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Abstract001

Predicting the types and affinities of protein-002
protein interactions (PPIs) is crucial for under-003
standing biological processes and developing004
novel therapeutic approaches. While encod-005
ing proteins themselves is essential, PPI net-006
works can also provide rich prior knowledge007
for these predictive tasks. However, existing008
methods oversimplify the problem of PPI pre-009
diction in a semi-supervised manner when uti-010
lizing PPI networks, limiting their practical ap-011
plication. Furthermore, how to effectively use012
the rich prior knowledge of PPI networks for013
novel proteins not present in the network re-014
mains an unexplored issue. Additionally, due to015
inflexible architectures, existing methods can-016
not handle complexes containing an flexible017
number of proteins. To overcome these limi-018
tations, we introduce LLaPA (Large Language019
and Protein Assistant), a multimodal large lan-020
guage model that integrates proteins and PPI021
networks. LLaPA offers a more rational ap-022
proach to utilizing PPI networks for PPI pre-023
diction and can fully exploit the information024
of PPI networks for unseen proteins. Through025
natural language instructions, LLaPA can ac-026
cept flexible number of protein sequences and027
has the potential to perform various protein028
tasks. Experiments show that LLaPA achieves029
state-of-the-art performance in multi-label PPI030
(mPPI) type prediction and is capable of pre-031
dicting the binding affinity between multiple032
interacting proteins based on sequence data.033

1 Introduction034

Protein-protein interactions (PPIs) are fundamental035

to biological processes and critical in drug discov-036

ery (Wells and McClendon, 2007; Braun and Gin-037

gras, 2012). Traditional high-throughput screen-038

ing methods, such as yeast two-hybrid screens039

(Ito et al., 2001) and tandem affinity purification040

(Gavin et al., 2002), are both expensive and time-041

consuming. Recently, advancements in deep learn-042

ing have led to numerous approaches for predict-043

ing PPIs. These approaches can be divided into 044

those that utilize PPI networks and those that do 045

not. Methods that do not use PPI networks in- 046

clude DPPI (Hashemifar et al., 2018), DNN-PPI 047

(Li et al., 2018), PIPR (Chen et al., 2019), TAGPPI 048

(Song et al., 2022), and Geo-PPI (Liu et al., 2021). 049

These methods encode proteins individually and 050

then concatenate the features of paired proteins for 051

downstream tasks. 052

Methods based on PPI networks encode not only 053

proteins but also the PPI network. In a PPI network, 054

nodes represent proteins, and edges, often multi- 055

labeled, indicate relationships between them. PPI 056

networks are essential for predicting PPIs, as pro- 057

tein interactions depend on both individual features 058

and their positions within the larger network (Lee, 059

2023). GNN-PPI (Lv et al., 2021) was the pioneer- 060

ing method leveraging PPI networks, achieving 061

significant improvements in the mPPI task. Subse- 062

quent methods, such as SemiGNN-PPI (Zhao et al., 063

2023), HIGH-PPI (Gao et al., 2023b), and MAPE- 064

PPI (Wu et al., 2024b), built upon GNN-PPI’s set- 065

tings and demonstrated even better performance in 066

mPPI prediction. 067

Despite significant advancements, these methods 068

face three critical limitations: (1) Oversimplified 069

mPPI Task Setting: Existing methods utilize con- 070

nection information between unseen proteins in a 071

semi-supervised manner (Kipf and Welling, 2016; 072

Lv et al., 2021; Gao et al., 2023b; Zhao et al., 2023; 073

Wu et al., 2024b), which oversimplifies task diffi- 074

culty. Current benchmarks separate a portion of 075

the PPI network data as the test set, and the topo- 076

logical information of the test set is also input into 077

the model. This approach explicitly informs the 078

model of relationships between protein pairs be- 079

ing tested, facilitating information exchange and 080

simplifying PPI prediction. Unlike readily avail- 081

able protein sequences, acquiring connection infor- 082

mation between proteins often requires extensive 083

biological experiments and analysis, making this 084
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approach impractical for real-world applications.085

(2) Ineffectiveness of PPI Network Information086

for Unseen Proteins: In real-world scenarios, we087

frequently encounter unseen proteins that do not088

exist in any PPI network. Existing methods fail to089

effectively utilize PPI network information in such090

cases, as the model cannot extract useful informa-091

tion from the network topology, thereby affecting092

prediction accuracy and practicality. (3) Limita-093

tions in Multi-Protein Interactions: These mod-094

els, with their fixed architectures, can only handle095

interactions between two proteins and cannot pre-096

dict relationships involving multiple proteins or the097

affinity of multi-protein complexes. Many biologi-098

cal processes depend on multi-protein complexes,099

such as antigen-antibody complexes, which typi-100

cally consist of three chains: the antigen, the heavy101

chain of the antibody, and the light chain of the102

antibody (Wu et al., 2024a). The challenge lies in103

the unknown number of proteins, requiring models104

to be flexible enough to accept an arbitrary number105

of proteins as input. These methods struggle with106

such complex multi-protein interactions, limiting107

their applicability in practical biological research.108

Recently, some studies have achieved notable109

performance in protein encoding and understand-110

ing through joint learning of proteins and natural111

language, such as ProtLLM (Zhuo et al., 2024),112

ProLLama (Lv et al., 2024), Prot2Text (Abdine113

et al., 2024), and ProteinGPT (Xiao et al., 2024).114

Pre-trained on large-scale protein databases, these115

methods exhibit strong generalization capabilities.116

The flexibility of LLMs enables them to handle117

tasks involving multiple protein sequences, address-118

ing Challenge (3) effectively. Nonetheless, they119

did not further explore the task of multi-sequence120

proteins, nor did they utilize the rich information121

provided by the PPI network.122

In this work, we propose a multimodal model123

called LLaPA (Large Language and Protein As-124

sistant), which effectively addresses the aforemen-125

tioned three challenges simultaneously. LLaPA in-126

tegrates protein representations and PPI networks127

into a large language model (LLM). We construct128

a more general PPI network, inputting both net-129

work topology information and protein information130

into the LLM to assist in decision-making. During131

both training and inference, we completely remove132

edges that overlap between the PPI network and133

the test set. Treating the PPI network as exter-134

nal knowledge, we inject this knowledge into the135

LLM prompt using Retrieval-Augmented Genera-136

tion (RAG) (Gao et al., 2023a). For proteins not 137

present in the PPI network, we find similar protein 138

nodes within the PPI network and provide their 139

topology as additional information. Leveraging the 140

flexibility of large language models, LLaPA can 141

accept flexible number of proteins as input and use 142

natural language instructions for downstream tasks. 143

The contributions of this paper can be summa- 144

rized as follows: 145

• We reveal the limitations of existing meth- 146

ods in utilizing PPI networks and provide a 147

straightforward method for more reasonable 148

utilization of PPI networks. 149

• We propose treating the PPI network as ex- 150

ternal knowledge and injecting it into LLMs 151

through RAG to assist downstream tasks. This 152

approach is also effective for unseen proteins. 153

We also constructed a more general PPI net- 154

work called UPPIN. 155

• We develop a protein natural multimodal large 156

language model, LLaPA, which integrates the 157

protein encoder EMS-2 (Lin et al., 2022), the 158

PPI network encoder SGC (Wu et al., 2019), 159

and the large language model llama3-8b (Tou- 160

vron et al., 2023). LLaPA can handle flexible 161

numbers of proteins and has the potential per- 162

form diverse protein tasks. 163

• Experiments show that LLaPA achieves state- 164

of-the-art (SOTA) performance on the mPPI 165

task and demonstrates significant accuracy in 166

multi-sequence affinity prediction. 167

2 Related work 168

2.1 Protein-protein interactions 169

Protein-Protein Interactions (PPIs) are crucial com- 170

ponents of cellular activities and play significant 171

roles in various biological functions (Lu et al., 172

2020; Bryant et al., 2022; Richards et al., 2021). 173

The interactions among multiple proteins form 174

complex PPI networks, which implicitly represent 175

the signaling processes and pathways of various life 176

activities within organisms. Understanding PPIs 177

not only helps us decipher complex biological sys- 178

tems but also aids in identifying potential targets 179

for disease intervention. 180

With the rise of deep learning technologies, re- 181

searchers have proposed numerous deep learning- 182

based methods for PPI prediction. From a task 183

2



perspective, PPI tasks include: (1) Binary Classifi-184

cation: This task involves inputting a pair of pro-185

tein sequences and determining whether these two186

proteins can interact. Methods such as DPPI, DNN-187

PPI, PIPR, and TAGPPI typically include a convo-188

lutional neural network module as the protein en-189

coder. After encoding the two proteins separately,190

a feature fusion module combines the encoded fea-191

tures, and a binary classifier outputs the classifi-192

cation result. (2) Multi-label PPI Type Prediction:193

This task focuses on identifying the types of inter-194

actions between two proteins. PIPR and TAGPPI195

can also handle this task. GNN-PPI introduces the196

topological information of the PPI network, com-197

bining the topological information of proteins in198

the PPI network with protein features, achieving199

significant improvements in the mPPI task. Sub-200

sequent works like HIGH-PPI and MAPE-PPI use201

the same PPI network. (3) Protein-Protein Binding202

Affinity Prediction: This task typically focuses on203

predicting changes in binding affinity between pro-204

tein complexes due to mutations, as seen in works205

like Geo-PPI, DDAffinity (Yu et al., 2024), and top-206

Nettree (Wang et al., 2020). These methods input207

the original and mutated protein features to predict208

the affinity changes caused by specific mutations.209

Few works directly predict the binding affinity of210

protein complexes, with PIPR being one known211

example. These methods can only handle pairwise212

protein interactions and cannot predict the affinity213

of multi-sequence complexes. (4) PPI Binding Site214

Prediction: This task requires amino acid-level en-215

coding. Representative works include DeepHomo216

(Yan and Huang, 2021), GLINTER (Xie and Xu,217

2022), and DeepInter (Lin et al., 2023), which are218

beyond the scope of this discussion. (5) Protein-219

Protein Conformation Prediction: Similar to task220

(4), this also requires amino acid-level encoding221

and is not covered in this paper.222

2.2 Multimodal Large Language Models223

Multimodal Large Language Models (MLLMs) are224

dedicated to enabling LLMs to recognize and un-225

derstand non-natural language modality data, such226

as images, sounds, etc. A common approach in-227

volves first using multimodal encoders to encode228

data from various modalities. Then, a projector229

module aligns the output space of these modali-230

ties with the input space of the LLM. This pro-231

cess injects multimodal output features into the232

LLM, enabling it to understand non-natural lan-233

guage modalities. Subsequently, Multimodal In-234

struction Tuning is employed, which mixes natural 235

language instructions with multimodal data, allow- 236

ing the MLLM to perform downstream tasks based 237

on the given multimodal data and natural language 238

instructions. Representative works include LLaVA 239

(Liu et al., 2024a), InstructBLIP (Dai et al., 2023), 240

VisionLLM (Wang et al., 2024), and MultiModal- 241

GPT (Gong et al., 2023). Recently, some efforts 242

have been made to integrate protein modality into 243

LLMs, endowing LLMs with the ability to under- 244

stand proteins. Relevant work includes ProtLLM 245

(Zhuo et al., 2024), Prot2Text (Abdine et al., 2024), 246

and ProteinGPT (Xiao et al., 2024), which have 247

achieved noteworthy performance in gene ontology 248

term prediction, as well as understanding of protein 249

sequences and structures. 250

3 Method 251

3.1 Problem Settings 252

This work focuses on two tasks: (1) Multi-label PPI 253

type prediction. Given a pair of proteins (p1, p2), 254

the goal is to predict the types of interactions be- 255

tween them, which is a multi-class classification 256

task. (2) Multi-sequence Affinity prediction. Given 257

a complex C = (B, T ), where B refers to the 258

binder and T refers to the target, predict its loga- 259

rithmic dissociation constant logKd = log [B][T ]
[BT ] . 260

B and T can each be a single protein sequence 261

or a complex containing multiple sequences. For 262

the PDB2020 (PP) dataset from PDBBind (Liu 263

et al., 2017), which includes 2852 complexes, ac- 264

curately extracting the binder and target based on 265

the given information is very challenging and re- 266

quires manual analysis of the papers corresponding 267

to each PDB entry. Therefore, we have simplified 268

this task in the form of: Given a set of proteins 269

(p1, p2, ..., pk), predict its logKd specified by the 270

dataset. We leverage a PPI network to obtain prior 271

knowledge about the target proteins to aid in the 272

prediction. The PPI network is represented as a 273

graph G = {V,A}, where V = {v1, v2, .., vn} are 274

the nodes of the graph, with each node vi corre- 275

sponding to a protein. A ∈ Rn×n is the adjacency 276

matrix of the graph, where aij = 1 if there is an 277

interaction between proteins pi and pj , and aij = 0 278

otherwise. We use X ∈ Rn×d to represent the 279

feature matrix of the graph G, where each row xi 280

represents the features of the i-th protein. 281

3



Figure 1: An overview of LLaPA. It consists of two main components: Graph-based Retrieval Augmented Prompt
Preparation and a Multimodal Fusion Framework. In the Graph-based Retrieval Augmented Prompt Preparation
stage, we search for matching topological information in UPPIN (a unified PPI network we constructed) based on
the input protein and task instructions. This process yields additional topological features and information-enhanced
natural language instructions. Subsequently, we input the protein, graph features, and enhanced instructions into our
Multimodal Fusion Framework for training and inference.

3.2 Overall Architecture282

LLaPA is an integrated large language model that283

combines protein and graph data, as shown in Fig-284

ure 1. It consists of two main components: Graph-285

based Retrieval Augmented Prompt Prepara-286

tion and a Multimodal Fusion Framework. In the287

Graph-based Retrieval Augmented Prompt Prepa-288

ration stage, we search for matching topological289

information in the PPI network based on the in-290

put proteins. This allows us to obtain additional291

topological features and enriched natural language292

instructions. Subsequently, we input the proteins,293

graph features, and the augmented instructions into294

our Multimodal Fusion Framework for training and295

inference. Before formally introducing our method,296

we will briefly discuss the limitations of existing297

PPI network-based methods.298

3.3 Limitations of Oversimplified mPPI Task299

Setting300

PPI networks are essential for PPI-related tasks, as301

a protein’s position within the network provides302

valuable prior knowledge. (Lv et al., 2021) were303

the first to apply PPI networks to the mPPI task304

with their GNN-PPI model, which uses a graph 305

isomorphism network (GIN) (Xu et al., 2018) to 306

encode PPI network topology. They validated the 307

model using three data partitioning methods: ran- 308

dom, DFS (depth-first search), and BFS (breadth- 309

first search). As shown in Figure 2-(a), (b), and (c), 310

these methods partition a portion of the edges as 311

the test set, which the labels are not used for train- 312

ing but the structural information are retained for 313

message passing in the GNN model. This allows 314

message exchange between the protein pairs being 315

tested, reducing prediction difficulty. During train- 316

ing, GNN-PPI uses the training edges (green solid 317

edges in Figure 2), but during testing, the test edges 318

(dashed edges in Figure 2) are also included within 319

the graph encoder. Subsequent work, HIGH-PPI, 320

followed GNN-PPI’s setup, while MAPE-PPI used 321

all topological information during both training and 322

inference phases. 323

Unlike protein sequences, which are relatively 324

easy to obtain, acquiring connection information 325

between proteins requires extensive biological ex- 326

periments and analysis. This makes it challenging 327

to effectively use connection information between 328
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test proteins in practical applications. However,329

removing test set edges during testing may bring330

another issue, as shown in Figure 2-(d), (e), and331

(f), where gray nodes become isolated and cannot332

obtain useful information from the PPI network.333

Additionally, an unseen protein inherently has no334

edges in the PPI network, making it an isolated335

node. Existing methods do not address how to336

handle this situation.337

3.4 Graph-based Retrieval Augmented338

Prompt Preparation339

To address the aforementioned issues, we propose340

a novel method that utilizes the PPI network as341

an external knowledge source. By employing the342

RAG (Retrieval-Augmented Generation) technique,343

we integrate the knowledge from the PPI network344

into the input of the large language model (LLM).345

Given a set of proteins P = {p1, p2, ..., pm} and346

a textual task prompt W , we first locate the cor-347

responding nodes V = {v1, v2, ..., vm} in the PPI348

network for each protein. Next, we construct an349

enhanced natural language instruction WRAG. Fi-350

nally, we input this set of proteins, along with the351

graph node information and the enhanced instruc-352

tion into the LLM.353

In real-world applications, we may lack prior354

knowledge about a new protein, meaning it might355

not exist in any PPI network. In the biological do-356

main, Multiple Sequence Alignment (MSA) (Edgar357

and Batzoglou, 2006) is a common method for an-358

alyzing protein functions. MSA aligns multiple359

protein sequences to study the structure, function,360

and evolutionary relationships of the target protein.361

A key aspect of MSA is the use of reference se-362

quences. Inspired by MSA, for a protein that is363

an isolated node in the PPI network, we can ap-364

proximate its topological reference by comparing365

it with proteins in the PPI network. Specifically,366

for a protein p not present in the PPI graph G, we367

calculate its similarity to each protein in G, de-368

noted as S = {s(p, pi)|pi ∈ G}. This similarity369

can be computed using methods such as sequence370

alignment scores, structural similarity, or other bi-371

ological metrics; here, we use the cosine similar-372

ity between protein features. With the similarity373

scores, we retrieve the most similar proteins in the374

PPI network and use their topological information375

as a proxy for the isolated protein. This enables us376

to construct an enriched instruction WRAG that in-377

cludes relevant topological features, which we then378

integrate into the LLM prompt for prediction tasks.379

We did not perform any additional processing on 380

the similarity scores; instead, we directly placed 381

the similarity scores explicitly into WRAG. 382

Our instruction template, shown in Appendix 383

A Figure 3, uses a structured data repre- 384

sentation, separating text, protein sequences, 385

and graph node indices. In the text, we 386

use two special tokens, <|proteinHere|> and 387

<|graphEmbeddingHere|>, to denote the protein 388

embedding and the PPI network node embedding, 389

respectively. This method can also address isolated 390

nodes caused by the removal of test edges. When 391

constructing WRAG, we initially assess the degree 392

of the target protein p within the PPI network. If 393

the degree is 0, indicating that p is an isolated node, 394

we employ the same methodology used for an un- 395

seen protein to derive the topological information 396

of similar proteins in the PPI network. 397

3.4.1 Unified PPI network 398

Although leveraging protein similarity to utilize the 399

topological information of similar proteins in the 400

PPI network is beneficial, the number and diversity 401

of protein nodes remain a limitation. Intuitively, 402

a PPI network with more proteins and greater di- 403

versity enhances the model’s generalization ability. 404

To achieve better generalization, we constructed 405

a larger PPI network called UPPIN (Unified PPI 406

Network), which consists of three sub-datasets: 407

STRING (Homo sapiens subset) (Szklarczyk et al., 408

2016), PDBBind (Liu et al., 2017), and SAbDab 409

(Dunbar et al., 2014). UPPIN includes a total of 410

26,180 unique proteins and 594,216 unique edges. 411

By constructing UPPIN, we expanded the coverage 412

and diversity of the PPI network, enhancing the 413

model’s generalization capability. This larger-scale 414

PPI network provides richer topological informa- 415

tion and better supports prediction tasks for unseen 416

proteins. Refer to Appendix A.2 for more details. 417

3.5 Multimodal Fusion Framework 418

As illustrated in Figure 1, we encode the protein,
graph, and text separately, then fuse them to form
the input for the LLM. For a given protein p, we
use an encoder fp(·) to obtain the protein features
Zp = fp(p). Similar to LLaVA (Liu et al., 2024a),
we use a learnable mapping matrix Wp to map Zp

to the embedding tokens Hp for the LLM:

Hp = Wp · Zp, with Zp = fp(p).

While sophisticated designs like QFormer (Li 419

et al., 2023), C-Abstractor, and D-Abstractor (Cha 420
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Figure 2: Existing data splitting methods for models based on PPI networks include: (a) Random: randomly
selecting a portion of edges from the PPI network as the test set; (b) DFS: using depth-first approach to traverse the
PPI network and selecting a portion of edges as the test set; (c) BFS: using breadth-first approach to traverse the PPI
network and selecting a portion of edges as the test set. Regardless of the splitting method used, all edges are input
into the GNN during the inference process. This allows information exchange between the proteins being tested,
greatly simplifying the difficulty of multi-label PPI type prediction and limiting their practical value. We believe
that all test edges should be removed during both the training and testing phases, as shown in (d)(e)(f).

et al., 2024) exist for connecting different data421

modalities with LLMs, recent research suggests422

that a Linear Projector may be optimal when suf-423

ficient computational resources are available (Yao424

et al., 2024). We chose ESM2-3B (Lin et al., 2022)425

as the protein encoder, a transformer-based model426

capable of directly encoding amino acid sequences.427

For the PPI graph, we first use a graph encoder
fv(·) to encode it as X

′
= fv(X). We then extract

the embedding of the node corresponding to protein
p in the graph, denoted as X

′
p. A mapping matrix

Wv is used to map X
′
p to the embedding tokens

Hv for the LLM:

Hv = Wv ·X
′
p, with X

′
= fv(X).

We use SGC (Wu et al., 2019) as the graph
encoder, which balances encoding capability and
computational efficiency. The graph is encoded
using the following formula:

X
′
= (D̂

−1
2 ÂD̂

−1
2 )KXΘ,

where Â = A + I denotes the adjacency matrix428

with inserted self-loops, D̂ii =
∑

j Âij is the diag-429

onal degree matrix, and Θ ∈ Rd×d′ is the weight430

matrix. The parameter K controls the number of431

hops or the receptive field of the convolution.432

For an input (P, V,WRAG), we obtain the433

protein embeddings (Hp1 ,Hp2 , ...,Hpm) and434

the corresponding graph node embeddings435

(Hv1 ,Hv2 , ...,Hvm) using the methods described436

above. We then use the encoding layer of the437

LLM to obtain the corresponding text embeddings438

(Hw1 ,Hw2 , ...,Hwn). Finally, we combine these439

embeddings into a complete input: (Hw,Hp,Hv),440

where the order of these embeddings depends on441

the positions of different types of tokens in WRAG.442

4 Model Training 443

Our training process is divided into two steps.
In the first step, we remove the graph encoder
and freeze both the LLM and the protein encoder,
training only the protein projector Wp to map
the protein features into the LLM’s input space.
For this step, we use the UniProtQA (Luo et al.,
2023) dataset, which contains 569,516 proteins
and 1,891,506 protein question-answer pairs. Each
QA record includes only one protein sequence,
with questions covering protein functions, official
names, families, and sub-cellular locations. Given
a QA record (Q,A, p), where Q represents the
question, A represents the response, and p is a
protein sequence, the objective is to maximize the
probability P(A|Q, p). We optimize this probabil-
ity using the LLM’s autoregressive objective:

LLLM = −
T∑
t=1

logP(wt|w1, ..., wt−1; p)

In the second step, we fine-tune directly on the
downstream task. Here, we freeze the protein en-
coder and load the graph encoder. We update
the graph encoder fv(·), the graph mapping ma-
trix Wv, the protein mapping matrix Wp, and the
weights of the LLM. Unlike the protein encoder
and protein projector, which have been pre-trained,
the weights of the graph encoder and graph projec-
tor are randomly initialized. Since the topological
information provided by the graph complements
the corresponding protein information, and the pro-
tein feature projector already connects protein fea-
tures to the LLM, we can leverage this comple-
mentarity to accelerate the alignment of graph fea-
tures with the LLM. We use InfoNCE (Oord et al.,
2018) to maximize the mutual information between
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the protein representation and the corresponding
topological information. The objective function
is: LinfoNCE = −E[log exp(E(Hp,Hv))∑

v
′ exp(E(Hp,H

v
′ ))

+

log
exp(E(Hp,Hv))∑
p
′ exp(E(H

p
′ ,Hv))

], where E(·) is an energy

function, which can be of flexible form. We use the
dot product for its simplicity, i.e., E(Hp,Hv) =
Hp ·Hv. The advantage of this approach is that we
do not need to design additional tasks to pre-train
the graph encoder and projector. Therefore, the
loss function for the second stage of training is:

Loss = LinfoNCE + LLLM .

5 Experiments444

We evaluated LLaPA’s capabilities on multi-label445

PPI type prediction (mPPI) and multi-sequence446

affinity prediction (MA).447

Datasets. For the mPPI task, we used two448

subsets of STRING, SHS27k and SHS148k, con-449

structed by (Chen et al., 2019). We used the same450

data splitting methods as GNN-PPI: random (ran-451

domly selecting test edges from the PPI network),452

DFS (depth-first search for test edges), and BFS453

(breadth-first search for test edges). We split these454

datasets into training, validation, and test sets in455

a 60%:20%:20% ratio. For the MA task, we used456

PDB2020, splitting it into training and test sets at457

an 80%:20% ratio.458

Baselines. For the mPPI task, we compared459

our approach against DPPI, DNN-PPI, PIPR,460

ESM2-3B (fixed), ESM2-3B (ft), ProtLLM, GNN-461

PPI, HIGH-PPI, and MAPE-PPI. Since GNN-PPI,462

HIGH-PPI, and MAPE-PPI have access to the com-463

plete PPI network during the test phase, we re-464

moved the edges contained in the test set from the465

PPI network for a fairer comparison. These mod-466

ified versions are denoted as GNN-PPI/R, HIGH-467

PPI/R, and MAPE-PPI/R, respectively. For ESM2-468

3B (fixed), we fixed the parameters of ESM2-3B469

and trained a multi-classifier on top of it. For470

ESM2-3B (ft), we fine-tuned all the weights of471

ESM2-3B in addition to training multi-classifiers,472

keeping all training hyperparameters consistent473

with LLaPA. For ProtLLM, we adapted the orig-474

inal code provided by the authors to support the475

mPPI task and fine-tuned it using the pre-trained476

weights and hyperparameters supplied by the au-477

thors. For the MA task, we used PIPR to predict478

the binding affinity of all two-protein complexes in479

the test set. Additionally, we trained three affinity480

prediction models using ESM2-3B, named E(2),481

E(3), and E(4). E(2) predicts the binding affinity 482

of two-protein complexes, E(3) for three-protein 483

complexes, and E(4) for four-protein complexes. 484

5.1 Multi-label PPI Type Prediction 485

The experimental results are shown in Table 1. 486

From these results, we can draw two key insights: 487

(1) Underperformance of PPI network-Based 488

Methods After Edge Removal. PPI network- 489

based methods yield unsatisfactory results after 490

removing the edges contained in the test set. These 491

results are expected because graph encoders heav- 492

ily rely on the graph structure, and removing test 493

set edges significantly alters this structure, making 494

it difficult for the learned weights to be effective. 495

This issue is particularly pronounced with DFS and 496

BFS data splitting methods, which can result in iso- 497

lated nodes that cannot obtain useful information 498

during the graph message-passing process. 499

(2) Superior Performance of LLaPA. LLaPA 500

demonstrates superior performance across all task 501

settings. Under the random splitting method, 502

LLaPA achieves modest improvements over the 503

second-best model on the SHS27k and SHS148k. 504

However, the improvements are much more sig- 505

nificant under the DFS and BFS methods, with 506

LLaPA outperforming the second-best model by 507

a substantial margin. The performance on the 508

larger SHS148k dataset is better than on SHS27k, 509

likely due to the increased dataset size facilitating 510

model fitting. Despite having similar architectures, 511

ProtLLM’s lack of PPI network information led to 512

suboptimal performance on the mPPI task. 513

5.2 Multi-sequence Affinity Prediction 514

The PDB2020 dataset contains complexes with 515

a range of 2 to 16 unique proteins. To evaluate 516

LLaPA’s prediction capabilities, we categorized 517

these complexes based on the number of unique 518

proteins and assessed performance for each group. 519

Most complexes contain fewer than 5 unique pro- 520

teins, while those with 7, 9, 13, 14, and 16 unique 521

proteins each have only one instance. The dataset 522

was randomly divided into training and test sets 523

with an 80:20 ratio, resulting in no test data for 524

groups with 9, 13, 14, and 16 unique proteins, as 525

shown in Appendix B.3. The experimental results 526

is presented in Table 2. LLaPA achieved the best 527

MAE and PCC performance within each group. We 528

also present the training and prediction results for 529

group 6 in the Appendix B.6. 530
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SHS27k SHS148k

random dfs bfs random dfs bfs

DPPI 70.45 43.69 43.87 76.10 51.43 50.80
DNN-PPI 75.18 48.90 51.59 85.44 56.70 54.56

PIPR 79.59 52.19 47.13 88.81 61.38 58.57
ESM2-3B (fixed) 47.58 42.50 41.97 48.92 43.06 41.25

ESM2-3B (ft) 79.23 63.38 48.80 87.86 66.92 61.88
ProtLLM 48.67 42.77 41.94 49.29 42.66 40.33

GNN-PPI/R 40.53 43.19 42.52 39.48 40.96 41.42
HIGH-PPI/R 41.51 40.06 39.87 42.81 51.06 45.94
MAPE-PPI/R 76.84 51.69 55.21 85.96 62.13 56.68

LLaPA
82.49 69.54 67.21 91.78 73.93 70.90
(+2.90) (+6.16) (+12) (+2.97) (+7.01) (+9.02)

Table 1: Experimental results for multi-label PPI type prediction (micro-F1). Bold and underline are used to
highlight the first and second scores respectively.

We also considered the scenario where all se-531

quences in the complex were input into the model532

as shown in Appendix A.533

Sequence Number Methods MAE (↓) PCC (↑)

2

PIPR 1.42 0.34
E(2) 1.43 -0.11

LLaPA 1.35 0.41

3
E(3) 1.24 0.13

LLaPA 1.11 0.51

4
E(4) 1.82 -0.24

LLaPA 1.09 0.76

5 LLaPA 1.02 0.35

6 LLaPA 2.37 0.96

7 LLaPA 0.82 N/A

all LLaPA 1.26 0.49

Table 2: Experimental results of MA prediction on
PDB2020, measured by mean absolute error (MAE)
and Pearson correlation coefficient (PCC).

5.3 Ablation Study534

We conducted ablation experiments to evaluate535

three components: (1) the utility of the pre-trained536

protein projector, (2) the effectiveness of the con-537

structed UPPIN network, and (3) the impact of538

the designed alignment loss function LinfoNCE .539

These experiments were performed on the SHS27k540

dataset, partitioned by DFS. As shown in Table541

3, pretraining improved results by 7.34. Utilizing542

UPPIN improved results by 2.62 compared to the543

original PPI network of SHS27k, and by 26.23544

compared to not using a PPI network. This is intu- 545

itive as UPPIN introduces more proteins and edges, 546

enriching topological information, whereas not us- 547

ing a PPI network is akin to encoding proteins 548

with fixed parameters from ESM-3B. Additionally, 549

using LinfoNCE for aligning graphs and proteins 550

improved results by 3.19, confirming the efficacy 551

of this alignment method. 552

Pretrain PPIs Network LinfoNCE F1

✓ ✓ 43.31
UNI ✓ 62.20

✓ OR ✓ 66.92
✓ UNI 66.35
✓ UNI ✓ 69.54

Table 3: Ablation experiments on SHS27k using DFS
for data partitioning

5.4 Conclusion 553

We identified and addressed limitations in current 554

multi-label PPI type predictions based on PPI net- 555

works. Our solution, a multimodal large language 556

model named LLaPA, incorporates the PPI network 557

as external knowledge, integrating it into the model 558

via RAG. We developed an innovative modality 559

alignment method that uses pre-aligned protein 560

modalities to facilitate graph modality alignment. 561

LLaPA is capable of predicting affinities for multi- 562

sequence complexes with a flexible number of pro- 563

tein sequences. Additionally, LLaPA shows poten- 564

tial for a wide range of other protein-related tasks. 565
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Limitations566

As a large model integrating proteins, PPI networks,567

and natural language, LLaPA utilizes natural lan-568

guage instructions and a unified training method569

for downstream tasks. It can accept a flexible num-570

ber of protein inputs and has the potential to handle571

more complex protein tasks. However, LLaPA fo-572

cuses on protein-level features and is ineffective for573

tasks requiring amino acid-level features, such as574

PPI binding site prediction and PPI conformation575

prediction. Additionally, since we directly input576

protein embeddings into the LLM, we cannot lever-577

age the textual features corresponding to protein578

entities. This is not an issue for novel proteins, but579

for well-studied proteins with existing literature,580

utilizing these resources for better analysis is cru-581

cial. Furthermore, constructing a larger and more582

diverse UPPIN is also very important.583
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A More implementation details840

A.1 Implementation details and841

hyperparameters842

We finetune the parameters of Llama3-8b using843

LoRA (Hu et al., 2021). The LoRA target modules844

are q_proj, k_proj, v_proj, o_proj, gate_proj,845

down_proj, up_proj, and lm_head. The model is846

trained using 8 NVIDIA A100 GPUs (80G). Other847

parameters are detailed in Table 4.

Parameter Value

lora_alpha 64
lora_dropout 0.1

lora_rank 256
learning_rate 4e-5
global_batch 512

lr_scheduler_type cosine
num_warmup_steps 100

weight_decay 0.05
max_grad_norm 0.03

warmup_ratio 0.03
bf16 TRUE

Table 4: Training parameters.

848

A.2 Construction of UPPIN849

STRING (Homo sapiens subset) is a multi-source850

PPI network comprising 15,202 unique proteins851

and 581,161 unique edges. It includes seven types852

of protein interactions: activation, binding, cataly-853

sis, expression, inhibition, posttranslational mod-854

ification (ptmod), and reaction. For UPPIN, we855

retained all nodes and edges from STRING but856

removed the edge labels.857

PDBBind is a database derived from the PDB858

(Protein Data Bank) (Berman et al., 2000), contain-859

ing biomolecular complexes with experimentally860

determined binding affinities. We used the 2020861

version of PDBBind, which includes 2,852 protein-862

protein complexes, totaling 5,711 unique proteins.863

Due to often incomplete protein sequences in the864

crystal data, we first obtained the fasta data for each865

protein from the PDB. We then connected each pair866

of proteins within a complex with an edge, result-867

ing in a total of 5,978 edges.868

SAbDab is an antibody-antigen database that in-869

cludes complexes and experimental information,870

and it is continuously updated. We used data up871

to PDB 8cds, comprising 16,226 complexes and872

6,315 unique proteins. As with PDBBind, we first873

obtained the fasta data for each complex from the 874

Protein Data Bank and then constructed edges be- 875

tween each pair of proteins within a complex. 876

We merged these three datasets to create our 877

UPPIN, which includes a total of 26,180 unique 878

proteins and 594,216 unique edges. Detailed infor- 879

mation is provided in Appendix A.2 Table 5. 880

nodes edges

STRING 15,202 581,161
PDB2020 5,711 5,978
SabDab 6,315 7,424

sum 27,228 597,563

unique 26,180 594,216

Table 5: Information on the constructed UPPIN.

A.3 Implementation of models E(2), E(3), E(4) 881

Models E(2), E(3), and E(4) are all based on ESM2-
3B and are used to predict the affinity of complexes
consisting of 2, 3, and 4 proteins, respectively. We
fixed the parameters of ESM2-3B, encoded the
protein sequences, and concatenated them. Then,
we trained the predictors of E(2), E(3), and E(4),
each of which is a simple linear layer. The learning
rate was set to 5e-4, and the models were trained
for 500 epochs. The loss function used was mean
square error:

LMSE =
∑

(yi − ŷi)
2.

A.4 Inputs and Outputs Examples 882

A.4.1 Example for mPPI task. 883

INPUTS: 884

Instruction: There are two proteins, 885

<|proteinHere|> and <|proteinHere|>. 886

Among the following seven types of relationships 887

(reaction, binding, ptmod, activation, inhibition, 888

catalysis, expression), list all possible relationships 889

between these two proteins. Carefully analyze 890

the given protein features, based on the defini- 891

tion of the seven protein relations, answer this 892

question in the form of ‘According to the given 893

protein information, Their relationships include 894

relation(s).’ If multiple relationships may exist, 895

separate them with comma. SUPPLEMENTARY 896

INFO: For protein 1, its topological information 897

in the PPI network is <|graphEmbeddingHere|>. 898

For protein 2, its topological information in the 899

PPI network is <|graphEmbeddingHere|>. 900
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Figure 3: The input template for Graph-based Retrieval Augmented Prompt. It includes text instructions, protein
sequences, and the position of the protein (or similar proteins) in the PPI network. The Instruction is encoded by
the embedding layer of the LLM, the Proteins are encoded by ESM2-3B, and the Protein Indexes are used to find
the corresponding proteins’ positions in UPPIN and obtain the embeddings of these nodes in UPPIN encoded by
SGC. Finally, these three parts of the encoding are fused to form the input for the LLM.

Protein 1: MGLTVSALFSRIFGKKQMRILMVGLDAAG901

KTTILYKLKLGEIVTTIPTIGFNVETVEYKNICFTVWDVG902

GQDKIRPLWRHYFQNTQGLIFVVDSNDRERVQESADELQK903

MLQEDELRDAVLLVFANKQDMPNAMPVSELTDKLGLQHLR904

SRTWYVQATCATQGTGLYDGLDWLSHELSKR905

Protein 2: MTECFLPPTSSPSEHRRVEHGSGLTRTPS906

SEEISPTKFPGLYRTGEPSPPHDILHEPPDVVSDDEKDHG907

KKKGKFKKKEKRTEGYAAFQEDSSGDEAESPSKMKRSKGI908

HVFKKPSFSKKKEKDFKIKEKPKEEKHKEEKHKEEKKEKK909

SKDLTAADVVKQWKEKKKKKKPIQEPEVPQIDVPNLKPIF910

GIPLADAVERTMMYDGIRLPAVFRECIDYVEKYGMKCEGI911

YRVSGIKSKVDELKAAYDREESTNLEDYEPNTVASLLKQY912

LRDLPENLLTKELMRFEEACGRTTETEKVQEFQRLLKELP913

ECNYLLISWLIVHMDHVIAKELETKMNIQNISIVLSPTVQ914

ISNRVLYVFFTHVQELFGNVVLKQVMKPLRWSNMATMPTL915

PETQAGIKEEMNENEEVINILLAQENEILTEQEELLAMEQ916

FLRRQIASEKEEIERLRAEIAEIQSRQQHGRSETEEYSSE917

SESESEDEEELQIILEDLQRQNEELEIKNNHLNQAIHEER918

EAIIELRVQLRLLQMQRAKAEQQAQEDEEPEWRGGAVQPP919

RDGVLEPKAAKEQPKAGKEPAKPSPSRDRKETSI920

PPI network Index: 11117, 3205921

OUTPUTS: According to the given protein in-922

formation, their relationships include activation,923

inhibition, catalysis.924

A.4.2 Example for MA task.925

INPUTS:926

Instruction: There is a complex contain-927

ing the following proteins <|proteinHere|>928

<|proteinHere|> <|proteinHere|>. What is the929

binding affinity (log Kd) between these proteins?930

Carefully analyze the given protein features, based931

on the definition of log Kd, answer this question932

in the form of ‘Based on the given protein infor-933

mation, the binding affinity of this compound is 934

log Kd = [predicted value].’ SUPPLEMENTARY 935

INFO: For protein 1, the topological information 936

in the PPI network of the protein with a cosine sim- 937

ilarity of 0.99 is <|graphEmbeddingHere|>. For 938

protein 2, the topological information in the PPI 939

network of the protein with a cosine similarity of 940

0.8 is <|graphEmbeddingHere|>. For protein 3, 941

its topological information in the PPI network is 942

<|graphEmbeddingHere|>. 943

Protein 1: MKHHHHHHPMSDYDIPTTENLYFQGAMGT 944

NECLDNNGGCSYVCNDLKIGYECLCPDGFQLVAQRRCEDI 945

DECQDPDTCSQLCVNLEGGYKCQCEEGFQLDPHTKACK 946

Protein 2: SIPWNLERITPPRYRADEYQPPDGGSLVE 947

VYLLDTSIQSDHREIEGRVMVTDFENVPEEDGTRFHRQAS 948

KCDSHGTHLAGVVSGRDAGVAKGASMRSLRVLNCQGKGTV 949

SGTLIGLEFIRKSQLVQPVGPLVVLLPLAGGYSRVLNAAC 950

QRLARAGVVLVTAAGNFRDDACLYSPASAPEVITVGATNA 951

QDQPVTLGTLGTNFGRCVDLFAPGEDIIGASSDCSTCFVS 952

QSGTSQAAAHVAGIAAMMLSAEPELTLAELRQRLIHFSAK 953

DVINEAWFPEDQRVLTPNLVAALPPSTHGAAGTAAASHHH 954

HHH 955

Protein 3: MKGSKGSKGSKPMSAEAPEHGTTATFHRC 956

AKDPWRLPGTYVVVLKEETHLSQSERTARRLQAQAARRGY 957

LTKILHVFHGLLPGFLVKMSGDLLELALKLPHVDYIEEDS 958

SVFAQ 959

PPI network Index: 6091, 7833, 1781 960

OUTPUTS: Based on the given protein infor- 961

mation, the binding affinity of this compound is log 962

Kd = 8.7. 963

B More experimental results 964

B.1 More Information on Experimental Data 965

Refer to Table 6. 966
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SHS27k SHS148k

random dfs bfs random dfs bfs

BS 90.07% 0.00% 0.00% 95.65% 0.28% 0.00%
ES 9.28% 80.13% 69.54% 4.26% 85.62% 78.10%
NS 0.65% 19.87% 30.46% 0.09% 14.10% 21.90%

Table 6: Proportions of BS (Both have been Seen), ES (Either one protein has been Seen), and NS (Neither one has
been Seen) under Different Data Splits.

SHS27k SHS148k

random dfs bfs random dfs bfs

GNN-PPI 87.81 71.66 66.98 90.48 76.81 71.78

GNN-PPI/R
40.53 43.19 42.52 39.48 40.96 41.42

47.28 ↓ 28.47 ↓ 24.46 ↓ 51.00 ↓ 35.85 30.36 ↓

HIGH-PPI 76.62 71.69 66.75 72.21 77.32 60.08

HIGH-PPI/R
41.51 40.06 39.87 42.81 51.06 35.94

35.11 ↓ 31.63 ↓ 26.88 ↓ 29.40 ↓ 26.26 ↓ 24.14 ↓

MAPE-PPI 88.91 71.98 70.38 92.87 79.10 74.29

MAPE-PPI/R
76.84 51.69 55.21 85.96 61.45 56.68

12.07 ↓ 20.29 ↓ 15.17 ↓ 6.91 ↓ 17.65 ↓ 17.61 ↓

Table 7: Comparison of PPI network-based methods on the mPPI task with and without removing test edges.

B.2 More details on the comparison method967

based on PPI network968

Refer to Table 7.969

B.3 Details of the data partitioning for the970

MA task971

Refer to Table 8.

Sequence Number All Train Test

2 1857 1485 372
3 679 535 144
4 188 156 32
5 106 89 17
6 6 3 3
7 1 0 1
9 1 1 0
13 1 1 0
14 1 1 0
16 1 1 0

sum 2841 2272 569

Table 8: The PDB2020 dataset’s division into training
and test sets, and the count of complexes with unique
sequences.

972

Figure 4: Detailed experimental results for MA task on
PDB2020.

B.4 Detailed experimental data for MA task 973

Refer to Figure 4. 974

B.5 Additional Experiments on the MA Task 975

We conducted additional experiments by modifying 976

the MA setup, inputting all protein sequences from 977

a PDB instead of unique protein sequences. The 978

results of these experiments are shown in Table 9. 979
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Sequence Number Train Number Test Number MAE PCCs

2 603 150 0.7 0.69
3 195 58 0.81 0.73
4 513 115 0.77 0.75
5 136 27 1.04 0.52
6 280 83 1.04 0.47
7 30 8 1.17 0.58
8 161 42 1.04 0.63
9 32 9 1.08 0.8

10 80 20 0.74 0.91
11 27 4 1.26 0.57
12 91 20 0.97 0.51
13 2 0 N\A N\A
14 21 5 1.9 0.67
15 9 2 2.08 N\A
16 19 4 1.02 -0.32
17 10 0 N\A N\A
18 21 3 1.05 0.84
19 0 1 0 N\A
20 7 4 1.95 0.5
21 7 3 0.62 0.92
22 4 2 0.68 N\A
23 3 2 0.19 N\A
24 11 2 1.29 N\A
26 1 1 0.24 N\A
27 1 0 N\A N\A
28 1 0 N\A N\A
29 1 0 N\A N\A
30 1 0 N\A N\A
37 1 0 N\A N\A
45 1 1 1.29 N\A
48 1 0 N\A N\A
54 1 0 N\A N\A
55 1 0 N\A N\A
59 1 0 N\A N\A
63 1 0 N\A N\A
72 1 0 N\A N\A

Table 9: Experimental results of inputting all sequences of the complex in the MA task.
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Figure 5: The training data and prediction results of the complex containing 6 unique sequences.

B.6 Examples from Group 6 in the MA task980

Refer to Figure 5.981

C More Related work: Injecting Graphs982

to Large Language Model983

Graph data structures have a wide range of real-984

world applications, such as in financial networks,985

social networks, and protein interaction networks.986

When it comes to modeling complex network rela-987

tionships, graph data structures offer unique advan-988

tages. Graph-structured data can also be considered989

a type of multimodal data, and the approach of in-990

jecting multimodal features into LLMs is equally991

applicable to graph data. For example: GraphLLM992

(Chai et al., 2023) uses Prefix-tuning (Li and Liang,993

2021) to prepend graph features to the input of994

LLaMA (Touvron et al., 2023). GIT-Mol (Liu et al.,995

2024b) and Molca (Liu et al., 2023): These mod-996

els use Q-former (Li et al., 2023) to align graph997

features with LLMs. The Q-former helps in bridg-998

ing the gap between graph representations and the999

input space of LLMs. InstructMol (Cao et al.,1000

2023) employs a mapping matrix W to map the1001

encoded features of molecular graphs into the in-1002

put space of LLMs. GraphTranslator (Zhang et al.,1003

2024) uses a Transformer-based Translator Mod-1004

ule (Vaswani, 2017) to convert node features of 1005

the graph into learnable token embeddings. These 1006

methods demonstrate how graph data can be in- 1007

tegrated into LLMs, leveraging the strengths of 1008

both graph structures and large language models 1009

to handle complex, multimodal information. This 1010

integration not only improves the models’ ability 1011

to understand and process graph data but also ex- 1012

tends their applicability to a broader range of tasks 1013

involving networked data. 1014
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