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Abstract

Gathering training data is a key step of any supervised learning task, and it is both
critical and expensive. Critical, because the quantity and quality of the training data
has a high impact on the performance of the learned function. Expensive, because
most practical cases rely on humans-in-the-loop to label the data. The process of
determining the correct labels is much more expensive than comparing two items
to see whether they belong to the same class. Thus motivated, we propose a setting
for training data gathering where the human experts perform the comparatively
cheap task of answering pairwise queries, and the computer groups the items into
classes (which can be labeled cheaply at the very end of the process). Given the
items, we consider two random models for the classes: one where the set partition
they form is drawn uniformly, the other one where each item chooses its class
independently following a fixed distribution. In the first model, we characterize
the algorithms that minimize the average number of queries required to cluster the
items and analyze their complexity. In the second model, we analyze a specific
algorithm family, propose as a conjecture that they reach the minimum average
number of queries and compare their performance to a random approach. We also
propose solutions to handle errors or inconsistencies in the experts’ answers.

1 Introduction

There is an increasing demand for software implementing supervised learning for classification.
Training data input for such software consists of items belonging to distinct classes. The output is a
classifier: a function that predicts, for any new item, the class it most likely belongs to. Its quality
depends critically on the available learning data, in terms of both quantity and quality [21]. But
labeling large quantities of data is costly. This task cannot be fully automated, as doing so would
assume access to an already trained classifier. Thus, human intervention, although expensive, is
required. In this article, we focus on helping the human experts build the learning data efficiently.

One natural way for the human experts to proceed is to learn (or discover) the classes and write down
their characteristics. Then, items are considered one by one, assigning an existing class to each of
them, or creating a new one if necessary. This approach requires the experts to learn the various
classes, which, depending on the use-case, can be difficult. A different approach, proposed to us by
Nokia engineer Maria Laura Maag, is to discover the partition by querying the experts on two items
at a time asking whether these belong to the same class or not. This approach avoids the part of the
process where classes are learned, and can therefore be cheaper. It is the setting we consider here,
and we call the corresponding algorithm an active clustering algorithm, or for short, AC algorithm.
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More precisely, we assume there is a set of size n, with a partition unknown to us. An AC algorithm
will, in each step, choose a pair of elements and asks the oracle whether they belong to the same
partition class or not. The choices of the queries of the algorithm are allowed to depend on earlier
answers. The algorithm will use transitivity inside the partition classes: if each of the pairs x, y and
y, z is known to lie in the same class (for instance because of positive answers from the oracle), then
the algorithm will ‘know’ that x and z are also in the same class, and it will not submit a query for
this pair. The algorithm terminates once the partition is recovered, i.e. when all elements from the
same partition class have been shown to belong to the same class, and when for each pair of partition
classes, there has been at least one query between their elements.

We investigate AC algorithms under two different random models for the unknown set partition.
In Section 2.1, the set partition is sampled uniformly at random, while in Section 2.2, the number
of blocks is fixed and each item chooses its class independently following the same distribution.
Section 2.3 analyzes the cases where the experts’ answers contain errors or inconsistencies. Our
proofs, sketched in Section 3, rely on a broad variety of mathematical tools: probability theory, graph
theory and analytic combinatorics. We conclude in Section 4, with some interesting open problems
and research topics.

Related works. Note that our model has similarities with sorting algorithms. Instead of an array of
elements equipped with an order, we consider a set of items equipped with a set partition structure.
In the sorting algorithm, the oracle determines the order of a pair of elements, while in our setting,
the oracle tells whether two items belong to the same class. Both in sorting and AC algorithms, the
goal is the design of algorithms using few queries.

The cost of annotating raw data to turn it into training data motivated the exploration of several
variants of supervised learning. Transfer learning reduces the quantity of labeled data required by
using the knowledge gained while solving a different but related problem. Semi-supervised learning
reduces it by learning also from the inherent clustering present in unlabeled data. In active learning,
the learner chooses the data needing labeling and the goal is to maximize the learning potential for a
given small number of queries. However, users who want to use supervised learning software for
classification as a black-box can mitigate the annotating cost only by modifying the labeling process.

Recent papers [9, 18] acknowledge that humans prefer pairwise queries over pointwise queries as
they are better suited for comparisons. Pairwise queries have been considered in semi-supervised
clustering [5, 24, 16] where they are called must-link and cannot-link constraints. The pairs of vertices
linked by those constraints are random in general, but chosen adaptively in active semi-supervised
clustering [4]. In both cases, the existence of a similarity measure between items is assumed, and a
general theoretical study of this setting is provided by [19]. This is not the case in [11, 17], where a
hierarchical clustering is built by successively choosing pairs of items and measuring their similarity.
There, the trade-off between the number of measurements and the accuracy of the hierarchical
clustering is investigated. The difference with the current paper is that the similarity measure takes
real values, while we consider Boolean queries, and that their output is a hierarchical clustering,
while our clustering (a set partition) is flat.

The problem we consider is motivated by its application to annotation for supervised machine learning.
It also belongs to the field of combinatorial search [1, 7]. Related papers [2, 15] consider the problem
of reconstructing a set partition using queries on sets of elements, where the answer to such a query is
whether there is an edge in the queried set, or the number of distinct blocks of the partition present in
the queried set, respectively. Our setting is a more constrained case corresponding to queries of size
two. Another similar setting is that of entity resolution [13] where recent developments also assume
perfect oracles and transitive properties using pairwise queries to reconstruct a set partition [23, 25].
In this case, clusters correspond to duplicates of the same entity. Most solutions have a real-valued
similarity measure between elements but rely on human verification to improve the results. The entity
resolution literature also considers the noisy case for a fixed number of clusters [8, 9, 18, 10].

2 Our results

2.1 Uniform distribution on partitions

We start by considering the setting where the partition of the n-set is chosen uniformly at random
among all possible partitions. The average complexity of an AC algorithm is the average number of
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Figure 1: Aggregated graphs obtained after various queries and organized into query trees. The
positive answers are displayed on top, the negative ones on the bottom. Left, a non-chordal query,
leading to an average complexity of 13/5. Right, chordal queries from the same initial situation,
leading to an optimal average complexity of 12/5.

queries used to recover the random partition. We will define a class of AC algorithms, called chordal
algorithms, and prove in Theorem 2 that an algorithm has minimal average complexity if and only if
it is chordal. Theorem 3 shows that all chordal algorithms have the same distribution on their number
of queries. Finally, this distribution is characterized both exactly and asymptotically in Theorem 4.

It will be useful to use certain graphs marking the ‘progress’ of the AC algorithm on our n-set.
Given a partition P of an n-set and an AC algorithm, we can associate a graph Gt to each step t of
the algorithm. Namely, G0 has n vertices, labeled with the elements of our set, and at time t ≥ 1,
the graph Gt is obtained by adding an edge for each negatively-answered query, and successively
merging pairs of vertices that received a positive answer. (A vertex u obtained by joining vertices v, w
is adjacent to all neighbors of each of v, w, and we label u with the union of its earlier labels.) We
call Gt the aggregated graph at time t. Note that after the last step of the algorithm, the aggregated
graph is complete and each of its vertices corresponds to one of the blocks of P . Also note that any
fixed Gt (with labels on vertices also fixed) may appear as the aggregated graph for more than one
partition (possibly at a different time t�). We call the set of all these partitions the realizations of Gt.
Those notions are illustrated in Figure 1.

We now need a quick graph-theoretic definition. A cycle C in a graph is induced if all edges induced
by V (C) belong to the cycle. A graph is chordal if its induced cycles all have length three. Chordal
graphs appear in many applications. We say that an AC algorithm is chordal if one of the following
equivalent conditions is satisfied (see the Appendix for a proof of the equivalence of the conditions):

(i) for all input partitions, each aggregated graph is chordal,

(ii) for all input partitions, no aggregated graph has an induced C4,

(iii) for all input partitions, and for every query u, v made on some aggregated graph Gt, the
intersection of the neighborhoods of u and v separates u and v in Gt

where a set S (possibly empty) is said to separate vertices u, v ∈ V (G) \ S if u and v lie in
distinct components of G − S. The queries that keep a graph chordal are exactly those satisfying
Condition (iii). Thus, it is used in chordal algorithms to identify the candidate queries. On the other
hand, a query satisfying Condition (ii) might turn a chordal graph non-chordal by creating an induced
cycle of length more than 4 (in which case, Condition (ii) will fail on a later query). Two examples of
chordal algorithms are presented below.

Definition 1. The clique algorithm is an AC algorithm that gradually grows the partition, starting
with the empty partition. Each new item is compared successively to an item of each block of the
partition, until it is either added to a block (positive answer to a query) or all blocks have been
visited, in which case a new block is created for this item. The universal algorithm finds the block
containing the item of largest label by comparing it to all remaining items. The algorithm is then
applied to partition the other items, and the previous block is added to the result.
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Theorem 2. On partitions of size n chosen uniformly at random, an AC algorithm has minimal
average complexity if and only if it is chordal.

The complexity distribution of an AC algorithm of a set S with n ≥ 1 elements is a tuple
(a0, a1, a2, . . .) where ai is the number of partitions of S for which the algorithm has complex-
ity i. Clearly, ai = 0 for all i < n− 1, and a(n2)

= 1, for any AC algorithm. Our next result shows
that constraining the average complexity to be minimal fixes the complexity distribution.
Theorem 3. On partitions of size n chosen uniformly at random, all chordal AC algorithms have the
same complexity distribution.

Note that either of Theorems 2 and 3 implies the weaker statement that all chordal AC algorithms of
an n-set have the same average complexity, but with very different proofs. Sketches of the proofs of
Theorems 2 and 3 can be found in sections 3.1 and 3.2.

In practice, several human experts work in parallel to annotate the training data. The chordal
algorithms can easily be parallelized: when an expert becomes available, give him a query that would
keep the aggregated graph chordal if all pending queries received negative answers. The condition
ensures the chordality of the parallelized algorithm.

Our third theorem for this setting describes the distribution of the number of queries used by chordal
algorithms on partitions chosen uniformly at random. Two formulas for the probability generating
function are proposed. The first one is well suited for computer algebra manipulations, while the
second one, more elegant, is better suited for asymptotic analysis. It is a q-analog of Dobiński’s
formula for Bell numbers

Bn =
1

e

�

m≥0

mn

n!

(see e.g. [14, p.762]), counting the number of partitions of size n. In order to state the theorem, we
introduce the q-analogs of an integer, the factorial, the Pochhammer symbol and the exponential

[n]q =

n−1�

k=0

qk, [n]q! =

n�

k=1

[k]q, (a; q)n =

n−1�

k=0

(1− aqk), eq(z) =
�

n≥0

zn

[n]q!
.

Observe that the q-analog reduce to their classic counterparts for q = 1. The Lambert function W (x)
is defined for any positive x as the unique solution of the equation wew = x. As x tends to infinity,
we have W (x) = log(x)− log(log(x)) + o(1).
Theorem 4. Let Xn denote the complexity of a chordal algorithm on a partition of size n chosen
uniformly at random. The distribution of Xn has probability generating function in the variable q
equal to the two following expressions

1

Bn

�
q

1− q

�n n�

k=0

�
n

k

�
(−1)k

�
1− q

q
; q

�

k

and
1

Bn

1

eq(1/q)

�

m≥0

[m]nq
[m]q!

qn−m.

The normalized variable (Xn −En)/σn converges in distribution to a standard Gaussian law, where

En =
1

4
(2W (n)− 1)e2W (n) and σn =

1

3

�
3W (n)2 − 4W (n) + 2

W (n) + 1
e3W (n).

As a corollary, the average complexity of chordal algorithms is asymptotically
�
n
2

��
log(n). Because

of this almost quadratic optimal complexity, using pairwise queries can only be better than direct
classification for relatively small data sets. We arrive at a different conclusion for the model presented
in the next section, where AC algorithm have linear complexity.

2.2 Random partitions with fixed number of blocks

In many real-world applications, we have information on the number of classes and their respective
sizes in the data requiring annotation. This motivates the introduction of the following alternative
random model for the set partition investigated by the AC algorithms. Now, the set of partitions of
the n-set S is distributed in a not necessarily uniform way, but each element of S has a probability of
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pi to belong to the partition class Ci (and the probabilities pi sum up to 1). Our main focus here will
be on the most applicable and accessible variant of the above-described model, where the number of
partition class is a fixed number k, and k is small compared to n. Without loss of generality, we can
assume that the probabilities p1, p2, . . . , pk in this model satisfy p1 ≥ p2 ≥ · · · ≥ pk.

Intuitively, an algorithm with low average complexity should avoid making many comparisons
between different classes (one such comparison is always necessary between any pair of classes, but
more comparisons are not helpful). For this reason, it seems plausible that an AC algorithm with
optimal complexity should compare a new element first with the largest class identified up to this
moment, as both the new element and the largest class are most likely to coincide with C1, the ‘most
likely class’. This is precisely how the clique AC algorithm from Definition 1 operates, where we add
the additional refinement that each new item is compared to the blocks discovered so far in decreasing
order of their sizes. With this refinement, we conjecture the following.
Conjecture 5. For an n-set with a random partition with probabilities p1, p2, . . . , pk, the clique
algorithm has minimal average complexity among all AC algorithms.

In support of Conjecture 5, we present the following results. Firstly, we exhibit the limit behaviour
of the expected number of queries of the clique algorithm. The simple proof of this theorem can be
found in the appendix. It allows one to decide for practical cases whether direct classification by
human experts or pairwise queries will be more efficient to annotate the training data.

Theorem 6. Let p1 ≥ · · · ≥ pk be fixed with
�k

i=1 pi = 1. Let X denote the expected number of
queries made by the clique algorithm with these parameters for an n-set. Then E[X] ∼ �k

i=1 ipin.

We now compare the complexity of the clique algorithm with the complexity of an algorithm that
chooses its queries randomly. More precisely, we define the random algorithm to be the one that at
each step t compares a pair of elements chosen uniformly at random among all pairs whose relation
is not known at this time (that is, they are neither known to belong to the same class, nor known to
belong to different classes). The reason for analyzing the random algorithm is that one may think
of this algorithm as the one that models the situation where no strategy at all is used by the human
experts, which might make this procedure cheap to implement. It turns out, however, that there is a
cost in form of larger average complexity associated to the random algorithm, if compared to our
proposed candidate for the optimal algorithm, the clique algorithm.

Theorem 7. Let p1 ≥ · · · ≥ pk be fixed with
�k

i=1 pi = 1. Let X be the number of queries of a
random algorithm with these parameters for an n-set. Then E[X] ∼ n−k+

�
i<j f(pi, pj)n, where

f(α,β) =

�
2α α = β
2αβ ln(α/β)

α−β α �= β.

Note that if all the pi are equal to 1/k, then by Theorems 6 and 7, the expected number of queries
produced by the random algorithm is asymptotically n− k + (2n/k)

�
k
2

�
= k(n− 1), while for the

clique algorithm this number is (k + 1)n/2.

2.3 Noisy queries

We now discuss the situation when answers to the query can be inconsistent, due to errors from the
human experts or ambiguity in the data. Different perspectives can be found in [10, 18]. Let G denote
the graph where vertices correspond to items from the data set, edges to queries, so each edge is either
positive or negative depending on the answer. Because of potential errors, the aggregated graph is not
sufficient for the analysis anymore, but it can be recovered by contracting to a vertex each positive
component of G.

Correcting errors. An inconsistency is detected if and only if G contains a contradictory cycle: a
cycle where all edges except one are positive. At each step, we consider the shortest contradictory
cycle and ask a query that cuts it in two, following a divide-and-conquer strategy. After a logarithmic
number of queries, if no additional error occurred, a false answer or ambiguous data is identified
and the answer is corrected. At any point, if the number of contradictions detected grows out of
proportion (edit war between human experts), a classic clustering algorithm can be applied as a last
resort to settle the differences of opinions. We now focus on the problem of detecting inconsistencies.
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Bounded number of errors. To ensure the detection of at most k errors, each positive component
of graph G must be (k + 1)-edge-connected and any two positive components must be linked by at
least k + 1 negative edges. The minimal number of queries for n items and b blocks, assuming no
block has size 1, is then (k + 1)

��
b
2

�
+ n/2

�
, because each vertex of G has at least k + 1 positive

neighbors.

Small probability of error. To avoid this high cost, the error detection criteria can be relaxed. We
now consider that each answer has a small probability p of error and add a few queries at the end
of the AC algorithm, while keeping the probability of undetected errors low. More precisely, let
c0 + c1p+ c2p

2 + · · · denote the Taylor expansion of this probability at p = 0. Since p is assumed
to be small, our aim is to minimize the vector (c0, c1, . . .) for the lexicographic order. During the
AC algorithm, when a query between two classes is needed, we choose the items in those classes to
maintain the following structure. Any positive component should be a tree with vertices of degree at
most 3. We call 2-path a path of vertices of degree 2 linking two vertices of degree 3. The 2-paths
should all have length close to a parameter r of the algorithm. At the end of the algorithm, we
introduce additional queries between pairs of leaves of the same tree, turning each positive component
of size at least 2 into either a 3-edge-connected graph or a cycle of length close to r. Queries are also
added to ensure that any two positive components are linked by at least 3 negative edges. Assuming
the partition contains b blocks and the average length of the 2-paths is r, the number of additional
queries compared to the noiseless setting is approximately n

3r+2 + b inside the blocks, plus the
potential queries between blocks (at most 2

�
b
2

�
). This setting ensures c0 = c1 = 0 and minimizes c2

(see [6]). If the length of all 2-paths and the sizes of positive components that are cycles are bounded
by r�, then c2 =

�
r�+1
2

�
3n

3r+2 . Thus, the choice of the parameter r is a trade-off between the number
of additional queries and the robustness to noise of the algorithm.

3 Proofs

3.1 Proof of Theorem 2

We will prove Theorem 2 by analyzing the types of queries made by an AC algorithm. For this, we
classify the queries made by an AC algorithm into three types:

• Core queries are those that receive a positive answer.

• A query at time t is excessive if it compares vertices x and y that are joined by an induced
path in Gt on an even number of vertices that alternates between two partition classes.

• A query at time t is productive if it is neither core nor excessive.

Note that each query is of exactly one type, as excessive queries have to receive negative answers.
Also note that as the core queries are the only ones that shrink Gt, the number of core queries does
not depend on the algorithm.

Lemma 8. For any AC algorithm and any partition of a set of size n containing k classes, the number
of core queries is exactly n− k.

Next, we show that for a random partition, also the number of productive queries is, in expectation,
the same for all AC algorithms.

Lemma 9. Let Pk be the set of partitions of [n] into exactly k sets, and choose P ∈ Pk uniformly at
random. Then all algorithms have the same expected number of productive queries.

Because of space constraints, we only present a sketch of the proof of this lemma here. The full proof
of Lemma 9 is in the appendix.

Sketch of the proof of Lemma 9. Consider a partition of [n] into k sets C1, C2, . . . , Ck, and let qij
be the number of productive queries comparing a vertex from Ci with a vertex from Cj . Then
E[qij ] = E[q12] for all i, j, and by linearity of expectation the expected number of productive queries
is
�
k
2

�
E[q12]. Thus, we are done if we can prove that E[q12] is independent from the choice of the

algorithm. It suffices to show that E[q12|C1 ∪ C2 = S] is independent from the choice of algorithm
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because

E[q12] =
�

S⊂[n],|S|≥2

E[q12|C1 ∪ C2 = S]P[C1 ∪ C2 = S].

In other words, we wish to understand the expected number of productive queries of an AC algorithm
working on a partition with exactly two classes of a set of size |S|, chosen uniformly at random (there
are 2|S| − 2 such partitions). Observe that this is very similar to calculating the expected number
of productive queries for a uniformly-chosen partition with at most two classes (there are 2|S| such
partitions). In fact, it it not hard to see that these numbers only differ by a factor of 2|S|

2|S|−2 . So we can
restrict our attention to the expectation of the latter number, which is easier to calculate, as the model
is equivalent to assigning independently to each element of S a value in {0, 1} uniformly at random.

More precisely, we will now argue that the expected number of productive queries in this scenario is
n−1
2 , for each partition algorithm. For this, note that each component of any aggregated graph Gt is

either a single vertex or a nonempty bipartite graph. Moreover, each component has two possible
colorings, and it is not hard to show by induction that these colorings are equally likely. So, whenever
the algorithm makes a query for two vertices from distinct components, answers ‘yes’ and ‘no’ are
equally likely. As the algorithm makes n− 1 such queries (since each such query reduces the number
of components by 1), it follows from linearity of expectation, that the expected number of productive
queries is (n− 1)/2.

Finally, we analyze the excessive queries of an AC algorithm.
Lemma 10. An AC algorithm makes no excessive queries if and only if it is chordal.

For the proof, we need the following easy lemma whose proof can be found in the appendix.
Lemma 11. For each non-chordal AC algorithm, there is an input partition and a time t such that
Gt has an induced C4 one of whose edges comes from a negative query in step t− 1.

Proof of Lemma 10. By definition, a chordal AC algorithm has no aggregated graphs with induced
cycles of length at least 4. So, since an excessive query, if answered negatively, creates an induced
cycle of even length at least 4, chordal algorithms make no excessive queries.

For the other direction, let us show that any non-chordal AC algorithm makes at least one excessive
query for some partition. By Fact 11, a non-chordal AC algorithm has, for some partition of the
ground set, an aggregated graph Gt with an induced C4, on vertices v1, v2, v3, v4, in this order, such
that the last query concerned the pair v1, v4. There is a realization of Gt where v1 and v3 are in one
partition class, and v2 and v4 are in another partition class. For this partition, the query v1, v4 at time
t− 1 is an excessive query.

We are ready for the proof of Theorem 2.

Proof of Theorem 2. By Lemmas 8 and 9, all AC algorithms have the same expected number of core
queries and productive queries. So the optimal algorithms are the ones with the minimum expected
number of excessive queries. By Lemma 10, these are the chordal algorithms.

3.2 Proof of Theorem 3

The full proof is in the appendix. We prove a more general result which allows for the algorithm to
start with any aggregated graph instead of the empty graph. We prove this using induction on the
number of non-edges of G = (V,E), the base case being trivial. We fix some useful notation now:
For x, y ∈ V , set G(xy) = (V,E ∪ {xy}), and let Gxy be obtained from G by identifying x and y.

For the induction step consider a graph G with k + 1 missing edges, and let A0, A1 be two distinct
chordal AC algorithms for G. By induction, we can assume that A0 and A1 differ in their first queries.
Say the first query of Ai is ui, vi, for i = 0, 1. Then G(uivi) is chordal for i = 0, 1. Note that we
can assume that u0 �= u1. We distinguish two cases.

Case 1. G(u0v0)(u1v1) is chordal and moreover, if v0 = v1 then u0u1 /∈ E(G). Then, for i = 0, 1,
the edge uivi can be chosen as the first edge of a chordal AC algorithm for G(u1−iv1−i) or for
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Gu1−iv1−i . As the induction hypothesis applies to G(u1−iv1−i) and to Gu1−iv1−i , we can assume
that uivi is the second edge in A1−i. Observe that for each i = 0, 1 after the second query of Ai,
we arrive at one of the four graphs (Gu0v0)u1v1 , G(u0v0)u1v1 , G(u1v1)u0v0 , G(u0v0)(u1v1). Thus
the complexity distribution of A0 and A1 is identical (as it can be computed from the complexity
distribution for the algorithms starting at these four graphs).

Case 2. G(u0v0)(u1v1) is chordal, v0 = v1 and u0u1 ∈ E(G), or G(u0v0)(u1v1) is not chordal.
This case is harder to analyze, but one can show that either there is an edge uv ∈ E(G) such that
G(uv), G(uv)(u0v0) and G(uv)(u1v1) are chordal, or G has a very specific shape. In the former
case, we proceed as in the previous paragraph using the edge uv as a proxy. In the latter case our
argument relies on our knowledge on the structure of G.

3.3 Proof of Theorem 4

According to Theorem 3, all chordal algorithms share the same complexity distribution, so we
investigate a specific chordal algorithm, the universal AC algorithm (see Definition 1) without loss of
generality. This algorithm first computes the block B containing the largest item by comparing it to
all other items, then calculates the partition Q for the remaining items, and finally inserts the block
B in Q. Let query(p) denote the number of queries used by the universal AC algorithm to recover
partition p. Let us introduce the generating function

P (z, q) =
�

partition p

qquery(p)
z|p|

|p|! .

The symbolic method presented in [14] translates the description of the algorithm into a the differential
equation characterizing P (z, q)

∂zP (z, q) = P (qz, q)eqz

with initial condition P (0, q) = 1. Observing that the function e
q

1−q z is solution of a similar
differential equation, we consider solutions of the form P (z, q) = A(z, q)e

q
1−q z . The differential

equation on P (z, q) translates into a differential equation on A(z, q)

∂zA(z, q) +
q

1− q
A(z, q) = A(qz, q)

with initial condition A(0, q) = 1. Decomposing A(z, q) as a series in z, we find the solution

A(z, q) =
�

k≥0

�
1− q

q
; q

�

k

�
− q

1−q z
�k

k!
.

By definition, the probability generating function PGFn(q) of the complexity distribution when the
set of items has size n is linked to our generating function by the relation

PGFn(q) =
n!

Bn
[zn]P (z, q),

where the Bell number Bn counts the number of partitions of size n. The first exact expression
from the theorem is obtained directly by coefficient extraction. The second one requires using the
following classic q-identities

[n]q! =
(q; q)n
(1− q)n

,
1

(x; q)∞
=

�

n≥0

xn

(q; q)n
, eq(x) = ((1− q)x; q)−1

∞ .

To obtain the Gaussian limit law, we prove that the Laplace transform of the normalized random
variable X�

n = (Xn − En)/σn

E(esX
�
n) = PGFn(e

s/σn)e−sEn/σn

converges to the Laplace transform of the standard Gaussian es
2/2 pointwise for s in a neighborhood

of 0. To do so, we apply to the second expression the Laplace method for sums [14, p. 761], using in
the process a q-analog of Stirling’s approximation [20].
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3.4 Proof of Theorem 7

Since Lemma 8 is still valid in this setting, it suffices to prove the following, with f as in Theorem 7.

Theorem 12. Let p1 ≥ · · · ≥ pk be fixed with
�k

i=1 pi = 1. Let X denote the number of edges
between classes using a random algorithm. Then E[X] ∼ �

i<j f(pi, pj)n.

Proof. We only give a sketch here, see the appendix for further detail. Instead of analyzing the
random algorithm, we analyze the following process. Begin with all vertices marked active. At each
time step, pick (with replacement) a random pair {u, v} and:

• If u, v are active and from distinct classes i, j then say we have generated an ij-crossedge.

• If u, v, are both active and in class i then mark exactly one of u and v inactive.

• If one of u, v is inactive, then do nothing.

Note that as the process runs, the number of active vertices is monotonic decreasing, and we are
increasingly likely to choose pairs where one vertex is inactive. These contribute to the new process,
but do not generate new comparisons between pairs. So we are looking at a (randomly) slowed down
version of the random algorithm; but this makes the analysis much simpler.

Let xi(t) denote the number of active class i vertices after t time steps, and xij(t) denote the number
of ij-crossedges that are generated in the first t time steps. Then at step t+ 1, the probability that we
pick two active vertices in class i is

�
xi(t)

2

���
n

2

�
∼ xi(t)

2

n2
.

Writing p = pi, we estimate xi(t) via a function x = x(t) satisfying the differential equation
∂tx(t) = −x(t)2

n2 , with x(0) = pn This has solution

x(t) =
n2

t+ n/p
=

pn

1 + pt/n
.

One can show that with high probability, xi(t) tracks x(t) quite closely.

Now we estimate the number of ij-crossedges. Using our estimates for xi(t) and xj(t), we see that
the probability of an ij crossedge at step t+ 1 is

xi(t)xj(t)/

�
n

2

�
∼ 2xi(t)xj(t)

n2
≈ 2n2

(t+ n/pi)(t+ n/pj)
.

Let p = pi and q = pj . Similarly as before, we can model the growth of xij(t) by a function c = c(t)
satisfying the differential equation

∂tc(t) =
2n2

(t+ n/p)(t+ n/q)

with c(0) = 0. Calculations show that if p = q, then

c(t) = 2pn

�
1− 1

2 + 2pt/n

�
∼ 2pn

and if p �= q, then

c(t) ∼ 2npq ln(p/q)

p− q

as t/n → ∞. In order to prove the theorem, we now run the process for time Kn, where K is a large
constant. We note that at this point, we have (with high probability) at most cn remaining active
vertices for some small constant c. But now we revert to the original process: noting that for any
partition into k classes, a fraction of at least (about) 1/k of the pairs lie inside some class, we see
that at each step the process reduces the number of vertices with constant probability. The remaining
expected running time is therefore O(kcn).
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We note that it is also possible to prove a central limit theorem for the running time of the clique
algorithm (roughly: after n1/2 comparisons, we are very likely to have seen representatives from
every set in the partition, and more from the ith class than the jth class whenever pi > pj ; we
estimate the contribution from the remaining steps by an sum of independent random variables). We
do not pursue the details here.

4 Conclusion

In this article, motivated by the building of training data for supervised learning, we studied active
clustering using pairwise comparisons and without any other additional information (such as a
similarity measure between items).

Two random models for the secret set partition where considered: the uniform model and the bounded
number of blocks model. They correspond to different practical annotation situations. The uniform
model reflects the case where nothing is known about the set partition. In that case, many clusters
will typically be discarded at the end of the clustering process, as they are too small for the supervised
learning algorithm to learn anything from them. Thus, this is a worst case scenario. When some
information is available on the set partition, such as its number of blocks or their relative sizes, the
bounded number of blocks model becomes applicable.

Comparison between direct labeling and pairwise comparisons. As a practical application of
this work, we provided tools to decide whether direct labeling or pairwise comparisons will be
more efficient for a given annotation task. One should first decide whether the uniform model or
the bounded number of blocks model best represents the data. In both cases, our theorems provide
estimates for the number of pairwise queries required. Then the time taken by an expert to answer
a direct labeling query or a pairwise comparison should be measured. Finally, combining those
estimates, the time required to annotate the data using direct labeling or pairwise comparison can be
compared. We also provided tools to detect and correct errors in the experts’ answers.

Similarity measures. Generally, a similarity measure on the data is available and improves the
quality of the queries we can propose to the human experts. This similarity measure can be a heuristic
that depends only on the format of the data. For example, if we are classifying technical documents,
a text distance can be used. The similarity could also be trained on a small set of data already labeled.
This setting has been analyzed by [19]. Our motivation for annotating data is to train a supervised
learning algorithm. However, one could use active learning to merge and replace the annotation and
learning steps. The problem is then to find the queries that will improve the learned classifier the
most.

In this article, we focused on the case where such similarity measures are not available. However, we
are confident that the mathematical tools developed here will be useful to analyze more elaborate
settings as well. In particular, the aggregated graph contains exactly the information on the transitive
closure of the answers to the pairwise queries, so its structure should prove relevant whenever pairwise
comparisons are considered.

Open problems. We leave as open problems the proof that the clique algorithm reaches the minimal
average complexity in the bounded number of blocks model, and the complexity analysis of the
random algorithm in the uniform model.
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