\mathcal{X}^2 -DFD: A framework for e \mathcal{X} plainable and e \mathcal{X} tendable Deepfake Detection

Anonymous authors

000

001

003

010

Paper under double-blind review

ABSTRACT

011 Detecting deepfakes (*i.e.*, AI-generated content with malicious intent) has become 012 an important task. Most existing detection methods provide only real/fake predic-013 tions without offering human-comprehensible explanations. Recent studies leveraging multimodal large-language models (MLLMs) for deepfake detection have 014 shown improvements in explainability. However, the performance of pre-trained 015 MLLMs (e.g., LLaVA) remains limited due to a lack of understanding of their ca-016 pabilities for this task and strategies to enhance them. In this work, we empirically 017 assess the strengths and weaknesses of MLLMs specifically in deepfake detection 018 via forgery-related feature analysis. Building on these assessments, we propose 019 a novel framework called \mathcal{X}^2 -DFD, consisting of three core modules. The first module, Model Feature Assessment (MFA), measures the detection capabilities 021 of forgery-related features intrinsic to MLLMs, and gives a descending ranking of these features. The second module, Strong Feature Strengthening (SFS), enhances 023 the detection and explanation capabilities by fine-tuning the MLLM on a dataset constructed based on the top-ranked features. The third module, Weak Feature Supplementing (WFS), improves the fine-tuned MLLM's capabilities on lower-025 ranked features by integrating external dedicated deepfake detectors. To verify 026 the effectiveness of this framework, we further present a practical implementa-027 tion, where an automated forger-related feature generation, evaluation, and rank-028 ing procedure is designed for MFA module; an automated generation procedure of 029 the fine-tuning dataset containing real and fake images with explanations based on top-ranked features is developed for SFS model; an external conventional deep-031 fake detector focusing on blending artifact, which corresponds to a low detection 032 capability in the pre-trained MLLM, is integrated for WFS module. Experimental results show that the proposed implementation enhances overall detection perfor-034 mance compared to pre-trained MLLMs, while providing more convincing explanations. More encouragingly, our framework is designed to be plug-and-play, allowing it to seamlessly integrate with more advanced MLLMs and external detectors, leading to continual improvement and extension to face the challenges of 037 rapidly evolving deepfake technologies.

039 040

041

1 INTRODUCTION

042 Current generative AI technologies have enabled easy manipulation of facial identities, with many 043 applications such as filmmaking and entertainment (Pei et al., 2024). However, these technologies 044 can also be misused to create *deepfakes*¹ for malicious purposes, including violating personal privacy, spreading misinformation, and eroding trust in digital media. Hence, there is a pressing need to establish a reliable and robust system for detecting deepfakes. In recent years, numerous deep-046 fake detection methods have been proposed (Li, 2018; Liu et al., 2021a; Zhao et al., 2021a; Li et al., 047 2020a; Chen et al., 2022; Shiohara & Yamasaki, 2022; Yan et al., 2023c;a), with most focusing on 048 addressing the generalization issue that arises from the discrepancies between training and testing data distributions. Despite improvements in generalization performance, these methods typically only output a probability indicating whether a given input is AI-generated, without providing intu-051 itive and convincing explanations behind the prediction. This lack of reliable explanations confuses

052

¹The term "deepfake" used here refers explicitly to **face** forgery images or videos. Full (natural) image synthesis is not strictly within our scope.

Figure 1: Illustration of the differences between the pre-trained MLLM and ours in deepfake detection. We demonstrate the prediction, explanation, and capability assessment results (see the right column, where each index corresponds to a forgery-related feature) for comparison. Our framework enhances both the detection capability and explanation of the pre-trained MLLM by improving strong features (*e.g.*, skin tone and nose contour) and supplementing weak features (*e.g.*, Blending).

069

071

072

users about why it is deemed fake. In some critical scenarios like incorporating the detection result
 into judicial evidence, explanations are underlying essential.

078 Multimodal Large Language Models (MLLMs) have shown remarkable potential in many research 079 areas (Yin et al., 2023). Given their advanced vision-language integration capabilities, MLLMs hold promise for addressing the explainability gap. A few recent efforts (Jia et al., 2024; Shi et al., 2024) have explored leveraging pre-trained MLLMs to obtain explainability for deepfake detection. 081 However, our preliminary studies reveal limitations in pre-trained MLLMs, primarily due to an insufficient understanding of their capabilities specific to deepfake detection and a lack of effective 083 strategies to enhance their performance. Specifically, we investigate the discrimination of several 084 forgery-related features (e.g., blending, lighting) in the pre-trained MLLM (e.g., LLaVA), and find 085 significant differences. As shown in Fig. 1, we see that some features exhibit strong discriminative capability for deepfake detection, while others do not. This discrepancy may explain the limited 087 detection performance of the pre-trained MLLM, as well as its unreasonable explanations. 880

Inspired by the above investigation, we propose \mathcal{X}^2 -DFD, a novel framework that utilizes MLLMs 089 for e \mathcal{X} plainable and e \mathcal{X} tendable DeepFake Detection. The proposed \mathcal{X}^2 -DFD operates through 090 three core modules. First, the Model Feature Assessment (MFA) Module aims to assess the intrinsic 091 capability of the pre-trained MLLMs in deepfake detection. We provide a quantified assessment of 092 the discriminative capability for detection of each forgery-related feature, leading to a descending ranking of all candidate features. Second, the Strong Feature Strengthening (SFS) Module aims to 094 improve the overall detection performance of the model by fully leveraging strong features (*i.e.*, top-095 ranked intrinsic capabilities) for model fine-tuning. Third, the Weak Feature Supplementing (WFS) 096 *Module* aims to supplement the weak intrinsic capabilities of the model by leveraging the strength of external dedicated detectors (EDDs) for weak features (*i.e.*, low-ranked intrinsic capabilities). Encouragingly, the modular-based design of the proposed \mathcal{X}^2 -DFD framework enables seamless 098 integration with future MLLMs and EDDs as their capabilities evolve. 099

100 Our main contributions are threefold. 1) Studying the intrinsic capabilities of MLLMs for deepfake 101 detection: To our knowledge, we are the first to systematically assess the inherent capabilities of 102 MLLMs specifically in deepfake detection. We reveal that MLLMs have varying discriminating 103 capabilities on different forgery features. 2) Enhancing MLLMs' explainability through designed 104 fine-tuning: Based on the identified strengths of MLLMs, we fine-tune them to generate explanations 105 grounded in their most "familiar" forgery features and abandon those they "unfamiliar" with, thereby improving their ability to accurately detect and convincingly explain deepfakes. 3) For areas where 106 MLLMs show limitations, we integrate EDDs to supplement the model's weakness. This allows us 107 to leverage the strength of both MLLMs and EDDs for a better detection system.

108 2 RELATED WORK

109

110 **Conventional Deepfake Detection** Early detection methods typically focus on performing feature 111 engineering to mine a manual feature such as eye blinking frequency (Li et al., 2018), warping ar-112 tifacts (Li, 2018), headpose (Yang et al., 2019), and etc. Recent conventional deepfake detectors 113 mainly focus on dealing with the issue of generalization (Yan et al., 2023d), where the distribution 114 of training and testing data varies. Until now, there have developed novel solutions from different directions: constructing pseudo-fake samples to capture the blending clues (Li, 2018; Li et al., 2020a; 115 116 Shiohara et al., 2023; Zhao et al., 2021b), learning spatial-frequency anomalies (Gu et al., 2022; Liu et al., 2021a; Luo et al., 2021a; Qian et al., 2020a), focusing on the ID inconsistency clues between 117 fake and corresponding real (Dong et al., 2023), performing disentanglement learning to learn the 118 forgery-related features (Yan et al., 2023b; Yang et al., 2021), performing reconstruction learning 119 to learn the general forgery clues (Cao et al., 2022b; Wang & Deng, 2021), locating the spatial-120 temporal inconsistency (Haliassos et al., 2021; Wang et al., 2023; Zheng et al., 2021a; Yan et al., 121 2024b), and etc. Most of these methods improve the generalization ability compared to the early 122 detection methods. However, these methods can provide only real/fake predictions without giving 123 detailed explanations behind the predictions. The lack of convincing and human-comprehensible 124 explanations might confuse users about why it is deemed fake.

125 Deepfake Detection via Multimodal Large Language Model Vision and language are the two 126 important signals for human perception, and visual-language multimodal learning has thus drawn a 127 lot of attention in the AI community. Recently, the LLaVA series (Liu et al., 2023b; 2024; 2023a) 128 have explored a simple and effective approach for visual-language multimodal modeling. In the field 129 of deepfake detection, (Jia et al., 2024; Shi et al., 2024) have investigated the potential of prompt 130 engineering in face forgery analysis and proposed that existing MLLMs show better explainabil-131 ity than previous conventional deepfake detectors. In addition, Li et al. (2024b) probe MLLMs for explainable fake image detection by presenting a labeled multimodal database for fine-tuning. 132 More recently, (Zhang et al., 2024) proposed using pairs of human-generated visual questions an-133 swering (VOA) to construct the fine-tuning dataset, but manually creating detailed annotations can 134 be costly. Another just-released work (Huang et al., 2024) proposes an automatic approach using 135 GPT-40(Achiam et al., 2023) to generate annotations and train MLLM with the resulting VQA pairs. 136 However, a new critical question was then raised: Can MLLMs (e.g., LLaVa) fully comprehend the 137 fake clues identified by GPT-40? It is reasonable to believe that there remains a capability gap be-138 tween LLaVa and GPT-40. For this reason, we find that existing works lacking in understanding the 139 limitations of capability and then find ways to enhance the strengths and augment the limitations. 140

3 INVESTIGATION OF PRE-TRAINED MLLMS' CAPABILITY IN DEEPFAKE DETECTION

143 144 145

146

141

142

3.1 EVALUATION SETUP

Model. We choose the mainstream MLLM, *i.e.*, LLaVA (Liu et al., 2023b) as the implementation instance of the pre-trained MLLMs. Additionally, we choose one classical external dedicated detector (EDD), Xception (Chollet, 2017), as a baseline model for comparison.

Dataset. We evaluate the models on several widely-used deepfake datasets, including the Deep-150 fake Detection Challenge (DFDC) (Dolhansky et al., 2020), the preview version of DFDC (DFDCP) 151 (Dolhansky et al., 2019), DeepfakeDetection (DFD) (Deepfakedetection., 2021), Celeb-DF-v2 152 (CDF-v2) (Li et al., 2020b), as well as the newly released DF40 dataset (Yan et al., 2024a). The 153 DF40 dataset incorporates a variety of forgery techniques, including Facedancer (Rosberg et al., 154 2022), FSGAN (Nirkin et al., 2019), inSwap (Sangwan, 2020), e4s (Li et al., 2024a), Simswap 155 (Chen et al., 2020), and Uniface (Zhou et al., 2023), providing a comprehensive foundation for 156 evaluating overall detection performance. 157

Evaluation Metrics. We use the Area Under the Curve (AUC) as the primary evaluation metric,
enabling us to assess the model's ability to distinguish between real and fake images across the
whole dataset. In this section, we use the frame-level AUC for evaluation. For individual feature
discrimination, we focus on forgery-related features such as "Is the face layout unnatural?" with
responses of either "yes" or "no." The proportions of "yes" and "no" answers for real and fake

images are calculated as follows, with the ranking score $S^{(q)}$ defined based on the balanced accuracy of the responses:

- 164
- 166
- 167 168

169 170

171 172

174

181

182

183

185 186 187

188

189

190

$$S^{(q)} = \frac{1}{2} \left(\frac{Y_{\text{real}}^{(q)}}{Y_{\text{real}}^{(q)} + N_{\text{real}}^{(q)}} + \frac{N_{\text{fake}}^{(q)}}{Y_{\text{fake}}^{(q)} + N_{\text{fake}}^{(q)}} \right).$$
(1)

Here, $Y_{\text{real}}^{(q)}$ and $Y_{\text{fake}}^{(q)}$ denote the number of "yes" answers, while $N_{\text{real}}^{(q)}$ and $N_{\text{fake}}^{(q)}$ represent the number of "no" answers for real and fake, respectively. This formulation ensures that both true positive and true negative rates are considered, providing a balanced measure of feature discrimination.

173 3.2 EVALUATION OF THE OVERALL DETECTION PERFORMANCE

The comparison between LLaVA (Liu et al., 2023b) and Xception (Chollet, 2017) highlights a notable performance gap. Results in Fig. 2 (left) indicate that the average AUC for LLaVA is 63.7%, while Xception achieves 75.8%, showing a notable gap of 12.1% points. This suggests that, while the LLaVA has certain zero-shot capabilities in other tasks such as (general) image classification, it is still not as strong as the EDD in detecting deepfakes.

However, LLaVA shows strong detection abilities in specific methods (*e.g.*, e4s), sometimes even surpassing Xception (see Fig. 2 (left)). This motivates us to further investigate its intrinsic detection capabilities, and understand the model's "strengths and weaknesses" in deepfake detection. Below, we provide a detailed investigation of the discrimination of each forgery-related feature.

Figure 2: (Left) AUC comparison between (zero-shot) LLaVA (blue) and Xception (red) for deepfake detection across different datasets; (Right) Balance accuracy score for individual feature discrimination, with Strong features in the top-left corner and Weak features in the bottom-right corner based on discrimination scores. Full questions/features are provided in the Appendix A.1.

- 191 192
- 193 194

3.3 INVESTIGATION OF INDIVIDUAL FEATURE'S DISCRIMINATION

As shown in the top row of Fig. 4, our implementation encompasses three consecutive steps.

Step 2: Question Evaluation. Referring to Section 3.2, each generated question is paired with an image from the assessment dataset to form a prompt for constructing the fine-tuning dataset. The model responds with a binary output ("yes" or "no") based on its interpretation of the image in relation to the question. These responses are aggregated into a confusion matrix for each question, thereby quantifying the detection capability of the associated forgery-related features. Mathematically, for each question Q_i^k and image x_i , the MLLM produces:

209 210

$$R_{i,j}^k = \mathcal{M}_{\text{base}}(Q_i^k, x_j), \tag{2}$$

where $R_{i,j}^k \in \{\text{yes, no}\}$, representing the model's response for each image-question pair.

Step 3: Question Ranking. According to the accuracy of all candidate questions, we obtain a descending ranking of questions, *i.e.*, the ranking of forgery-related features. This ranking allows us to quantify how well each feature contributes to distinguishing between real and fake images. Specifically, the accuracy of each question is computed by evaluating the proportion of correct responses

across the dataset. Specifically, for each question Q_i^k , We calculate the true positive rate (TPR) and true negative rate (TNR), then take their average to obtain the Balanced Accuracy, as follows:

218 219 220

221 222

241

242

243

244

245

246 247

248

249

250 251

253 254

255

256

257

258

259 260

261

262

264

265

267

Balanced Accuracy_i^k =
$$\frac{1}{2} \left(\frac{\mathrm{TP}_{i}^{k}}{\mathrm{TP}_{i}^{k} + \mathrm{FN}_{i}^{k}} + \frac{\mathrm{TN}_{i}^{k}}{\mathrm{TN}_{i}^{k} + \mathrm{FP}_{i}^{k}} \right),$$
 (3)

where: TP_i^k denotes True Positives for question Q_i^k , TN_i^k the True Negatives for question Q_i^k , FP_i^k the False Positives for question Q_i^k , and FN_i^k the False Negatives for question Q_i^k .

Subsequently, questions are ranked in descending order based on their balance accuracy scores, thereby prioritizing forgery features that effectively discriminate between real and fake images.

Strong Features. Strong features typically involve *semantic-level facial structural or appearance anomalies*. As shown in the strong feature section of Fig. 2 (right), which primarily includes facial irregularities such as unusual facial layouts (*e.g.*, *Rank 9*, *11*, *17*) or distorted facial features (*e.g.*, *Rank 3*, *4*, *14*), *e.g.*, the nose, eyes, or mouth. Since the pre-trained MLLM is good at extracting and utilizing these features for detection, it can provide a more reliable and accurate explanation.

233 Weak Features. Weak features typically involve *fine-grained*, *low-level textures*, such as blending 234 anomalies. As shown in Fig. 2 (right), these weak features are primarily subtle details related 235 to texture, reflection, shadow, and blending. Examples of texture issues include rough or overly smooth surfaces (e.g., Rank 68, 77, 83). Furthermore, inconsistencies in lighting and shadows (e.g., 236 Rank 85, 86, 90, 96) and blending artifacts on the face (e.g., Rank 54, 84, 88) are also prominent. 237 Since these signal-level anomalies are challenging for pre-trained MLLMs to detect, the pre-trained 238 MLLM is likely to struggle in reliably distinguishing between real and manipulated content when 239 relying on these weak features for detection and explanation. 240

Figure 3: High-level pipeline of the $e\mathcal{X}$ plainable and $e\mathcal{X}$ tendable **D**eepFake **D**etection (\mathcal{X}^2 -DFD) framework, which contains three core modules: MFA, SFS, and WFS for model development, and one MI module for inference. Detailed text can be seen in Sec. 4.1.

4 OUR METHODOLOGY

4.1 A GENERAL FRAMEWORK FOR DEEPFAKE DETECTION

As illustrated in Fig. 3, we design a novel framework for the deepfake detection task based on MLLMs, called e \mathcal{X} plainable and e \mathcal{X} tendable **D**eepFake **D**etection (\mathcal{X}^2 -DFD). Our framework contains two main parts: model development (the core one) and model deployment. For model development, the definition and role of each module are demonstrated as follows:

- **Model Feature Assessment Module** (MFA Module): Given an assessment dataset and a candidate list of forgery-related features, this module assesses the inherent detection capability of each feature in the initial pre-trained MLLM. It outputs a capability ranking of all discriminative features in detecting deepfakes.
- Strong Feature Strengthening Module (SFS Module): According to the capability ranking, this module aims to strengthen good intrinsic capabilities to improve the overall detection performance of the initial pre-trained MLLM, and outputs a strengthened MLLM.
- Weak Feature Supplementing Module (WFS Module): Based on the capability ranking and the strengthened MLLM, this module aims to supplement weak intrinsic capabilities, and outputs a stronger MLLM.

Model Inference (MI) Module is implemented to output the predictions and detailed explanations.
 Specifically, this module aims to deploy our final MLLM for inference purposes, *i.e.*, detecting deepfakes (providing real/fake prediction) and explaining deepfakes (giving detailed reasons behind the prediction).

Future extension to an (automatic) close-loop framework: We propose adding a user feedback loop to the MFA module. This extension would allow for continuous model improvement by iteratively incorporating user feedback, which would adjust the model's focus on certain features and further refine its performance.

Figure 4: The discrete implementation of the proposed framework, where an automated forgerrelated feature generation, evaluation, and ranking procedure is designed for *MFA* module; an automated generation procedure of the fine-tuning dataset containing real and fake images with explanations based on strong features is developed for *SFS* model. The implementation of *WFS* module can be seen in Fig. 5. Detailed text is in Sec. 4.2.

300 301 302

296

297

298

299

274

275

276

277

4.2 AN IMPLEMENTATION OF THE DETECTION FRAMEWORK

In this subsection, we delineate a **concrete implementation** of the proposed \mathcal{X}^2 -DFD framework, utilizing a pre-trained Multimodal Large Language Model (MLLM), *e.g.*, LLaVA. The architecture of the implementation is depicted in Fig. 4. Our implementation is divided into four primary modules: Model Feature Assessment (MFA), Strong Feature Strengthening (SFS), Weak Feature Supplementing (WFS), and Model Inference (MI) Module. We will introduce them below.

308 309

4.2.1 IMPLEMENTATION OF MFA MODULE

As shown in the top row of Fig. 4, MFA encompasses three consecutive steps: question generation, evaluation, and ranking. The methodology for each of these steps has been explained in detail in the previous section. For more information, please refer to Sec. 3.3. These obtained questions are ranked in descending order based on their accuracy scores, thereby prioritizing forgery-related features that most effectively discriminate between real and fake images. After ranking the generated questions by LLMs, we conduct human verification to ensure the reliability and accuracy of the fake features. Note that most questions are generated well without any obvious errors or irrelevant information.

317

318 4.2.2 IMPLEMENTATION OF SFS MODULE

The SFS module fine-tunes the MLLM by strengthening its ability to detect features that have been identified as high-performing in the MFA module. This process consists of three key steps:

Step 1: Real/Fake Prompts Generation. Leveraging the strong features from the MFA module, we
 generate specialized prompts to guide the MLLM's focus during the fine-tuning phase. Specifically, we first utilize GPT-40 to summarize these strong features and construct two distinct prompts: one

324 tailored for real images (\mathbf{P}_{real}) and another for fake images (\mathbf{P}_{fake}). These prompts are formulated 325 as: $\mathbf{P}_{\text{real}} = f(\mathbf{F}_{\text{real}}), \quad \mathbf{P}_{\text{fake}} = f(\mathbf{F}_{\text{fake}}), \text{ where } \mathbf{F}_{\text{real}} \text{ and } \mathbf{F}_{\text{fake}} \text{ denote the sets of strong features}$ 326 relevant to real and fake images, respectively. Also, f represents any LLMs. Here, we employ 327 GPT-40 for implementation.

328 Step 2: Fine-tuning Dataset Construction. A fine-tuning dataset D_{ft} comprising VQA-style (visual question answering) pairs, which is constructed by pairing each image with the correspond-330 ing (real or fake) prompt. Each image is annotated with the specific features it exhibits, and the 331 standardized prompt $\mathbf{P}_{\text{fixed}}$ is defined as: $\mathbf{P}_{\text{fixed}}$ = "Is this image real or fake?" The model's re-332 sponse is structured to begin with a definitive statement—"This image is real/fake"—followed 333 by an explanation based on the identified features. Formally, the final answer is represented as: 334 $A_{\text{final}} =$ "This image is real/fake" + $A_{\text{real/fake}}$. Consequently, each VQA-style pair of the fine-tuning dataset D_{ft} is formalized as: $\mathbf{VQA} = (Image, \mathbf{P}_{fixed}, \mathbf{A}_{final}).$ 335

336 **Step 3: MLLM Fine-tuning.** The initial MLLM is fine-tuned using D_{ft} . The fine-tuning process 337 involves adjusting the *projector* to accurately associate image artifacts with the corresponding fake 338 labels. Additionally, Low-Rank Adaptation (LoRA) (Hu et al., 2021) is employed to selectively 339 fine-tune a subset of the model's parameters, thereby focusing the model's reasoning on deepfakespecific features while maintaining overall model integrity. The fine-tuning process can be denoted 340 341

as: $\mathcal{M}_{\text{base}} \xrightarrow{D_{ft}} \mathcal{M}_{\text{fine-tuned}}$, where $\mathcal{M}_{\text{fine-tuned}}$ is the enhanced MLLM with improved deepfake detection capabilities.

Figure 5: Illustration of the pipeline after adding WFS Module, which enhances MLLM deepfake detection by integrating the external dedicated detector, creating an updated fine-tuning dataset. During inference, the MLLM is enhanced by incorporating information from the external detector.

362

342

343 344

345

347

348

349 350

351

352 353

354

355

356

357

360

361

4.2.3 IMPLEMENTATION OF WFS MODULES

The WFS module enhances the MLLM by integrating external deepfake detectors, which are spe-364 cialized in detecting features where the MLLM shows weakness. The overall pipeline after adding 365 the WFS module is illustrated in Fig. 5. This module follows three steps: 366

367 Step 1: External Detector Invocation. For features that the MLLM identifies as weak, we deploy 368 an external specialized deepfake detector (e.g., a blending-based detector (Lin et al., 2024)). This external detector processes the input image and generates a prediction. Note that we also employ 369 other EDDs for implementation, and we provide an in-depth analysis for this in Sec. A.2. Specif-370 ically, when utilizing a blending detector as an instance of EDD, a blending score s is produced: 371 $s = \sigma(\text{BlendDetector}(x))$, where x denotes the input image, and σ denotes the sigmoid function 372 that transforms the logits output of the BlendDetector into the 0-1 range. 373

Step 2: Integration of External Detection Results into the Fine-tuning Dataset. 374

375 The blending score s obtained from the external detector is incorporated into the fine-tuning dataset by appending it to the existing prompts. This is done by adding a statement such as: "By the obser-376 vation of the blending expert, blending score: s" Additionally, based on the score, a corresponding 377 response aligned with the probability is included, as shown in Fig. 5, specifically in the Fine-tuning

Dataset Construction section of the SFS. This integration ensures that the MLLM benefits from both
 its intrinsic detection capabilities and the specialized insights provided by the EDD.

Step 3: Integration of External Detection Results into Inference Prompts During inference,
 the EDD's results are integrated into the MLLM's prompt-based reasoning process. The detailed
 description and formulation can be seen in Sec. 4.2.4 below.

4.2.4 IMPLEMENTATION OF MI MODULE

Generally, during the inference, the external detector's blending score s is incorporated into 385 the MLLM's prompt-based reasoning process. Specifically, the final output of the model 386 is structured, to begin with a definitive statement-"This image is real/fake"-followed 387 by reasoning based on identified visual features. Based on the blending score s, the 388 model appends a descriptive statement: $A_{\text{final}} =$ "This image is real/fake" + $A_{\text{real/fake}}$ + 389 "And this image contains obvious/minimal blending artifacts." The model acquires this response 390 pattern through training. This approach ensures that the MLLM effectively leverages EDDs to en-391 hance its detection performance, particularly for features where it initially demonstrated weakness. 392

- 393 5 EXPERIMENTS 394
- **395 5.1** EXPERIMENTAL SETTINGS

396 **Datasets.** Following previous works (Yan et al., 2023d;a) We conduct experiments on the following 397 commonly used datasets: FaceForensics++ (FF++) (Rossler et al., 2019), DFDC, DFDCP, DFD, 398 CDF-v2, DFo (Jiang et al., 2020), WDF (Zi et al., 2020), and FFIW (Zhou et al., 2021). In line 399 with the standard deepfake benchmark (Yan et al., 2023d), we use the c23 version of FF++ for 400 training and other datasets for testing (**Protocol-1**). We also evaluate the models on the **just-released** 401 deepfake dataset DF40 (Yan et al., 2024a), which contains many latest SOTA forgery methods on 402 the FF++ domain. We select six face-swapping methods generated from the FF++ domain for crossmanipulation evaluation (Protocol-2). 403

Implementation Details. We fine-tune the LLaVA model (Liu et al., 2023b) using the VQA dataset.
For the conventional model, we use a blending-based approach proposed in (Lin et al., 2024). Training is conducted on a single NVIDIA 4090 GPU for 1 epoch, with a learning rate of 2e-5, rank set to 16, and alpha, conventionally set to twice the rank, at 32. The batch size is set to 4, and we use a gradient accumulation step of 1. For evaluation metrics, we mainly report both the frame-level and video-level AUC of our results. Other metrics such as Accuracy (Acc.), Equal Error Rate (EER), and Average Precision (AP) are also reported. More details can be seen in the Appendix A.8.

411 **Compared Baselines.** We compare 24 methods both frame level and video level. In which Xception 412 (Chollet, 2017), Efficient-b4 (Tan & Le, 2019), FWA (Li, 2018), Face X-ray (Li et al., 2020a), 413 RECCE (Cao et al., 2022a), F3-Net (Qian et al., 2020b), SPSL (Liu et al., 2021b), SRM (Luo 414 et al., 2021b), UCF (Yan et al., 2023c), IID (Huang et al., 2023), ICT (Dong et al., 2022), ViT-B 415 (Dosovitskiy et al., 2020), ViT-B (Radford et al., 2021), LSDA (Yan et al., 2023a), PCL+I2G (Zhao et al., 2021c), LipForensics (Haliassos et al., 2021), FTCN (Zheng et al., 2021a), CORE (Ni et al., 416 2022), SBI (Shiohara & Yamasaki, 2022), UIA-ViT (Zhuang et al., 2022), SLADD (Chen et al., 417 2022), DCL (Sun et al., 2021), SeeABLE (Larue et al., 2023), and CFM (Luo et al., 2023). 418

- 419 420
- 5.2 PROTOCOL-1: CROSS-DATASET EVALUATION

In Tab. 1, we compare our method with 24 SOTA detectors via cross-dataset evaluations. The results of other compared baselines are mainly cited from their original papers. Ours consistently outperforms other models across all tested scenarios, demonstrating its better detection performance. Our approach excels across both frame-level and video-level evaluations, maintaining superior results when compared to other methods. The table clearly highlights our method's capability to generalize and consistently achieve higher accuracy on cross-dataset tasks.

- 427
- 428 5.3 PROTOCOL-2: CROSS-MANIPULATION EVALUATION
- 429
- Evaluating our model's performance on cross-manipulation tasks helps assess whether it can handle previously unseen fake types. We use the recently released DF40 dataset (Yan et al., 2024a) for evaluation. Our method generally outperforms other models on average, particularly the e4s,

Frame-Level AUC Video-Level AUC 436 437 Method Venues CDF DFDCP DFDC DFD Avg Method Venues CDF DFDCP DFDC DFD Avg 438 CVPR 2017 Xception 737 737 70.8 81.6 75.0 Xception **CVPR 2017** 81.6 74 2 732 89.6 79.7 FWA **CVPRW 2018** 63.7 61.3 74.0 66.5 PCL+I2G **ICCV 2021** 74.4 67.5 66.8 90.0 439 Efficient-b4 **ICML 2019** 74.9 72.8 69.6 81.5 747 LipForensics **CVPR 2021** 82.4 73 5 440 Face X-ray **CVPR 2020** 67.9 69.4 63.3 76.7 69.3 FTCN **ICCV 2021** 86.9 74.0 71.0 944 81.6 F3-Net ECCV 2020 77.0 77.2 72.8 82.3 77.3 ViT-B (CLIP) ICML 2021 88.4 82.5 76.1 90.0 84.3 441 SPSL CVPR 2021 76.5 74.1 70.1 81.2 75.5 CORE **CVPRW 2022** 80.9 72.0 72.1 88.2 78 3 442 SRM **CVPR 2021** 75.5 74.1 70.0 81.2 75.2 SBIs* **CVPR 2022** 90.6 87.7 75.2 88.2 85.4 ViT-B (IN21k) ICLR 2021 75.0 75.6 73.4 86.4 77.6 UIA-ViT ECCV 2022 82.4 75.8 94.7 443 ViT-B (CLIP) ICML 2021 80.2 73.5 86.6 80.5 SLADD* **CVPR 2022** 79.7 77.2 81.7 444 RECCE CVPR 2022 74.2 71.3 DCL AAAI 2022 88.2 76.9 75.0 92.1 83.1 73.2 81.8 75.1 IID CVPR 2023 81.2 SeeABLE ICCV 2023 75.9 83.8 87.3 86.3 445 ICT CVPR 2023 85.7 84.1 CFM **TIFS 2023** 89.7 80.2 70.6 95.2 83.9 446 ICCV 2023 73.5 70.2 74.3 ICCV 2023 UCF 73.5 79.8 UCF 83.7 74.2 <u>77.0</u> 86.7 80.4 LSDA **CVPR 2024** 83.0 81.5 73.6 88.0 81.5 LSDA **CVPR 2024** 89.8 81.2 73.5 95.6 85.0 447 90.3 89.7 83.5 92.5 89.0 95 5 91.2 85.3 95.7 91.9 448 Ours Ours (+4.6%)(+8.2%)(+9.9%)(+4.5%)(+7.5%)(+5.5%)(+4.9%)(+8.3%)(+0.1%)(+6.9%)449

Table 1: Protocol-1: Cross-dataset evaluations with 24 existing detectors. All detectors are trained
on FF++_c23 (Rossler et al., 2019) and evaluated on other datasets. The top two results are highlighted, with the best in bold and the second underlined. '*' indicates our reproductions.

Inswap, and SimSwap methods (see Tab. 2). This shows that our method effectively learns more generalizable features for detection, even against the latest techniques.

Table 2: **Protocol-2:** Cross-manipulation evaluations within the FF++ domain (frame-level AUC only). We leverage the DF40 dataset (Yan et al., 2024a) and select six representative face-swapping methods generated within the FF++ domain, keeping the data domain unchanged. The top two results are highlighted, with the best result shown in bold and the second-best underlined.

Method	Venues	uniface	e4s	facedance	er fsgan	inswap	simswap	Avg.
RECCE (Cao et al., 2022a)	CVPR 2022	84.2	65.2	78.3	88.4	79.5	73.0	78.1
SBI (Shiohara & Yamasaki, 2022)	CVPR 2022	64.4	69.0	44.7	87.9	63.3	56.8	64.4
CORE (Ni et al., 2022)	CVPRW 2022	81.7	63.4	71.7	91.1	79.4	69.3	76.1
IID (Huang et al., 2023)	CVPR 2023	79.5	71.0	79.0	86.4	74.4	64.0	75.7
UCF (Yan et al., 2023c)	ICCV 2023	78.7	69.2	80.0	88.1	76.8	64.9	77.5
LSDA (Yan et al., 2023a)	CVPR 2024	85.4	68.4	75.9	83.2	81.0	72.7	77.8
CDFA (Lin et al., 2024)	ECCV 2024	76.5	67.4	75.4	84.8	72.0	76.1	75.9
ProgressiveDet (Cheng et al., 2024)	NeurIPS 2024	84.5	71.0	73.6	86.5	78.8	<u>77.8</u>	78.7
Ours	-	85.2	91.2	83.8	89.9	78.4	84.9	85.6

5.4 ABLATION STUDY

In this section, we aim to evaluate the effectiveness of each component proposed in our framework from both detection ability and feature capability aspects.

471 472

468 469

470

435

450 451

452

453 454

455

456

457

473 Detection Ability. We evaluate the generalization performance in cross-dataset evaluation sce-474 narios. The ablations involve the following variants. variant-1: Baseline (Pre-trained MLLM), which is an initial LLaVA without any feature strengthening or supplementing; variant-2: without 475 SFS; variant-3: with SFS; variant-4: EDD only, where we use the trained (Lin et al., 2024) for 476 inference; variant-5: Ours, which is our final framework with all MFA, SFS, and WFS modules 477 implemented. Results in Tab. 3 demonstrate a clear improvement in AUC, AP, and EER when both 478 SFS and WFS modules are applied, confirming the importance of combining feature strengthening 479 and supplementation for optimal deepfake detection performance. 480

481

Feature Capability. We also conduct a comparative study of feature capabilities before and after
 feature strengthening. As shown in Fig. 6, most feature capabilities are significantly enhanced fol lowing the application of strong feature strengthening. Notably, even some of the weaker features
 saw improvements after the enhancement process. A more detailed breakdown and analysis of these
 improvements are provided in the Appendix A.1.

Table 3: Ablation study regarding the effectiveness of each proposed module via cross-dataset evaluations. The results show an incremental benefit in each module.

Figure 6: Comparison of feature capability before and after SFS. After adding the external detector to supplement the MLLM, the model's feature capabilities (almost all) can be further improved.

Figure 7: Comparison of detection and explanation performance across GPT-40, LLaVA, and Ours

5.5 HUMAN EVALUATION

We conduct a human evaluation by sampling real and fake images from existing datasets, comparing GPT40, utilizing the best prompt from (Jia et al., 2024), LLaVa 7B (Pre-trained MLLM) (Liu et al., 2023b), and our model (developed from the Pre-trained LLaVa 7B). Participants evaluate the models across three metrics: detection accuracy, explanation preference, and overall preference for detection and explanations. In all aspects, our model demonstrated superior performance, excelling in both accuracy and human preference for explanations. Further details on the setting description, testing procedure, and analysis can be found in Appendix A.4.

6 CONCLUSION

In this paper, we propose \mathcal{X}^2 -DFD, a novel framework that harnesses the power of Multimodal Large Language Models (MLLMs) for explainable and extendable deepfake detection. For the first time, we systematically evaluate the intrinsic capabilities of the pre-trained MLLMs, revealing their varying effectiveness across different forgery-related features. Inspired by this, we implement a tar-geted fine-tuning strategy, which has largely improved the explainability of the MLLMs, specifically capitalizing on their strengths. Furthermore, by integrating external deepfake detectors (EDDs), we design a novel framework to combine the complementary advantages of both MLLMs and con-ventional detectors for better detection and explanation. In the future, we plan to implement our framework in an automated, iterative system that will enable continuous updates based on collected feedback. We hope our work can inspire future advancements in leveraging MLLMs for a better deepfake detection system.

Content Structure of the Appendix. Due to limited page content, we put other important analyses and experiments into the Appendix. Specifically, in our appendix, we provide detailed information on the weak Feature Supplementing analysis (A.2), robustness evaluations (A.3), in-domain FF++ test results (A.6), experiments on various LLMs/MLLMs (A.5), and sample demonstrations (A.9).

Ethics & Reproducibility statements. All facial images used are from publicly available datasets
with proper citations, ensuring no violation of personal privacy. Essential implementation details are in the Appendix, and we will release the code upon acceptance.

540 REFERENCES 541

559

- Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen 542 Bach, et al. Phi-3 technical report: A highly capable language model locally on your phone, 543 2024. URL https://arxiv.org/abs/2404.14219. 544
- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-546 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical 547 report. arXiv preprint arXiv:2303.08774, 2023.
- 548 Junyi Cao, Chao Ma, Taiping Yao, Shen Chen, Shouhong Ding, and Xiaokang Yang. End-to-end 549 reconstruction-classification learning for face forgery detection. In Proceedings of the IEEE/CVF 550 Conference on Computer Vision and Pattern Recognition, pp. 4113–4122, 2022a. 551
- 552 Junyi Cao, Chao Ma, Taiping Yao, Shen Chen, Shouhong Ding, and Xiaokang Yang. End-to-end reconstruction-classification learning for face forgery detection. In 2022 IEEE/CVF Conference 553 on Computer Vision and Pattern Recognition (CVPR), pp. 4103–4112, 2022b. doi: 10.1109/ 554 CVPR52688.2022.00408. 555
- 556 Liang Chen, Yong Zhang, Yibing Song, Lingqiao Liu, and Jue Wang. Self-supervised learning of adversarial example: Towards good generalizations for deepfake detection. In *Proceedings of the* 558 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18710–18719, 2022.
- Renwang Chen, Xuanhong Chen, Bingbing Ni, and Yanhao Ge. Simswap: An efficient framework 560 for high fidelity face swapping. In Proceedings of the 28th ACM International Conference on 561 MultiMedia, pp. 2003–2011, 2020. 562
- 563 Jikang Cheng, Zhiyuan Yan, Ying Zhang, Yuhao Luo, Zhongyuan Wang, and Chen Li. Can we leave deepfake data behind in training deepfake detector? arXiv preprint arXiv:2408.17052, 2024.
- 565 François Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceedings 566 of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2017. 567
- 568 2021. Deepfakedetection., https://ai.googleblog.com/2019/09/ 569 contributing-data-to-deepfakedetection.html Accessed 2021-11-13.
- 570 Brian Dolhansky, Russ Howes, Ben Pflaum, Nicole Baram, and Cristian Canton Ferrer. The deepfake detection challenge (dfdc) preview dataset. arXiv preprint arXiv:1910.08854, 2019. 572
- 573 Brian Dolhansky, Joanna Bitton, Ben Pflaum, Jikuo Lu, Russ Howes, Menglin Wang, and 574 Cristian Canton Ferrer. The deepfake detection challenge (dfdc) dataset. arXiv preprint arXiv:2006.07397, 2020. 575
- 576 Shichao Dong, Jin Wang, Renhe Ji, Jiajun Liang, Haoqiang Fan, and Zheng Ge. Implicit identity 577 leakage: The stumbling block to improving deepfake detection generalization. In Proceedings of 578 the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3994–4004, 2023. 579
- Xiaoyi Dong, Jianmin Bao, Dongdong Chen, Ting Zhang, Weiming Zhang, Nenghai Yu, Dong 580 Chen, Fang Wen, and Baining Guo. Protecting celebrities from deepfake with identity consis-581 tency transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 582 Recognition, pp. 9468-9478, 2022. 583
- 584 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas 585 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint 586 arXiv:2010.11929, 2020.
- 588 Qiqi Gu, Shen Chen, Taiping Yao, Yang Chen, Shouhong Ding, and Ran Yi. Exploiting fine-grained 589 face forgery clues via progressive enhancement learning. In Proceedings of the AAAI Conference 590 on Artificial Intelligence, pp. 735-743, 2022. 591
- Alexandros Haliassos, Konstantinos Vougioukas, Stavros Petridis, and Maja Pantic. Lips don't lie: 592 A generalisable and robust approach to face forgery detection. In *Proceedings of the IEEE/CVF* Conference on Computer Vision and Pattern Recognition, 2021.

- Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https://arxiv.org/abs/2106.09685.
- Baojin Huang, Zhongyuan Wang, Jifan Yang, Jiaxin Ai, Qin Zou, Qian Wang, and Dengpan Ye.
 Implicit identity driven deepfake face swapping detection. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 4490–4499, 2023.
- ⁶⁰¹ Zhengchao Huang, Bin Xia, Zicheng Lin, Zhun Mou, and Wenming Yang. Ffaa: Multimodal large language model based explainable open-world face forgery analysis assistant. *arXiv preprint arXiv:2408.10072*, 2024.
- Shan Jia, Reilin Lyu, Kangran Zhao, Yize Chen, Zhiyuan Yan, Yan Ju, Chuanbo Hu, Xin Li,
 Baoyuan Wu, and Siwei Lyu. Can chatgpt detect deepfakes? a study of using multimodal large
 language models for media forensics. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 4324–4333, 2024.
- Liming Jiang, Ren Li, Wayne Wu, Chen Qian, and Chen Change Loy. Deeperforensics-1.0: A large-scale dataset for real-world face forgery detection. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2020.
- Nicolas Larue, Ngoc-Son Vu, Vitomir Struc, Peter Peer, and Vassilis Christophides. Seeable: Soft
 discrepancies and bounded contrastive learning for exposing deepfakes, 2023. URL https:
 //arxiv.org/abs/2211.11296.
- Lingzhi Li, Jianmin Bao, Ting Zhang, Hao Yang, Dong Chen, Fang Wen, and Baining Guo. Face
 x-ray for more general face forgery detection. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2020a.
- Maomao Li, Ge Yuan, Cairong Wang, Zhian Liu, Yong Zhang, Yongwei Nie, Jue Wang, and Dong
 Xu. E4s: Fine-grained face swapping via editing with regional gan inversion, 2024a. URL
 https://arxiv.org/abs/2310.15081.
- 624 Y Li. Exposing deepfake videos by detecting face warping artif acts. *arXiv preprint* 625 *arXiv:1811.00656*, 2018.
- Yixuan Li, Xuelin Liu, Xiaoyang Wang, Bu Sung Lee, Shiqi Wang, Anderson Rocha, and Weisi Lin. Fakebench: Probing explainable fake image detection via large multimodal models, 2024b. URL https://arxiv.org/abs/2404.13306.
- Yuezun Li, Ming-Ching Chang, and Siwei Lyu. In ictu oculi: Exposing ai created fake videos
 by detecting eye blinking. In 2018 IEEE International Workshop on Information Forensics and
 Security (WIFS), pp. 1–7, 2018. doi: 10.1109/WIFS.2018.8630787.
- Yuezun Li, Xin Yang, Pu Sun, Honggang Qi, and Siwei Lyu. Celeb-df: A new dataset for deep-fake forensics. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2020b.
- Yuzhen Lin, Wentang Song, Bin Li, Yuezun Li, Jiangqun Ni, Han Chen, and Qiushi Li. Fake it till you make it: Curricular dynamic forgery augmentations towards general deepfake detection, 2024. URL https://arxiv.org/abs/2409.14444.
- Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction tuning, 2023a.
- Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023b. URL
 https://arxiv.org/abs/2304.08485.
- Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
 Llava-next: Improved reasoning, ocr, and world knowledge, January 2024. URL https://llava-vl.github.io/blog/2024-01-30-llava-next/.

648 649 650	Honggu Liu, Xiaodan Li, Wenbo Zhou, Yuefeng Chen, Yuan He, Hui Xue, Weiming Zhang, and Nenghai Yu. Spatial-phase shallow learning: Rethinking face forgery detection in frequency domain, 2021a. URL https://arxiv.org/abs/2103.01856.
651	
652	Honggu Liu, Xiaodan Li, Wenbo Zhou, Yuefeng Chen, Yuan He, Hui Xue, Weiming Zhang, and
653	Nenghai Yu. Spatial-phase shallow learning: rethinking face forgery detection in frequency do-
654	main. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
655	20216.
656	Anwei Luo, Chengi Kong, Jiwu Huang, Yongijan Hu, Xiangui Kang, and Alex C Kot, Beyond the
657	prior forgery knowledge: Mining critical clues for general face forgery detection. <i>IEEE Transac</i> -
658 659	tions on Information Forensics and Security, 19:1168–1182, 2023.
660	Yuchen Luo, Yong Zhang, Junchi Yan, and Wei Liu. Generalizing face forgery detection with high- frequency features. 2021a. URL https://arxiv.org/abs/2103.12376.
001	
663 664	Yuchen Luo, Yong Zhang, Junchi Yan, and Wei Liu. Generalizing face forgery detection with high- frequency features. In <i>Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern</i> <i>Recognition</i> , 2021b.
665	
666	Yunsheng Ni, Depu Meng, Changqian Yu, Chengbin Quan, Dongchun Ren, and Youjian Zhao. Core:
667	Consistent representation learning for face forgery detection, 2022. URL https://arxiv.
668	org/abs/2206.02749.
669	Vuval Nirkin, Vosi Keller, and Tal Hassner, Esgan: Subject agnostic face swapping and reenactment
670	2019 JIRL https://arxiv.org/abs/1908_05932
671	2019. OKB heeps., / arkiv.org/ abb/ 1900.03952.
672	Gan Pei, Jiangning Zhang, Menghan Hu, Guangtao Zhai, Chengjie Wang, Zhenyu Zhang, Jian Yang,
673	Chunhua Shen, and Dacheng Tao. Deepfake generation and detection: A benchmark and survey.
674	arXiv preprint arXiv:2403.17881, 2024.
675	Vuyang Qian, Guojun Vin, Lu Sheng, Ziyuan Chen, and Jing Shao. Thinking in frequency: Face
676	forgery detection by mining frequency-aware clues 2020a LIRL https://arviv.org/
677	abs/2007.09355.
678	
679	Yuyang Qian, Guojun Yin, Lu Sheng, Zixuan Chen, and Jing Shao. Thinking in frequency: Face
680	forgery detection by mining frequency-aware clues. In Proceedings of the European Conference
681	on Computer Vision, 2020b.
682	Alec Radford Jong Wook Kim Chris Hallacy Aditya Ramesh Gabriel Gob Sandhini Agarwal
683	Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
684	models from natural language supervision. In <i>International conference on machine learning</i> , pp.
685	8748–8763. PMLR, 2021.
686	Estin Dashara Fran Fadal Alaras Franciska Alaras Franciska and Olive for Fast and Fast
687	Perix Rosperg, Eren Eruar Aksoy, Fernando Alonso-Fernandez, and Cristofer Englund. Facedancer:
688	abs/2210_10473
689	abb/2210.101/J.
690	Andreas Rossler, Davide Cozzolino, Luisa Verdoliva, Christian Riess, Justus Thies, and Matthias
691	Nießner. Faceforensics++: Learning to detect manipulated facial images. In Proceedings of the
692	IEEE/CVF Conference on International Conference on Computer Vision, 2019.
693	
694 695	Sondev Sangwan. Koop. nttps://gitnub.com/sUmd3v/roop, 2020. [GitHub repository].
696	Yichen Shi, Yuhao Gao, Yingxin Lai, Hongyang Wang, Jun Feng, Lei He, Jun Wan, Changsheng
697	Unen, Zitong Yu, and Xiaochun Cao. Shield: An evaluation benchmark for face spoofing and
698	101gery detection with multimodal large language models. arXiv preprint arXiv:2402.04178, 2024
699	202 4 .
700	Kaede Shiohara and Toshihiko Yamasaki. Detecting deepfakes with self-blended images. In Pro-
701	ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18720–18729, 2022.

- Kaede Shiohara, Xingchao Yang, and Takafumi Taketomi. Blendface: Re-designing identity encoders for face-swapping. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 7634–7644, 2023.
- Ke Sun, Taiping Yao, Shen Chen, Shouhong Ding, Jilin L, and Rongrong Ji. Dual contrastive learning for general face forgery detection, 2021. URL https://arxiv.org/abs/2112.
 13522.
- Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks. In *Proceedings of the International Conference on Machine Learning*, pp. 6105–6114.
 PMLR, 2019.
- Chengrui Wang and Weihong Deng. Representative forgery mining for fake face detection, 2021.
 URL https://arxiv.org/abs/2104.06609.
- Zhendong Wang, Jianmin Bao, Wengang Zhou, Weilun Wang, and Houqiang Li. Altfreezing for more general video face forgery detection, 2023. URL https://arxiv.org/abs/2307. 08317.
- Zhiyuan Yan, Yuhao Luo, Siwei Lyu, Qingshan Liu, and Baoyuan Wu. Transcending forgery specificity with latent space augmentation for generalizable deepfake detection. *arXiv preprint arXiv:2311.11278*, 2023a.
- Zhiyuan Yan, Yong Zhang, Yanbo Fan, and Baoyuan Wu. Ucf: Uncovering common features for generalizable deepfake detection, 2023b. URL https://arxiv.org/abs/2304.13949.
- Zhiyuan Yan, Yong Zhang, Yanbo Fan, and Baoyuan Wu. Ucf: Uncovering common features for
 generalizable deepfake detection. *arXiv preprint arXiv:2304.13949*, 2023c.
- Zhiyuan Yan, Yong Zhang, Xinhang Yuan, Siwei Lyu, and Baoyuan Wu. Deepfakebench: A comprehensive benchmark of deepfake detection. *arXiv preprint arXiv:2307.01426*, 2023d.
- Zhiyuan Yan, Taiping Yao, Shen Chen, Yandan Zhao, Xinghe Fu, Junwei Zhu, Donghao Luo, Li Yuan, Chengjie Wang, Shouhong Ding, et al. Df40: Toward next-generation deepfake detection. *arXiv preprint arXiv:2406.13495*, 2024a.
- Zhiyuan Yan, Yandan Zhao, Shen Chen, Xinghe Fu, Taiping Yao, Shouhong Ding, and Li Yuan.
 Generalizing deepfake video detection with plug-and-play: Video-level blending and spatiotem poral adapter tuning. *arXiv preprint arXiv:2408.17065*, 2024b.
- Tianyun Yang, Juan Cao, Qiang Sheng, Lei Li, Jiaqi Ji, Xirong Li, and Sheng Tang. Learning to disentangle gan fingerprint for fake image attribution, 2021. URL https://arxiv.org/abs/2106.08749.
- Xin Yang, Yuezun Li, and Siwei Lyu. Exposing deep fakes using inconsistent head poses. In *ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing* (*ICASSP*), pp. 8261–8265. IEEE, 2019.
- Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A survey on multimodal large language models. *arXiv preprint arXiv:2306.13549*, 2023.
- Yue Zhang, Ben Colman, Ali Shahriyari, and Gaurav Bharaj. Common sense reasoning for deep fake detection. *arXiv preprint arXiv:2402.00126*, 2024.
- Hanqing Zhao, Wenbo Zhou, Dongdong Chen, Tianyi Wei, Weiming Zhang, and Nenghai Yu. Multiattentional deepfake detection, 2021a. URL https://arxiv.org/abs/2103.02406.
- Tianchen Zhao, Xiang Xu, Mingze Xu, Hui Ding, Yuanjun Xiong, and Wei Xia. Learning self consistency for deepfake detection, 2021b. URL https://arxiv.org/abs/2012.09311.
- 755 Tianchen Zhao, Xiang Xu, Mingze Xu, Hui Ding, Yuanjun Xiong, and Wei Xia. Learning selfconsistency for deepfake detection, 2021c. URL https://arxiv.org/abs/2012.09311.

- 756 Yinglin Zheng, Jianmin Bao, Dong Chen, Ming Zeng, and Fang Wen. Exploring temporal coherence 757 for more general video face forgery detection, 2021a. URL https://arxiv.org/abs/ 758 2108.06693. 759 Yinglin Zheng, Jianmin Bao, Dong Chen, Ming Zeng, and Fang Wen. Exploring temporal coherence 760 for more general video face forgery detection. In Proceedings of the IEEE/CVF Conference on 761 International Conference on Computer Vision, pp. 15044–15054, 2021b. 762 763 Jiancan Zhou, Xi Jia, Qiufu Li, Linlin Shen, and Jinming Duan. Uniface: Unified cross-entropy 764 loss for deep face recognition. In Proceedings of the IEEE/CVF International Conference on 765 Computer Vision, pp. 20730-20739, 2023. 766 Tianfei Zhou, Wenguan Wang, Zhiyuan Liang, and Jianbing Shen. Face forensics in the wild. 767 In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 768 5778-5788, 2021. 769 770 Wanyi Zhuang, Qi Chu, Zhentao Tan, Qiankun Liu, Haojie Yuan, Changtao Miao, Zixiang Luo, and Nenghai Yu. Uia-vit: Unsupervised inconsistency-aware method based on vision transformer for 771 face forgery detection, 2022. URL https://arxiv.org/abs/2210.12752. 772 773 Bojia Zi, Minghao Chang, Jingjing Chen, Xingjun Ma, and Yu-Gang Jiang. Wilddeepfake: A chal-774 lenging real-world dataset for deepfake detection. In Proceedings of the 28th ACM International 775 Conference on Multimedia, pp. 2382–2390, 2020. 776 777 778 APPENDIX Α 779 780 Due to space constraints, we have included additional important content in the supplementary ma-781 terials. Below is a brief outline of the supplementary content to facilitate readers easily locate the 782 relevant sections: 783 Appendix A.1: Feature Assessment Analysis 784 785 • Appendix A.2: Feature Supplementing Analysis 786 Appendix A.3: Evaluation of Robustness Against Unseen Perturbations 787 • Appendix A.4: Human Study Details and Analysis 788 Appendix A.5: Experiments on different LLMs/MLLMs 789 • Appendix A.6: In-domain results in the FF++ dataset 791 Appendix A.7: Finding in MLLMs • Appendix A.8: Implementation Details 793 • Appendix A.9: Sample Showing 794 A.1 FEATURE ASSESSMENT ANALYSIS 796 797 Feature Score. The scores for different forgery-related features are presented, where Tab. 13 high-798 lights the top 50 strong features, and Tab. 14 shows the 50 weakest features based on their scores. 799 Does the model know these features are related to deepfake? 800 801 We used a series of questions to query the model, applying simple prompt augmentation with the 802 feature-related questions mentioned above. A "yes" indicates the model knows these features are 803 related to deepfake detection, while a "no" indicates the model does not. Detailed results are shown 804 in Tab. 11 and Tab. 12. 805 806 A.2 FEATURE SUPPLEMENTING ANALYSIS 807
- In addition to the used blending model Lin et al. (2024), we also try other instances to implement the EDDs in the WCS module of our framework, each targeting specific types of artifacts, where SRI focusing on the generative artifacts by deep nets, F3-Net focusing on the frequency-level anomalies,

and SBI and CFDA focusing on the blending boundaries. Based on these empirical attempts, We
 summarize the general criteria under which conditions the selected EDD instance can be used in
 our framework. Specifically, the integrated EDD instance should meet the following criteria:

- **Criteria-1**: Each EDD instance should focus on only one type of feature that is positively correlated with fake;
- **Criteria-2**: The score given by the EDD instance can accurately reflect the characteristics of the corresponding feature;
 - Criteria-3: The data distribution of this feature in the dataset is relatively uniform.

Below, we show a detailed illustration of using other EDD instances for implementation one by one.

AIGC Expert Integration. We first consider implementing an AIGC expert to learn the deep gener-ative artifacts. For implementation, we introduce the SRI model, based on self-reconstruction images generated by Simswap (Chen et al., 2020) and train on the Xception model, designed to capture self-reconstruction generative features. However, from Fig. 8, integrating this model into our framework results in only a minor performance improvement of 0.3%. Further analysis reveals a negative corre-lation between the model's features and fake labels in the training set (do NOT meet the **Criteria-1**), indicating that these artifacts are poorly represented in the training data. Consequently, the model struggles to leverage the expert-provided features effectively, offering limited benefits over not using the expert model.

Frequency Expert Integration. We then integrate a frequency-based model F3-Net and train it on the FF++ dataset (Rossler et al., 2019) to capture frequency anomalies. However, from Fig. 8, the overall model's performance is identical to that of the expert, with no improvement. Although the expert features are positively correlated with fake labels, the frequency-based scores are overfitted to the training set and do not accurately reflect the true feature quantity, with only near-1 (1 for fake) and near-0 (0 for real) predictions (do NOT meet the Criteria-2) This leads to a shortcut, where the model relies solely on the expert's output without learning from the feature information, thus limiting the extendability of the integrated model.

Figure 8: The probability distributions of different expert models on the FF++ training dataset. From left to right, the models are SRI, F3-Net, SBI, and CFDA, corresponding to experts in capturing self-reconstruction, frequency anomalies, and self-blending artifacts, respectively. The blending here directly uses the trained weights.

Table 4: Comparison of methods across datasets with values rounded to two decimal places, where the evaluation metric is AUC. The 'Diff (mllm)' column shows the difference from the mllm average.

Variant	CDF	DFDCP	DFDC	DFD	Uniface	e4s	Facedancer	FSGAN	Inswap	Simswap	Avg	Diff
MLLM	83.3	82.0	79.2	91.4	84.5	94.1	79.9	88.0	77.2	83.3	84.3	0.0
SRI	42.9	49.3	52.9	50.9	97.3	65.7	71.3	80.1	80.5	99.9	69.1	-15.2
SRI+MLLM	83.2	82.5	77.6	88.8	85.6	95.8	81.9	88.5	77.9	84.6	84.6	+0.3
F3Net	77.0	77.2	72.8	82.3	87.5	71.6	75.4	89.2	83.9	77.2	79.4	-4.9
F3Net+MLLM	76.8	77.8	73.1	83.3	88.4	75.5	76.6	89.8	84.6	78.4	80.4	-3.9
SBI	82.1	82.3	70.5	85.5	83.4	76.8	68.5	83.2	77.4	87.7	79.7	-4.6
SBI+MLLM	88.6	85.5	75.6	90.8	88.7	93.7	77.6	88.2	81.6	91.1	86.2	+1.9
CDFA	87.9	86.6	83.5	90.9	76.5	67.4	75.4	84.8	72.0	76.1	80.1	-4.2
CFDA+MLLM	<u>90.3</u>	<u>89.7</u>	<u>83.5</u>	92.5	85.2	91.2	<u>83.8</u>	<u>89.9</u>	78.5	<u>84.9</u>	<u>87.0</u>	+2.7

SBI and CFDA Models Integration. We also integrate another blending-based expert model, *SBI* (Shiohara & Yamasaki, 2022), which specializes in detecting blending artifacts. From Fig. 8, we can see that trained using self-blending techniques on real images to prevent overfitting, the SBI model's

Table 5: Performance Comparison of Different Models on Various Datasets. The remove 95 and 865 remove 99.5 scenarios represent extreme cases of data imbalance by removing 95% and 99.5% of 866 the samples near the real distribution, respectively.

Model	Celeb-DF-v2	DFDCP	E4S	Facedancer	FSGAN	Inswap	Simswap
remove 99.5	0.756	0.790	0.636	0.672	0.802	0.630	0.654
remove 95	0.793	0.814	0.689	0.697	0.821	0.657	0.703
CDFA+MLLM	0.903	0.896	0.912	0.838	0.899	0.785	0.849

expert features show a strong correlation with fake labels, and its scoring effectively quantifies the 874 extent of blending artifacts. Similarly, the incorporation of the CFDA model (Lin et al., 2024), an 875 enhanced version of the SBI model, results in an additional performance boost, indicating that as 876 the expert model's ability to capture blending features improved, the overall model's generalization 877 capability also increases. 878

879 To explain **criteria-3**, we conducted additional experiments using non-uniform data distribution. Specifically, we created an extremely imbalanced dataset by removing a large portion of fake sam-880 ples that do not contain the blending feature. As the imbalance increased, the model's performance 881 degraded, and in extreme cases, it began to rely on shortcut solutions. In the remove 95 and re-882 move 99.5 cases, we removed 95% and 99.5% of samples close to the real distribution, respectively, 883 resulting in highly imbalanced datasets with mostly fake samples remaining. 884

A.3 **EVALUATION OF ROBUSTNESS AGAINST UNSEEN PERTURBATIONS**

887 To evaluate the robustness of our model to random perturbations, we follow the methodology outlined in previous studies (Haliassos et al., 2021; Zheng et al., 2021b), which examines four types of 889 degradation: Gaussian blur, block-wise distortion, contrast changes, and JPEG compression. Each 890 perturbation is applied at five different levels to assess the model's performance under varying de-891 grees of distortion.

892 To highlight the advantages of our approach over conventional detectors like FWA (Li, 2018), SBI 893 (Shiohara & Yamasaki, 2022), and X-ray (Li et al., 2020a), we conducted multiple evaluations. As 894 illustrated in Figure 9, which shows the video-level AUC results for these unseen perturbations using 895 a model trained on FF++ c23, our method consistently demonstrates superior robustness compared to other RGB-based methods. 896 897

Figure 9: Robustness evaluation. We adopt four types of degradation for examining the robustness of our model: Gaussian blur, block-wise distortion, contrast changes, and JPEG compression. Our model shows superior robustness over other compared models.

909 910 911

864

867 868

885

886

898 899

900

901 902 903

904

905 906

907

908

A.4 HUMAN STUDY

912 We begin by randomly selecting a balanced proportion of images from the current deepfake dataset 913 before the evaluation starts. The evaluation will be conducted from three aspects: detection, expla-914 nation, and detection with explanation. 915

Detection. In this aspect, we use the prompts provided in the paper (?) to guide the model to make 916 a decision regarding whether the image is real or fake. This section is handled by the experiment 917 designers.

Explanation Performance for Human Preference. For the evaluation based on human preference, well-selected images will be provided along with their ground truth. The model is tasked with generating corresponding explanations. Participants will then choose between the answers from three different models.

Detection and Explanation Performance Evaluation. In this evaluation, the ground truth of the image is provided to the participants, but the model is unaware of it. After receiving an image, the model is required to give both a detection (whether the image is real or fake) and an explanation.

For GPT-4o's evaluation of detection and preference-based assessment of explanation, as well as combined detection and explanation, the prompt is illustrated in Fig 13.

Supplementary details on human study. We select *well-educated participants* and provide them
with *detailed guidelines* on deepfake technology prior to the experiment to ensure the reliability of
the human study results. Furthermore, potential risks associated with the experiment are carefully
evaluated, and approval is obtained through the relevant ethical review process. Fig. 10, Fig. 11,
and Fig. 12 include details of the experimental setup and the ethical review process, ensuring the
reliability of our study.

Project Summary: With the rapid development of Deepfake technology, the generation of fake images and videos has become increasingly realistic, posing significant threats to society and individual privacy. Despite the availability of various deep learning models for detecting Deepfake content, there are still notable shortcomings in terms of explainability and transparency. These differences directly impact human trust and understanding during the detection process.

This project aims to evaluate the alignment between our model's

explainability in Deepfake detection and human intuition through a human evaluation study. We will compare our model with current mainstream Deepfake detection models to examine the intuitiveness, accuracy, and user trust in the explanations provided. The study will involve participants evaluating the detection results and explanations from different models, assessing the effectiveness of each model in real-world applications.

Figure 10: Human study material part1

A.5 EXPERIMENTS ON DIFFERENT LLMS/MLLMS

We conducted experiments using various models, including GPT40 (Achiam et al., 2023), Phi-3-vision (Abdin et al., 2024), Claude3.5-Sonnet (Abdin et al., 2024), and LLaVa (Liu et al., 2024), to evaluate the adaptability and robustness of our framework.

Table 6: Experiments on different LLMs/MLLMs were conducted to evaluate their performance under various conditions. The evaluation metric used for these experiments is the Area Under the Curve (AUC)

Variant	CDF	DFDCP	DFDC	DFD	Uniface	e4s	Facedancer	FSGAN	Inswap	Simswap	Avg
GPT4o + Phi-3-vision	88.6	87.1	83.5	90.9	81.8	77.5	78.8	85.7	77.5	80.6	83.2
GPT4o + LLaVa-7B	90.3	89.7	83.5	92.5	85.2	91.2	83.8	89.9	78.5	84.9	87.0
Claude3.5-Sonnet + LLaVa-7B	88.8	88.5	82.6	92.7	84.6	90.1	83.8	89.7	79.5	85.6	86.6
GPT4o + LLaVa-13B	91.3	90.3	83.4	92.5	86.0	92.5	84.5	91.0	80.6	85.4	87.8

Different LLMs to generate questions in FMA. In the FMA stage, we employed different LLMs, such as GPT40 and Claude 3.5-Sonnet, to generate forgery-related questions and test the adaptability

973	Project Significance:	
074		
974	This research will reveal the strengths and weaknesses of different Deepfake	
975	detection models in terms of explainability, especially in alignment with	
970	home to demonstrate that our model is not only compatitive in detection	
977	accuracy but also achieves higher trust and satisfaction in terms of	
978	explainability. The project outcomes will offer new insights and directions	
979	for the future design and application of Deepfake detection models.	
980	promoting the development of more transparent and reliable detection	
901	technologies.	
902	Potential Side Effects, Hazards, and Emergency Plans:	
983		
984	Side Effects: During the project, participants may experience confusion	
985	or reduced trust in real images due to exposure to a large amount of Deepfake	
986	content, leading to difficulty in distinguishing between real and fake	
987	images.	
988	Emergency Plan: We will inform participants that there are currently	
989	various effective Deepfake detection solutions, including the model we are	
990	developing, which can effectively counter Deepfake attacks to some extent.	
991	Inrough education and explanation, we will help participants understand the	
992	their trust in real images	
993	them trust in real images.	
994	Figure 11: Human study material part2	
995		
990		
008		
990	of our framework. The results shown in $GPT4_0 + LLaVa-7B$ and Claude 3.5-Sonnet + LLaVa-7B.	
000	of our funder of the results, shown in of the relative r bland change of some r bland	.aVa-7B,
1000	demonstrate consistent performance regardless of the LLM used. Questions from Claude 3.5	.aVa-7B, 5-Sonnet
1000	demonstrate consistent performance regardless of the LLM used. Questions from Claude 3.5 were also effective (see Tabs. 15 and 16).	aVa-7B, 5-Sonnet
1000 1001 1002	 demonstrate consistent performance regardless of the LLM used. Questions from Claude 3.5 were also effective (see Tabs. 15 and 16). Different sizes of MLLMs for fine-funing in SFS and WFS. In the SFS and WFS stages, w 	aVa-7B, 5-Sonnet ve inves-
1000 1001 1002 1003	 demonstrate consistent performance regardless of the LLM used. Questions from Claude 3.5 were also effective (see Tabs. 15 and 16). Different sizes of MLLMs for fine-funing in SFS and WFS. In the SFS and WFS stages, w tigate the impact of using different sizes of MLLMs with the same architecture during fine-funing fine-fun	2.aVa-7B, 5-Sonnet ve inves- >-tuning.
1000 1001 1002 1003 1004	demonstrate consistent performance regardless of the LLM used. Questions from Claude 3.5 were also effective (see Tabs. 15 and 16). Different sizes of MLLMs for fine-funing in SFS and WFS. In the SFS and WFS stages, w tigate the impact of using different sizes of MLLMs with the same architecture during fine-for instance, we compare $GPT4o + LLaVa-7B$ and $GPT4o + LLaVa-13B$. The results indic	<i>aVa-7B</i> , 5-Sonnet ve inves- -tuning. cate that
1000 1001 1002 1003 1004 1005	demonstrate consistent performance regardless of the LLM used. Questions from Claude 3.5 were also effective (see Tabs. 15 and 16). Different sizes of MLLMs for fine-funing in SFS and WFS. In the SFS and WFS stages, we tigate the impact of using different sizes of MLLMs with the same architecture during fine- For instance, we compare $GPT4o + LLaVa-7B$ and $GPT4o + LLaVa-13B$. The results indic as the size of the model increases, the performance of the framework improves proportional of the formation of the first o	<i>LaVa-7B</i> , 5-Sonnet we inves- cuning. cate that lly, ben-
1000 1001 1002 1003 1004 1005 1006	demonstrate consistent performance regardless of the LLM used. Questions from Claude 3.5 were also effective (see Tabs. 15 and 16). Different sizes of MLLMs for fine-funing in SFS and WFS. In the SFS and WFS stages, we tigate the impact of using different sizes of MLLMs with the same architecture during fine- For instance, we compare $GPT4o + LLaVa-7B$ and $GPT4o + LLaVa-13B$. The results indice as the size of the model increases, the performance of the framework improves proportional effting from the enhanced capabilities of the larger MLLMs.	<i>LaVa-7B</i> , 5-Sonnet ve inves- e-tuning. cate that lly, ben-
1000 1001 1002 1003 1004 1005 1006 1007	demonstrate consistent performance regardless of the LLM used. Questions from Claude 3.5 were also effective (see Tabs. 15 and 16). Different sizes of MLLMs for fine-funing in SFS and WFS. In the SFS and WFS stages, w tigate the impact of using different sizes of MLLMs with the same architecture during fine. For instance, we compare $GPT4o + LLaVa-7B$ and $GPT4o + LLaVa-13B$. The results indic as the size of the model increases, the performance of the framework improves proportional efiting from the enhanced capabilities of the larger MLLMs. Different MLLMs for fine-tuning in SFS and WFS. We also examine the effect of using d	<i>aVa-7B</i> , 5-Sonnet we inves- e-tuning. cate that lly, ben- different
1000 1001 1002 1003 1004 1005 1006 1007 1008	 demonstrate consistent performance regardless of the LLM used. Questions from Claude 3.5 were also effective (see Tabs. 15 and 16). Different sizes of MLLMs for fine-funing in SFS and WFS. In the SFS and WFS stages, w tigate the impact of using different sizes of MLLMs with the same architecture during fine-For instance, we compare <i>GPT40</i> + <i>LLaVa-7B</i> and <i>GPT40</i> + <i>LLaVa-13B</i>. The results indic as the size of the model increases, the performance of the framework improves proportional effting from the enhanced capabilities of the larger MLLMs. Different MLLMs for fine-tuning in SFS and WFS. We also examine the effect of using d MLLMs during the SFS and WFS fine-tuning stages to determine whether our framework 	<i>caVa-7B</i> , 5-Sonnet >-tuning. cate that lly, ben- different rk relies
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009	 demonstrate consistent performance regardless of the LLM used. Questions from Claude 3.5 were also effective (see Tabs. 15 and 16). Different sizes of MLLMs for fine-funing in SFS and WFS. In the SFS and WFS stages, we tigate the impact of using different sizes of MLLMs with the same architecture during fine-For instance, we compare <i>GPT40 + LLaVa-7B</i> and <i>GPT40 + LLaVa-13B</i>. The results indice as the size of the model increases, the performance of the framework improves proportional effting from the enhanced capabilities of the larger MLLMs. Different MLLMs for fine-tuning in SFS and WFS. We also examine the effect of using dimensional multiplication on a specific MLLM. For example, we compare <i>GPT40 + Phi-3-vision</i> and <i>GPT40 + LLaVa + LLaVa + LLaVa + LaVa + La</i>	<i>caVa-7B</i> , 5-Sonnet >-tuning. cate that lly, ben- different rk relies <i>Va-13B</i> .
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010	demonstrate consistent performance regardless of the LLM used. Questions from Claude 3.5 were also effective (see Tabs. 15 and 16). Different sizes of MLLMs for fine-funing in SFS and WFS. In the SFS and WFS stages, we tigate the impact of using different sizes of MLLMs with the same architecture during fine- For instance, we compare $GPT4o + LLaVa-7B$ and $GPT4o + LLaVa-13B$. The results indice as the size of the model increases, the performance of the framework improves proportional effting from the enhanced capabilities of the larger MLLMs. Different MLLMs for fine-tuning in SFS and WFS. We also examine the effect of using defining from the SFS and WFS fine-tuning stages to determine whether our framework on a specific MLLM. For example, we compare $GPT4o + Phi-3-vision$ and $GPT4o + LLaVa$. The results demonstrate that our framework is not dependent on a specific MLLM and that dependent on a specific MLLM and that dependent on a specific MLLM and that dependent on the specific MLLM and the dependent on the specific MLLM a	<i>aVa-7B</i> , 5-Sonnet -tuning. cate that 11y, ben- different rk relies <i>Va-13B</i> . different
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011	demonstrate consistent performance regardless of the LLM used. Questions from Claude 3.5 were also effective (see Tabs. 15 and 16). Different sizes of MLLMs for fine-funing in SFS and WFS. In the SFS and WFS stages, we tigate the impact of using different sizes of MLLMs with the same architecture during fine. For instance, we compare $GPT4o + LLaVa-7B$ and $GPT4o + LLaVa-13B$. The results indice as the size of the model increases, the performance of the framework improves proportional efiting from the enhanced capabilities of the larger MLLMs. Different MLLMs for fine-tuning in SFS and WFS. We also examine the effect of using defining from the SFS and WFS fine-tuning stages to determine whether our frameword on a specific MLLM. For example, we compare $GPT4o + Phi-3$ -vision and $GPT4o + LLaVa$ The results demonstrate that our framework is not dependent on a specific MLLM and that de MLLMs can benefit from it.	<i>aVa-7B</i> , 5-Sonnet e-tuning. cate that lly, ben- different rk relies <i>Va-13B</i> . different
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012	demonstrate consistent performance regardless of the LLM used. Questions from Claude 3.5 were also effective (see Tabs. 15 and 16). Different sizes of MLLMs for fine-funing in SFS and WFS. In the SFS and WFS stages, w tigate the impact of using different sizes of MLLMs with the same architecture during fine. For instance, we compare $GPT4o + LLaVa-7B$ and $GPT4o + LLaVa-13B$. The results indic as the size of the model increases, the performance of the framework improves proportional efiting from the enhanced capabilities of the larger MLLMs. Different MLLMs for fine-tuning in SFS and WFS. We also examine the effect of using d MLLMs during the SFS and WFS fine-tuning stages to determine whether our frameword on a specific MLLM. For example, we compare $GPT4o + Phi-3$ -vision and $GPT4o + LLaVa + LAVA + LLAVA + LLA$	<i>caVa-7B</i> , 5-Sonnet ve inves- e-tuning. cate that lly, ben- different rk relies <i>Va-13B</i> . different
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013	demonstrate consistent performance regardless of the LLM used. Questions from Claude 3.5 were also effective (see Tabs. 15 and 16). Different sizes of MLLMs for fine-funing in SFS and WFS. In the SFS and WFS stages, w tigate the impact of using different sizes of MLLMs with the same architecture during fine. For instance, we compare $GPT4o + LLaVa-7B$ and $GPT4o + LLaVa-13B$. The results indice as the size of the model increases, the performance of the framework improves proportional efiting from the enhanced capabilities of the larger MLLMs. Different MLLMs for fine-tuning in SFS and WFS. We also examine the effect of using d MLLMs during the SFS and WFS fine-tuning stages to determine whether our frameword on a specific MLLM. For example, we compare $GPT4o + Phi-3$ -vision and $GPT4o + LLaVa$ that during the SFS and WFS is not dependent on a specific MLLM and that d MLLMs can benefit from it. Summary of findings. These experiments collectively highlight the robustness of our framework is not dependent on specific LLMs or MLLMs, making it adaptable to a wide range of model.	<i>caVa-7B</i> , 5-Sonnet ve inves- b-tuning. cate that lly, ben- different rk relies <i>tVa-13B</i> . different work. It els. Fur-
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014	 demonstrate consistent performance regardless of the LLM used. Questions from Claude 3.5 were also effective (see Tabs. 15 and 16). Different sizes of MLLMs for fine-funing in SFS and WFS. In the SFS and WFS stages, w tigate the impact of using different sizes of MLLMs with the same architecture during fine-For instance, we compare <i>GPT40</i> + <i>LLaVa-7B</i> and <i>GPT40</i> + <i>LLaVa-13B</i>. The results indice as the size of the model increases, the performance of the framework improves proportional efiting from the enhanced capabilities of the larger MLLMs. Different MLLMs for fine-tuning in SFS and WFS. We also examine the effect of using d MLLMs during the SFS and WFS fine-tuning stages to determine whether our framewore on a specific MLLM. For example, we compare <i>GPT40</i> + <i>Phi-3-vision</i> and <i>GPT40</i> + <i>LLaVa</i>. The results demonstrate that our framework is not dependent on a specific MLLM and that d MLLMs can benefit from it. Summary of findings. These experiments collectively highlight the robustness of our framework is not dependent on specific LLMs or MLLMs, making it adaptable to a wide range of mode thermore, as the performance and size of the underlying models improve, our framework effective. 	<i>caVa-7B</i> , 5-Sonnet >-tuning. cate that lly, ben- different rk relies <i>tVa-13B</i> . different :work. It els. Fur- fectively
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015	demonstrate consistent performance regardless of the LLM used. Questions from Claude 3.5 were also effective (see Tabs. 15 and 16). Different sizes of MLLMs for fine-funing in SFS and WFS. In the SFS and WFS stages, w tigate the impact of using different sizes of MLLMs with the same architecture during fine- For instance, we compare $GPT4o + LLaVa-7B$ and $GPT4o + LLaVa-13B$. The results indice as the size of the model increases, the performance of the framework improves proportional efiting from the enhanced capabilities of the larger MLLMs. Different MLLMs for fine-tuning in SFS and WFS. We also examine the effect of using defining from the enhanced capabilities of the larger MLLMs. Different MLLMs for fine-tuning in SFS and WFS. We also examine the effect of using defining from the SFS and WFS fine-tuning stages to determine whether our framework on a specific MLLM. For example, we compare $GPT4o + Phi-3-vision$ and $GPT4o + LLa'$. The results demonstrate that our framework is not dependent on a specific MLLM and that define the scale of the framework is not dependent on specific LLMs or MLLMs, making it adaptable to a wide range of mode thermore, as the performance and size of the underlying models improve, our framework effectively here are substance of the scale of the underlying models improve for mode thermore, as the performance and size of the underlying models improve, our framework effectively here are substance of mode thermore, as the performance and size of the underlying models improve, our framework effectively here are substance of mode thermore and size of the underlying models improve and scale of mode thermore and size of the underlying models improve, our framework effectively here are substance and size of the underlying models improve and scale of mode thermore and size of the underlying models improve and scale of the larger scale of the scale of the underlying models improve and scale of the larger scale of the larger scale of the scale of the scale of the underlying models	<i>caVa-7B</i> , 5-Sonnet >-tuning. cate that lly, ben- different rk relies <i>tVa-13B</i> . different els. Fur- fectively
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016	demonstrate consistent performance regardless of the LLM used. Questions from Claude 3.5 were also effective (see Tabs. 15 and 16). Different sizes of MLLMs for fine-funing in SFS and WFS. In the SFS and WFS stages, w tigate the impact of using different sizes of MLLMs with the same architecture during fine- For instance, we compare $GPT4o + LLaVa-7B$ and $GPT4o + LLaVa-13B$. The results indice as the size of the model increases, the performance of the framework improves proportional efiting from the enhanced capabilities of the larger MLLMs. Different MLLMs for fine-tuning in SFS and WFS. We also examine the effect of using defining from the enhanced capabilities of the larger MLLMs. Different MLLMs for fine-tuning in SFS and WFS. We also examine the effect of using defining from the enhanced capabilities of the larger MLLMs. Different MLLMs for fine-tuning in SFS and WFS. We also examine the effect of using defining the SFS and WFS fine-tuning stages to determine whether our framework on a specific MLLM. For example, we compare $GPT4o + Phi-3-vision$ and $GPT4o + LLa'a$. Summary of findings. These experiments collectively highlight the robustness of our framework is not dependent on specific LLMs or MLLMs, making it adaptable to a wide range of mode thermore, as the performance and size of the underlying models improve, our framework effectively are subscienced and size of the underlying models improve, our framework effectively are subscienced and size of the underlying models improve for the subscience of the subs	<i>caVa-7B</i> , 5-Sonnet we inves- c-tuning. cate that lly, ben- different rk relies <i>vVa-13B</i> . different ework. It els. Fur- fectively
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017	demonstrate consistent performance regardless of the LLM used. Questions from Claude 3.5 were also effective (see Tabs. 15 and 16). Different sizes of MLLMs for fine-funing in SFS and WFS. In the SFS and WFS stages, we tigate the impact of using different sizes of MLLMs with the same architecture during fine. For instance, we compare $GPT4o + LLaVa-7B$ and $GPT4o + LLaVa-13B$. The results indice as the size of the model increases, the performance of the framework improves proportional efiting from the enhanced capabilities of the larger MLLMs. Different MLLMs for fine-tuning in SFS and WFS. We also examine the effect of using d MLLMs during the SFS and WFS fine-tuning stages to determine whether our frameword on a specific MLLM. For example, we compare $GPT4o + Phi-3-vision$ and $GPT4o + LLaVa - The results demonstrate that our framework is not dependent on a specific MLLM and that d MLLMs can benefit from it. Summary of findings. These experiments collectively highlight the robustness of our framework effectively as the performance and size of the underlying models improve, our framework effectively as the set of the advancements to achieve enhanced results.$	<i>caVa-7B</i> , 5-Sonnet we inves- e-tuning. cate that lly, ben- different rk relies <i>vVa-13B</i> . different els. Fur- fectively
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018	 demonstrate consistent performance regardless of the LLM used. Questions from Claude 3.5 were also effective (see Tabs. 15 and 16). Different sizes of MLLMs for fine-funing in SFS and WFS. In the SFS and WFS stages, w tigate the impact of using different sizes of MLLMs with the same architecture during fine. For instance, we compare <i>GPT40 + LLaVa-7B</i> and <i>GPT40 + LLaVa-13B</i>. The results indice as the size of the model increases, the performance of the framework improves proportional efiting from the enhanced capabilities of the larger MLLMs. Different MLLMs for fine-tuning in SFS and WFS. We also examine the effect of using d MLLMs during the SFS and WFS fine-tuning stages to determine whether our frameword on a specific MLLM. For example, we compare <i>GPT40 + Phi-3-vision</i> and <i>GPT40 + LLa</i>. The results demonstrate that our framework is not dependent on a specific MLLM and that d MLLMs can benefit from it. Summary of findings. These experiments collectively highlight the robustness of our framework effective, as the performance and size of the underlying models improve, our framework effective as the performance and size of the underlying models improve, our framework effective and the performance and size of the underlying models improve, our framework effective as the performance and size of the underlying models improve, our framework effective as the performance and size of the underlying models improve, our framework effective and the more, as the performance and size of the underlying models improve, our framework effective as the performance and size of the underlying models improve, our framework effective and the performance and size of the underlying models improve, our framework effective and the performance and size of the underlying models improve, our framework effective and the performance and size of the underlying models improve of the performance and size of the underlying models improve of the performance and size of the underlying models improve of the pe	<i>caVa-7B</i> , 5-Sonnet ve inves- e-tuning. cate that lly, ben- different rk relies <i>vVa-13B</i> . different ework. It els. Fur- fectively
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019	 demonstrate consistent performance regardless of the LLM used. Questions from Claude 3.5 were also effective (see Tabs. 15 and 16). Different sizes of MLLMs for fine-funing in SFS and WFS. In the SFS and WFS stages, w tigate the impact of using different sizes of MLLMs with the same architecture during fine. For instance, we compare <i>GPT40 + LLaVa-7B</i> and <i>GPT40 + LLaVa-13B</i>. The results indic as the size of the model increases, the performance of the framework improves proportional efiting from the enhanced capabilities of the larger MLLMs. Different MLLMs for fine-tuning in SFS and WFS. We also examine the effect of using d MLLMs during the SFS and WFS fine-tuning stages to determine whether our framework on a specific MLLM. For example, we compare <i>GPT40 + Phi-3-vision</i> and <i>GPT40 + LLa</i> The results demonstrate that our framework is not dependent on a specific MLLM and that d MLLMs can benefit from it. Summary of findings. These experiments collectively highlight the robustness of our framework effeteering and size of the underlying models improve, our framework effeteering is not dependent on specific LLMs or MLLMs, making it adaptable to a wide range of mode thermore, as the performance and size of the underlying models improve, our framework effeteering these advancements to achieve enhanced results. 	<i>caVa-7B</i> , 5-Sonnet we inves- e-tuning. cate that lly, ben- different rk relies <i>va-13B</i> . different work. It els. Fur- fectively

In our manuscript, we mainly focus on the cross-domain evaluation to assess the generalization performance of different models. Here, we conduct the in-domain evaluation on the FF++ dataset and compare our approach with the other four SOTA methods: FWA, Face X-ray, SRM, and CDFA.
Following DeepfakeBench Yan et al. (2023d), we train all models on FF++ (c23) and test them on FF++ (c23), FF++ (c40), FF-DF, FF-F2F, FF-FS, and FF-NT. As shown in Table 7, the indomain results demonstrate that our framework achieves the best performance, outperforming all other methods.

1026	Potential Ethical Issues and Countermeasures (including Informed Consent
1027	Privacy Protection Physical Harm and Benefit Distribution):
1028	Titvacy frotection, Thysical haim, and benefit bistribution/.
1029	Informed Consent: Participants need to fully understand the research
1030	content, purpose, and potential impact. We will ensure that all participants
1031	voluntarily sign informed consent forms. Countermeasure: Provide detailed
1032	research explanations and Q&A sessions to ensure participants fully
1033	understand and agree to participate.
1034	
1035	Privacy Protection: All participant information and data involved in the
1036	research will be kept strictly confidential and will not be used for any
1037	purposes other than the research. Countermeasure: Implement data
1038	encryption and anonymization to ensure participant privacy is not
1039	compromised.
1040	Devoicel Horm: Although this study mainly involves psychological and
1041	cognitive assessments, we will minimize notential psychological impacts on
1042	participants and avoid any form of psychological stress or harm.
1043	Countermeasure: Conduct real-time monitoring during the study to ensure
1044	participant mental health, and provide participants with the right to
1045	withdraw from the study at any time.
1046	
1047	Benefit Distribution: Ensure that participants are not unfairly treated
1048	during the study and that the outcomes of the research do not
1049	disproportionately benefit or disadvantage any individual or group.
1050	Countermeasure: Fair and reasonable distribution of research outcomes,
1051	ensuring openness and transparency. The research results will primarily
1052	focus on academic and social contributions, not for personal or commercial
1053	gain.
1054	
1055	
1056	Figure 12: Human study material part3
1057	

Table 7: In-domain results in the FF++ dataset (AUC)

Detector	FF++c23	FF++c40	FF-DF	FF-F2F	FF-FS	FF-NT	AVG
FWA (Li, 2018)	87.7	73.6	92.1	90.0	88.4	81.2	85.5
Face X-ray (Li et al., 2020a)	95.9	79.3	97.9	98.7	98.7	92.9	93.9
SRM (Luo et al., 2021b)	95.8	81.1	97.3	97.0	97.4	93.0	93.6
CDFA (Lin et al., 2024)	90.2	69.0	99.9	86.9	93.3	80.7	90.2
ours	96.6	82.6	99.9	97.2	98.1	91.0	94.2

A.7 FINDING IN MLLMS

The capabilities of large models go far beyond this. Based on our experimental results, we found that training for multiple epochs can continuously improve performance. However, in our experiments, training for just one epoch already achieved the desired results. Therefore, the experiments presented in the main table are based solely on the results from training for one epoch. Since this performance improvement is not part of the method we proposed, I believe it should not be included in the main table.

Table 8: Model Performance with Varying Epochs, where the evaluation metric is AUC

1076												
1077	Variant	CDF	DFDCP	DFDC	DFD	Uniface	e4s	Facedancer	FSGAN	Inswap	Simswap	Avg
1078 1079	one epoch two epochs	90.3 92.7	89.7 89.3	83.5 83.9	92.5 91.5	84.9 87.4	91.2 93.0	83.5 84.6	89.9 89.9	78.5 81.0	84.9 86.1	87.0 88.0
1075	three epochs	92.7	90.9	84.5	90.4	87.8	93.6	85.9	90.0	81.1	86.6	88.4

1080 Effect of inconsistent use of supplementary features in training and inference. The model performs best when supplementary features are used consistently during both training and inference 1082 (average score: **0.8797**), indicating that these features significantly enhance performance. When supplementary features are omitted entirely from both stages, the performance drops (average score: 1084 **0.8328**), though it remains better than when features are used inconsistently. Specifically, when features are used during training but not inference, the performance suffers greatly (average score: **0.7661**), suggesting the model relies on these features and struggles without them at inference time. 1086 On the other hand, when features are introduced at inference but not used during training, the model 1087 achieves slightly better results (average score: **0.8247**), but it cannot fully leverage unseen features, 1088 showing the importance of using supplementary features consistently across both phases. 1089

Table 9: Impact of Omitting Supplementary Features During Training and Adding Them During Inference, on Model Performance

	Celeb-DF-v2	DFD	DFDC	DFDCP	DFR	WDF	FFIW	Avg
no train + no infer	0.8324	0.9140	0.7922	0.8197	0.9371	0.7682	0.7663	0.8328
train + no infer	0.7649	0.8469	0.7102	0.7203	0.8950	0.7130	0.7127	0.7661
no train + infer	0.8171	0.9062	0.7906	0.8134	0.9262	0.7472	0.7733	0.8247
train + infer	0.9062	0.9232	0.8300	0.8873	0.9761	0.8144	0.8167	0.8797

Extension in new datasets. Our model, trained on a mixture of datasets including FF++, showed improved overall performance when we added a new dataset without blending artifacts to the training process. This demonstrates that incorporating diverse datasets with supplementary features, even from different domains, enhances the model's generalization and comprehensive performance.

Table 10: Comparison of Model Performance When Trained on FF++ Alone vs. FF++ and SRI
 Across Different Datasets

1107	Variant	CDF	DFDCP	DFDC	DFD	Uniface	e4s	Facedancer	FSGAN	Inswap	Simswap
1108	Train FF++	90.3	89.7	83.5	92.4	85.2	91.2	83.8	89.9	78.4	84.9
1109	Train FF++ and SRI	91.5	89.3	83.9	92.7	87.4	93.0	84.6	89.9	81.0	86.1

1110

1093 1094 1095

1098 1099

1111 A.8 IMPLEMENTATION DETAILS

1113 We use the LLava model and a 4090 GPU, with image cropping following the method from Deep-1114 fakeBench. AUC is calculated by directly obtaining the token probabilities. Previous AUC calcu-1115 lations for large models mostly relied on averaging methods, such as in (?), but this approach is 1116 not very accurate because: (1) multiple samplings are needed to approximate the true probability distribution, and (2) large models inherently perform inference with a default temperature, which 1117 itself involves sampling over probabilities. Averaging over multiple samples effectively results in a 1118 second layer of sampling, making the evaluation less accurate. Therefore, in this paper, we calculate 1119 AUC by directly obtaining token probabilities. 1120

- 1122 A.9 SAMPLE SHOWING
- 1123

1121

Here, I will present some failure cases of Pre-trained MLLMs, followed by a comparison with our results.

For LLaVa, we use the same prompts as GPT-4 to ensure fairness in the evaluation process. The robustness of Llava in these tasks is illustrated in Figure 14.

- 1128
- 1129
- 1130
- 1131
- 1132
- 1133

Fake

1240

1241

Figure 17: Bad sample of Pre-trained model (part2)

Table 11: Relationship between various facial features and deepfake detection (Part 1)

1246			
1247	No.	Question	Pretrain
1248	1	Is the face color related to deepfake detection?	No
1249	2	Are the eyes related to deepfake detection?	No
1250	3	Are the facial features related to deepfake detection?	No
1251	4	Is the nose contour related to deepfake detection?	No
1252	5	Is face blurriness related to deepfake detection?	No
1050	6	Is the skin tone related to deepfake detection?	No
1203	7	Are the cheeks related to deepfake detection?	No
1254	8	Is the skin tone pattern related to deepfake detection?	No
1255	9	Is the placement of facial features related to deepfake detection?	No
1256	10	Are the lips related to deeptake detection?	Yes
1257		Is facial symmetry related to deepfake detection?	No
1258	12	Is the lighting on the cheeks related to deepfake detection?	Yes
1259	13	Is the facial lighting related to deepfake detection?	No
1260	14	Are the shapes of facial features related to deepfake detection?	No
1261	15	Is facial evenness related to deepfake detection?	Yes
1262	16	Are the checkbones related to deepfake detection?	No
1263	17	Is the face layout related to deepfake detection?	No
1264	18	Are the lip edges related to deepfake detection?	No
1265	19	Is facial detail related to deeptake detection?	Yes
1205	20	Is cheek smoothness related to deeptake detection?	INO Nu
1200	21	Is the forenead shape related to deepfake detection?	INO V
1267	22	Is face-background blending related to deeptake detection?	Yes
1268	23	Is skin texture related to deeplake detection?	INO No
1269	24	Are the eyelashes related to deeplake detection?	INO Na
1270	25	Are facial fines related to deeplake detection?	INO No
1271	20	Is factal expression related to deeplake detection?	INO No
1272	21	Are color changes on the face related to deepfake detection?	No
1273	20	Is the mouth shape related to deepfake detection?	No
1274	29	Are the face edges related to deepfake detection?	No
1275	31	Is facial rigidity related to deepfake detection?	No
1276	32	Are sharn facial lines related to deepfake detection?	No
1277	33	Is skin perfection related to deepfake detection?	No
1278	34	Is forehead shiningss related to deepfake detection?	Yes
1270	35	Are sharp face edges related to deepfake detection?	Yes
12/3	36	Is skin smoothness related to deepfake detection?	No
1200	37	Are eve details related to deepfake detection?	No
1281	38	Are smooth facial lines related to deepfake detection?	No
1282	39	Is lip texture related to deepfake detection?	Yes
1283	40	Is forehead shine evenness related to deepfake detection?	No
1284	41	Are the evebrows related to deepfake detection?	No
1285	42	Are unusual eve appearances related to deepfake detection?	No
1286	43	Are facial transitions related to deepfake detection?	Yes
1287	44	Is face color related to deepfake detection?	No
1288	45	Is facial emotion exaggeration related to deepfake detection?	No
1289	46	Is unusual face layout related to deepfake detection?	No
1290	47	Are eye reflections related to deepfake detection?	No
1291	48	Is skin texture roughness related to deepfake detection?	No
1202	49	Is the jawline related to deepfake detection?	No
1202	50	Is facial expression stiffness related to deepfake detection?	Yes
1233			

Table 12: Relationship between various facial features and deepfake detection (Part 2)

1300			
1301	No.	Question	Pretrain
1302	51	Is nose texture related to deepfake detection?	No
1303	52	Is skin shininess under the nose related to deepfake detection?	No
1304	53	Is uneven facial sharpness related to deepfake detection?	Yes
1305	54	Is facial blending related to deepfake detection?	No
1206	55	Is facial lighting evenness related to deepfake detection?	No
1007	56	Is nose bridge smoothness related to deepfake detection?	No
1307	57	Is the hairline related to deepfake detection?	No
1308	58	Is skin texture evenness related to deepfake detection?	No
1309	59	Is facial feature balance related to deepfake detection?	No
1310	60	Is facial symmetry related to deepfake detection?	No
1311	61	Is forced facial expression related to deepfake detection?	No
1312	62	Are the nostrils related to deepfake detection?	No
1313	63	Are unnatural lip appearances related to deepfake detection?	No
1314	64	Is partial skin smoothness related to deepfake detection?	No
1315	65	Is lip texture related to deepfake detection?	No
1316	66	Is lighting around the nose related to deepfake detection?	Yes
1317	67	Are facial feature proportions related to deepfake detection?	Yes
1010	68	Is skin smoothness around the nose related to deepfake detection?	No
1010	69	Are soft facial creases related to deepfake detection?	No
1319	70	Are teeth appearances related to deepfake detection?	No
1320	71	Is neck-face transition related to deepfake detection?	No
1321	72	Is skin tone variation related to deepfake detection?	No
1322	73	Is face edge sharpness related to deeptake detection?	No
1323	74	Is chin outline visibility related to deeptake detection?	No
1324	75	Is facial lighting evenness related to deepfake detection?	Yes
1325	/6	Are ear details related to deeptake detection?	No
1326	//	Is chin smoothness related to deeptake detection?	No Na
1327	/8	Are bright facial areas related to deepfake detection?	No Na
1328	/9	Is skin brightness hear the mouth related to deeplake detection?	INO Na
1329	80	Are dimples related to deepfake detection?	INO Vac
1330	01	Are dimples related to deeplake detection?	Ies No
1221	02	Is jawine prominence related to deepfake detection?	No
1001	0.5 0.1	Is facial blanding related to deepfake detection?	NO Vas
1000	04 85	Is the shadow related to deepfake detection?	No
1333	86	Are forehead shadows related to deepfake detection?	No
1334	87	Is nose light reflection related to deepfake detection?	No
1335	88	Is face-background transition related to deepfake detection?	No
1336	89	Is forehead light reflection related to deepfake detection?	No
1337	90	Are nose shadows related to deepfake detection?	No
1338	91	Is lighting around the mouth related to deepfake detection?	No
1339	92	Is neck smoothness related to deepfake detection?	No
1340	93	Are face outlines related to deepfake detection?	No
1341	94	Are face edges related to deepfake detection?	No
1342	95	Are skin details related to deepfake detection?	No
1343	96	Are under-eye shadows related to deepfake detection?	No
1344	97	Are cheek shadows related to deepfake detection?	No
12/5	98	Are checkbone appearances related to deepfake detection?	No
1040	99	Is facial lighting related to deepfake detection?	No
1047	100	Are facial wrinkle details related to deepfake detection?	No
1347		······································	

Rank	Question	Pretrain	Strengthened
1	Is the face color unusual?	0.6340	0.7486
2	Is there something wrong with the eyes?	0.6309	0.6320
3	Do the facial features look oddly shaped?	0.6292	0.6636
4	Is the contour of the nose incorrect?	0.6278	0.5817
5	Is part of the face blurry?	0.6231	0.7643
6	Does the skin tone make the face look fake?	0.6165	0.6479
7	Is there something wrong with the cheek?	0.6144	0.8082
8	Are there strange patterns in the skin tone?	0.6144	0.8075
9	Are the face parts out of place?	0.6130	0.7919
10	Do the lips seem out of place or strangely shaped?	0.6127	0.7408
11	Is one side of the face uneven with the other?	0.6123	0.7622
12	Are there strange lighting spots on the cheeks?	0.6111	0.8029
13	Does the lighting change strangely on the face?	0.6092	0.8006
14	Are the shapes of the eves, nose, or mouth unnatural?	0.6054	0.6714
15	Does the face look uneven or off?	0.6048	0.6732
16	Does the cheekbone appear too flat?	0.6014	0.7406
17	Does the face layout look wrong?	0.5986	0.5422
18	Are the edges of the lins too smooth?	0.5979	0.6264
19	Is part of the face lacking detail?	0.5942	0.6843
20	Are the cheeks too smooth?	0.5934	0.6728
20	Does the forehead look odd in shape?	0.5954	0.7493
$\frac{21}{22}$	Does the face mix poorly with the background?	0.5902	0.6382
23	Is the skin texture uneven?	0.5962	0.0302
23	Are the evelophes missing or blurred?	0.5857	0.7130
25	Are the face lines uneven or changing in different areas?	0.5826	0.6546
25	Does the face lack expression?	0.5822	0.6540
20	Does the pase shape look odd?	0.5812	0.0075
$\frac{27}{28}$	Are the color changes on the face and skin sudden?	0.5807	0.5500
20	Does the mouth appear too flat?	0.5007	0.6542
30	Are the edges of the face too sharp?	0.5774	0.8188
31	Does the face appear too rigid?	0.5770	0.0100
32	Are the face lines too sharn?	0.5761	0.7440
33	Does the skin look too perfect like it was edited?	0.5755	0.5749
34	Is the forehead too shiny?	0.5737	0.8168
35	Are the face edges too sharp?	0.5720	0.8162
36	Does the face skin look too smooth?	0.5720	0.5306
37	Are the eyes blurry or lacking detail?	0.5636	0.5362
38	Are the face lines too smooth?	0.5549	0.5902
39	Are the lines too smooth or lacking texture?	0.5537	0.5475
40	Is the forehead's shine uneven?	0.5515	0.7208
41	Are the evebrows too dark or too light?	0.5313	0.7200
42	Do the eyes look odd?	0.5433	0.5075
43	Are transitions on the face poorly blended?	0.5410	0.5369
	Do the face colors look strange?	0.5410	0.5054
45 45	Does the face show emotions that seem evaguerated?	0.5352	0.6337
т.) Дб	Does the face layout look upusual?	0.5555	0.0337
40 47	Dots the eyes have unnatural reflections?	0.5344	0.3377
-+/ /9	Does the face have rough or upeven skin texture?	0.5525	0.0417
40 40	Does the face have fough of uneven skill texture?	0.5292	0.7973
49 50	Does the facial appear too sharp of unclear?	0.5292	0.5017
50	Does the factal expression look still?	0.5269	0.3340

	Table 14: Bottom 50 Weak Features		
Rank	Question	Pretrained	Strengthened
51	Does the nose lack texture?	0.5231	0.5111
52	Is the skin too shiny under the nose?	0.5251	0.7458
52	Is the sharpness of the face upeven in parts?	0.5225	0.7438
55	The sharpiness of the face look unpatteral or uneven?	0.5214	0.5701
55	Le the lighting on the face stronge or uneven?	0.5212	0.5151
55	Dees the need bridge appear too smooth?	0.5200	0.5908
50	Does the heiding energy warstern ¹²	0.5172	0.5595
50	Does the face chin texture look anever?	0.5148	0.5495
50	Does the face parts look out of helenoo?	0.5144	0.5489
59	Do the face parts look out of balance?	0.5157	0.3887
00 61	Are the facial realized too symmetrical?	0.5150	0.7300
01	Does the factal expression look forced?	0.5116	0.5562
62	Are the nostrils hard to see?	0.5115	0.6535
63	Do the lips look unnatural?	0.5110	0.5555
64	Does the face skin look too smooth in some areas?	0.5089	0.5287
65	Do the lips lack natural texture?	0.5083	0.5855
66	Is the lighting around the nose inconsistent?	0.5080	0.7257
67	Do the sizes of the eyes, nose, and mouth seem off?	0.5038	0.5275
68	Does the skin around the nose look unnaturally smooth?	0.5030	0.5309
69	Are the facial creases too soft?	0.5028	0.7943
70	Do the teeth appear blurry or unrealistic?	0.5028	0.5210
71	Is the transition between the neck and the face not smooth?	0.5026	0.5330
72	Is the skin tone different in parts of the face?	0.5023	0.5749
73	Does the face lack sharpness around the edges?	0.5021	0.5311
74	Is the chin outline hard to see?	0.5021	0.6160
75	Is the lighting uneven on the face?	0.5012	0.6351
76	Are the details around the ears unclear?	0.5010	0.6751
77	Is the chin too smooth compared to the rest of the face?	0.5010	0.5664
78	Do the bright areas on the face seem odd?	0.5007	0.5196
79	Is the skin near the mouth unnaturally bright?	0.5007	0.5930
80	Are the nostrils blurry or unclear?	0.5007	0.5125
81	Are the dimples missing or poorly defined?	0.5005	0.5000
82	Is the jawline too pronounced or too faint?	0.5000	0.5003
83	Is the area under the eyes missing natural texture?	0.5000	0.5111
84	Is there blending on the face that looks edited?	0.5000	0.5014
85	Does the shadow under the chin seem unnatural?	0.5000	0.5090
86	Is the forehead missing natural shadows?	0.5000	0.5000
87	Does the light reflection on the nose look strange?	0.5000	0.5049
88	Are the transitions between the face and the background poorly blended?	0.5000	0.5447
89	Does the light reflection on the forehead look artificial?	0.5000	0.5007
90	Are there missing shadows around the nose?	0.5000	0.5217
91	Does the lighting around the mouth look unusual?	0.5000	0.5301
92	Does the neck look unnaturally smooth compared to the face?	0.5000	0.6259
93	Do the face outlines look off?	0.5000	0.5247
94	Do the edges around the face look unnatural?	0.5000	0.5299
95	Are the fine details on the skin missing?	0.5000	0.5165
96	Are the shadows under the eyes missing?	0.5000	0.5000
97	Are the cheeks lacking shadows?	0.5000	0.5000
98	Do the cheekbones appear unnaturally smooth?	0.5000	0.5709
99	Does the face appear overly lit in certain areas?	0.5000	0.6758
100	Are the wrinkles on the face lacking detail?	0.5000	0.5014

Table 15: Questions list generated by Claude3.5-Sonnet (part1)

1462		
1463	No.	Question
1464	1	Are there noticeable inconsistencies in facial symmetry? Return me yes or no
1465	2	Does the skin texture appear artificially smooth or lacking natural details? Return me yes or no
1466	3	Are the eyes misaligned or disproportionate? Return me yes or no
1/67	4	Is there unnatural blending between facial features and background? Return me yes or no
1/60	5	Do shadows and lighting appear inconsistent across the face? Return me yes or no
1400	6	Are facial expressions unnatural or mechanically rigid? Return me yes or no
1469	7	Does the hairline show signs of artificial blending? Return me yes or no
1470	8	Are there visible artifacts or glitches in the image? Return me yes or no
1471	9	Do reflections in the eyes match the environment? Return me yes or no
1472	10	Is there proper alignment of facial features? Return me yes or no
1473	11	Does the skin show natural imperfections and pores? Return me yes or no
1474	12	Are teeth shapes and alignment realistic? Return me yes or no
1475	13	Is there consistent image quality across all facial areas? Return me yes or no
1476	14	Do facial proportions follow natural human anatomy? Return me yes or no
1477	15	Are shadows cast appropriately based on lighting? Return me yes or no
1478	16	Does facial hair follow natural growth patterns? Return me yes or no
1/170	17	Is there proper depth and dimension to facial features? Return me yes or no
14/0	18	Are color tones consistent throughout the face? Return me yes or no
1400	19	Do glasses and accessories appear properly attached? Return me yes or no
1481	20	Is there natural variation in skin texture? Return me yes or no
1482	21	Are facial contours anatomically correct? Return me yes or no
1483	22	Does the head size match body proportions? Return me yes or no
1484	23	Is there appropriate detail in fine features? Return me yes or no
1485	24	Are transitions between features naturally blended? Return me yes or no
1486	25	Do facial movements appear fluid and natural? Return me yes or no
1487	20	Are ear snapes and positions symmetrical? Return me yes or no
1488	27	Do eyebrows have natural hair patterns? Return me yes or no
1489	20	Are need consistent resolution between face and background? Return the yes of no
1490	29	Are nose contours anatomically accurate? Return me yes of no
1491	21	Are facial wrinkles and lines are appropriate? Beturn me yes of no
1492	31	Do evaluation with the stand property attached? Deturn me yes or no
1/03	32	Is there natural skin coloration variation? Return me yes or no
1404	34	Are facial highlights consistent with lighting? Return me yes or no
1434	35	Do lins have natural texture and color? Return me yes or no
1490	36	Is there proper depth in eve sockets? Return me yes or no
1496	37	Are facial moles and marks naturally placed? Return me yes or no
1497	38	Do teeth have individual characteristics? Return me yes or no
1498	39	Is there natural asymmetry in facial features? Return me yes or no
1499	40	Are skin pores visible where expected? Return me yes or no
1500	41	Do facial muscles move naturally? Return me ves or no
1501	42	Is there consistent focus across the image? Return me yes or no
1502	43	Are shadows under facial features natural? Return me ves or no
1503	44	Do earrings and iewelry sit naturally? Return me ves or no
1504	45	Is there proper skin subsurface scattering? Return me ves or no
1505	46	Are facial proportions consistent in different angles? Return me ves or no
1506	47	Do eye corners have natural creases? Return me yes or no
1507	48	Is there natural variation in lip texture? Return me yes or no
1508	49	Are facial hair shadows realistic? Return me yes or no
1500	50	Do glasses cast appropriate shadows? Return me yes or no
1009		

Table 16: Questions list generated by Claude 3.5-Sonnet (part	nerated by Claude3.5-Sonnet (part2)
---	-------------------------------------

1516		
1517	No.	Question
1518	51	Is there natural skin translucency? Return me yes or no
1519	52	Are facial expressions emotionally consistent? Return me yes or no
1520	53	Do neck muscles align naturally? Return me yes or no
1520	54	Is there proper depth in smile lines? Return me yes or no
1521	55	Are eye reflections consistent with scene lighting? Return me yes or no
1522	56	Do facial features maintain proportion when moving? Return me yes or no
1523	57	Is there natural skin aging present? Return me yes or no
1524	58	Are hair strands individually visible? Return me yes or no
1525	59	Do facial veins appear natural where visible? Return me yes or no
1526	60	Is there consistent skin tone across transitions? Return me yes or no
1527	61	Are nostril shapes symmetrical? Return me yes or no
1528	62	Do ears have natural internal structure? Return me yes or no
1529	63	Is there proper depth in nasolabial folds? Return me yes or no
1530	64	Are eye bags and circles age-appropriate? Return me yes or no
1531	65	Do facial piercings sit naturally? Return me yes or no
1532	66	Is there natural variation in beard density? Return me yes or no
1533	67	Are lip lines naturally defined? Return me yes or no
153/	68	Do cheekbones have natural contours? Return me yes or no
1504	69	Is there proper temple definition? Return me yes or no
1535	70	Are eye whites naturally textured? Return me yes or no
1536	/1	Do facial scars appear authentic? Return me yes or no
1537	12	Is there natural jaw definition? Return me yes or no
1538	73	Are factal dimples naturally placed? Return me yes or no
1539	74	Lo eyebrow hans have direction variation? Return the yes of no
1540	75	Are facial frequences not unally distributed? Deturn me yes or no
1541		Are factal freckles naturally distributed? Return me yes or no
1542	70	Lo eyends have natural creases? Return me yes of no
1543	70	Are facial tottoos properly embedded? Peturn me yes or no
1544	80	De amile lines appear natural? Deturn me vas or no
1545	81	Is there proper forehead texture? Return me yes or no
1546	82	Are eve corners naturally aged? Return me yes or no
1547	83	Do facial muscles show proper definition? Return me yes or no
1548	84	Is there natural lin symmetry? Return me yes or no
1540	85	Are ear lobes naturally shaped? Return me yes or no
1549	86	Do facial shadows have color variation? Return me yes or no
1000	87	Is there proper nose bridge definition? Return me yes or no
1551	88	Are facial pores consistently sized? Return me ves or no
1552	89	Do evebrows have natural thickness variation? Return me ves or no
1553	90	Is there natural skin elasticity? Return me ves or no
1554	91	Are facial creases movement-appropriate? Return me ves or no
1555	92	Do teeth have natural translucency? Return me yes or no
1556	93	Is there proper cheek coloring? Return me ves or no
1557	94	Are eye bags naturally shadowed? Return me yes or no
1558	95	Do facial features maintain proper scale? Return me yes or no
1559	96	Is there natural skin undertone? Return me yes or no
1560	97	Are facial expressions muscle-consistent? Return me yes or no
1561	98	Do wrinkles have proper depth? Return me yes or no
1562	99	Is there natural facial bone structure? Return me yes or no
1563	100	Are skin textures consistently detailed? Return me yes or no
1564		· · ·
1007		

Figure 20: Feature related questions

1	000
1	657
1	658
1	659
1	660
1	661
1	662
1	663
1	664
1	665
1	666
1	667
1	668
1	669
1	670
1	671
1	672

1673