 1

K

]
+

√
K(β(ti)− β(ti−1))u (12)

A.1.3 CONDITIONAL SAMPLING

For conditional sampling tasks with IgCraft we implement the sequential monte carlo (SMC) frame-
work from ProtBFN (Trippe et al., 2022; Atkinson et al., 2025). In general, SMC methods attempt
to approximate a posterior distribution over the data x given some conditioning information y:

p(x|y) ∝ p(y|x)p(x) (13)

In sequential importance resampling, at each step of the sampling trajectory, proposal samples
are first drawn from the unconditional model p(x) and then re-sampled with replacement under
some appropriately normalized likelihood function p(y|x). The trained BFN - via the SDE in (1)
- provides access to the unconditional distribution over token logits p(z(t)). The problem of se-
quence inpainting considers the task of conditioning generation on a subset of sequence positions
M ⊂ {1, 2, ..., D} with corresponding tokens xM := {xi}i∈M . Denoting samples of the pro-
posal distribution as {zp(t)}Qp=1, ProtBFN (Atkinson et al., 2025) uses the following form for the
conditional likelihood:

wp =
∑
i∈M

−∥ê(zp(t), t)i − e(xi)∥2 (14)

p(xM |zp(t)) =
exp (wp)∑Q
q=1 exp (wq)

(15)

Where Q is the number of particles, or the number of proposal samples that will be weighted and
re-sampled via the likelihood p(xM |zp(t)). In practice, this method is implemented by maintaining
Q sets of token logits (”particles”) during inference, and at each step 1) drawing a proposal sample
from p(z(t)) independently for each particle and 2) re-sampling particles via p(xM |zp(t)), replacing
the previous particles with the re-sampled set. Since drawing proposal samples involves making a
forward pass with the network ê and taking a single step with the BFN SDE solver for each particle,
this method incurs significant runtime costs as Q increases. While ProtBFN’s sampler used a value
of Q = 1024, we found that competitive results could be achieved in IgCraft on a much smaller
compute budget and used Q = 32 for all experiments.
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To allow for the specification of fixed sequence lengths during inpainting, IgCraft extends the likeli-
hood function in (15) by subtracting the model log-likelihood assigned to pad tokens in the masked
region. Using êpad(zp(t), t)i to denote the probability assigned to a pad value at the ith sequence
token, we use the following unnormalized particle weights:

wp =
∑
i∈M

−∥ê(zp(t), t)i − e(xi)∥2 −
∑
j /∈M

log [êpad(zp(t), t)j ] (16)

In our experiments for sequence inpainting, inverse folding, and CDR grafting, we use the fixed-
length likelihood function in (16) and expose pad tokens within the region(s) being inpainted via the
mask M .

A.1.4 GATED RESIDUAL CONNECTIONS

A key element of IgCraft’s network architecture is the use of gated residual connections (Srivastava
et al., 2015; Dhayalkar, 2024) at specific positions between layers that are updated at different stages
of the training process (Figure 1). A standard sigmoid-gated linear unit (GLU) (Dauphin et al., 2016)
is defined as follows:

GLU(x) = sigmoid(W(g)x+ b(g))⊙ (W(l)x+ b(l)) (17)

Where W(g), b(g), W(l), and b(l) are all different parameters. A gated residual connection is
then simply a residual connection between an input embedding x and a GLU-transformed hidden
representation h output by another layer:

GatedResidual(x,h) = x+ GLU(h) (18)

The key insight is that by initializing b(g) to some large negative value (we use −5.0), we have
GLU(h) ≈ 0 and GatedResidual(x,h) ≈ x. In IgCraft, this allows the weights pre-trained on
unpaired sequences (Figure 1, blue) to serve as a suitable initialization for paired sequence fine-
tuning, since initializing b(g) = −5.0 in the interaction blocks prevents any information from the
other chain from entering each sub-network’s residual stream, allowing the model to treat VH/VL
pairs as two unpaired sequences at the start of paired sequence training. Likewise, the transformer
backbone weights trained on paired sequences (Figure 1, blue/green) serve as a starting point for
paired structure fine-tuning, with the structure encoder’s output being ignored at initialization.

A.2 SUPPLEMENTARY RESULTS AND EXPERIMENTAL DETAILS

A.2.1 UNCONDITIONAL SAMPLING

Here we present additional metrics calculated for the unconditional sequences sampled from IgCraft
and p-IgGen (Turnbull et al., 2024) as well as the reference set of 2000 held-out test sequences.
Germline statistics were calculated by performing alignment with ANARCI (Dunbar & Deane,
2015).

Table 5: Additional unconditional sampling metrics from each set of 2000 paired sequence samples. We report
the mean germline sequence identity (%) for V and J genes, the germline diversity (measured as the shannon
entropy of the observed categorical distribution of V and J genes), and the humanness score from AbNatiV
(Ramon et al., 2024). Germline alignment was performed using ANARCI (Dunbar & Deane, 2015). All
metrics are presented for both heavy and light chains in the form VH / VL.

Samples V seq. id. (%) J seq. id. (%) V diversity J diversity Humanness
IgCraft 95.8 / 97.5 95.4 / 95.0 3.92 / 3.58 1.86 / 2.03 92.8 / 98.7

Reference 95.8 / 97.5 95.6 / 95.4 3.91 / 3.59 1.86 / 2.07 92.9 / 98.8
p-IgGen 96.1 / 97.0 95.0 / 95.1 3.91 / 3.67 1.91 / 2.09 93.0 / 98.7
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A.2.2 SEQUENCE INPAINTING

Below we provide a more detailed view of the joint inpainting capabilities of IgCraft compared to
competing masked language modelling approaches, showing AAR statistics for CDR and framework
regions on the VH chain, the VL chain, and both chains.

Figure 2: Mean amino acid recovery (AAR) for sequence inpainting of different variable regions on the 2000
holdout sequences from paired OAS. Error bars correspond to the standard error of the estimated mean AAR.

A.2.3 STRUCTURAL DATA CURATION

We implemented a stringent filtering process of SAbDab to ensure that our training and test datasets
consist of non-redundant variable region structures and sequences for true paired VH/VL structures.
Specifically, we use the following workflow for extracting structural data from each biological as-
sembly PDB file in SAbDab:

1. Extract the SEQRES field to obtain the true full-length sequence of each chain. If the
SEQRES field is not present, extract the sequence from the ATOM records. Filter non-
standard amino acids and heteroatoms.

2. If a SEQRES field is present, perform a pairwise sequence alignment with scoring scheme
match=1, mismatch=0, gap=0 between the sequence obtained from SEQRES and the se-
quence obtained from the ATOM records to obtain a mask corresponding to which amino
acids appear in the ATOM records. This accounts for residues that could not be resolved
in the structure, which can still be modelled with IgCraft via the sequence transformer
backbone.

3. Identify human heavy and light chains by performing sequence alignment with ANARCI
using the IMGT numbering scheme. Discard antibody sequences which did not align to
the human germline. Keep only the portion of each human antibody chain which was
numbered. Keep all residues from non-antibody chains.

4. Identify heavy/light chain pairings by counting, for each heavy chain, the number of Cα-
Cα contacts (defined as <8Å) with each light chain in the PDB file, and assume the light
chain with the maximum number of contacts is the correct pairing. If no contacts are found
with any light chain in the file, assume the chain is unpaired and discard it.

5. Save each paired VH/VL sequence and perform a search for duplicates in the entire set of
paired sequences extracted from SAbDab. If a chain pairing appears in multiple PDB IDs,
take the entry with the lowest resolution (cryo-EM and NMR structures and labelled with
resolution 0).

6. For each remaining VH/VL pair, for non-antibody chains in the same file, retain the residue
data from a maximum of 128 residues with the closest minimum Cα distance to any residue
in the antibody chains.
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7. From the remaining non-redundant, paired human antibody chains (with up to 128 target
residues each), set aside as a test set all chains from PDB IDs which appear in the test set
and not the training/validation sets of AbMPNN (Dreyer et al., 2023).

8. From the remaining ∼2,700 structures, set aside 270 randomly-selected structures for mon-
itoring validation loss during training. The remaining ∼2,400 structures are added to the
training set of ∼30,000 predicted structures from paired OAS.

A.2.4 INVERSE FOLDING

Below we provide more detailed AAR statistics for each variable region with each model for the
inverse folding task on 98 curated human antibody structures from the AbMPNN test set (Dreyer
et al., 2023). We extracted from each source PDB file only the relevant paired antibody chains and
any non-antibody chains with one or more Cα-Cα contact (<8Å) with any antibody residue. We
then calculate amino acid recovery (AAR) per-region for each structure and report the mean AAR
for each region over all structures (Figure 3 and Figure 4).

Figure 3: Amino acid recovery (AAR) per-heavy chain region on 98 curated human antibody structures from
the AbMPNN test set. Error bars correspond to the standard error of the estimated mean AAR.

Figure 4: Amino acid recovery (AAR) per-light chain variable region on 98 curated human antibody structures
from the AbMPNN test set. Error bars correspond to the standard error of the estimated mean AAR.
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Table 6: Structural ablation study for IgCraft in CDR grafting. We performed framework generation on 27
paired mouse antibody structures from SAbDab (20 bound, 7 unbound) using IgCraft without structure infor-
mation (seq. only) and with both sequence and structure information (seq. + structure). We report the mean
sequence identity (%) between the grafted and original mouse sequences, the mean OASis humanness score
(Prihoda et al., 2022), the mean AbNatiV humanness score per-chain (Ramon et al., 2024), the mean H-cdr3
Cα RMSD between the AlphaFold3 predictions and each corresponding ground-truth PDB, and the fraction of
the sequences for the 20 bound structures correctly docked by AF3 (DockQ >0.23).

Samples % Seq. id.
(VH / VL)

Humanness
(OASis)

Humanness
(AbNatiV, VH / VL) H-CDR3 RMSD (Å) DockQ >0.23

Seq. only 72.9 / 77.4 78.4 0.85 / 0.91 2.42 7/20
Seq. + structure 77.6 / 77.5 77.9 0.88 / 0.90 2.04 10/20

A.2.5 CDR GRAFTING AND HUMANISATION

To obtain data for CDR grafting we filtered for non-redundant paired mouse antibody structures from
SAbDab (identified as mouse using germline alignment with ANARCI (Dunbar & Deane, 2015)),
using a cutoff date of February 2024. This yielded 27 unique paired mouse structures, 20 of which
were bound structures containing non-antibody chains and 7 of which were unbound structures.
We labelled CDRs for these antibodies according to IMGT definition. Using the structures of all
CDRs as input to IgCraft, as well as the CDR sequences with a padding of two framework residues
on each side, we sampled a single framework sequence for each set of mouse CDRs, using the
structure encoder to encode the CDR structure and applying the particle filtering method in (16) with
32 particles to condition on the ground-truth (padded) CDR sequences. This produced full-length
paired VH/VL sequences for each mouse antibody, containing the original mouse CDR sequences
and generated framework sequences.

To perform structure prediction with AlphaFold3 (AF3) (Abramson et al., 2024), we used Colab-
Fold’s multiple sequence alignment (MSA) pipeline (Mirdita et al., 2022) to generate a paired MSA
for each pair of antibody VH/VL chains, as well as a separate paired MSA for the target chains in
PDB structures with more than one non-antibody chain. The paired-chain MSA is then split into
segments (spans of columns) corresponding to the sequences of individual chains in each complex.
We also generated an unpaired MSA for each chain in each file, and concatenated the unpaired MSA
as new rows after each chain’s portion of its paired MSA (if present). The final concatenated MSA
was then used as an ”unpaired MSA” input to AF3, where individual rows in the paired portion of
MSAs for complexed chains correspond to sequences from the same species (unpaired target chains
do not have a paired portion). We used these MSA inputs to run AF3 with 10 seeds and used the
prediction with the highest ranking score as the final structural model (the default behavior). To
calculate CDR RMSD statistics, we superimpose the framework regions of the corresponding an-
tibody chain in the predicted and ground-truth structures, excluding CDR regions from being used
to calculate the optimal superposition. We use the python implementation of DockQ to calculate
docking scores (Mirabello & Wallner, 2024). To provide some intuition as to what DockQ scores
represent, we include three illustrative examples of AF3 structure predictions for grafted antibodies,
including the ground-truth mouse antibody crystal structure but superimposing only using the target
protein (Figure 5).

As an ablation study, we also performed CDR grafting using IgCraft without any structural informa-
tion on the 27 test set mouse antibodies, otherwise using the same settings as in structure-conditioned
generation (2 pad residues on both sides per-CDR, 32 particles). The results of this study are pro-
vided in Table 6. Although IgCraft was able to achieve a high level of humanisation despite the
lack of structural information, metrics obtained from the AF3 prediction (H-CDR3 RMSD, DockQ)
indicate that giving IgCraft structural information significantly improved the model’s ability to gen-
erate framework sequences that preserve the binding capability of the CDRs. We hope to explore in
future work if using predicted structures in place of true crystal structures leads to a similar boost in
performance in settings where ground-truth structural data is not available.
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Figure 5: Illustrative AlphaFold3 predictions for the grafted sequence and ground-truth bound crystal structures
for the mouse antibodies used in the CDR grafting experiment. We show the ground-truth target protein as a
surface with the predicted humanised VH/VL structure in gold and the ground-truth mouse antibody structure in
blue. Three examples are chosen for visualization: the first (left) is a high-quality docked structure prediction
with DockQ = 0.87 (PDB ID: 8TFH), the second (middle) is a docked structure with acceptable quality of
DockQ = 0.26 (PDB ID: 8TXU), and the final (right) is an incorrectly docked structure with DockQ = 0.05
(PDB ID: 8TVH). We note that the WT mouse antibody for 8TVH (right) was also incorrectly docked by AF3,
like most (9/10) of the grafted antibodies which produced DockQ <0.23.
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