

000 001 002 003 004 005 006 007 008 HA-VLN 2.0: AN OPEN BENCHMARK AND LEADER- 009 BOARD FOR HUMAN-AWARE NAVIGATION IN DIS- 010 CRETE AND CONTINUOUS ENVIRONMENTS WITH DY- 011 NAMIC MULTI-HUMAN INTERACTIONS 012 013

014 **Anonymous authors**
015
016
017
018
019
020
021
022
023
024
025
026
027

Paper under double-blind review
010
011
012
013

ABSTRACT

014 Vision-and-Language Navigation (VLN) has been studied mainly in either *discrete*
015 or *continuous* settings, with little attention to dynamic, crowded environments.
016 We present HA-VLN 2.0, a unified benchmark introducing explicit social-
017 awareness constraints. Our contributions are: *(i)* a standardized task and met-
018 rrics capturing both goal accuracy and personal-space adherence; *(ii)* HAPS 2.0
019 dataset and simulators modeling multi-human interactions, outdoor contexts, and
020 finer language-motion alignment; *(iii)* benchmarks on 16,844 socially grounded
021 instructions, revealing sharp performance drops of leading agents under human
022 dynamics and partial observability; and *(iv)* real-world robot experiments validating
023 sim-to-real transfer, with an open leaderboard enabling transparent compar-
024 ison. Results show that explicit social modeling improves navigation robustness
025 and reduces collisions, underscoring the necessity of human-centric approaches.
026 By releasing datasets, simulators, baselines, and protocols, HA-VLN 2.0 provides
027 a strong foundation for safe, socially responsible navigation research.¹
028

1 INTRODUCTION

029 Vision-and-Language Navigation (VLN) Anderson et al. (2018); Zhang et al. (2024b) challenges
030 embodied agents to interpret natural-language instructions and reach specified goals in photoreal-
031 istic simulators or real-world environments Gu et al. (2022); Wang et al. (2022). Although recent
032 advances have delivered strong performance in controlled benchmarks, existing methods are typ-
033 ically confined to either *discrete* (DE) or *continuous* (CE) settings, neglecting the complexities of
034 crowded, human-populated spaces, where agents must contend with unpredictable human behaviors,
035 reason under partial observability, and ensure socially compliant navigation Anderson et al. (2021);
036 Kadian et al. (2020); Yu et al. (2024). Bridging these gaps is essential for moving VLN from sim-
037 lation prototypes toward robust real-world deployment Wu et al. (2024); Gao et al. (2024).
038

039 **Motivation and Open Challenges.** Despite recent progress, VLN research still faces three funda-
040 mental limitations that restrict its real-world applicability. First, *social awareness* remains under-
041 explored: human participants in the scene are commonly overlooked or reduced to inert obstacles,
042 preventing the agent from respecting personal space or reacting to bystanders' activities (see Fig-
043 ure 1). Second, *finer-grained instructions* are not well captured in existing corpora Paduraru et al.
044 (2021); Kong et al. (2024). Commands such as "Turn to your left, and go past the chair" rarely reflect
045 real-world contexts like "Turn to your left, where you will see someone taking a brief pause ... on
046 the chair" in Figure 1. Third, *static-environment assumptions* neglects real-time re-planning when
047 people traverse corridors or gather spontaneously. In practice, social navigation demands partial ob-
048 servability and dynamic route adjustment. Addressing these issues requires a benchmark that unifies
049 DE and CE with explicit regime disclosure, supports socially grounded finer-grained instructions,
050 and incorporates human-centric metrics for navigation in dynamic multi-human environments.

051 **Toward Human-Aware VLN.** Early progress, notably HA-VLN 1.0 framework Li et al. (2024) in-
052 troduced dynamic humans into VLN, yet several shortcomings limited its realism and reproducibil-
053 ity (Appendix Table A1). Motion data in HAPS 1.0 Li et al. (2024) suffered from *alignment errors*

¹**Project page:** <https://ha-vln-webpage.vercel.app/>

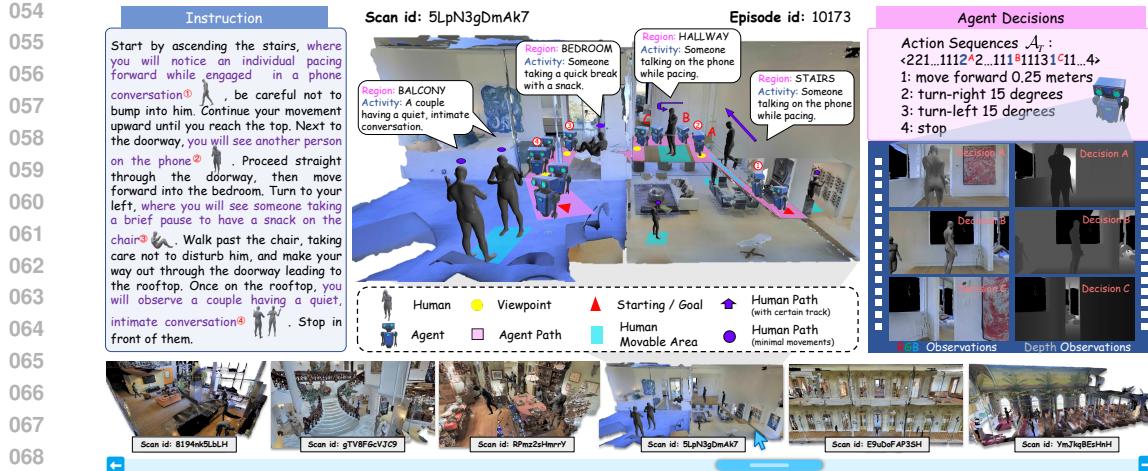


Figure 1: **HA-VLN 2.0 Navigation Scenario.** HA-VLN 2.0 adds four key challenges: (i) unified discrete-continuous navigation with denser crowds, richer activities, and mixed indoor-outdoor scenes; (ii) stricter social-distance and collision constraints under partial observability; (iii) instructions explicitly grounded in human activities and spatial cues, improving language–vision alignment; and (iv) robust real-time planning amid occlusion and multi-human dynamics. Example: key positions (e.g., ①, ②) align with *instructional cues* referring to specific human behaviors. When the agent encounters a bystander on the phone (②, Decision A), it intelligently turns right to avert a potential collision. On the right, RGB and Depth observations illustrate the agent’s panoramic view preceding decisions A, B, and C, capturing its dynamic responses to nearby humans.

and limited diversity, restricting coverage of everyday activities. The benchmark also exhibited a *discrete-navigation bias*, with its simulator largely confined to viewpoint hops Krantz et al. (2020) rather than physics-consistent low-level control Krantz et al. (2021). Multi-human interactions were *underdeveloped*, typically modeling only a single individual in simplified scenarios. Finally, instruction generation remained *coarse and object-centric*, omitting temporally varying activities and offering little control over granularity. These limitations call for a benchmark that standardizes regime disclosure, expands motion fidelity and diversity, incorporates multi-human interactions, and supports *finer-grained socially grounded instructions* across both discrete and continuous settings.

Our Contributions. In response, we introduce **HA-VLN 2.0**, a unified benchmark coupling discrete (DE) and continuous (CE) navigation paradigms with explicit social-awareness constraints. It comprises the *HAPS 2.0* dataset, featuring 486 SMPL-based motion sequences across 26 regions and 90 scenes, rigorously annotated via multi-view verification (430 annotation hours). HA-VLN 2.0 includes established simulators (HA-VLN-DE, HA-VLN-CE) with outdoor environments, real-time rendering, and precise collision management for up to 910 interacting humans. A unified API enables seamless comparisons across modes (Fig. 2; Sec. 3). Additionally, we expand R2R-CE Krantz et al. (2020) with 16,844 socially grounded instructions and introduce two baseline agents, HA-VLN-VL with Transformer-based grounding and HA-VLN-CMA with cross-modal attention for replanning, both validated under comprehensive human-centric metrics (Sec. 4). Finally, we demonstrate successful sim-to-real transfer and provide a public evaluation leaderboard (Sec. 5.2).

Specifically, HA-VLN 2.0 offers four key advancements:

1. **Cross-paradigm task standardization & Metrics.** We unify DE and CE navigation under social-awareness constraints, ensuring consistent goals and human-centric evaluations (Sec. 2).
2. **HAPS 2.0 & Dual simulators (large-scale build).** We release HAPS 2.0 (486 SMPL sequences) and two established simulators (HA-VLN-DE, HA-VLN-CE) that incorporate multi-view human annotation (~ 430 human-hours), outdoor scenes, dual-thread rendering, and rigorous collision checks for up to 910 active individuals with interactions (Fig. 2; Sec. 3).
3. **Comprehensive benchmarking with finer-grained instructions.** We augment R2R-CE with 16,844 socially-grounded instructions and benchmark multiple agents under unified metrics, unveiling challenges arising from multi-human dynamics and partial observability. (Sec. 4).
4. **Real-robot validation and public leaderboard.** We robustly demonstrate sim-to-real transfer using a physical robot successfully navigating crowded indoor areas, and provide a public leaderboard for comprehensive discrete–continuous evaluations in multi-human scenarios (Sec. 5.2).

108
109
110
2 THE UNIFIED HUMAN-AWARE VLN TASK111
112
113
114
115
116
117
Motivation and Overview. HA-VLN 1.0 Li et al. (2024) introduced dynamic humans into VLN,
but its discrete-environment (DE) focus limited ecological validity and hindered systematic study
of continuous control and realistic multi-human interactions. To address this, we formalize *HA-
VLN 2.0*, a unified benchmark that integrates DE and CE under explicit human-centric constraints.
Under this setting, agents must parse instructions that reference ongoing human activities (e.g., “*Go
upstairs where someone is pacing on the phone*”), anticipate plausible human trajectories, maintain
socially compliant distances, and adapt plans online in densely populated, photorealistic 3D scenes
(Fig. 1). We next make this specification precise by unifying state and action across regimes.118
119
120
Unified State and Action Spaces. HA-VLN 2.0 defines a shared state and action interface bridging
DE and CE. At each timestep t , the agent state is

121
$$s_t = \langle \mathbf{p}_t, o_t, \Theta_t^{\text{FOV}} \rangle, \quad (1)$$

122
123
124
where \mathbf{p}_t is the agent’s 3D position, o_t its orientation, and Θ_t^{FOV} its egocentric visual observation. In
DE, agents hop among predefined viewpoints with RGB observations; in CE, they perceive RGB+D
within a 90° field of view and execute fine-grained increments (e.g., 0.25 m forward, 15° rotation).
Crucially, DE and CE now share a unified action space,

125
$$\mathcal{A} = \{a_{\text{forward}}, a_{\text{left}}, a_{\text{right}}, a_{\text{up}}, a_{\text{down}}, a_{\text{stop}}\}, \quad (2)$$

126
enabling direct and fair comparison across paradigms (Fig. 2).
127128
129
130
131
132
133
134
Human-Aware Enhanced Constraints. HA-VLN 2.0 extends far beyond HA-VLN 1.0’s sparse,
static settings by introducing unified constraints that substantially increase realism and complexity
in both DE and CE: (i) *Dynamic Human Models*: continuous trajectories from the HAPS 2.0
dataset capturing diverse behaviors and dense crowds; (ii) *Personal-Space Enforcement*: standard-
ized proximity thresholds (3 m in DE; overlapping radii in CE) to ensure equitable cross-paradigm
evaluation; (iii) *Human-Focused Instructions*: natural-language directives grounded in dynamic hu-
man behaviors, requiring precise alignment between text and visual context. All annotations are
curated through a validated multi-stage pipeline (Sec. 3), ensuring both realism and reproducibility.
135136
137
138
139
140
141
Unified Dynamics and Partial Observability. HA-VLN 2.0 formalizes a unified partially observ-
able Markov decision process (POMDP) spanning both DE and CE settings, whereas HA-VLN 1.0
considered partial observability only in DE. Successor states s_{t+1} depend jointly on agent actions
and stochastic human dynamics (e.g., sudden path blockage or unexpected entry). Agents must
therefore infer latent human intentions and strategically balance *exploration* (discovering alternate
routes) with *exploitation* (committing to viable trajectories), reflecting the fundamental trade-offs
inherent in navigation through dynamic, human-populated environments.142
143
144
145
146
147
148
149
150
Key Challenges of DE-CE Synergies. Unifying DE and CE exposes three challenges for socially
intelligent navigation: (i) *Socially Compliant Navigation*: collision-free movement that adapts to
evolving personal-space boundaries; (ii) *Human-Aligned Instruction Grounding*: accurate inter-
pretation of natural-language instructions amid dynamic human activities; (iii) *Adaptive Path Re-
planning*: trajectory adjustment in response to human interactions that modify accessibility. DE
supports rapid prototyping and large-scale evaluation, while CE offers motion fidelity indispensable
for bridging simulation and real-world deployment. Together, these synergies establish HA-VLN
2.0 as the first benchmark uniting efficient simulation with realistic human-populated environments,
motivating a unified simulator and corresponding agent framework introduced next.
151
152153
3 HA-VLN SIMULATOR
154155
156
157
158
159
160
161
To support the unified HA-VLN task, we build a simulator that embeds dynamically moving humans
in both *discrete* and *continuous* 3D environments. Unlike Li et al. (2024), which treated humans as
static obstacles, our simulator models high fidelity motions, interactions among multiple humans,
and socially grounded dynamics such as spontaneous movements, group activities, and personal
space constraints. Using the upgraded HAPS 2.0 dataset, it improves motion diversity, spatial align-
ment, and realism over HAPS 1.0 (Table A2) and provides 486 curated sequences across indoor and
outdoor scenes. The system includes two modules, HA-VLN-CE (continuous) and HA-VLN-DE
(discrete), with a unified API (Sec. 3) for human state queries, dynamic scene updates, and collision

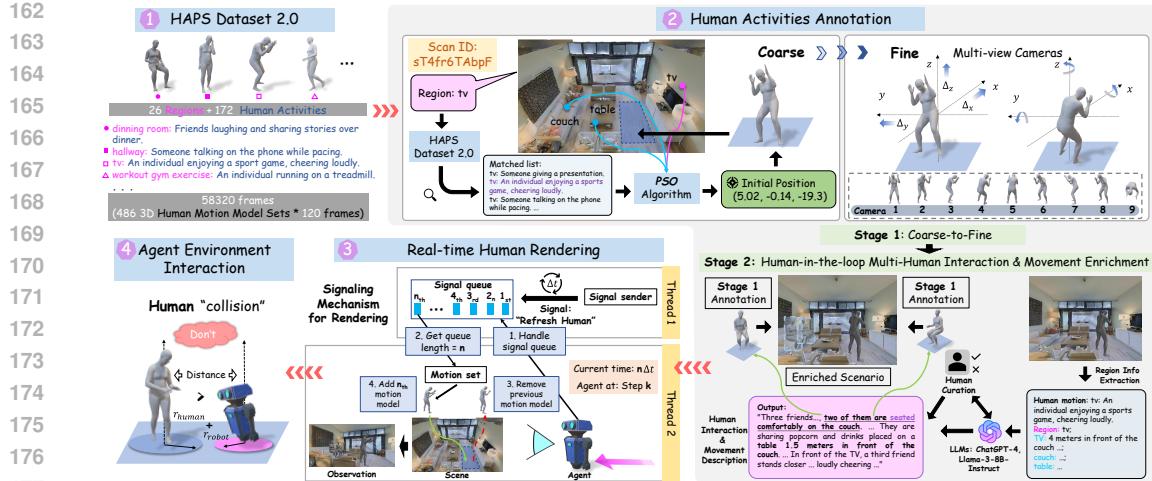


Figure 2: HA-VLN Simulator. Unlike HA3D, which modeled sparse and static human activities in discrete settings, HA-VLN incorporates *rich and dynamic* human behaviors using HAPS 2.0 (172 activities, 486 models, 58k frames). Annotation involves two stages: (i) *coarse-to-fine* optimization via PSO and multi-view camera setups, and (ii) *human-in-the-loop* refinement for realistic crowd dynamics. Real-time rendering updates motions through a signaling mechanism, facilitating collision detection and dynamic agent–environment interactions. These improvements bridge discrete evaluation (DE) and realistic continuous navigation (CE), establishing a robust foundation for benchmarks in socially intelligent navigation.

checks. Fig. 2 places these components in the agent’s action and observation loop, forming the basis for the annotation, rendering, and interaction mechanisms that follow.

HAPS 2.0 Dataset. Human motion naturally adapts to and interacts with surrounding environments. The Human Activity and Pose Simulation (HAPS) Dataset 2.0 extends HAPS 1.0 Li et al. (2024) with two major advances: (i) *refined and diversified human motions* and (ii) *region-aware activity descriptions* (details in Sec. B.1). HAPS 2.0 defines 26 regions across 90 architectural scenes and contributes 486 validated activity descriptions covering indoor and outdoor contexts. These descriptions, verified by human surveys and quality control using ChatGPT-4 Brown et al. (2020), explicitly ground actions in regions (e.g., “workout gym exercise: an individual running on a treadmill”). The Motion Diffusion Model (MDM) Guy et al. (2022), built on the SMPL framework, converts these descriptions into 486 3D human motion models \mathbf{H} , yielding 120-frame sequences $\mathcal{H} = \langle h_1, h_2, \dots, h_{120} \rangle$ that capture fine-grained motion and shape information². Fig. A2 illustrates representative contexts, while Fig. A3 shows sample motions (e.g., climbing stairs, running).

Human Activity Annotation: Coarse-Level. To integrate HAPS 2.0 into our simulator, we adopt a coarse-to-fine strategy. At the coarse level, each region \mathbf{R} is defined by a label r , boundary coordinates $\mathbf{B}_{lo} = (x_{lo}, y_{lo}, z_{lo})$ and $\mathbf{B}_{hi} = (x_{hi}, y_{hi}, z_{hi})$, and an object set $\mathbf{O} = \{j_1, j_2, \dots, j_n\}$ with positions \mathbf{p}^{j_i} . We filter \mathbf{H} to retain motions consistent with r , forming \mathbf{H}' . Each motion $h_i \in \mathbf{H}'$ is paired with an object $j_i \in \mathbf{O}$ via semantic similarity, producing (h_i, j_i) pairs. Particle Swarm Optimization (PSO) Kennedy & Eberhart (1995) (Alg. A1) then determines the optimal placement $\mathbf{p}_{opt}^{h_i}$ around j_i , bounded by \mathbf{R} and penalized if violating constraints such as maintaining a minimum distance $\epsilon = 1\text{m}$ from other objects or leaving the region (details in Appx. B.2). This yields natural placements that reflect realistic social behaviors and spatial relations.

Human Activity Annotation: Fine-Level. Building on coarse placements, fine-level annotation refinement leverages multi-camera observations, ensuring precise alignment of motions with scene geometry. Inspired by 3D skeleton capture systems Ji et al. (2018); Petrovich et al. (2021), we deploy nine RGB cameras around each human model (Fig. 2; see also Fig. A1). Each camera is located at \mathbf{p}_{cam} , shifted by $(\Delta_x, \Delta_y, \Delta_z)$ from the human position \mathbf{p}_h , with rotation angles θ_{lr} and θ_{ud} . Horizontal shifts are set as $\Delta_x, \Delta_y = \epsilon$ and the vertical shift as Δ_z . For camera i ($i = 1, \dots, 8$), θ_{ud}^i is defined as: $\tan \theta_{ud}^i = \begin{cases} 0 & : i \text{ is odd} \\ \frac{\Delta_z}{\sqrt{2}\epsilon} & : i \text{ is even} \end{cases}$ and the left-right angle $\theta_{lr}^i = \frac{\pi i}{8}$, while the overhead camera ($i = 9$) has $\theta_{lr}^9 = 0$ and $\theta_{ud}^9 = \frac{\pi}{2}$. This multi-view setup provides dense RGB coverage,

² $\mathbf{H} \in \mathbb{R}^{486 \times 120 \times (10+72+6890 \times 3)}$: 486 models \times 120 frames with shape, pose, and mesh vertices.

216 enabling fine adjustments to resolve inconsistencies like mesh–object clipping. This stage took over
 217 430 hours of annotation, yielding 529 models across 374 regions in 90 scans.
 218

219 **Human Activity Annotation: Multi-Human Enrichment.** In Stage 2 (Fig. 2), we enrich scene
 220 diversity and interactions through a human-in-the-loop approach Ding et al. (2024), adding new
 221 characters and complex motion paths into regions \mathbf{R} with existing activities h_i at positions \mathbf{p}^{h_i} . Re-
 222 gional context, including objects \mathbf{O} within 6 meters of h_i and their positions, is provided to LLMs to
 223 generate diverse multi-human scenarios, which are refined in four rounds of manual review for scene
 224 consistency. Based on curated descriptions, new motions are placed relative to objects and annotated
 225 using the multi-camera method from Stage 1, enabling complex actions such as walking downstairs
 226 (details in Appx. B.5). After two annotation stages, the dataset comprises 910 human models across
 227 428 regions in 90 scans (Fig. 3(a)(b)), including 111 outdoor humans, 72 two-person interactions,
 228 59 three-person groups, and 15 four-person groups. Among these, 268 involve complex motions such
 229 as climbing stairs, substantially enriching the dataset with realistic behaviors. Detailed statistics are
 230 provided in Appx. B.8. This two-stage system enables precise modeling of social interaction spaces
 231 and personal boundaries, supporting agents in learning socially appropriate navigation strategies.
 232

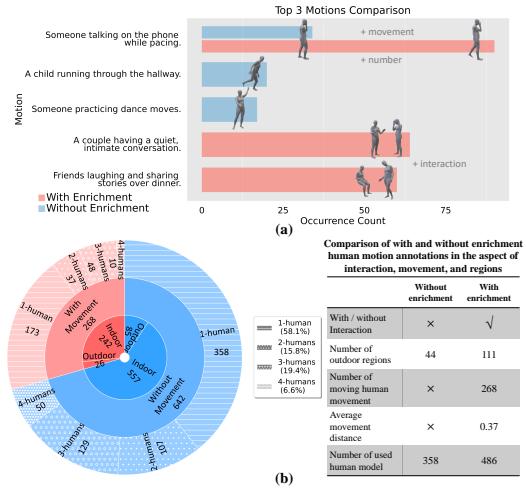
233 Real-Time Rendering & Agent Interaction.

234 Beyond static annotation, our simulator continuously renders human motions in real time.
 235 A dual-thread producer–consumer architecture (Alg. A2) manages frame updates: Thread 1
 236 enqueues refresh signals, while Thread 2 synchronizes with the agent’s action cycle to pro-
 237 cess them. Each motion spans up to 120 frames; upon receiving a signal, Thread 2 discards out-
 238 dated meshes and loads new ones, keeping re-
 239 trieval delays below 50 ms. Fig. A2 illustrates
 240 how multiple humans are simultaneously main-
 241 tained in a shared environment.
 242

243 To close the loop, agents perceive these dynamics through a navigation mesh (navmesh) Savva
 244 et al. (2019). Collisions are flagged when
 245 bounding volumes overlap, i.e., when inter-
 246 object distances fall below the sum of their
 247 radii, triggering an automatic revert. This inte-
 248 gration ensures agents not only experience dy-
 249 namic and socially realistic environments but
 250 also learn to respect personal space and navi-
 251 gate effectively in dense human crowds.
 252

253 **Discrete vs. Continuous Settings.** **HA-VLN-CE** (Continuous) allows agents to move in real-
 254 valued increments (e.g., 0.25 m forward, 15° turns), supporting fine-grained collision avoidance
 255 and adaptive social behavior. As shown in Fig. A4, each scene can host up to 10 humans, with
 256 simulation speeds of 30–60 FPS on standard GPUs. **HA-VLN-DE** (Discrete) extends HA3D Li
 257 et al. (2024) by incorporating HAPS 2.0 data across indoor and outdoor environments. Agents hop
 258 among panoramic viewpoints while humans move continuously, preserving core social-navigation
 259 challenges. To align with continuous motions, we map positions to discrete nodes Li et al. (2024),
 260 apply small offsets for refinement, and integrate 627 annotated humans across 90 buildings.
 261

262 **Unified API.** We provide a unified API supporting both modes with three core functions: (i) *Human*
 263 *State Queries* for retrieving bounding volumes, motion frames, and semantic annotations of nearby
 264 humans; (ii) *Dynamic Scene Updates* to notify agents of newly moved humans or environmental
 265 changes; and (iii) *Collision Checks* to evaluate whether a proposed move (e.g., forward step or
 266 viewpoint hop) would intersect with a human. By integrating HAPS 2.0, coarse-to-fine annotation,
 267 real-time multi-human rendering, and a single API across discrete and continuous settings, the HA-
 268 VLN Simulator establishes a comprehensive testbed for socially aware navigation. Figs. A2, A3,
 269 and A4 showcase the simulator’s ability to capture diverse human behaviors, while Tables A1 and
 A2 highlight its advantages over prior simulators and the improvements of HAPS 2.0 relative to
 HAPS 1.0. Appendix B.7 provides details on environment scales, latency, and usage examples.



264 **Figure 3: Motion Analysis.** (a) Top three motions
 265 from Stage 1 (*without enrichment*) and Stage 2 (*with*
 266 enrichment). (b) Overall activity statistics, comparing
 267 interaction types, movement distances, and the number
 268 of models. Enrichment expands both the variety and
 269 dynamic range of human activities.

270 4 HA-VLN AGENTS

271 To ground the unified HA-VLN task in our HA-VLN simulator, we introduce the Human-Aware
 272 Room-to-Room (HA-R2R) dataset and two baseline agents, HA-VLN-VL and HA-VLN-CMA.
 273 These agents are designed as reference implementations rather than final solutions, offering a start-
 274 ing point for developing more advanced models. They emphasize essential social capabilities includ-
 275 ing maintaining personal space, avoiding collisions, and adapting to bystanders, under the dynamic
 276 conditions of HA-VLN 2.0. As shown in Figs. A8 and 5, human behaviors add substantial complex-
 277 ity, motivating the dataset design and agent baselines described in the following paragraphs.

278 **HA-R2R Dataset.** The Room-to-Room in Continuous Environment (R2R-CE) dataset Krantz et al.
 279 (2020) supports continuous navigation but lacks explicit modeling of human interactions. We there-
 280 fore extend it into HA-R2R, which contributes 16,844 curated instructions emphasizing social nu-
 281 ance, covering conversations, corridor crossings, and near-collision events. Table A3 presents rep-
 282 resentative directives, while Fig. A6 visualizes the expanded human-centric vocabulary.

283 We generate these enriched instruc-
 284 tions via targeted LLM prompts (Ap-
 285 pendix C.2), capturing diverse so-
 286 cial scenarios. This augmentation
 287 shifts navigation from static paths
 288 to socially contingent routes, e.g.,
 289 “avoid the couple chatting near
 290 the bar.” Comparative analyses (Ap-
 291 pendix C.3) highlight both the anno-
 292 tation workload and HA-R2R’s po-
 293 tential for human-aware navigation.

294 **HA-VLN-VL Agent.** The HA-VLN-VL focuses on visual–language alignment. Adapted from Re-
 295 current VLN-BERT Hong et al. (2021), it replaces actor–critic methods (e.g., A2C Konda & Tsitsik-
 296 lis (1999)) with a streamlined imitation learning objective, isolating the contribution of multimodal
 297 grounding. At timestep t , the agent updates its hidden state s_t and predicts an action distribution:

$$s_t, p_t^a = \text{HA-VLN-VL}(s_{t-1}, X, V_t), \quad (3)$$

298 where X is the tokenized instruction (often referencing multiple humans) and V_t encodes the fused
 299 RGB–depth view. A Transformer with a specialized state token attends jointly to visual and linguis-
 300 tic tokens, and final probabilities are derived via pooled attention:

$$p_t^a = \overline{\text{AveragePool}}_{s,v}^l. \quad (4)$$

301 Fine-tuned from Prevalent Hong et al. (2021) on HA-R2R, HA-VLN-VL demonstrates how stronger
 302 grounding alone benefits navigation under socially complex conditions (Appendix C.6).

303 **HA-VLN-CMA Agent.** HA-VLN-CMA emphasizes collision avoidance and real-time adaptation.
 304 Built on cross-modal attention (CMA) Krantz et al. (2020), it fuses textual embeddings $l = \text{BERT}(I)$
 305 with visual features $v_t = \text{ResNet}(o_t)$. Multi-head attention produces a joint representation f_t , which
 306 an MLP maps to action probabilities:

$$P(a_t | f_t) = \text{Softmax}(\text{MLP}_{\text{action}}(f_t)). \quad (5)$$

307 Fig. A7(b) outlines the architecture (details in Appendix C.7). To address partial observability and
 308 unpredictable motion, we adopt Environmental Dropout (Envdrop) Tan et al. (2019) to simulate oc-
 309 clusions and Dataset Aggregation (DAgger) Ross et al. (2011) for iterative error correction. These
 310 strategies enhance re-planning when agents face obstacles or unexpected behaviors. Figs. A8 and
 311 5 illustrate agent responses to bystanders, showing that collision risk and route deviation increase
 312 sharply in crowded passages. HA-VLN-CMA re-plans aggressively when blocked, whereas HA-
 313 VLN-VL leverages textual grounding to maintain appropriate distances. This contrast highlights
 314 our dual contributions: a socially enriched dataset (HA-R2R) and two baseline agents serving as
 315 extensible reference points. These baselines are not final solutions but starting points for the com-
 316 munity to build, refine, and extend toward more advanced human-aware navigation models. Sec. 5
 317 evaluates both agents on HA-VLN 2.0, demonstrating complementary strengths.

318 5 EXPERIMENTS

321 **Evaluation Metrics.** We evaluate performance on the HA-VLN 2.0 benchmark using two suites of
 322 metrics. **(1) Social compliance.** To assess social awareness, we use *Total Collision Rate* (TCR)

324
 325 **Table 1: HA-VLN-CE Results Across Validation (Seen/Unseen) and Test Splits.** “HA-VLN-CMA*” de-
 326 notes the full version of HA-VLN-CMA (+DA +EV). Metrics include NE (Navigation Error, meters), TCR
 327 (Total Collision Rate), CR (Collision Rate per step), and SR (Success Rate), with lower NE/TCR/CR and
 higher SR indicating better performance. All agents receive panoramic RGBD observations at each location.

Agent	Validation Seen				Validation Unseen				Test			
	Retrained		Zero-shot		Retrained		Zero-shot		Retrained		Zero-shot	
	NE \downarrow	TCR \downarrow	CR \downarrow	SR \uparrow	NE \downarrow	TCR \downarrow	CR \downarrow	SR \uparrow	NE \downarrow	TCR \downarrow	CR \downarrow	SR \uparrow
HA-VLN-CMA-Base	7.63	63.09	0.77	0.05	7.88	63.84	0.75	0.04	7.34	47.06	0.77	0.07
HA-VLN-CMA-DA	6.17	17.45	0.69	0.06	6.32	37.94	0.67	0.06	7.08	27.25	0.64	0.07
HA-VLN-CMA*	5.61	3.43	0.60	0.17	1.10	20.99	0.69	0.11	6.23	8.11	0.69	0.09
HA-VLN-VL	5.02	4.44	0.52	0.20	7.82	3.67	0.45	0.05	5.35	6.63	0.59	0.10
BEVBert An et al. (2023)	5.53	3.64	0.46	0.27	6.11	4.29	0.47	0.19	5.51	4.71	0.55	0.21
ETPNav An et al. (2024)	5.17	4.07	0.43	0.24	7.72	6.31	0.61	0.12	5.43	6.94	0.58	0.17
	7.40				7.40				7.94	0.71	0.08	

○ Visited Node
● Ghost Node
● Final Goal
○ Selected Goal
— Traversed Path

With Conclusion
Without Conclusion

1

12

25

39

59

Instruction: Instruction: "Begin by ascending the steps in front of you. Upon reaching the top, make a left turn. As you proceed, you will enter a hallway. Be aware of a child who might be running through this area ... Continue moving forward until you reach the main room. Inside, you will observe a group of friends gathered around a table ... Remain at the doorway."

1

10

22

27

45

With Conclusion
Without Conclusion

1

10

22

27

45

Instruction: "Instruction: "Begin your journey in the living room, where you will observe a person engaged in a quiet phone conversation. Move carefully to avoid disturbing them. Proceed through the hall and make a left turn. As you navigate ... Your endpoint is on the rug, positioned directly behind the desk chair."

351 **Figure 5: Agent Trajectory Examples (HA-VLN-CMA*).** The top row demonstrates a failed navigation
 352 scenario where the agent fails to avoid an oncoming human, ultimately resulting in a collision. In contrast, the
 353 bottom row showcases a successful navigation: the agent proactively adjusts its trajectory to the left, effectively
 354 avoiding human interference and completing the task without collision.

355 and *Collision Rate* (CR). TCR measures the overall frequency of collisions, while CR reflects the
 356 proportion of socially inappropriate interactions. **(2) Navigation accuracy.** We report *Navigation*
 357 *Error* (NE) and *Success Rate* (SR). A trajectory is deemed successful under SR not only when
 358 the agent stops sufficiently close to the goal Anderson et al. (2018), but also when it demonstrates
 359 effective obstacle avoidance. Formal definitions of these metrics are provided in Appendix D.1.

360 We evaluate agents in two settings: **(1)** We assess the performance of HA-VLN 2.0 agents alongside
 361 several top agents on the **HA-VLN 2.0 benchmark**, utilizing both **HA-VLN-CE (continuous)** and
 362 **HA-VLN-DE (discrete)** (Sec. 5.1). We conduct extensive analysis and ablation studies examining
 363 key factors including continuous versus discrete settings, cross-domain generalization capabilities,
 364 human presence and interaction enrichment, step size variations, and sensor modality configurations.
 365 These analyses investigate their respective impacts on human-aware navigation performance and
 366 reveal complementary knowledge between the DE and CE approaches. **(2)** We deploy and evaluate
 367 HA-VLN 2.0 agents in real-world robotic scenarios across diverse layouts (office spaces, living
 368 rooms, hallways, and lobbies) with free-moving human volunteers (Sec. 5.2, Appendix D.5).

370 5.1 BENCHMARKING AGENTS ON HA-VLN 2.0

372 **HA-VLN-CE.** We systematically benchmark two notable continuous navigation agents,
 373 BEVBert An et al. (2023) and ETPNav An et al. (2024), together with our HA-VLN-CMA and
 374 HA-VLN-VL agents in Table 1. Each approach is trained/evaluated under two configurations: **Re-
 375 trained**, where agents are trained/evaluated solely on HA-VLN-CE benchmark (HA-VLN-CE sim-
 376 ular + HA-R2R instruction dataset), and **Zero-shot**, where agents are trained solely on VLN-CE
 377 benchmark (VLN-CE simulator + R2R-CE) and evaluated on our benchmark. Table 1 shows pro-
 nounced gains when models incorporate HA-VLN-CE benchmark. For instance, BEVBert’s SR

7

increases from 0.19 to 0.27 in seen split and from 0.15 to 0.21 in unseen. In stark contrast, Table 3 shows that BEVBert trained on our benchmark performs comparably to the VLN-CE-trained one on VLN-CE benchmark (SR: 0.35 vs. 0.37). This bidirectional evaluation suggests that explicit references to dynamic crowd behavior enhance real-world navigational readiness and confirm the robustness of HA-VLN-CE. Figure 5 presents navigation visualizations of HA-VLN-CMA* agent on the HA-VLN-CE benchmark, including one successful and one failed example. These examples demonstrate that dynamic human activities indeed increase the difficulty of navigation, while also making the scenarios more realistic and reflective of real-world challenges.

HA-VLN-DE. Table 2 compares top discrete agents showing discrete agents can achieve moderate SR. For example, while Airbert Guhur et al. (2021) achieves a moderate SR at 0.36, it can incur a CR of up to 0.83, illustrating persistent collision risks. The results showcase adaptive collision-avoidance strategies also remain essential in discrete settings. Approaches that overlook human dynamics often fail when multiple bystanders converge (Sec. 3), particularly in tight junctions or doorways.

on both VLN and HA-VLN-DE benchmarks, yet suffer high collisions in crowded scenes.

Table 2: DE performance of agents trained on VLN vs. HA-VLN-DE (Unseen). All agents use panoramic RGB observations.

Table 2: **DE performance** of agents trained on VLN vs. HA-VLN-DE (Unseen). All agents use panoramic RGB observations.

Agent	VLN		HA-VLN-DE			
	NE↓	SR↑	NE↓	TCR↓	CR↓	SR↑
Speaker-Follower	6.62	0.35	7.44	0.32	0.72	0.21
Rec (PREVALENT)	3.93	0.63	6.12	0.29	0.81	0.33
Rec (OSCAR)	4.29	0.59	6.12	0.28	0.78	0.34
Airbert	4.01	0.62	5.54	0.30	0.83	0.36
NavCoT	6.26	0.40	6.83	0.36	0.85	0.23

Analysis & Ablation Studies. **(1) Cross-domain Generalization.** Table 3 reveals that HA-R2R-trained agents achieve comparable SR to R2R-CE-trained agents (0.27 vs. 0.29) on R2R-CE validation set, while they outperform by +28.6% SR on the HA-R2R validation set, showcasing HA-R2R improves in-domain performance while maintaining cross-domain robustness. **(2) Human Presence and Interaction Enrichment.** Table 4 (a) shows in human presence ablations, replacing humans with cylinders drops TCR by around 36% and raises SR by around 10%, while removing human interaction enrichment drops TCR by up to 22% and raises SR by up to 25%, confirming humans are not merely treated as generic moving obstacles during navigation. **(3) Step Size.** Table 4 (b) indicates a degree of knowledge complementarity between DE and CE navigation when collisions are detected only at the endpoint of a step. Specifically, increasing the step size (from 0.1 m to 1.0 m), approximating DE-style navigation, can improve performance. We also conducted an additional experiment (Table A4) in which a 1.0 m step was treated as four 0.25 m sub-steps, and a 2.25 m step as nine 0.25 m sub-steps, with collisions checked after each sub-step. When evaluated on BEVBert in the val_unseen split, the agents failed to navigate effectively with both 1.0 m and 2.25 m step sizes, with SR dropping close to zero. These results highlight the need to account for the potentially “teleport-like” movement behaviors in DE when considering complementarity. **(4) Sensor Modalities.** Table 5 confirms that either adding depth or RGB consistently lowers collisions and raises SR, reflecting the importance of 3D cues for navigating around moving bystanders.

5.2 LEADERBOARD & REAL-WORLD VALIDATION

HA-R2R Test Dataset & Leaderboard. Building on R2R-CE, we present HA-R2R, featuring 16,844 instructions across 90 building scans with 910 annotated human models (see Secs. 3 & 4). While retaining path continuity from R2R-CE, we introduce refined goals to emphasize social awareness. The test partition of HA-R2R contains 3,408 instructions across 18 withheld buildings and intentionally emphasizes multi-human routes. To assess performance on this challenging test split, we host leaderboards for HA-R2R-DE and HA-R2R-CE benchmarks, evaluating both collision-related metrics (TCR, CR) and navigation metrics (NE, SR). We prepare an interactive interface shown in Figure 6 (a), where participants can explore the simulator from nine different views to examine all the annotated human motions and the surrounding environments. This allows them

Table 3: **Cross Domain Evaluation of BEVBert (CE) vs. Rec (PREVALENT) (DE)**. Each model is trained/-validated under different simulators (HA-VLN-CE/HA-VLN-DE vs. VLN-CE/VLN-DE) and different instruction sets (HA-R2R vs. R2R-CE/R2R). The blue cells () indicate performance changes when models are trained on R2R/R2R-CE instructions but validated on HA-R2R.

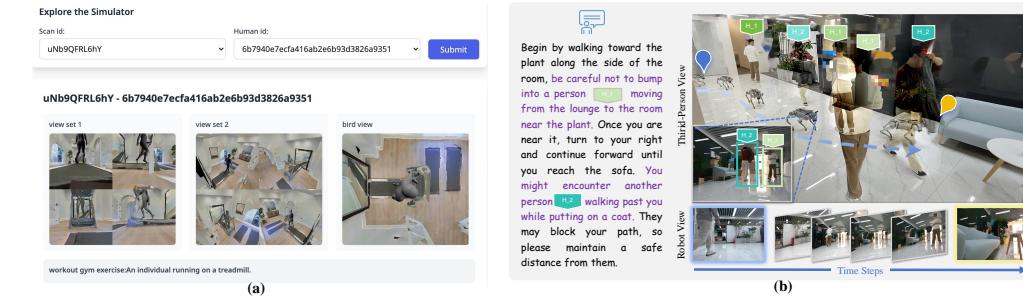
Env	Training		Validation		Val (Unseen)		Env	Training		Validation		Val (Unseen)	
	Simulator	Instr.	Simulator	Instr.	NE \downarrow	SR \uparrow		Simulator	Instr.	Simulator	Instr.	NE \downarrow	SR \uparrow
CE	VLN-CE	R2R-CE	VLN-CE	R2R-CE	4.57	0.37	DE	VLN-DE	R2R	VLN-DE	R2R	3.93	0.48
	HA-VLN-CE	HA-R2R	VLN-CE	R2R-CE	5.11	0.35		HA-VLN-CE	R2R	VLN-DE	R2R	4.62	0.45
	HA-VLN-CE	HA-R2R	HA-R2R	R2R-CE	4.35	0.27		HA-R2R	R2R	HA-R2R	R2R	5.86	0.36
	HA-VLN-CE	HA-R2R	HA-VLN-CE	R2R-CE	4.13	0.29		HA-VLN-DE	HA-R2R	HA-VLN-DE	R2R	5.21	0.33
DE	R2R-CE	HA-VLN-CE	HA-R2R	HA-R2R	5.51	0.21		HA-VLN-DE	HA-R2R	HA-R2R	R2R	5.01	0.39
	R2R-CE	HA-VLN-CE	HA-R2R	HA-R2R	6.23 (13.1%)	0.15 (28.6%)		HA-R2R	R2R	HA-R2R	HA-R2R	6.11 (72.0%)	0.24 (38.8%)

432 **Table 4: Left: (a). Impact of Human Presence (hp) and Interaction Enrichment (enrich).** We evaluate
 433 without hp (replace human with cylinders) and without enrich (skip interaction & movement enrichment in
 434 Sec. 3, Appendix B.5) on both CE and DE settings. Rec (PRE) denotes Rec (PREVALENT). **Right: (b). Impact of Step Size on Navigation.** Here the collision is detected only at endpoint of a step, thus increasing step
 435 size transitions from finer-grained control to more discrete (teleport-potential) steps (default step size for CE is
 436 0.25m). We show results for both **BEVBert** An et al. (2023) and **ETPNav** An et al. (2024) on seen/unseen.

hp	enrich	Env	Agent	NE↓	TCR↓	CR↓	SR↑	Agent	Step Size	Validation (Seen)				Validation (Unseen)			
										NE↓	TCR↓	CR↓	SR↑	NE↓	TCR↓	CR↓	SR↑
✓	✓	CE	BEVBert	6.10	5.72	0.56	0.15	BEVBert	0.10	5.65	8.43	0.50	0.23	5.41	12.60	0.54	0.22
			ETPNav	7.40	7.94	0.71	0.08		0.25 (CE Default)	5.53	3.64	0.46	0.27	5.51	4.71	0.55	0.21
			Rec (PRE)	7.31	0.31	0.79	0.22		0.40	5.60	1.77	0.39	0.28	5.63	2.63	0.44	0.25
									1.00	5.82	0.42	0.21	0.29	5.54	0.63	0.26	0.26
✓	✗	CE	BEVBert	6.32 (±3.6%)	5.11 (±10.7%)	0.46 (±17.9%)	0.17 (±13.3%)	ETPNav	2.25	7.66	0.09	0.10	0.03	7.23	0.10	0.10	0.03
			ETPNav	7.35 (±0.6%)	6.12 (±22.9%)	0.63 (±11.3%)	0.10 (±25.0%)		0.10	5.15	11.70	0.54	0.20	5.47	18.66	0.64	0.16
			Rec (PRE)	7.52 (±2.9%)	0.27 (±12.9%)	0.64 (±19.0%)	0.27 (±22.7%)		0.25 (CE Default)	5.17	4.07	0.43	0.24	5.43	6.94	0.58	0.17
									0.40	5.11	2.43	0.36	0.26	5.32	3.77	0.46	0.21
✗	✗	CE	BEVBert	6.13 (±0.5%)	3.25 (±43.2%)	0.35 (±37.5%)	0.19 (±26.7%)		1.00	6.67	0.49	0.25	0.24	6.76	0.79	0.32	0.17
			ETPNav	7.75 (±4.7%)	4.47 (±43.7%)	0.53 (±25.4%)	0.14 (±15.0%)		2.25	7.61	0.10	0.10	0.02	7.21	0.13	0.12	0.03
			Rec (PRE)	7.33 (±0.3%)	0.19 (±38.7%)	0.42 (±46.8%)	0.26 (±18.2%)										

433 **Table 5: Ablation on RGB/Depth Inputs.** We compare **BEVBert** An et al. (2023) and **ETPNav** An et al.
 434 (2024) on seen/unseen validations. ✓ denotes the sensor is enabled, while ✗ is disabled. Blue cells highlight
 435 performance changes (in %) upon removing/adding a modality. Best viewed in color.

Agent	RGB	Depth	Validation (Seen)				Validation (Unseen)			
			NE↓	TCR↓	CR↓	SR↑	NE↓	TCR↓	CR↓	SR↑
BEVBert An et al. (2023)	✓	✗	6.23 (±12.6%)	4.55 (±25.0%)	0.49 (±6.5%)	0.19 (±29.6%)	5.79 (±1.1%)	4.97 (±5.5%)	0.53 (±3.6%)	0.15 (±28.6%)
	✗	✓	5.68 (±2.7%)	3.77 (±3.6%)	0.48 (±4.3%)	0.25 (±7.4%)	5.50 (±0.2%)	4.73 (±0.4%)	0.53 (±3.6%)	0.20 (±4.8%)
	✓	✓	5.53	3.64	0.46	0.27	5.51	4.71	0.55	0.21
ETPNav An et al. (2024)	✓	✗	6.14 (±18.8%)	6.07 (±49.1%)	0.56 (±30.2%)	0.17 (±29.2%)	6.38 (±17.5%)	7.44 (±7.2%)	0.65 (±12.1%)	0.13 (±23.5%)
	✗	✓	4.92 (±4.8%)	5.45 (±33.9%)	0.55 (±27.9%)	0.21 (±12.5%)	5.94 (±9.4%)	7.23 (±4.2%)	0.65 (±12.1%)	0.16 (±5.9%)
	✓	✓	5.17	4.07	0.43	0.24	5.43	6.94	0.58	0.17



452 **Figure 6: (a). Interactive interface** we provide to explore 910 annotated human models and environments
 453 in HA-VLN 2.0 simulator from nine views. **(b). Human-aware navigation with multiple bystanders.** *Left:*
 454 Instruction provided to the robot. *Right:* A third-person view illustrates the robot’s trajectory among dynamic
 455 bystanders, and selected robot observations from onboard camera.

466 to gain a deeper understanding of the challenging dynamic scenarios we provide. Submissions may
 467 include agent code or trajectories, providing reproducible, server-side evaluations and setting a new
 468 benchmark for human-centric, dynamic VLN research.

469 **Real-World Validation & Setup.** We deploy our trained agents on a *Unitree Go2-EDU* quadruped,
 470 equipped with Intel Realsense D435i RGB-D camera, MID360 3D LiDAR, and IMU for onboard
 471 perception and control. As Figure 6 (b) illustrates, experiments are conducted in four indoor spaces
 472 (office, living room, hallway, lobby), each populated by 2–4 free-moving volunteers. Implementa-
 473 tion details and more visual examples are provided in Appendix D.5. The agent navigates safely
 474 in moderately congested conditions but faces challenges in tight corridors or sudden crowd conver-
 475 gence, highlighting the need for robust re-planning under partial observability.

6 CONCLUSION

479 We presented *HA-VLN 2.0*, a unified framework that standardizes discrete and continuous VLN under
 480 explicit human-centric constraints. By integrating dynamic human motion, refined annotations,
 481 and high-fidelity simulators, our *HA-R2R* dataset emphasizes human-centric instructions. Experi-
 482 ments show social awareness, multi-human interactions, and partial observability greatly increase
 483 complexity, reducing advanced agents’ performance. Nevertheless, our approach balances safety, ef-
 484 ficiency, and personal space. Real-world tests confirm sim-to-real transfer, while our public leader-
 485 board standardizes evaluations. By releasing all data, simulators, agents, and tools, we promote
 486 socially responsible, context-aware navigation in dynamic, human-populated environments.

486 ETHICS STATEMENT
487488 This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal ex-
489 perimentation was involved. All datasets used, including HAPS 2.0, HA-R2R, HA-VLN simulator
490 annotation data, were sourced in compliance with relevant usage guidelines, ensuring no violation
491 of privacy. We have taken care to avoid any biases or discriminatory outcomes in our research
492 process. No personally identifiable information was used, and no experiments were conducted that
493 could raise privacy or security concerns. We are committed to maintaining transparency and integrity
494 throughout the research process.495
496 REPRODUCIBILITY STATEMENT
497498 We have made every effort to ensure that the results presented in this paper are reproducible. The
499 task, simulator and agent setup, including annotation details, simulator functions, and model con-
500 figurations, are described in detail in the paper. We have also provided a full description of the
501 simulator and dataset setup in the supplementary to assist others in reproducing our experiments.502 Additionally, HAPS 2.0, HA-R2R, HA-VLN simulator annotation data are available, ensuring con-
503 sistent and reproducible evaluation results. We believe these measures will enable other researchers
504 to reproduce our work and further advance the field.505
506 REFERENCES
507508 Dong An, Yuankai Qi, Yangguang Li, Yan Huang, Liang Wang, Tieniu Tan, and Jing Shao. Bevbert:
509 Multimodal map pre-training for language-guided navigation. In *Proceedings of the IEEE/CVF*
510 *International Conference on Computer Vision*, pp. 2737–2748, 2023.512 Dong An, Hanqing Wang, Wenguan Wang, Zun Wang, Yan Huang, Keji He, and Liang Wang. Etp-
513 nav: Evolving topological planning for vision-language navigation in continuous environments.
514 *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2024.515 Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf, Ian Reid,
516 Stephen Gould, and Anton Van Den Hengel. Vision-and-language navigation: Interpreting
517 visually-grounded navigation instructions in real environments. In *Proceedings of the IEEE/CVF*
518 *Conference on Computer Vision and Pattern Recognition*, pp. 3674–3683, 2018.520 Peter Anderson, Ayush Shrivastava, Joanne Truong, Arjun Majumdar, Devi Parikh, Dhruv Batra,
521 and Stefan Lee. Sim-to-real transfer for vision-and-language navigation. In *Conference on Robot*
522 *Learning*, pp. 671–681, 2021.523 Valts Blukis, Dipendra Misra, Ross A Knepper, and Yoav Artzi. Mapping navigation instructions to
524 continuous control actions with position-visitation prediction. In *Conference on Robot Learning*,
525 pp. 505–518, 2018.527 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
528 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
529 few-shot learners. *Advances in Neural Information Processing Systems*, 33:1877–1901, 2020.531 Howard Chen, Alane Suhr, Dipendra Misra, Noah Snavely, and Yoav Artzi. Touchdown: Natural
532 language navigation and spatial reasoning in visual street environments. In *Proceedings of the*
533 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 12538–12547, 2019.534 Shizhe Chen, Pierre-Louis Guhur, Cordelia Schmid, and Ivan Laptev. History aware multimodal
535 transformer for vision-and-language navigation. *Advances in Neural Information Processing Sys-*
536 *tems*, 34:5834–5847, 2021.538 Zhi-Qi Cheng, Yifei Dong, Aike Shi, Wei Liu, Yuzhi Hu, Jason O’Connor, Alexander G Hauptmann,
539 and Kate S Whitefoot. Shield: Llm-driven schema induction for predictive analytics in ev battery
supply chain disruptions. *arXiv preprint arXiv:2408.05357*, 2024.

540 Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan Lee, Devi Parikh, and Dhruv Batra. Embodied question answering. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 1–10, 2018.

541

542

543

544 Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. *arXiv preprint arXiv:1810.04805*, 2018.

545

546

547 Bosheng Ding, Chengwei Qin, Ruochen Zhao, Tianze Luo, Xinze Li, Guizhen Chen, Wenhan Xia, Junjie Hu, Anh Tuan Luu, and Shafiq Joty. Data augmentation using llms: Data perspectives, learning paradigms and challenges. *arXiv preprint arXiv:2403.02990*, 2024.

548

549

550 Yifei Dong, Fengyi Wu, Sanjian Zhang, Guangyu Chen, Yuzhi Hu, Masumi Yano, Jingdong Sun, Siyu Huang, Feng Liu, Qi Dai, et al. Securing the skies: A comprehensive survey on anti-uav methods, benchmarking, and future directions. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 6659–6673, 2025.

551

552

553

554 Daniel Fried, Ronghang Hu, Volkan Cirik, Anna Rohrbach, Jacob Andreas, Louis-Philippe Morency, Taylor Berg-Kirkpatrick, Kate Saenko, Dan Klein, and Trevor Darrell. Speaker-follower models for vision-and-language navigation. *Advances in Neural Information Processing Systems*, 31, 2018.

555

556

557

558

559 Peng Gao, Peng Wang, Feng Gao, Fei Wang, and Ruyue Yuan. Vision-language navigation with embodied intelligence: A survey. *arXiv preprint arXiv:2402.14304*, 2024.

560

561

562 Xiaofeng Gao, Qiaozhi Gao, Ran Gong, Kaixiang Lin, Govind Thatte, and Gaurav S Sukhatme. Dialfred: Dialogue-enabled agents for embodied instruction following. *IEEE Robotics and Automation Letters*, 7(4):10049–10056, 2022.

563

564

565 Daniel Gordon, Aniruddha Kembhavi, Mohammad Rastegari, Joseph Redmon, Dieter Fox, and Ali Farhadi. Iqa: Visual question answering in interactive environments. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 4089–4098, 2018.

566

567

568 Jing Gu, Eliana Stefani, Qi Wu, Jesse Thomason, and Xin Wang. Vision-and-language navigation: A survey of tasks, methods, and future directions. In *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 7606–7623, 2022.

569

570

571

572 Pierre-Louis Guhur, Makarand Tapaswi, Shizhe Chen, Ivan Laptev, and Cordelia Schmid. Airbert: In-domain pretraining for vision-and-language navigation. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 1634–1643, 2021.

573

574

575 Tevet Guy, Raab Sigal, Gordon Brian, Shafir Yonatan, Cohen-Or Daniel, and H. Bermano Amit. Mdm: Human motion diffusion model. *arXiv preprint arXiv:2209.14916*, 2022.

576

577

578 Weituo Hao, Chunyuan Li, Xiujun Li, Lawrence Carin, and Jianfeng Gao. Towards learning a generic agent for vision-and-language navigation via pre-training. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 13137–13146, 2020.

579

580

581 Yicong Hong, Cristian Rodriguez, Yuankai Qi, Qi Wu, and Stephen Gould. Language and visual entity relationship graph for agent navigation. *Advances in Neural Information Processing Systems*, 33:7685–7696, 2020.

582

583

584 Yicong Hong, Qi Wu, Yuankai Qi, Cristian Rodriguez-Opazo, and Stephen Gould. A recurrent vision-and-language bert for navigation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 1643–1653, June 2021.

585

586

587

588 Vihan Jain, Gabriel Magalhaes, Alexander Ku, Ashish Vaswani, Eugene Ie, and Jason Baldridge. Stay on the path: Instruction fidelity in vision-and-language navigation. *arXiv preprint arXiv:1905.12255*, 2019.

589

590

591

592 Yanli Ji, Feixiang Xu, Yang Yang, Fumin Shen, Heng Tao Shen, and Wei-Shi Zheng. A large-scale rgb-d database for arbitrary-view human action recognition. In *Proceedings of the 26th ACM international Conference on Multimedia*, pp. 1510–1518, 2018.

593

594 Abhishek Kadian, Joanne Truong, Aaron Gokaslan, Alexander Clegg, Erik Wijmans, Stefan Lee,
 595 Manolis Savva, Sonia Chernova, and Dhruv Batra. Sim2real predictivity: Does evaluation in
 596 simulation predict real-world performance? *IEEE Robotics and Automation Letters*, 5(4):6670–
 597 6677, 2020.

598 Michał Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech Jaśkowski. Viz-
 599 doom: A doom-based ai research platform for visual reinforcement learning. In *2016 IEEE*
 600 *Conference on Computational Intelligence and Games*, pp. 1–8, 2016.

602 James Kennedy and Russell Eberhart. Particle swarm optimization. In *Proceedings of ICNN'95-
 603 International Conference on Neural Networks*, volume 4, pp. 1942–1948, 1995.

604 Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti, Daniel
 605 Gordon, Yuke Zhu, Abhinav Gupta, and Ali Farhadi. Ai2-thor: An interactive 3d environment for
 606 visual ai. *arXiv preprint arXiv:1712.05474*, 2017.

608 Vijay Konda and John Tsitsiklis. Actor-critic algorithms. In S. Solla, T. Leen, and K. Müller (eds.),
 609 *Advances in Neural Information Processing Systems*, volume 12. MIT Press, 1999.

610 Xianghao Kong, Jinyu Chen, Wenguan Wang, Hang Su, Xiaolin Hu, Yi Yang, and Si Liu. Control-
 611 lable navigation instruction generation with chain of thought prompting. In *European Conference*
 612 *on Computer Vision*, pp. 37–54. Springer, 2024.

614 Jacob Krantz, Erik Wijmans, Arjun Majumdar, Dhruv Batra, and Stefan Lee. Beyond the nav-
 615 graph: Vision-and-language navigation in continuous environments. In *European Conference on*
 616 *Computer Vision*, pp. 104–120, 2020.

617 Jacob Krantz, Aaron Gokaslan, Dhruv Batra, Stefan Lee, and Oleksandr Maksymets. Waypoint
 618 models for instruction-guided navigation in continuous environments. In *Proceedings of the*
 619 *IEEE/CVF International Conference on Computer Vision*, pp. 15162–15171, 2021.

621 Alexander Ku, Peter Anderson, Roma Patel, Eugene Ie, and Jason Baldridge. Room-across-room:
 622 Multilingual vision-and-language navigation with dense spatiotemporal grounding. *arXiv preprint*
 623 *arXiv:2010.07954*, 2020.

624 Jialu Li, Hao Tan, and Mohit Bansal. Envedit: Environment editing for vision-and-language naviga-
 625 tion. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 626 pp. 15407–15417, 2022.

628 Minghan Li, Heng Li, Zhi-Qi Cheng, Yifei Dong, Yuxuan Zhou, Jun-Yan He, Qi Dai, Teruko Mi-
 629 tamura, and Alexander G Hauptmann. Human-aware vision-and-language navigation: Bridging
 630 simulation to reality with dynamic human interactions. *arXiv preprint arXiv:2406.19236*, 2024.

631 Xiujun Li, Xi Yin, Chunyuan Li, Xiaowei Hu, Pengchuan Zhang, Lei Zhang, Lijuan Wang, Houdong
 632 Hu, Li Dong, Furu Wei, Yejin Choi, and Jianfeng Gao. Oscar: Object-semantics aligned pre-
 633 training for vision-language tasks. *European Conference on Computer Vision*, 2020.

635 Bingqian Lin, Yunshuang Nie, Ziming Wei, Jiaqi Chen, Shikui Ma, Jianhua Han, Hang Xu, Xi-
 636 aojun Chang, and Xiaodan Liang. Navcot: Boosting llm-based vision-and-language navigation
 637 via learning disentangled reasoning. *IEEE Transactions on Pattern Analysis and Machine Intelli-
 638 gence*, 2025.

639 Kunyang Lin, Peihao Chen, Diwei Huang, Thomas H Li, Mingkui Tan, and Chuang Gan. Learning
 640 vision-and-language navigation from youtube videos. In *Proceedings of the IEEE/CVF Interna-
 641 tional Conference on Computer Vision*, pp. 8317–8326, 2023.

642 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan
 643 Li, Jianwei Yang, Hang Su, et al. Grounding dino: Marrying dino with grounded pre-training for
 644 open-set object detection. In *European Conference on Computer Vision*, pp. 38–55, 2024.

645 Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert: Pretraining task-agnostic visiolin-
 646 gistic representations for vision-and-language tasks. *Advances in Neural Information Processing*
 647 *Systems*, 32, 2019.

648 Chih-Yao Ma, Jiasen Lu, Zuxuan Wu, Ghassan AlRegib, Zsolt Kira, Richard Socher, and Caim-
 649 ing Xiong. Self-monitoring navigation agent via auxiliary progress estimation. *arXiv preprint*
 650 *arXiv:1901.03035*, 2019.

651

652 Matt MacMahon, Brian Stankiewicz, and Benjamin Kuipers. Walk the talk: Connecting language,
 653 knowledge, and action in route instructions. *Def*, 2(6):4, 2006.

654 Khanh Nguyen, Debadeepa Dey, Chris Brockett, and Bill Dolan. Vision-based navigation with
 655 language-based assistance via imitation learning with indirect intervention. In *Proceedings of the*
 656 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 12527–12537, 2019.

657

658 Cosmin Paduraru, Daniel J. Mankowitz, Gabriel Dulac-Arnold, Jerry Li, Nir Levine, Sven Gowal,
 659 and Todd Hester. Challenges of real-world reinforcement learning:definitions, benchmarks &
 660 analysis. *Machine Learning Journal*, 2021.

661

662 Mathis Petrovich, Michael J Black, and GüL Varol. Action-conditioned 3d human motion synthesis
 663 with transformer vae. In *Proceedings of the IEEE/CVF International Conference on Computer*
 664 *Vision*, pp. 10985–10995, 2021.

665

666 Xavier Puig, Eric Undersander, Andrew Szot, Mikael Dallaire Cote, Tsung-Yen Yang, Ruslan Part-
 667 sey, Ruta Desai, Alexander William Clegg, Michal Hlavac, So Yeon Min, et al. Habitat 3.0: A
 668 co-habitat for humans, avatars and robots. *arXiv preprint arXiv:2310.13724*, 2023.

669

670 Yuankai Qi, Qi Wu, Peter Anderson, Xin Wang, William Yang Wang, Chunhua Shen, and Anton
 671 van den Hengel. Reverie: Remote embodied visual referring expression in real indoor environ-
 672 ments. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 673 pp. 9982–9991, 2020.

674

675 Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
 676 tured prediction to no-regret online learning. In *Proceedings of the fourteenth international con-
 677 ference on artificial intelligence and statistics*, pp. 627–635, 2011.

678

679 Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain,
 680 Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat: A platform for embodied
 681 ai research. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp.
 682 9339–9347, 2019.

683

684 Hao Tan, Licheng Yu, and Mohit Bansal. Learning to navigate unseen environments: Back transla-
 685 tion with environmental dropout. *arXiv preprint arXiv:1904.04195*, 2019.

686

687 Jesse Thomason, Michael Murray, Maya Cakmak, and Luke Zettlemoyer. Vision-and-dialog navi-
 688 gation. In *Conference on Robot Learning*, pp. 394–406, 2020.

689

690 An Vuong, Toan Nguyen, Minh Nhat Vu, Baoru Huang, HTT Binh, Thieu Vo, and Anh Nguyen.
 691 Habicrowd: A high performance simulator for crowd-aware visual navigation. In *2024 IEEE/RSJ*
 692 *International Conference on Intelligent Robots and Systems*, pp. 5821–5827, 2024.

693

694 Hanqing Wang, Wei Liang, Luc Van Gool, and Wenguan Wang. Towards versatile embodied navi-
 695 gation, 2022. URL <https://arxiv.org/abs/2210.16822>.

696

697 Xin Wang, Qiuyuan Huang, Asli Celikyilmaz, Jianfeng Gao, Dinghan Shen, Yuan-Fang Wang,
 698 William Yang Wang, and Lei Zhang. Reinforced cross-modal matching and self-supervised im-
 699 itation learning for vision-language navigation. In *Proceedings of the IEEE/CVF Conference on*
 700 *Computer Vision and Pattern Recognition*, pp. 6629–6638, 2019.

701

Zun Wang, Jialu Li, Yicong Hong, Yi Wang, Qi Wu, Mohit Bansal, Stephen Gould, Hao Tan,
 702 and Yu Qiao. Scaling data generation in vision-and-language navigation. In *Proceedings of*
 703 *the IEEE/CVF International Conference on Computer Vision*, pp. 12009–12020, 2023.

Fengyi Wu, Yifei Dong, Zhi-Qi Cheng, Yilong Dai, Guangyu Chen, Hang Wang, Qi Dai, and
 Alexander G Hauptmann. Govig: Goal-conditioned visual navigation instruction generation.
arXiv preprint arXiv:2508.09547, 2025.

702 Wansen Wu, Tao Chang, Xinmeng Li, Quanjun Yin, and Yue Hu. Vision-language navigation: a
 703 survey and taxonomy. *Neural Computing and Applications*, 36(7):3291–3316, 2024.
 704

705 Yi Wu, Yuxin Wu, Georgia Gkioxari, and Yuandong Tian. Building generalizable agents with a
 706 realistic and rich 3d environment. *arXiv preprint arXiv:1801.02209*, 2018.

707 Fei Xia, Amir R Zamir, Zhiyang He, Alexander Sax, Jitendra Malik, and Silvio Savarese. Gibson
 708 env: Real-world perception for embodied agents. In *Proceedings of the IEEE/CVF Conference*
 709 *on Computer Vision and Pattern Recognition*, pp. 9068–9079, 2018.

710 Albert Yu, Adeline Foote, Raymond Mooney, and Roberto Martín-Martín. Natural language can
 711 help bridge the sim2real gap. *arXiv preprint arXiv:2405.10020*, 2024.

712 Jiazhao Zhang, Kunyu Wang, Rongtao Xu, Gengze Zhou, Yicong Hong, Xiaomeng Fang, Qi Wu,
 713 Zhiheng Zhang, and Wang He. Navid: Video-based vlm plans the next step for vision-and-
 714 language navigation. *arXiv preprint arXiv:2402.15852*, 2024a.

715 Yue Zhang, Ziqiao Ma, Jialu Li, Yanyuan Qiao, Zun Wang, Joyce Chai, Qi Wu, Mohit Bansal, and
 716 Parisa Kordjamshidi. Vision-and-language navigation today and tomorrow: A survey in the era
 717 of foundation models. *arXiv preprint arXiv:2407.07035*, 2024b.

718 Gengze Zhou, Yicong Hong, and Qi Wu. Navgpt: Explicit reasoning in vision-and-language naviga-
 719 tion with large language models. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 720 volume 38, pp. 7641–7649, 2024.

721 Fengda Zhu, Yi Zhu, Xiaojun Chang, and Xiaodan Liang. Vision-language navigation with self-
 722 supervised auxiliary reasoning tasks. In *Proceedings of the IEEE/CVF Conference on Computer*
 723 *Vision and Pattern Recognition*, pp. 10012–10022, 2020.

724 Appendix

725 This supplementary material provides expanded details and results that complement the main paper.
 726 Section A offers a comprehensive literature survey focusing on three key research challenges. Sec-
 727 tion B describes our dataset construction, annotation protocols, real-time rendering methods, API
 728 design, and additional insights on annotation data. Section C presents an in-depth overview of the
 729 HA-R2R dataset and the proposed navigation agents. Finally, Section D includes detailed evaluation
 730 metrics, additional numerical results, visualized navigation outcomes, and real-world robot valida-
 731 tion studies, each supplemented with thorough analysis. For further resources, access project page
 732 <https://ha-vln-webpage.vercel.app/>, and data samples provided in supplementary.

733 A RELATED WORK

734 This appendix surveys the evolution of Vision-and-Language Navigation (VLN) tasks, simulators,
 735 and agent designs, with particular attention to how *Human-Aware VLN (HA-VLN) 2.0* advances
 736 the state of the art. We focus on three key aspects deemed critical for bridging the Sim2Real gap:
 737 (1) *Socially Compliant Navigation*, (2) *Human-Aligned Instructions and Visual Cues*, and (3) *Dy-
 738 namic Environments with Human Activities and Interactions*. Table A1 summarizes how prior work
 739 compares under these dimensions.

740 A.1 DEVELOPMENT OF VLN TASKS

741 Early VLN tasks focused on basic indoor navigation—exemplified by Room-to-Room (R2R) An-
 742 derson et al. (2018); Fried et al. (2018); Gu et al. (2022); Ku et al. (2020)—and outdoor tasks
 743 like TOUCHDOWN Chen et al. (2019) and MARCO MacMahon et al. (2006). Later efforts such
 744 as REVERIE Qi et al. (2020) and VNLA Nguyen et al. (2019) introduced object-centric or goal-
 745 driven navigation. While these approaches expanded the range of tasks, they typically overlooked
 746 real human behavior and social contexts. Dialogue-based tasks (e.g., DialFRED Gao et al. (2022),
 747 CVDN Thomason et al. (2020)) incorporated interactive elements but did not account for dynami-
 748 cally moving bystanders or social-distance constraints. Initiatives like VLN-CE Krantz et al. (2020)
 749 moved closer to real-world conditions by enabling continuous navigation, yet remained devoid of
 750 explicit human factors Jain et al. (2019); Ku et al. (2020); Nguyen et al. (2019); Thomason et al.
 751

(2020). HA3D Li et al. (2024) addressed human motion and included human-oriented instructions but did not require agents to conform to social norms—e.g., maintaining safe distances or refraining from disturbing ongoing activities. Our proposed *HA-VLN 2.0* addresses these gaps by embedding all three essential elements, socially compliant navigation, human-referenced instructions, and dynamic human activities, into a single framework. Agents must plan routes among unpredictable bystanders, interpret language mentioning people and their behaviors, and uphold social standards. This integrated setup results in a benchmark that closely aligns with real-world navigation demands.

763 A.2 SIMULATORS FOR VLN TASKS

764 A reliable simulator is essential for developing and evaluating VLN agents. Early simulators like
 765 Matterport3D Anderson et al. (2018) and House3D Wu et al. (2018) offered photorealistic or synthetic
 766 indoor environments but lacked mobile humans. Others, such as AI2-THOR Kolve et al.
 767 (2017) and Gibson Xia et al. (2018), introduced more interactive elements yet typically assumed
 768 static or purely synthetic contexts, thus limiting their applicability for studying social compliance.
 769 Google Street View, used in some outdoor navigation tasks, presents static imagery with occasional
 770 humans in the scene but lacks dynamic or interactive elements. HA3D Li et al. (2024) moved a step
 771 further by including human activities and instructions referencing people, though it did not mandate
 772 socially compliant navigation. HabiCrowd Vuong et al. (2024) integrated crowds into photorealistic
 773 domains, improving visual diversity but omitting human-aligned instructions. Similarly, Habi-
 774 tation 3.0 Savva et al. (2019) provides high-performance simulation without extensive multi-human or
 775 social-compliance features. By contrast, our *HA-VLN Simulator* unifies dynamic human activities,
 776 photorealistic rendering, and social-compliance requirements. Agents perceive and react to evolving
 777 bystander behaviors—such as avoiding collisions or maintaining personal space—using both
 778 discrete and continuous navigation. Specifically, we introduce 675 scenes (across 90 scenarios),
 779 122 motion types, and a cohesive framework that supports instruction-driven dynamic human inter-
 780 actions. By supporting both discrete and continuous action spaces, HA-VLN further broadens its
 781 potential for addressing diverse navigation goals and real-world deployment challenges.

782 A.3 AGENTS FOR VLN TASKS

783 From early attention-based and reinforcement-learning approaches Ma et al. (2019); Qi et al. (2020);
 784 Wang et al. (2019) to modern vision-language pre-training Lu et al. (2019); Hao et al. (2020); Li
 785 et al. (2020), VLN agents have grown increasingly adept at parsing instructions and navigating com-
 786 plex environments. However, most existing solutions, including EnvDrop Tan et al. (2019), PREVA-
 787 LENT Hao et al. (2020) and VLN-BERT Hong et al. (2021), rely on panoramic navigation, stream-
 788 lining the action space but limiting realism of their movement. Recent efforts like NavGPT Zhou
 789 et al. (2024) and NaVid Zhang et al. (2024a) explore continuous, egocentric navigation in partially
 790 dynamic worlds, yet they still lack explicit attention to *human-aligned* instructions or *social com-*
 791 *pliance*. In particular, these agents may not recognize the need to maintain safe distances, avoid
 792 disturbing activities, or adapt routes with active bystanders. HA-VLN agents address these gaps
 793 by navigating among multiple, moving humans and adhering to social norms. They interpret fine-
 794 grained, human-centric instructions and leverage visual cues that reflect real-world interactions,
 795 ensuring collision-free, respectful travel. This fusion of social compliance and human dynamics sets
 796 HA-VLN apart, aligning agent behavior more closely with real-world challenges Dong et al. (2025).
 797

798 B SIMULATOR DETAILS

800 B.1 HAPS DATASET 2.0

801 We develop HAPS 2.0 to address the shortcomings of its predecessor Li et al. (2024), particularly in
 802 terms of mismatches between textual descriptions and motion data, as well as the limited diversity
 803 of region-motion associations.

804 **Motion–Description Alignment.** The original HAPS dataset contains 435 motion categories, each
 805 defined by a region (e.g., *hallway*) and a textual description (e.g., “Someone talking on the phone
 806 while pacing”). However, more than half of these pairs do not match accurately. We therefore
 807 conduct a two-round manual verification, where multiple volunteers determine whether each pair is
 808 valid. Motions that fail both rounds are removed, yielding 172 precisely aligned motions.

810 Table A1: Comparison of VLN tasks, simulators, and agents based on (1) *Socially Compliant Navigation*, (2)
 811 *Human-aligned Instructions and Visual Cues*, and (3) *Dynamic Environments with Human Activities*.

	Socially Compliant Navigation	Human-aligned Instructions and Visual Cues	Dynamic Environments	Prior Work
Tasks	✗	✗	✗	MARCO MacMahon et al. (2006), DRIF Blukis et al. (2018), VLN-R2R Anderson et al. (2018), TOUCHDOWN Chen et al. (2019), REVERIE Qi et al. (2020), Dial-FRED Gao et al. (2022) VNLA Nguyen et al. (2019), CVDN Thomason et al. (2020), R4R Jain et al. (2019), RxR Ku et al. (2020), EQA Das et al. (2018), IQA Gordon et al. (2018) VLN-CE Krantz et al. (2020) HA3D Li et al. (2024) HA-VLN (Ours)
Simulators	✗	✗	✓	Matterport3D Anderson et al. (2018), House3D Wu et al. (2018), AI2-THOR Kolve et al. (2017), Gibson GANI Xia et al. (2018) Habitat Savva et al. (2019), Google Street, VizDoom Kempka et al. (2016) HA3D Li et al. (2024) HA-VLN (Ours) , Habitat3.0 Puig et al. (2023)
Agents	✗	✗	✗	EnvDrop Tan et al. (2019), AuxRN Zhu et al. (2020), PREVALENT Hao et al. (2020), RecGraph Hong et al. (2020), HAMT Chen et al. (2021), NavCoT Lin et al. (2025) Rec-VLNBERT Hong et al. (2021), EnvEdit Li et al. (2022), Aibert Guhur et al. (2021), Lily Lin et al. (2023), ScaleVLN Wang et al. (2023) NavGPT Zhou et al. (2024), NaViD Zhang et al. (2024a), Student Force Anderson et al. (2018) HA-VLN Agent (Ours)

828 Table A2: **Comparison of HAPS 1.0 vs. HAPS 2.0.** We show the total number of motion categories, average
 829 *accuracy* and *compatibility* scores (both on a 1–10 scale), the number of failure cases (e.g., severe motion-
 830 description mismatches), and total annotation time. HAPS 2.0 features more diverse motions, improved motion-
 831 env alignment, and reduced failures, albeit at higher annotation effort.

Datasets	Motions \uparrow	Accuracy (1–10) \uparrow	Compatibility (1–10) \uparrow	Failure Cases \downarrow	Annotation Time (hours)
HAPS 1.0 Li et al. (2024)	435	6.3	5.9	120	320 (verified by Li et al. (2024))
HAPS 2.0 (ours)	486	8.5	8.1	0	430+

834
 835 **Diversifying Region–Motion Relationships.** In the initial dataset, each region was tied to only a
 836 few rigidly defined motions (e.g., *hallway* mostly involves “pacing on a phone,” *stairs* focuses on
 837 “sliding down a banister” or “decorating the stairway”). Such narrow mappings cause biases and
 838 limit the realism of agent navigation. To remedy this, we reorganize region–motion associations,
 839 adapting the same motion to fit various environments, including both indoor and outdoor scenes. For
 840 instance, “talking on the phone” is re-contextualized to reflect whether someone is pacing upstairs
 841 or moving around a meeting room. This broader approach offers more faithful representations of
 842 human behavior and reduces environmental biases, thus improving real-world applicability.

843 **HAPS 2.0 vs. HAPS 1.0.** Table A2 quantitatively contrasts HAPS 2.0 with HAPS 1.0. We recruit 26
 844 volunteers to evaluate every motion in both datasets on two 1–10 scales (*motion accuracy*, *motion–*
 845 *environment compatibility*). A motion is deemed a failure if it scores under 3 in either category or
 846 below 5 in both. As shown, HAPS 2.0 achieves higher accuracy (8.5 vs. 6.3), better compatibility
 847 (8.1 vs. 5.9), and zero failures (0 vs. 120). It also increases motion diversity (486 vs. 435) and
 848 overall annotation effort (430+ vs. 320 hours). Moreover, HAPS 2.0 refines annotation workflows
 849 and simulator design for enhanced generalization.

850 Altogether, HAPS 2.0 includes 26 distinct regions across 90 architectural scenes, covering 486 hu-
 851 man activities in both indoor and outdoor contexts. Fig. A2 illustrates these improvements. By
 852 offering more accurate, flexible, and diverse depictions of human actions, HAPS 2.0 provides a
 853 robust foundation for research in human motion analysis, social navigation, and beyond.

855 B.2 COARSE ANNOTATION USING PSO

856 We adopt a coarse-to-fine strategy for positioning human motions in 3D scans. Initially, we de-
 857 fine each region by boundary coordinates $\mathbf{B}_{lo} = (x_{lo}, y_{lo}, z_{lo})$, $\mathbf{B}_{hi} = (x_{hi}, y_{hi}, z_{hi})$, and compile
 858 an object list $\mathbf{O} = \{j_1, j_2, \dots, j_n\}$ with positions \mathbf{p}^{j_i} . We then use Particle Swarm Optimiza-
 859 tion (PSO) Kennedy & Eberhart (1995) (more details are provided in Algorithm A1) to locate each
 860 motion h_i at an optimal position \mathbf{p}^{opt} .

861 **Safe Distance Constraint.** We set $\epsilon = 1$ m as the minimum clearance between humans and objects,
 862 ensuring a realistic layout while leaving space for agent passage.

864 **Algorithm A1** Coarse Annotation via PSO

865

866 **Require:** Region $\mathbf{R} \leftarrow \langle \mathbf{r}, \mathbf{B}_{lo}, \mathbf{B}_{hi} \rangle$, where \mathbf{r} is region label and boundary coordinates $\mathbf{B}_{lo} =$
867 (x_{lo}, y_{lo}, z_{lo}) and $\mathbf{B}_{hi} = (x_{hi}, y_{hi}, z_{hi})$; object list $\mathbf{O} \leftarrow \{j_1, j_2, \dots, j_n\}$ with positions $\mathbf{p}_{j_i} \leftarrow$
868 $(x_{j_i}, y_{j_i}, z_{j_i})$; human motion set \mathbf{H} ; minimum safe distance $\epsilon \leftarrow 1$ m; height offset $\Delta_z \leftarrow$
869 0.75 m.

870 **Ensure:** Final positions $\mathbf{p}^h \leftarrow (x_h, y_h, z_h)$ for each human motion $h \in \mathbf{H}$.

871 1: **while** not all human motions placed **do**

872 2: Filter human motions $\mathbf{H}' \subseteq \mathbf{H}$ matching \mathbf{r} ;

873 3: Match objects \mathbf{O} with human motions \mathbf{H}' based on semantic similarity to form pairs (h_i, j_i) ;

874 4: **for** each pair (h_i, j_i) **do**

875 5: Define search space $\mathbf{S} \leftarrow \langle x_{lo}, x_{hi} \rangle \times \langle z_{lo}, z_{hi} \rangle \times \langle y_{lo}, y_{hi} \rangle$ around object j_i ;

876 6: Initialize PSO with particles randomly positioned within \mathbf{S} ;

877 7: Convergence criteria \leftarrow minimal fitness change;

878 8: **repeat**

879 9: **for** each particle p in the swarm **do**

880 10: Compute position \mathbf{p}^h of particle p ;

881 11: Compute fitness $f(p)$;

882 12: $f(p) \leftarrow d(\mathbf{p}^h, \mathbf{p}^{j_i}) + P_{\text{constraints}}(p)$;
883 where $d(\mathbf{p}^h, \mathbf{p}^{j_i})$ is the Euclidean distance, and $P_{\text{constraints}}(p)$ is the penalty for con-
884 straint violations;

885 13: **Constraints:**

886 14: $d(\mathbf{p}^h, \mathbf{p}^{j_i}) \leq 1$ m; (Proximity to target object)

887 15: $d(\mathbf{p}^h, \mathbf{p}^{j_u}) \geq \epsilon, \forall j_u \in \mathbf{O}, j_u \neq j_i$; (Maintain safe distance from other objects)

888 16: $\mathbf{p}^h \in \mathbf{R}$; (Within region boundaries)

889 17: Optional: $z_h \geq z_{j_i} + \Delta_z$; (Height offset)

890 18: **end for**

891 19: Update particle velocities and positions using PSO update equations;

892 20: **until** convergence criteria met

893 21: Assign best particle position \mathbf{p}^h to h_i ;

894 22: **if** no feasible solution found **then**

895 23: Adjust PSO parameters and retry;

896 24: **end if**

897 25: **end for**

898 26: **end while**

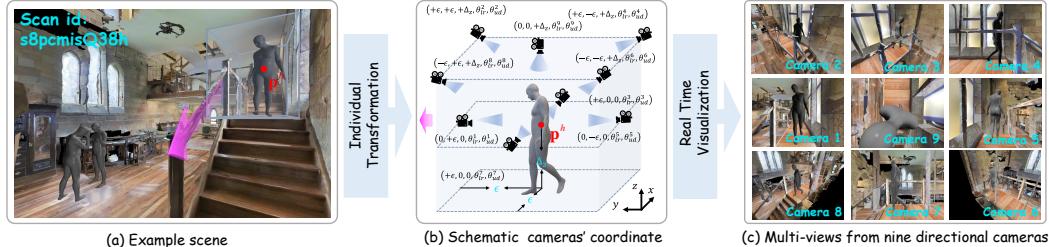


Figure A1: **Multi-View Camera Setup.** (a) A sample scene overview. (b) Schematic illustrating the nine camera placements around the human figure, noting key coordinates and rotations. (c) Example snapshots from the nine directional cameras, each providing a distinct viewpoint for accurate motion annotation.

Adaptive Penalties. Our fitness function applies penalties to placements that violate constraints (e.g., intersecting walls or overlapping humans). This strategy discourages infeasible poses and promotes plausible scene geometry alignments. The resulting coarse alignment establishes a starting point, after which we apply finer manual or semi-automated adjustments to refine multi-human interactions and ensure consistent coverage of diverse motion types.

B.3 FINE ANNOTATION USING A MULTI-CAMERA SETUP

To refine the coarse placements of human motions, we draw inspiration from 3D skeleton-capture methods Ji et al. (2018); Petrovich et al. (2021) and deploy nine RGB cameras, each positioned

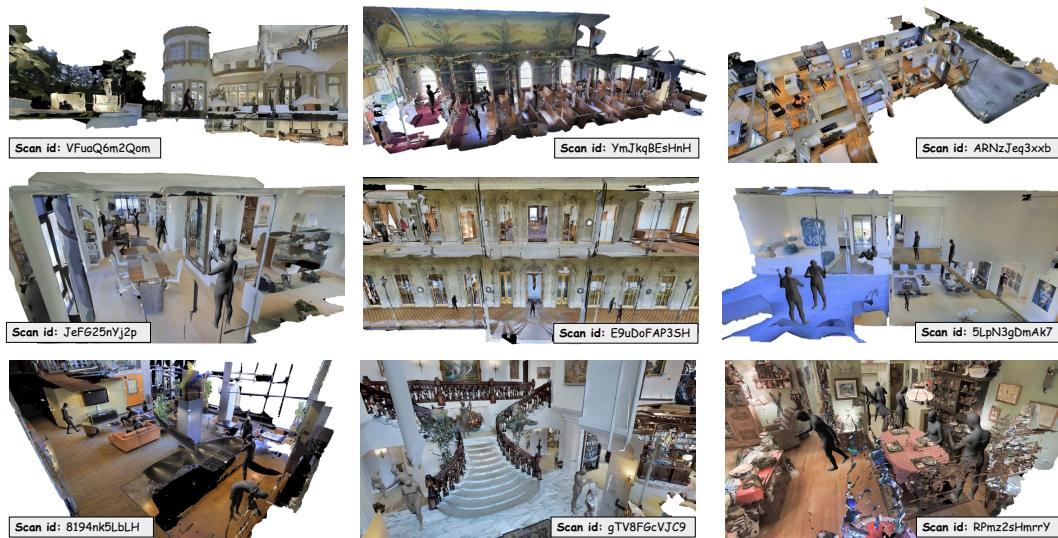


Figure A2: **Overview of HA-VLN Scenes.** These examples illustrate annotated human subjects across multiple scans in the HA-VLN simulator, highlighting a range of well-aligned motions, movements, and interactions (both with objects and with other humans).

around the motion site. As shown in Fig. A1, this arrangement provides a comprehensive multi-view perspective, revealing potential collisions or misalignments between the human figure and surrounding objects.

Camera Positions & Angles. For each camera i ($i = 1, 2, \dots, 8$), we set its 3D location \mathbf{p}^{cam} to shift by Δ_x , Δ_y , and Δ_z from the base position \mathbf{p}^{h} . Horizontal rotation θ_{lr}^i is uniformly spaced at $\frac{\pi i}{8}$, while vertical rotation θ_{ud}^i depends on whether i is odd or even:

$$\tan \theta_{\text{ud}}^i = \begin{cases} 0, & \text{if } i \text{ is odd,} \\ \frac{\Delta_z}{\sqrt{2} \epsilon}, & \text{if } i \text{ is even.} \end{cases} \quad (\text{A1})$$

For the ninth camera (overhead view), $\theta_{\text{lr}}^9 = 0$ and $\theta_{\text{ud}}^9 = \frac{\pi}{2}$. These settings are ideal for general views and can be further adjusted in constrained spaces (e.g., narrow closets) or scenes requiring specialized viewpoints.

B.4 FINE ANNOTATION PROTOCOL

We adopt the following six-step procedure to fine-tune a human’s position and orientation:

1. *Initial View.* Generate an overall preview of the human figure at \mathbf{p}^{h} (Fig. A1(a)).
2. *Multi-Camera Observations.* Collect images from the nine cameras (Figs. A1(b)–(c)). Adjust camera angles or offsets as necessary, particularly in tight scenes like small bathrooms or closets.
3. *Vertical Collision Checks.* Inspect overhead Camera 9 to detect vertical overlaps (e.g., arms interpenetrating a table). If collisions exist, identify the nearest side camera to determine how best to shift the figure.
4. *Horizontal Translation.* Modify Δ_x and Δ_y accordingly—if a nearby camera (e.g., Camera 1) reveals front-facing overlaps, shift \mathbf{p}^{h} by adding or subtracting based on Camera 1’s perspective.
5. *Side Cameras Review.* Examine Cameras 2–8 to catch lingering overhang or collisions. Adjust the figure’s position proportionally, typically referencing a standard human height of 1.5 m to gauge whether shifts remain plausible.
6. *Finalize Output.* Upon confirming a collision-free layout, automatically generate the final video render and corresponding JSON metadata files.

This multi-camera process systematically eliminates misalignments, ensuring each human model remains properly integrated within the environment. The result is a more realistic portrayal of multi-human interactions and improved fidelity for downstream tasks.

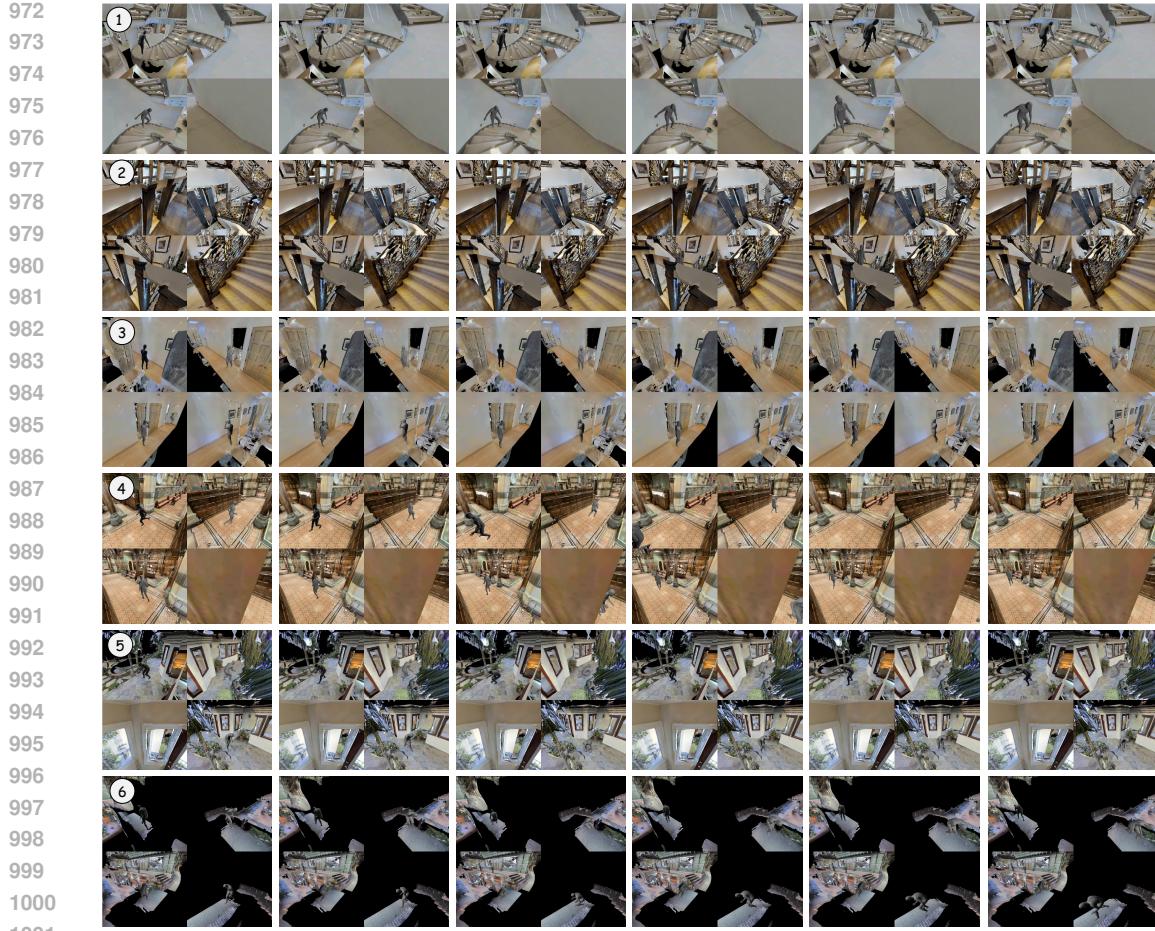


Figure A3: **Movement Examples.** We present representative frames from a single set of human motions, each annotated with its corresponding movement. Activities include ascending stairs, running, and pacing. For clarity, we highlight four camera views (Cameras 2, 4, 6, 8) within the multi-camera setup to provide a comprehensive perspective of human behaviors. (*Zoom in for finer details.*)

B.5 MULTI-HUMAN INTERACTION & MOVEMENT ENRICHMENT

To diversify scenes and amplify interactivity, we place additional characters into regions already featuring human motion annotations. This enables more complex interactions and varied motion trajectories. Manual insertion of extra characters, however, is time-consuming and prone to subjective bias, limiting data reliability and diversity.

Human-in-the-Loop Method. We employ large language models (LLMs) such as ChatGPT-4 and LLaMA-3-8B-Instruct to propose plausible multi-human scenarios. Each prompt integrates details about existing human motions, object positions, and regional context, guiding the LLMs to generate rich, multi-character interactions. Our prompt design uses a *system prompt* and *few-shot examples* (Listings 1 and 2) to ensure clarity and detail. For instance, we collect each human's position and identify objects within 6 m, describing relative distances and orientations. The LLMs then construct additional human activities suited to the scene, merging them into cohesive multi-person narratives.

Iterative Annotation Workflow. After the LLMs produce candidate interactions, we merge outputs from ChatGPT-4 and LLaMA-3-8B-Instruct, then manually refine and validate them over four rounds Ding et al. (2024); Cheng et al. (2024). This process corrects inconsistencies and ensures contextual alignment. We subsequently place new human motions according to the generated descriptions, leveraging our multi-camera technique (Sec. B.3) for precise annotation of complex activities (e.g., stair-walking, see Fig. A3).

```

1026 "system": "You are an expert in 3
1027   D scene understanding,
1028   specializing in generating
1029   detailed multi-person
1030   interaction scenarios in
1031   complex environments. I will
1032   provide you with information
1033   about the current human
1034   motion, object positions, and
1035   the region context. Your
1036   task is to infer possible
1037   additional human interactions
1038   and describe their actions
1039   in relation to the objects
1040   and scene."
1041
1042   "example": ...
1043   //examples in Listing 2
1044
1045   "user": Input:
1046   [human_motion]: "...";
1047   [Region]: "...";
1048   [Object_1]: "...";
1049   [Object_2]: "...";
1050   [Object_3]: "...";
1051
1052   Based on these inputs, provide a
1053   detailed, objective
1054   description of additional
1055   people in the scene, their
1056   locations, and their
1057   interactions with objects and
1058   each other. Ensure the
1059   interactions are plausible
1060   based on the given layout and
1061   actions.
1062
1063   Output: ... //generation
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

```

Listing 1: Format of our LLM prompt for multi-human interactions & movements enrichment.

```

# Example 1
Input:
[human_motion]: "tv:An individual
enjoying a sports game, cheering
loudly."
[region]: "\tv."
[TV]: "\4 meters in front of the
couch, placed on a white media
console against the wall."
[couch]: "\Against the wall, 4
meters away facing the TV."
[table]: "\1.5 meters in front of
the couch, holding some snacks
and drinks."
Output:
"Three friends are gathered in the
living room, watching a movie
together. Two of them are seated
comfortably on the couch, which
is positioned against the wall,
facing the TV. They are sharing
popcorn and drinks placed on a
table 1.5 meters in front of the
couch. The atmosphere is relaxed,
with one friend fully focused on
the movie, casually eating
popcorn. Another friend seated
next to him. In front of the TV,
a third friend stands closer,
about 2 meters from the couch, is
more animated, loudly cheering
as they switch their attention to
a sports game playing on a
different screen."

```

Listing 2: Few-shot example for for multi-human interactions & movements enrichment.

Examples of Enriched Interactions. Fig. 2 demonstrates how additional humans can populate a living room: “*two people sit on the couch, sharing popcorn on a small table*,” while “*a third friend stands in front of the TV, cheering*.” Such enriched scenes capture realistic multi-human behaviors—from casual gatherings to active cheering—offering agents a broader range of social cues for navigation and interaction.

B.6 REAL-TIME HUMAN RENDERING

We integrate dynamic human models into the simulation through a multi-threaded pipeline inspired by *Producer-Consumer* principles and Java-style signaling (check details in Algorithm A2). This setup enables agents to observe and respond to human motions in real time, facilitating adaptable navigation policies.

System Initialization. We begin by loading the environment \mathcal{E} , the set of human motions \mathbf{H} , and an object template manager \mathcal{T} that handles 3D model templates efficiently.

1080 **Algorithm A2** Real-time Human Rendering in Simulation

1081 **Require:** Simulation environment \mathcal{E} ; Human motion data \mathbf{H} ; Signal queue \mathcal{Q} with maximum size
1082 $M \leftarrow 120$; Total frames $N \leftarrow 120$; Frame interval Δt .

1083 **Ensure:** Continuous real-time rendering of \mathbf{H} within \mathcal{E} .

1084 1: Initialize simulator \mathcal{E} , object template manager \mathcal{T} in \mathcal{E} , human motion data \mathbf{H} and signal queue
1085 \mathcal{Q} ;
1086 2: Initialize total signals sent and processed to 0;
1087 3: **// Thread 1: Signal sender thread**
1088 4: **while** true **do**
1089 5: **if** not $\mathcal{Q}.\text{full}()$ **then**
1090 6: Enqueue signal “REFRESH_HUMAN” into \mathcal{Q} ;
1091 7: Increment total signals sent;
1092 8: **end if**
1093 9: Sleep for Δt ;
1094 10: **end while**
1095 11: **// Thread 2: Main thread**
1096 12: **while** simulation is running **do**
1097 13: **if** new episode starts **then**
1098 14: Clear \mathcal{Q} and reset total signals sent to 0;
1099 15: Remove previous human models from \mathcal{E} ;
1100 16: **end if**
1101 17: **// Agent handles signals before observation**
1102 18: **while** not $\mathcal{Q}.\text{empty}()$ **do**
1103 19: Dequeue signal from \mathcal{Q} ;
1104 20: $t \leftarrow (\text{total signals processed}) \bmod N$ {Compute current frame index};
1105 21: Remove previous human models from \mathcal{E} ;
1106 22: **for** each human motion $h \in \mathbf{H}$ **do**
1107 23: Retrieve motion category, translation, and rotation of h at frame t ;
1108 24: Load template τ_h into \mathcal{T} ;
1109 25: Add human o_h to \mathcal{E} using template τ_h ;
1110 26: Set translation and rotation of o_h ;
1111 27: **end for**
1112 28: Increment total signals processed;
1113 29: **end while**
1114 30: Agent observes environment and makes decision;
1115 31: **end while**

1116 **Signal Sender Thread (Thread 1).** At intervals Δt , Thread 1 places “refresh” signals into a queue
1117 \mathcal{Q} . If \mathcal{Q} is full, it pauses until earlier signals are processed, preventing data overload. This thread
1118 models a continuous stream of human motion updates at a fixed frequency.

1119 **Main Simulation Thread (Thread 2).** When the agent is about to act, Thread 2 checks \mathcal{Q} for
1120 pending refresh signals. It calculates the current frame index t as ($\text{signals_processed} \bmod N$), where
1121 N is the total length of the human motion sequence. Template manager \mathcal{T} then removes outdated
1122 models and loads frame t into the environment, adjusting each figure’s position and orientation.

1123 **Synchronization & Consistency.** We refresh human models immediately before the agent’s per-
1124 ception step, ensuring it observes the latest motion state. Upon starting a new episode, \mathcal{Q} is cleared,
1125 and signal counters reset, so human motions revert to frame 0, maintaining consistency across
1126 episodes. This real-time process keeps human activities synchronized with agent’s action cycle,
1127 creating dynamic scenes where agents must adapt to changing bystander locations and behaviors.

1128 B.7 API DESIGN

1130 **Discrete Environment (DE).** In our discrete setting, all agent and human positions are tracked via
1131 a real-time navigational graph displayed in a 2D top-down view. Each human’s activity is stored as a
1132 tuple $\langle p_h, d_{\text{agent}}, \theta_{\text{relative}}, a_{\text{status}} \rangle$, where p_h is the human’s 2D coordinate, d_{agent} is the distance to
1133 the agent, θ_{relative} is the relative orientation, and a_{status} indicates activity state. This representation
 supports efficient, simultaneous tracking of multiple humans in a discrete viewpoint space.

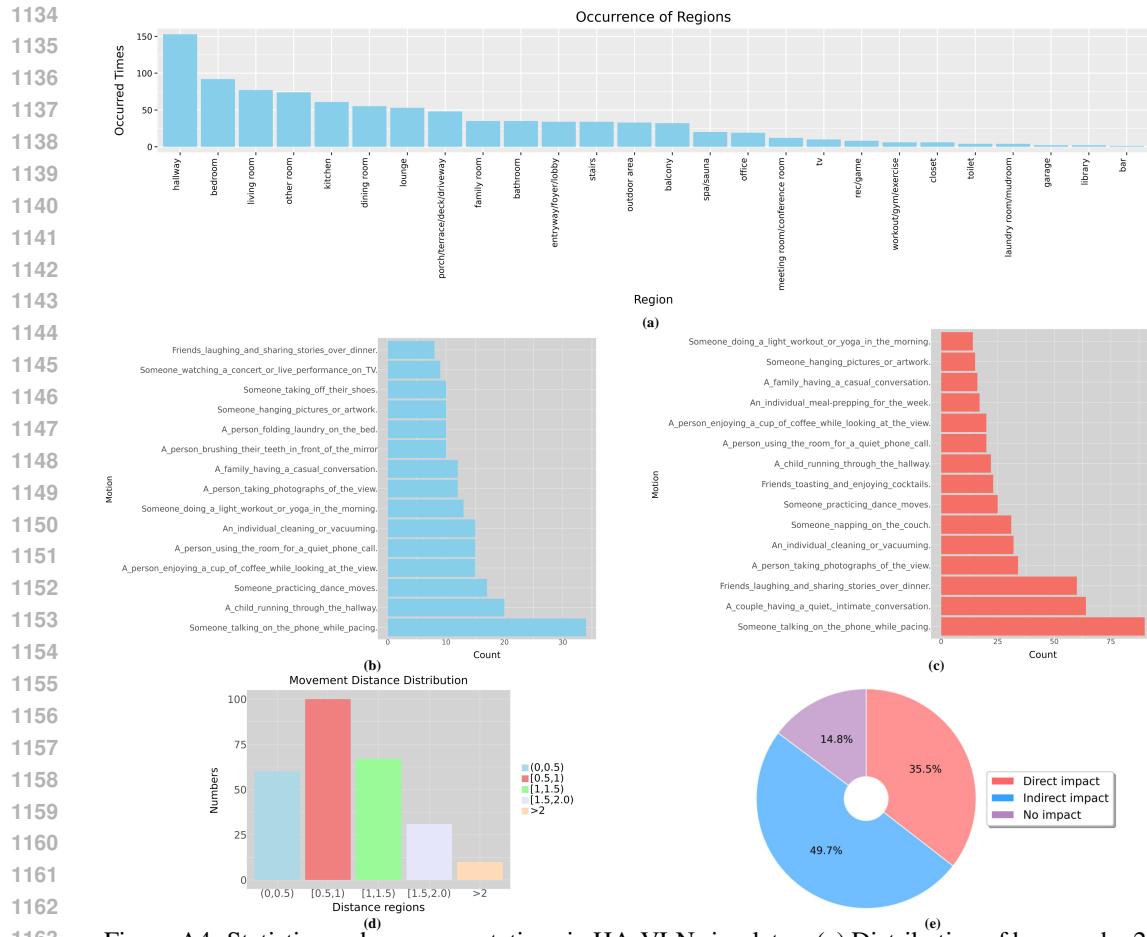


Figure A4: Statistics on human annotations in HA-VLN simulator: (a) Distribution of humans by 26 region types; (b) Top 15 motions without multi-human interaction & movement enrichment; (c) Top 15 motions with enrichment; (d) Distribution of human trajectory lengths (in meters); (e) Impact of human presence on environment, categorized as direct, indirect, and no impact. (Zoom in to view)

Multi-Entity Detection & Tracking. We employ object detection on each discrete panorama to identify humans, assigning unique IDs for continuous monitoring throughout the navigation process. By linking recognized human poses to specific graph nodes, we anchor their activities to well-defined spatial references.

User Interface. A specialized UI presents a bird's-eye view of the 2D graph, allowing researchers to visualize, annotate, and adjust human behaviors in real time. This interface significantly streamlines data annotation and analysis for discrete human-aware navigation research.

Continuous Environment (CE). Our API in continuous mode mainly focuses on three components: (1) *Human Activity Monitoring*, (2) *Environmental Perception*, and (3) *Navigation Support*.

(1) Human Activity Monitoring. We track and analyze human activity in real time as in Sec. 3. When collisions occur, the agent reverts to its prior position, and we identify whether the obstacle is human or an inanimate object. For human collisions, we log the coordinates and motion state to inform potential reward-shaping strategies. Distance and orientation estimates derive from agent–human coordinate data. For instance, we employ the Grounding-DINO Liu et al. (2024) detec-

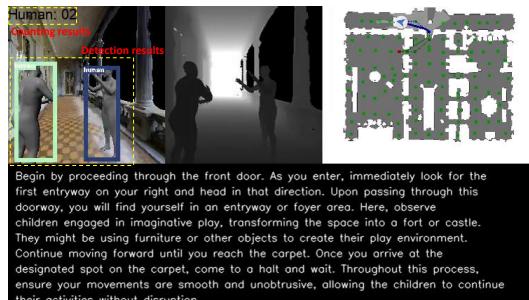


Figure A5: The visualization of Human Counting.

1188 tor on RGB inputs with the prompt “*human*” to count individuals. Fig. A5 illustrates how human
 1189 detection bounding boxes enable real-time counting.
 1190

1191 **(2) Environmental Perception.** We maintain a dynamic scene graph comprising static elements
 1192 (e.g., buildings, furniture) and moving humans. The agent continuously updates this graph by fusing
 1193 positional changes and human motion data in its vicinity. This ensures real-time awareness of human
 1194 activities for downstream decisions.
 1195

1196 **(3) Navigation Support.** An A*-based planner computes candidate trajectories while accounting for
 1197 both dynamic humans and static obstacles. During execution, we monitor any divergence between
 1198 the agent’s chosen route and the planner’s recommended path. This method highlights human-
 1199 centric obstacles and informs the agent’s short-term re-planning steps. Our unified API supports
 1200 real-time detection, tracking, and socially compliant navigation decisions in both *discrete* and *continuous*
 1201 modes. It simplifies multi-human scene management, ensures intuitive collision handling,
 1202 and provides robust path-planning assistance—together forming a foundation for advanced human-
 1203 aware navigation algorithms.
 1204

1203 B.8 HUMAN ACTIVITIES ANNOTATION DATA ANALYSIS

1205 **Human Distribution by Region.** Fig. A4(a) illustrates the distribution of 910 humans across 26
 1206 region types in 90 buildings, averaging about nine individuals per building. Even though each person
 1207 moves independently, this distribution ensures robust and dynamic multi-human interactions, closely
 1208 mirroring real-world scenarios.
 1209

1210 **Motion Frequency Analysis.** Figs. A4(b)–(c) compare the 15 most frequent motions before and
 1211 after multi-human enrichments. While the total number of motions increases, we also embed addi-
 1212 tional movement patterns and group interactions into existing actions. For instance, “*talking on the*
 1213 *phone while pacing*” may now involve extended pacing distances or layered scenarios like “*a couple*
 1214 *having a quiet conversation*” or “*friends sharing stories over dinner*.”
 1215

1216 **Movement Distance Analysis.** Fig. A4(d) displays the distribution of trajectory lengths for actively
 1217 moving humans. Specifically, 22.4% cover distances up to 0.5 m, 37.3% reach 0.5–1 m, 25.0% span
 1218 1–1.5 m, 11.6% extend 1.5–2 m, and the remaining 3.7% exceed 2 m. This wide range reflects the
 1219 diverse indoor and outdoor behaviors encompassed in the dataset.
 1220

1221 **Human Impact Analysis.** As shown in Fig. A4(e), humans exert a notable influence on navigation
 1222 paths: 35.5% of the 16,844 paths in HA-VLN physically intersect with human motion, while 49.7%
 1223 of viewpoints are indirectly affected (i.e., humans are visible along the route). These statistics under-
 1224 line the importance of accounting for human presence and movement trajectories when designing
 1225 real-world navigation agents.
 1226

1227 C AGENT DETAILS

1228 C.1 HA-R2R INSTRUCTION EXAMPLES

1229 Table A3 illustrates four sample instructions from the *Human-Aware Room-to-Room* (HA-R2R)
 1230 dataset. These examples encompass multiple scenarios: multi-human interactions (e.g., 1, 2, 3),
 1231 direct agent–human encounters (e.g., 1, 2, 3), situations with four or more bystanders (e.g., 3), and
 1232 paths devoid of humans (e.g., 4). Together, they demonstrate how HA-R2R challenges an agent with
 1233 diverse human-aligned instructions.
 1234

1235 C.2 HA-R2R INSTRUCTION GENERATION

1236 To create enriched instructions for HA-R2R, we use ChatGPT-4o and LLaMA-3-8B-Instruct to
 1237 expand upon R2R-CE’s original textual data. Our strategy involves a carefully crafted few-shot
 1238 prompt, combining a *system prompt* (Listing 3) and *few-shot examples* (Listing 4).
 1239

1240 **Prompt Structure.** The system prompt lays out guidelines for generating instructions that empha-
 1241 size social context. It encourages mentioning human activities and interactions relevant to navigation
 1242 paths Wu et al. (2025). Few-shot examples then illustrate the desired format, including references
 1243

1242 **Table A3: Instruction Samples from the HA-R2R Dataset.** Text in *purple* highlights *human-related action-*
 1243 *s/movements*, while text in *blue* indicates explicit *agent-human interaction* cues. These examples illustrate how
 1244 HA-R2R integrates dynamic human considerations and social awareness into navigation instructions.

1245	1. Exit the library and turn left. As you proceed straight ahead, you will enter the bedroom, <i>where</i> 1246 <i>you can observe a person actively searching for a lost item, perhaps checking under the bed or inside</i> 1247 <i>drawers</i> . Continue moving forward, <i>ensuring you do not disturb his search</i> . As you pass by, <i>you</i> 1248 <i>might see a family engaged in a casual conversation on the porch or terrace, be careful not to bump</i> 1249 <i>into them</i> . Maintain your course until you reach the closet. Stop just outside the closet and await 1250 further instructions.
1251	2. Begin your path on the left side of the dining room, <i>where a group of friends is gathered around</i> 1252 <i>a table, enjoying dinner and exchanging stories with laughter</i> . As you move across this area, <i>be</i> 1253 <i>cautious not to disturb their gathering</i> . The dining room features a large table and chairs. Proceed 1254 through the doorway that leads out of the dining room. Upon entering the hallway, continue straight 1255 and then make a left turn. As you walk down this corridor, you might notice framed pictures along 1256 the walls. The sound of laughter and conversation from the dining room may still be audible as you 1257 move further away. Continue down the hallway until you reach the entrance of the office. Here, <i>you</i> 1258 <i>will observe a person engaged in taking photographs, likely focusing on capturing the view from a</i> 1259 <i>window or an interesting aspect of the room</i> . Stop at this point, ensuring you are positioned at the 1260 entrance without obstructing the photographer’s activity.
1261	3. Starting in the living room, <i>you can observe an individual practicing dance moves, possibly trying</i> 1262 <i>out new steps</i> . As you proceed straight ahead, <i>you will pass by couches where a couple is engaged in</i> 1263 <i>a quiet, intimate conversation, speaking softly to maintain their privacy</i> . Continue moving forward, 1264 ensuring you navigate around any furniture or obstacles in your path. As you transition into the 1265 hallway, <i>notice another couple enjoying a date night at the bar, perhaps sharing drinks and laughter</i> . 1266 <i>Maintain a steady course without disturbing them</i> , keeping to the right side of the hallway. Upon 1267 reaching the end of your path, you will find yourself back in the living room. Here, <i>a person is</i> 1268 <i>checking their appearance in a hallway mirror, possibly adjusting their attire or hair</i> . Stop by the 1269 right candle mounted on the wall, ensuring you are positioned without blocking any pathways.
1270	4. Begin by leaving the room and turning to your right. Proceed down the hallway, <i>be careful of</i> 1271 <i>any human activity or objects along the way</i> . As you continue, look for the first doorway on your 1272 <i>right</i> . Enter through this doorway and advance towards the shelves. Once you reach the vicinity of 1273 the shelves, come to a halt and wait there. During this movement, avoid any obstacles or disruptions 1274 in the environment.

1273 to human behavior (e.g., “*someone quietly making a phone call; keep your voice down as you pro-*
 1274 ”), positional references, and object interactions.

1275 **Iterative Refinement.** In early trials, the models sometimes produced extraneous or subjective content,
 1276 lacking sufficient detail on human activities. We iteratively refined the system prompt and
 1277 examples, clarifying the need for neutral tone, accuracy, and contextual alignment with human-
 1278 related scenarios. In each round, we analyzed model outputs, identified discrepancies, and adjusted
 1279 examples to showcase more detailed, coherent, and socially aware instructions. This process guided
 1280 ChatGPT-4o and LLaMA-3-8B-Instruct toward generating instructions that fully integrate human-
 1281 centric elements—such as bystander activities, relevant spatial cues, and subtle behavioral recom-
 1282 mendations. The final HA-R2R instructions thus reflect enriched scene descriptions where agents
 1283 must account for diverse, real-world nuances involving human presence.

1284 C.3 HA-R2R DATA ANALYSIS

1285 **Word Frequency Analysis.** We conduct a word frequency study on HA-R2R to gauge its capacity
 1286 for representing realistic, human-centric scenarios. Figs. A6(a) and (b) illustrate frequently used
 1287 nouns and verbs, confirming the dataset’s focus on both spatial navigation and social interactions.

1288 **Nouns.** The five most common nouns are *room*, *hallway*, *turn*, *area*, and *path*, with *room* alone
 1289 appearing over 15,000 times. Other notable terms (*person*, *doorway*, *kitchen*) highlight spatial com-
 1290 plexity and social elements such as *conversation*, *activities*, and *someone*.

1291 **Verbs.** The five most frequent verbs—*is*, *continue*, *proceed*, *ensuring*, *be*—reveal an action-oriented
 1292 narrative, while additional terms (*engaged*, *observe*, *notice*, *avoid*, *maintain*) underscore instructions
 1293 geared toward social awareness and precise route-following.

```

1296
1297 "system": "You are tasked with
1298     generating an objective and
1299     detailed description of a path and
1300     the related scene information based
1301     on the given input. Focus solely
1302     on observable entities and actions
1303     in the scene, avoiding descriptions
1304     of smell, atmosphere, or
1305     subjective feelings. Ensure clarity
1306     and precision in object and human
1307     activity descriptions."
1308
1309 "examples": ... //examples in Listing
1310     4
1311
1312 "user": Input:
1313 [instruction_text]: \"...\";
1314 [start]: \"...\";
1315 [during]: \"...\";
1316 [end]: \"...\";
1317
1318 Please provide an objective, step-by-
1319     step description of the path,
1320     focusing on the objects and human
1321     activities observed at each stage
1322     of the navigation (beginning,
1323     during, and end). Expand your
1324     description by including character
1325     actions, objective descriptions of
1326     objects, and details of the
1327     movement process. Your description
1328     should maintain a neutral tone and
1329     avoid embellishments. Please
1330     simulate the robot's movement along
1331     the path, while incorporating
1332     possible connections or
1333     interactions between the robot,
1334     objects, and human activities.
1335
1336 Output: ... //generation

```

Listing 3: Format of our LLM prompt for HA-R2R instruction generation.

```

# Example 1:
Input:
[instruction_text]: \"Go
through the doorway to the
hall. Go down the hall
past the landing. Take the
first door on the right
and stop in the doorway.
\";
[start]: \"other room:A person
using the room for a quiet
phone call. \";
[during]: \"other room:A person
using the room for a quiet
phone call. \";
[end]: \"hallway:An individual
cleaning or vacuuming. \";

Output:
You should start from the room.
Before you walk through
the doorway into the
hallway, you will notice
someone quietly making a
phone call, so please
remain quiet as you move.
Then, proceed down the
hallway past the landing.
As you continue through the
corridor, you will see a
responsible cleaner using a
vacuum to tidy up. Finally
, your destination is at
the end of the hallway,
enter the first door on the
right and stop in the
doorway.

```

Listing 4: Few-shot examples for HA-R2R instruction generation.

Human Impact Analysis. Fig. A6(c) shows that most instructions contain 20–60% human-related content, reflecting the dataset’s emphasis on people in everyday scenes.

Comparisons of word clouds in Figs. A6(d) and (e) confirm that while both human-aligned and non-human segments use common navigational verbs (*walk, left, right*), instructions involving humans introduce additional social context (*couple, man, painting*). This integration of interpersonal cues elevates HA-R2R beyond simple route directives, better mirroring real-world navigation challenges in human-filled environments.

C.4 VISUAL AND DEPTH EMBEDDINGS

Following VLN-CE Krantz et al. (2020), we employ parallel streams to process RGB and depth images. Each viewpoint produces a set of features from two specialized ResNet-50 models:

1. **RGB Features.** Let $\{v_1^{rgb}, v_2^{rgb}, \dots, v_k^{rgb}\}$, where $v_i^{rgb} \in \mathbb{R}^{2048}$, be outputs of a ResNet-50 pretrained on ImageNet.

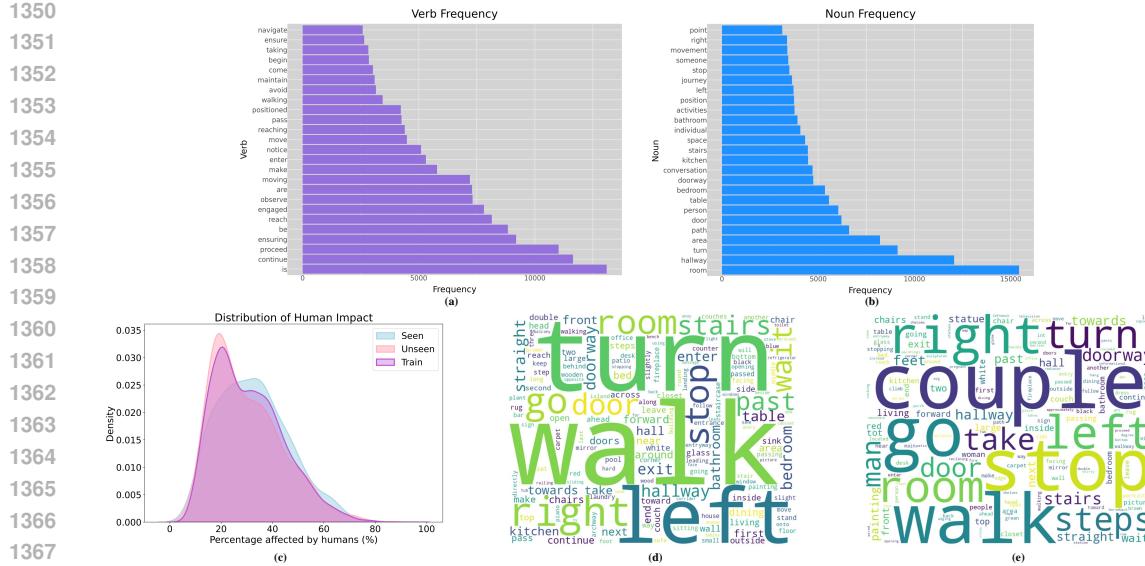


Figure A6: **Statistics for the HA-R2R Dataset.** (a) Verb frequency distribution for all instructions. (b) Noun frequency distribution for all instructions. (c) Distribution of human impact within HA-R2R (originally Fig. A4 in the main text; figure numbering differs due to inserted figures). (d) Word cloud of instructions not aligned with human activities. (e) Word cloud of instructions explicitly involving human actions. Larger font size indicates higher frequency or proportion in the dataset.

2. **Depth Features.** Let $\{v_1^d, v_2^d, \dots, v_k^d\}$, where $v_i^d \in \mathbb{R}^{128}$, be outputs of another ResNet-50 pre-trained on Gibson-4+ Xia et al. (2018) and MP3D for point-goal navigation.

We fuse these two feature streams along with a directional encoding d_i indicating spatial orientation:

$$v_i = [v_i^{rgb} W_{rgb}; v_i^d W_{depth}; d_i] W_{\text{merge}}, \quad (\text{A2})$$

where W_{rgb} , W_{depth} , and W_{merge} are learnable projection matrices with ReLU activation. The directional encoding d_i is constructed by repeating $(\cos \theta_t^i, \sin \theta_t^i)$ 32 times, where θ_t^i measures the relative heading offset of the agent. The fused embedding $v_i \in \mathbb{R}^d$ is either 512 or 768 dimensions, matching the requirements of our **HA-VLN-CMA** or **HA-VLN-VL** agent, respectively. Both ResNet backbones remain fixed during training, ensuring consistent and stable representations from the RGB and depth channels throughout the learning process.

C.5 TEXT EMBEDDINGS

For the **HA-VLN-VL** agent, we utilize text embeddings from *PREVALENT* Hao et al. (2020), which was pre-trained on 6.58M image–text–action triplets, thereby capturing broad contextual cues for navigation. Conversely, the **HA-VLN-CMA** agent adopts embeddings from *BERT* Devlin (2018), also widely used for its strong language representations.

Formally, let $\ell = \{w_1, \dots, w_n\}$ be a sequence of tokens representing the instruction. Each token w_i is mapped to a one-hot vector $e_i \in \mathbb{R}^V$, where V is the vocabulary size. An embedding matrix $E \in \mathbb{R}^{V \times d}$ then projects e_i into a continuous d -dimensional space:

$$x_i = E^\top e_i, \quad x_i \in \mathbb{R}^d. \quad (\text{A3})$$

In this manner, each discrete token w_i is transformed into a trainable embedding x_i , forming the foundation of the model’s linguistic understanding.

C.6 HA-VLN-VL STRUCTURE

Model Overview. **HA-VLN-VL** adopts a BERT-like architecture inspired by Recurrent VLN-BERT Hong et al. (2021), extending it to handle human-aware navigation. At each timestep t , the model receives the previous state s_{t-1} , language tokens X , and fused RGB–depth visual features V_t

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

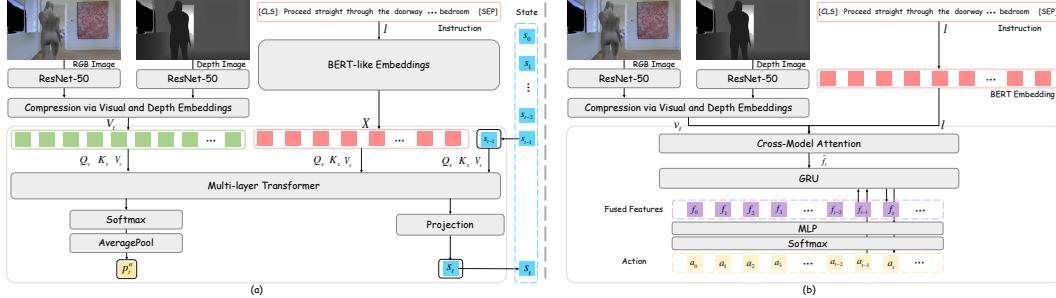


Figure A7: Network Structures. (a) **HA-VLN-VL** adopts a BERT-like transformer with a specialized state token. RGB and depth inputs are compressed by ResNet-50 and concatenated, while instruction tokens feed a BERT-like encoder. A multi-layer transformer computes cross-modal attention, producing per-step action probabilities via average-pooling and a final projection. In both architectures, continuous or discrete commands are then derived for navigation based on the agent’s policy output. (b) **HA-VLN-CMA** employs a cross-modal attention (CMA) module combined with a GRU policy. RGB and depth images are first processed by two ResNet-50 encoders and fused into a single feature stream, which attends to the instruction tokens; the fused features are then fed into a GRU and MLP to predict actions.

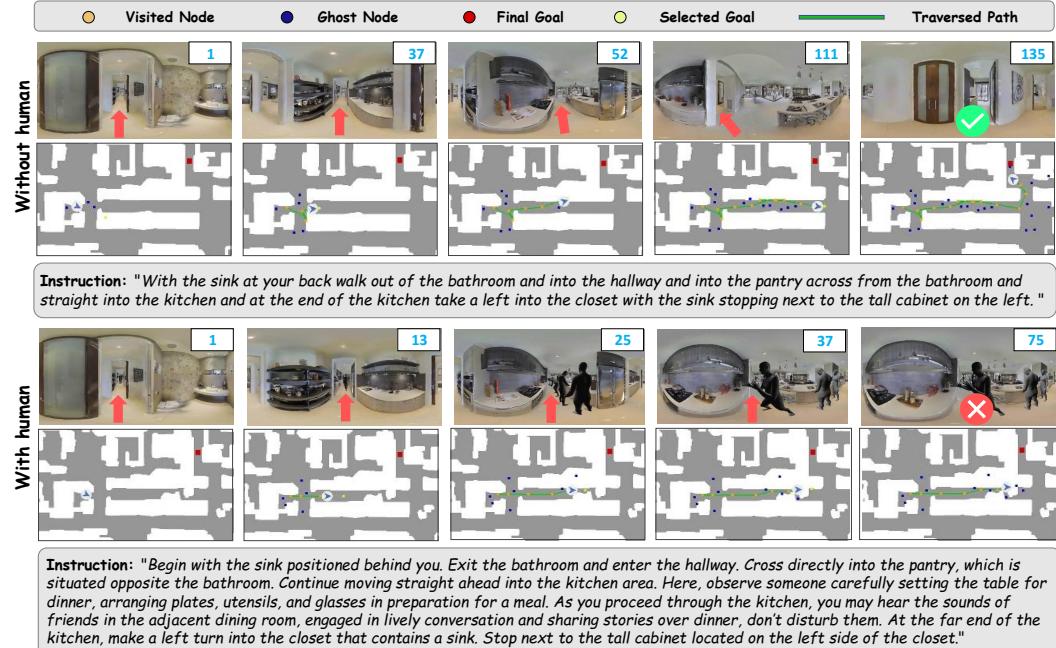


Figure A8: Trajectory Comparison Under Human vs. No-Human Conditions. We illustrate the same episode’s trajectories predicted by BEVBert An et al. (2023), trained on VLN-CE, in scenarios with (bottom) and without (top) human presence. In the top row, no bystanders are present, and the agent follows its instructions with minimal collision risk. In the bottom row, bystanders and human-aligned cues lead to altered motion decisions, sometimes creating additional collision challenges or deviations.

1456

1457

1458 (Sec. C.4). It outputs an updated state s_t and an action distribution p_t^a :
 1459

$$1460 \quad s_t, p_t^a = \text{HA-VLN-VL}(s_{t-1}, X, V_t). \quad (\text{A4})$$

1461 **State Token.** In line with BERT conventions, the model maintains a *state token* s_t that encapsulates
 1462 the agent’s internal context. Initially, s_0 is set to embedding of [CLS] token. At each step, the state
 1463 token is updated by appending agent’s previously executed action a_t and projecting resulting vector:
 1464

$$1465 \quad s_t = [s'_t; a_t] W_s, \quad (\text{A5})$$

1466 where s'_t is the final Transformer-layer output, and W_s is a learnable projection matrix.
 1467

1468 **Visual Attention.** To decide the next action, we compute attention scores between s_t and the set of
 1469 visual tokens $V_t = \{v_1, v_2, \dots, v_n\}$, covering navigable directions plus a “stop” option:
 1470

$$1471 \quad A_{s,v}^t = \text{Softmax}\left(\frac{Q_s K_v^\top}{\sqrt{d_h}}\right), \quad (\text{A6})$$

1472 where Q_s is derived from s_t and K_v from $v_i \in V_t$. The model then aggregates these attention scores
 1473 via an average-pooling step:
 1474

$$1475 \quad p_t^a = \overline{\text{AveragePool}}(A_{s,v'}^t), \quad (\text{A7})$$

1476 yielding an action distribution over possible moves. The agent selects:
 1477

$$1478 \quad a_t = \arg \max(p_t^a). \quad (\text{A8})$$

1479 **Training Objective.** **HA-VLN-VL** is optimized through a combination of *supervised imitation*
 1480 *learning*—to mimic ground-truth trajectories—and optional *reinforcement learning*, which rewards
 1481 safe and efficient paths. As depicted in Fig. A7(a), the model continuously refines its understanding
 1482 of language instructions and visual cues, offering robust and socially aware navigation.
 1483

1484 C.7 HA-VLN-CMA STRUCTURE

1485 **Architecture Overview.** **HA-VLN-CMA** is a dual-stream visual-language agent featuring *Cross-*
 1486 *Modal Attention (CMA)* and a recurrent decoder for navigation in human-populated scenarios (see
 1487 Fig. A7(b)). It processes two visual channels—RGB and Depth—alongside language instructions,
 1488 then outputs an action at each time step.
 1489

1490 **Dual-Stream Visual Encoding.** Following Sec. C.4, each observation o_t is split into:
 1491

$$1492 \quad v_t^{\text{rgb}} = \text{ResNet}^{\text{rgb}}(o_t), \quad v_t^{\text{d}} = \text{ResNet}^{\text{depth}}(o_t), \quad (\text{A9})$$

1493 where $\text{ResNet}^{\text{rgb}}$ and $\text{ResNet}^{\text{depth}}$ are separate backbones for RGB and Depth, respectively. The
 1494 fused feature representation is
 1495

$$1496 \quad v_i = [v_i^{\text{rgb}} W_{\text{rgb}}; v_i^{\text{d}} W_{\text{depth}}; d_i] W_{\text{merge}}, \quad (\text{A10})$$

1497 where W_{rgb} , W_{depth} , and W_{merge} are projection matrices, and d_i is a direction encoding (Sec. C.4).
 1498

1499 **Language Encoder.** Textual instructions $\{w_1, \dots, w_T\}$ are transformed into contextual embeddings
 1500

$$1501 \quad l = \text{BERT}(w_1, \dots, w_T). \quad (\text{A11})$$

1502 These embeddings capture the semantic structure of the instruction and serve as input to the cross-
 1503 modal module.
 1504

1505 **Cross-Modal Attention & Recurrent Decoding.** At time step t , we attend to the language features
 1506 using multi-head attention:
 1507

$$1508 \quad \hat{f}_t = \text{MultiHeadAttn}(v_t, l), \quad (\text{A12})$$

1509 where $\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^\top}{\sqrt{d_k}}\right)V$. Multi-head attention helps handle lengthy and
 1510 detailed instructions by learning multiple representations in parallel.
 1511

Next, we combine the resulting multimodal embeddings with the previous action a_{t-1} in a GRU-based decoder:
 1512

$$1513 \quad f_t = \text{GRU}([(v_t, l), a_{t-1}], f_{t-1}), \quad (\text{A13})$$

1512 where f_{t-1} is the previous hidden state. Finally, an MLP outputs the action distribution:
 1513

$$1514 \quad a_t = \text{softmax}(\text{MLP}(f_t)), \quad (\text{A14})$$

1515 where $\text{MLP}(f_t) = W_a f_t + b_a$, and a_t is sampled from $P(a_t|f_t)$.
 1516

1517 **Training Objectives.** **HA-VLN-CMA** is trained end-to-end with a mixture of imitation learning (to
 1518 mimic ground-truth paths) and reinforcement learning (to encourage collision-free, socially com-
 1519 pliant navigation). By learning from both paradigms, the agent refines its ability to balance path
 1520 efficiency and safe distancing in human-populated environments.
 1521

1522 D EXPERIMENTS DETAILS

1523 D.1 EVALUATION METRICS

1525 We adopt a two-tier evaluation protocol for *HA-VLN*, measuring both *perception* (human awareness)
 1526 and *navigation* (task completion). Perception metrics track how effectively the agent detects and
 1527 responds to dynamic humans, while navigation metrics assess overall performance.
 1528

1529 **Total Collision Rate (TCR).** Given the strong impact of human activities around critical nodes
 1530 (viewpoints), we manage dynamic humans to ensure precise measurement. For navigation instance
 1531 i , let A_i^c be the set of human activities at these critical nodes. We define:
 1532

$$1533 \quad \text{TCR} = \frac{\sum_{i=1}^L (c_i - |A_i^c|)}{L}, \quad (\text{A15})$$

1534 where c_i counts collisions within 1 m of a human. TCR quantifies how often collisions occur in
 1535 human-occupied zones.
 1536

1537 **Collision Rate (CR).** CR is the fraction of navigation instances incurring at least one collision,
 1538 conditioned on the fraction β of instructions influenced by humans:
 1539

$$1540 \quad \text{CR} = \frac{\sum_{i=1}^L \min(c_i - |A_i^c|, 1)}{\beta L}. \quad (\text{A16})$$

1542 Unlike TCR, CR highlights whether a collision occurred at all—offering insight into safety over
 1543 entire trajectories.
 1544

1545 **Navigation Error (NE).** NE is the mean distance between agent’s final position and intended target:
 1546

$$1547 \quad \text{NE} = \frac{\sum_{i=1}^L d_i}{L}, \quad (\text{A17})$$

1548 where d_i is the agent–target distance at episode end.
 1549

1550 **Success Rate (SR).** SR measures the ratio of episodes completed with zero collisions, and checks if
 1551 the agent stops sufficiently close to the goal Anderson et al. (2018), we provide the equation for the
 1552 collision check part here:
 1553

$$1554 \quad \text{SR} = \frac{\sum_{i=1}^L \mathbb{I}(c_i - |A_i^c| = 0)}{L}, \quad (\text{A18})$$

1555 where \mathbb{I} is 1 if the agent avoids collisions, and 0 otherwise.
 1556

1557 D.2 GROUND TRUTH PATH ANNOTATION

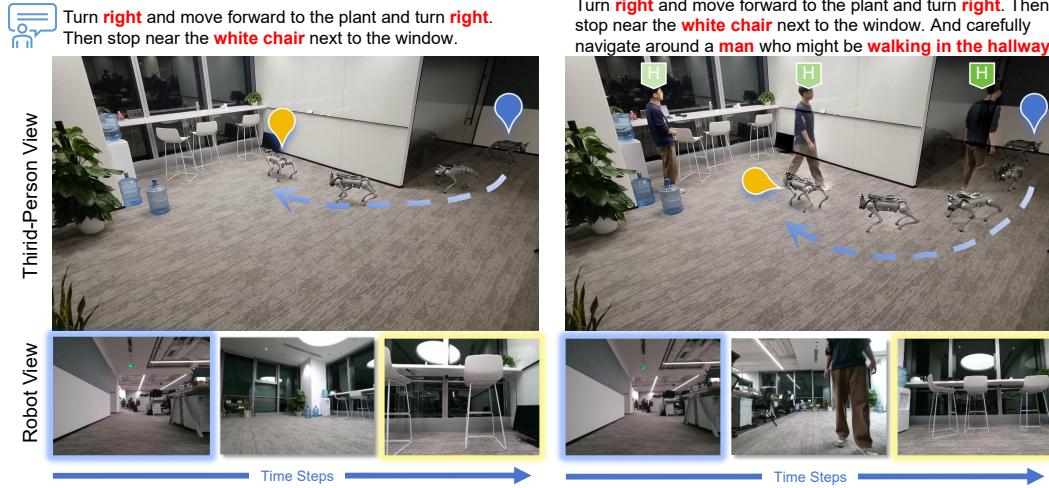
1558 In HA-VLN-CE, the agent must reach within 3 m of the target while minimizing collisions. To label
 1559 ground-truth paths, we use an A*-based heuristic search that identifies the shortest viable route,
 1560 dynamically re-planning when obstacles block progress.
 1561

1562 D.3 FURTHER DISCUSSION ON STEP SIZE

1563 In Table A4, a 1.0 m step was treated as four 0.25 m sub-steps, and a 2.25 m step as nine 0.25 m sub-
 1564 steps, with collisions checked after each sub-step. When evaluated on the val_unseen split, BEVBert
 1565 agent fails to navigate effectively with both 1.0 m and 2.25 m step sizes (SR drops to zero).
 1566

1566 **Table A4: Impact of Step Size Combination on Navigation.** In this experiment, we treat 1m step as four
 1567 0.25m steps, and 2.25m step as nine 0.25m steps. In this case, collisions are detected every 0.25m. We show
 1568 results for **BEVBert** An et al. (2023) on unseen validation.

Step Size	NE \downarrow	TCR \downarrow	CR \downarrow	SR \uparrow
1.00	6.85	26.97	0.94	0.004
2.25	8.79	112.78	0.97	0.000



1589 **Figure A9: Navigation success in an office** (left: no humans, right: with humans). **Top:** The given instruction
 1590 for the robot. **Middle:** A third-person view of the robot’s path. **Bottom:** The robot’s selected view.

1592 **Table A5: Navigation success rate across different region layouts** with (w/) and without (w/o)
 1593 human presence. Each result is averaged over 30 episodes across 3 instances of each region type.

Methods	Living Room		Office		Hallway		Lobby		ALL	
	w/o	w/	w/o	w/	w/o	w/	w/o	w/	w/o	w/
HA-VLN-CMA-Base (trained on VLN-CE)	0.23	0.08	0.26	0.08	0.30	0.13	0.24	0.07	0.26	0.09
HA-VLN-VL (trained on VLN-CE)	0.38	0.11	0.38	0.10	0.47	0.17	0.38	0.10	0.40	0.12
HA-VLN-CMA-Base (trained on HA-VLN)	0.24	0.13	0.24	0.13	0.29	0.20	0.23	0.13	0.25	0.15
HA-VLN-VL (trained on HA-VLN)	0.42	0.17	0.43	0.17	0.49	0.20	0.43	0.17	0.44	0.18

D.4 VISUALIZATION OF NAVIGATION

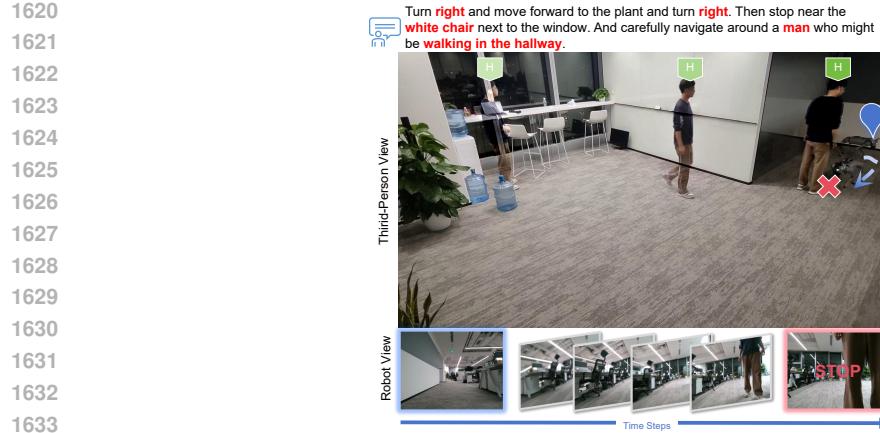
1600 Figs. A8 & 5 illustrate trajectories predicted by **BEVBert** An et al. (2023) (trained on VLN-CE) and
 1601 **HA-VLN-CMA***, which showcases success and failure in human-filled or empty environments.

1602 **Failures with Human Crossing.** In Fig. A8, the agent performs well when no bystanders are
 1603 present. Yet in a human-populated setting, it fails to adjust at step 37 when a volunteer crosses its
 1604 path, leading to collision.

1605 **Collision vs. Avoidance.** Fig. 5 similarly shows two scenarios. At step 39 in the top pane, a direct
 1606 approach by a bystander overwhelms the agent, causing a collision. In the bottom pane at step 22, the
 1607 agent successfully deviates upon sensing a person nearby, avoiding any collision altogether. These
 1608 visualizations confirm that dynamic human presence greatly complicates navigation, highlighting
 1609 the need for robust social-aware models.

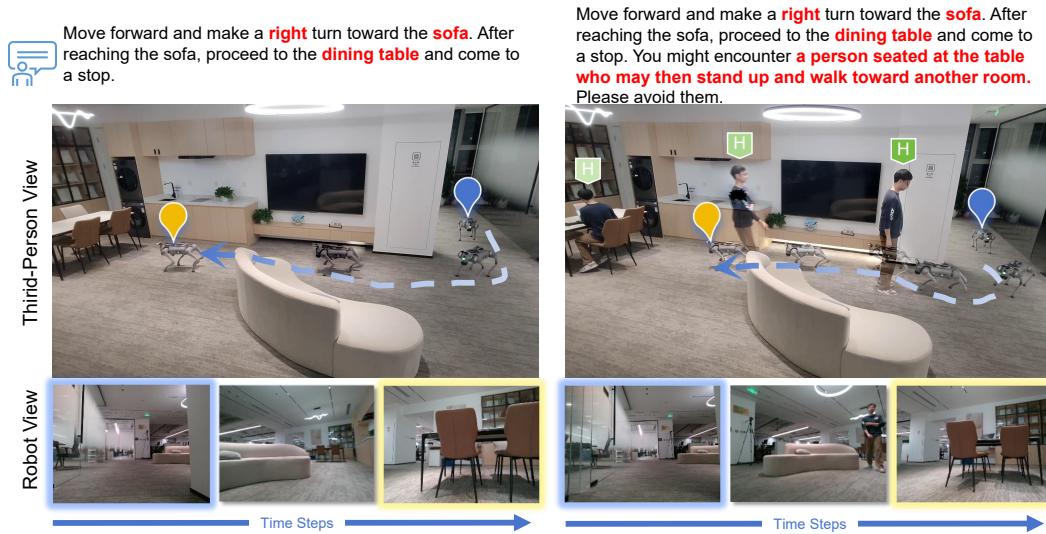
D.5 VALIDATION ON REAL-WORLD ROBOTS

1610 To deploy our navigation agents on physical hardware, the robot is equipped with an *NVIDIA Jetson*
 1611 *NX* for AI inference and a *Raspberry Pi 4B* for motion control. The Jetson handles core naviga-
 1612 tion computations (receiving camera images and inferring action commands), while the Pi executes
 1613 high-level movement directives such as *turn left* or *move forward*. We set a minimum step size of



1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654

Figure A10: **Navigation failure in an office setting.** A volunteer abruptly changes position, causing robot to collide mid-path. This highlights the difficulty of adapting to sudden human movement in confined workspaces.



1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Figure A11: **Navigation success in a living room** (*left*: no bystanders, *right*: with bystanders). The robot follows instructions toward the sofa and dining area, keeping safe distances while navigating around volunteers.

0.25 m and a rotation increment of 15 degrees. An onboard IMU continuously monitors the robot’s orientation and position, ensuring movement commands align with issued directives.

Setup. Our evaluations use a *Unitree GO2-EDU* quadruped, featuring the *Intel Realsense D435i* camera providing RGB imagery and a *3D LiDAR* below camera for detection. IMU refines positional and orientational control, enabling consistent motions. The quadruped rotates to get the panoramic view at each step. We evaluate our agents in four types of everyday indoor environments (each with three instances)—*office*, *living room*, *hallway*, and *lobby*—under two conditions: (*i*) w/o human presence (no bystanders) and (*ii*) w/ human presence (2-4 free-moving volunteers). This setup simulates realistic indoor traffic patterns and partial observability.

Observations. As illustrated in Fig. 6 (b), the robot frequently pauses or yields to avoid oncoming pedestrians. In the absence of bystanders, it navigates smoothly (Fig. A9), but collisions arise in cramped corridors or when crowds converge suddenly (Fig. A10). We observe similar patterns in living-room environments (Figs. A11–A12) and hallways (Fig. A13).

Table A5 shows the average **NSR** (Navigation Success Rate) across 30 trials in each instance. While human presence invariably lowers **NSR**, HA-VLN-VL consistently outperforms HA-VLN-CMA-Base, demonstrating stronger adaptability to dynamic motion. Also, Table A5 shows agents trained

Figure A12: **Navigation failure in a living room with multiple bystanders.** Attempting to move beyond sofa toward a dining area, the robot collides with a volunteer who abruptly stands and shifts position. This underscores how unpredictable human motion can disrupt agent’s intended path, requiring rapid re-planning.

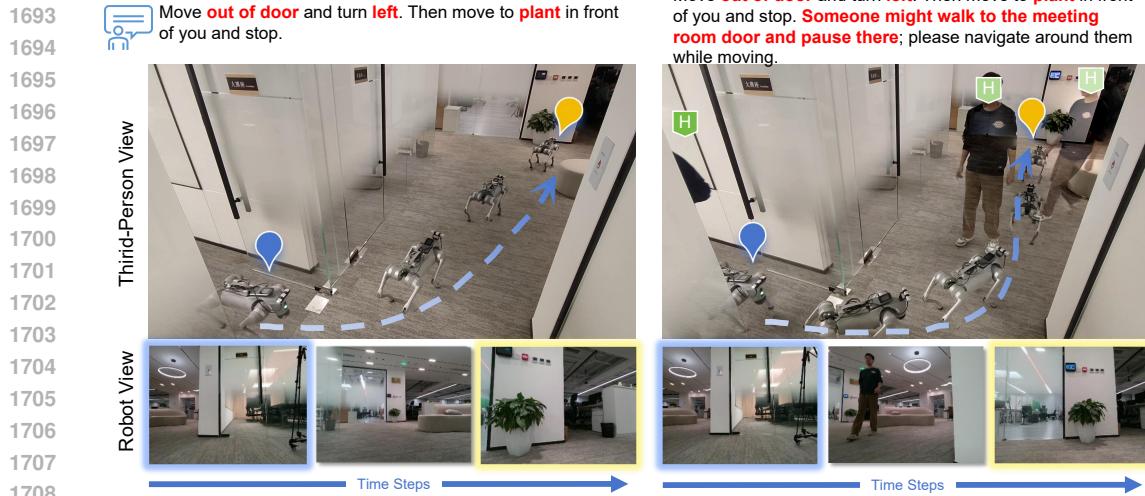


Figure A13: **Navigation success in a hallway** (left: no bystanders, right: with bystanders). When volunteers appear, the robot halts or deviates to avoid collisions, showcasing adaptive behavior in a constrained corridor.

1713 on HA-VLN achieve higher **NSR** (0.18 vs. 0.12) than VLN-CE, demonstrating HA-R2R’s sim-to-real gain under realistic conditions. Still, partial observability and abrupt group formations remain challenging, especially in narrow passages or at congested junctions. Appendix D.5 further details performance under varying crowd densities.

1717 **Visual Demonstrations.** Figs. A9, A11, and A13 show the robot traversing distinct indoor environments—offices, living rooms, and hallways—guided by natural-language instructions. In Fig. 6 (b),
 1718 the robot navigates around multiple people, leveraging camera inputs to avoid collisions through
 1719 minor path adjustments. Although the agent typically succeeds in reaching its destination, colli-
 1720 sions remain possible when bystanders change their trajectories unexpectedly. Figs. A10, A12, and
 1721 A14 illustrate such scenarios, highlighting real-time challenges in unpredictable, human-inhabited
 1722 spaces. More demos including a compilation video on our project webpage, further illustrate robot’s
 1723 performance and underscore how human-aware training aids sim-to-real transfer in dynamic indoor
 1724 environments.

1726 **Insights.** These experiments confirm that simulation-trained, multi-human navigation policies can
 1727 indeed transfer to physical robots. However, further refinement in collision forecasting and reactive
 1728 control is needed to handle unpredictable human behavior in tight indoor settings.

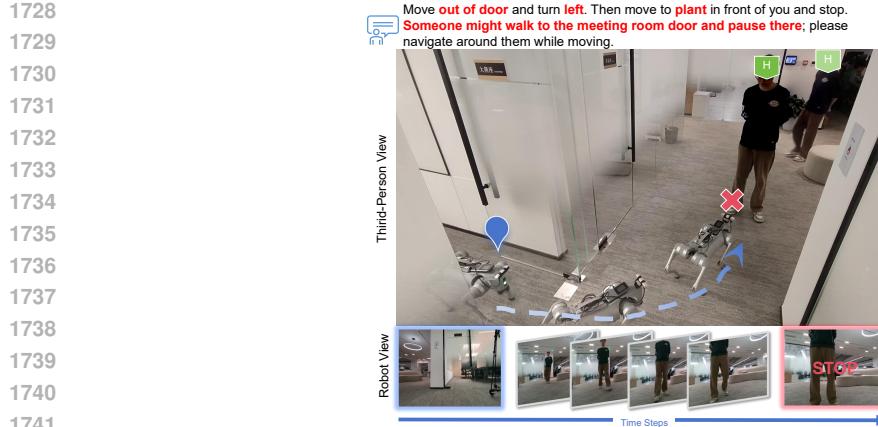


Figure A14: **Navigation failure in a hallway.** A volunteer's sudden positional change causes a mid-path collision and mission failure, reflecting the challenge of unpredictable human movement, even in comparatively open corridors.

E USE OF LLMs

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript. Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing, grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or experimental design. All research concepts, ideas, and analyses were developed and conducted by the authors. The contributions of the LLM were solely focused on improving the linguistic quality of the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines and does not contribute to plagiarism or scientific misconduct.

1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781