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Abstract

There is a massive amount of tabular data that can be taken advantage of via
‘foundation models’ to improve prediction performance for downstream tabular
prediction tasks. However, numerous challenges constitute bottlenecks in build-
ing tabular foundation models, including learning semantic relevance between
tables and features, mismatched schemes, arbitrarily high cardinality for cate-
gorical values, and scalability to many tables, rows and features. We propose
IngesTables, a novel canonical tabular foundation model building framework,
designed to address the aforementioned challenges. IngesTables employs LLMs
to encode representations of table/feature semantics and the relationships, that are
then modeled via an attention-based tabular architecture. Unlike other LLM-based
approaches, IngesTables is much cheaper to train and faster to run inference,
because of how LLM-generated embeddings are defined and cached. We show
that IngesTables demonstrates significant improvements over commonly-used
models like XGBoost on Clinical Trial datasets in standard supervised learning
settings, and is competitive with tabular prediction models that are specialized for
Clinical Trial datasets without incurring LLM-level cost and latency. Moreover, the
transfer learning enabled by IngesTables is prominent – on Airbnb dataset, we
demonstrate that IngesTables yields significant improvements when pretrained
on large-scale relevant data, even with partially-overlapping features.

1 Introduction

A foundation model broadly refers to a large machine learning model trained on a large amount of
data at scale such that it can be adapted to a wide range of downstream tasks with unseen datasets or
tasks. Foundation models have been highly successful for image and text data [1], playing a major
role in many state-of-the-art achievements on downstream tasks such as object detection [2] and
question answering [3]. A key element to their success is pretraining of a high-capacity model (e.g.,
ViT, BERT) on vast amounts of data (e.g., JFT for images, English CommonCrawl for text).

Despite being the most common data type in real-world machine learning [4], tabular data has not
been “conquered” by deep learning, let alone foundation models. Tree-based methods remain at
the top of several benchmarks for tabular learning tasks [5, 6]. Efficient representation learning and
correspondingly information transfer across relevant datasets and tasks are not among the capabilities
enabled by such tree based models, however. We postulate that harnessing relevant information from
other datasets has significant potential for tabular data, and achieving such breakthrough requires
substantial rethinking in how deep learning should be designed for foundation model building for
tabular data.
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Transfer learning across tabular datasets is fundamentally challenging because the schemas, statistics,
and tasks for the datasets can vary wildly – numeric features may be of different scales, categorical
values may have different numbers of classes and class balance, and the total number of features
can also vary. Moreover, even between two closely related tasks, there would be often be substantial
differences in the schemas and distributions that it is unclear how exactly the model could “map” a
feature from one dataset to the corresponding related feature in another dataset in the hopes of finding
some common pattern that can be jointly learned.
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Figure 1: IngesTables framework. Tables of different schemas, sizes and features are used to build
the tabular foundation model, which is capable of generating predictions for unseen samples from
different distributions or tasks. Adaptation of the foundation model can be task specific, using some
amount of data from the target domain.

Prior work has established that positive information transfer is possible even when there is only
partial overlap between features [7], though their experiments were limited to partitions of the
same dataset and task, and have not truly demonstrated cross-dataset cross-task transfer. Pushing
this literature, particularly with the real-world modeling challenges and scalability motivations,
IngesTables, shown in Fig. 1 demonstrate that by harnessing the power of large language models
(LLMs) efficiently, with minimal overhead, transfer learning is also possible even in the challenging
setting where the datasets and tasks are different. In addition to enabling the information transfer
across datasets, LLMs also unlock the capability of bringing prior knowledge to tabular datasets –
rather than learning the embeddings for categorical features from scratch, LLMs can readily map
them to meaningful representations utilizing their pretraining datasets. For example, for a feature
like “product category” given a demand prediction task, an LLM would already know the semantic
relationships between different product categories that can be very useful for the task of interest. On
the other hand, naive employment of LLMs, such as to encode entire tabular data as text, would not
be an optimal direction as we demonstrate, since LLMs are not pretrained with tabular data (their
training mixtures are heavily dominated by free-form text), and they would be much more expensive
to train, and much slower and costlier to serve, particularly compared to the commonly-employed
tabular models for real-world tasks. The design of IngesTables is motivated with these real-world
cost and latency motivations on top of mind as well while utilizing LLMs.

Overall, the contributions can be summarized as:

• We propose a novel schema-independent architecture, MapTransformer, designed to enable
knowledge transfer across tabular datasets.

• To train the MapTransformer, we propose the IngesTables learning framework, which treats
each row of a tabular dataset as a set of (key embedding, value embedding) tuples. This enables
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the same model weights to be trained (or finetuned) on multiple tabular datasets with different
schemas, then used for inference on unseen tabular datasets with unencountered schemas.

• We harness the expressiveness of LLMs to include task-context into the feature key embeddings,
and the inclusion of feature-context into the feature value embeddings. This allows the model
to disambiguate feature keys in different contexts, while enabling LLM embeddings to be
aggressively cached and reused, so that the required number of LLM forward passes only scales
with the number of features and unique categories, not with the dataset size.

2 Related Work

Various deep learning models have been explored recently for tabular data, with the goal of outper-
forming commonly-used ensemble tree based models [8]. TabNet [9] is one popular attention-based
architecture for tabular data that has a schema-agnostic input preprocessing step, treats each row
as a sequence, and demonstrates the use of self-supervised learning to improve the model with
unlabeled data. SAINT [10] proposes attention over both rows and columns, along with contrastive
self-supervised pretraining. TabTransformer [11] harnesses the permutation equivariance of Trans-
formers for tabular datasets. In general, such deep learning models have shown the premise for
improved representation learning from row data, particularly with attention based architectures well
tailored for the tabular data type. However, they do not contain the necessary components to be used
as foundation models – they cannot handle mismatched schemas across datasets effectively; they are
not designed to be trained from many datasets in a scalable manner, and they use randomly initialized
feature and category embedding weights, hindering transfer learning. There are also data agnostic
improved attention based modeling approaches like SetTransformer [12] and PerceiverIO [13], that
can also be applied to tabular data, but in its pursuit of generality, they miss some symmetries and
invariances specific to tabular datasets.

In an attempt to bring extra prior knowledge, LLMs have been explored for tabular data. TabLLM
[14] fine-tunes pretrained LLMs to make predictions on tabular datasets, while OptFormer [15] uses a
similar approach for optimization. However, utilizing LLMs for raw tabular data has the fundamental
disadvantage that LLMs are pretrained with text data, that are quite different from tabular data. In
addition, naive employment of LLMs would incur orders of magnitude cost and latency in most cases,
for both training and serving, compared to commonly-used tabular models.

Along the direction of enabling information transfer across tabular datasets, TransTab [7] demonstrates
positive transfer from source to training task, converting each sample to a generalizable embedding
vector and harnessing the feature names’ semantic information. However, this method has not been
extended beyond the standard transfer learning setting to build foundation models that can perform
predictions for multiple tabular datasets. TabPFN [16] proposes a pretrained transformer that is
designed to perform well on a large variety of tabular tasks. However, by treating the entire dataset as
the input sequence, it prevents the model from scaling to larger datasets. MediTab [17] leverages
LLMs to consolidate tabular samples to handle tables with varying schema and align out-domain data
with the target task using a ‘learn, annotate, and audit’ pipeline. However, it requires the number of
LLM output tokens to scale linearly with the size of the dataset, which can be cost-prohibitive for
large datasets, as we show. Moreover, as the numeric feature values are also treated as text, MediTab
cannot benefit much from caching of LLM outputs whenever there are floating point values in a
dataset, requires at least one forward pass of the LLM for every row at inference time, making the
latency of this approach prohibitively high for most real-world use cases.

3 The IngesTables Framework

Fig. 1 depicts the overall IngesTables framework, that is designed to learn from many different
tables to obtain superior transfer learning as well as unseen distribution and task generalization. To
address aforementioned challenges towards these goals, we propose the MapTransformer archi-
tecture in IngesTables, that inputs the information coming from the judiciously-designed Input
Preprocessor. Next, we describe the major constituents of IngesTables, summarized by Fig. 2.
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Figure 2: IngesTables learning setup. The Input Preprocessor converts each row of an input table
into a sequence of feature embeddings, which is then fed into MapTransformer. Note that no
positional encoding is added. The MapTransformer then transforms each feature embedding into
another embedding space, which is then used to perform classification or regression.

3.1 Input preprocessor

Each example is treated as a set of key-value tuples (or a map), with the specific order of the key-
value tuples not mattering. Within an example, all feature key-value tuples are converted into feature
embedding vectors, then stacked along a new axis into a 2D array. Note that positional encodings are
not added, as permutation equivariance is desirable.

To ensure low training cost and mitigate overfitting in small data regimes, we propose using a frozen
embedding LLM (we use the GTE-large [18] model) to encode entire feature keys and values into
a embedding space while including the task context, instead of converting each row into a natural
language or text representation to be fed into an LLM. We propose quantile normalization for numeric
features values instead of directly passing into the LLM as the numerical data coverage would often
be low in pretraining mixtures of LLMs. Unlike recent approaches that consider LLMs for tabular
data, the embedding LLM itself is fixed, which allows the embedding outputs to be cached, thereby
allowing the LLM inference costs associated with the pretraining process to scale with the metadata
size, instead of the dataset size. Moreover, unlike other approaches, there are no dataset-specific,
task-specific, or feature-specific weights to keep track of, which makes transfer learning across
datasets with differently-named-but-semantically-related features possible.

To encode feature keys (whether categorical or numerical), we insert the task context (which could be
a semantically meaningful table name or a task description) and feature name into a prompt template,
and pass this prompt through an embedding LLM to obtain the feature key embedding. Note that we
only need to do this once for each feature for each dataset, since we can cache the LLM outputs.

For simplicity, the preprocessing logic assumes that all string features are categorical features, and all
floating point values are numeric features. This means that before running this input preprocessing
step, the user needs to make sure that numeric features are cast to floats, and categorical features are
cast to strings. Specifically, id-type features, which are often stored as integers, must be cast to strings
to be correctly handled as categorical features. We defer the handling of other types of features such
as date/time and geolocation to future work.

To encode categorical values, we insert the table name, feature name, and feature value into a prompt
template, and pass this prompt through an embedding LLM to obtain the feature value embedding.
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Again, due to caching, we only need to do this once for each unique category for each dataset. This
approach also gracefully handles out-of-vocabulary categories as it would use the semantic meaning
of the category name.

To encode numerical values, we propose quantile normalization, followed by soft-binning it by taking
the softmax over the negative squared distance to each bin center, uniformly spaced apart on the
unit interval. For efficiency, the quantiles can be estimated using a random sample of examples. In
our experiments, we use 100 quantiles and 100 bins. By quantile normalization, we first map from
the real line to the unit interval, then by soft-binning, we map from the unit interval to a point on a
100-dimensional L1 unit sphere. The reason why we don’t simply use an LLM to embed numeric
values is that the number of unique numeric values tends to scale with the dataset size, which means
that we would need an LLM forward pass for every training example, which doesn’t scale.

Finally, since the numeric encoding does not have the same dimensions as the text embeddings, we
use a dense layer to ensure they end up with the same dimensions. All feature key embeddings and
feature value embeddings are then concatenated and stacked.

It is worth emphasizing that despite the extensive use of LLM embedding models, our design allows
for aggressive caching, thus the number of LLM forward passes scales with the number of features
and unique categorical values, not the dataset size, which is typically orders of magnitude larger.

Even though different tables may have different numbers of features, Transformer architectures
are perfectly capable of handling variable-length input dimensions. Indeed, we propose using a
Transformer-like architecture.

3.2 MapTransformer: An attentive schema-independent architecture

We propose MapTransformer, an attention-based encoder model that interleaves MLP blocks with
Self-Attention layers, but with the Self-Attention layers replaced with the MapAttention layers (see
Fig. 3). The main difference between Self-Attention and MapAttention is that the feature value
embeddings are not used to compute attention weights. This way, a feature value embedding can be
masked out without masking out the corresponding feature key embedding. Thus, the feature key
embedding can be used to compute attention weights used to reconstruct the masked feature value
using other feature values during masked input prediction. This attention layer is stacked to define a
new Transformer architecture. This allows the use of masked input prediction as a way to perform
self-supervised learning on unlabelled tabular datasets in a scalable way.

Figure 3: MapAttention layer. The user can mask out a feature value embedding without masking
out the corresponding feature key embedding. Thus, the feature key embedding can be used to
compute attention weights used to reconstruct the masked feature value using other feature values
during masked input prediction.
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Note that if there is only one MapAttention layer, it would not be different from a learned convex
sum of feature value embeddings, since the attention weights cannot vary according to the feature
values. But in the next MLP block, the zk embeddings and zv embeddings are mixed together, which
means that the attention weights in the subsequent MapAttention layers can vary with the feature
value embeddings in the inputs.

3.3 Learning objective

To enable information extraction from a variety of datasets (that might be labeled or unlabeled for
the given tasks), we propose self-supervised pretraining for MapTransformer, as commonly used
for language modeling. At each training step, we randomly mask out some feature values in the
input, and use the output embeddings of the MapTransformer to reconstruct the masked input. In
tabular modeling, the output space corresponding to each position of the output sequence is not fixed
(unlike language modeling, where the output space is always a fixed set of word piece tokens). Each
position represents a feature, which could be a categorical or a numeric feature. A naive approach
would be to maintain an embedding table for each categorical feature, but this would (i) result in a
massive embedding table and an unwieldy number of prediction heads when we attempt to ingest
many diverse datasets, and (ii) preclude transfer learning. Another approach would be to directly
minimize some distance between the masked and the output embedding, but this would suffer from
the curse of dimensionality and embeddings not being trained with a distance-based objective. We
focus on hybrid contrastive learning and regression objective, as summarized in Fig. 2.

For categorical features, the output layer’s zv embedding is used to classify the masked categorical
feature value. As shown in Fig. 2, we grab the embedding from the corresponding position, and pass
it through a Shared Classification Head to obtain z. On the right side, we grab the masked categorical
feature value, and we find one other category for that feature within a batch, compute their text
embeddings using the same embedding LLM, and pass them through a Shared Projection. We denote
the output vector for the “correct” category as z+, and the output vector for the “incorrect” category
as z−. The loss to be minimized is l = − log(exp z · z+/(exp z · z+ + exp z · z−)). Intuitively, we
can think of this as minimizing the softmax cross-entropy loss where z · z+ is the likelihood of the
correct prediction, and z · z− is the likelihood of the incorrect prediction. Alternatively, we can think
of this as maximizing the log probability of making the correct prediction.

For numeric features, the output layer’s zv embedding is used to reconstruct the input value. We use
Shared Regression Head to map the zv embedding to a scalar, and minimize the mean squared error
from the quantile normalized input value. Note that since the inputs were already quantile normalized,
we do not need to worry about different numeric feature being on different scales, or having different
skewness.

It is worth emphasizing that there are no per-task or per-dataset prediction heads – all weights are
shared. The only additional parameters that scale with the number of datasets is the quantiles for
the numeric features. Due to the flexibility of this learning setup, the same set of MapTransformer
weights can be trained on multiple datasets. For simplicity, we select the training batch from the
available datasets in a round-robin fashion.

4 Experiments

4.1 Datasets

Clinical Trials Outcome Dataset: Following [19, 17], we the use clinical trial data that contain
drug, disease, and eligibility information for 17K clinical trials, that constitute the target task. The task
is binary classification for the trial outcome, whether it is success or failure. To build the foundation
model, pretraining is performed on the trial database containing 220K clinical trials with information
about the trial setup (such as title, phase, enrollment, conditions, etc.) from ‘ClinicalTrials.gov’. Both
datasets cover phases I, II, and III.

Airbnb Datasets: To demonstrate IngesTables’s knowledge transfer capabilities, we experiment
with Airbnb-2019 [20] and Airbnb-2023 [21] datasets. Seven common-sensible features are used
from each dataset, such as “room_type“ and “number_of_reviews. Six features are common to both
datasets, and the task is to predict the rental price of a given Airbnb unit. Airbnb-2019 contains 49K
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samples, and Airbnb-2023 contains 10K samples. Thus, Airbnb-2023 contains a distribution shift
from Airbnb-2019 both temporally and in terms of which features are present. We experiment with
various experimental settings to illuminate IngesTables’s knowledge transfer capabilities.

4.2 Results

Table 1: Test performances on the Clinical Trial Outcome Datasets. We report the mean of three
runs with different random seeds for the IngesTables figures, while the rest of the figures are
taken from [17], which does not averaged results over multiple runs. Note that similar to MediTab,
IngesTables is only trained as a single model for all three datasets; unlike HINT, SPOT, and the
rest, the IngesTables model is not individually tuned for each dataset.

Trial Data Metrics XGBoost FFNN DeepEnroll COMPOSE HINT SPOT MediTab IngesTables

Phase I AUROC 0.518 0.550 0.575 0.571 0.576 0.660 0.699 0.647 ± 0.009
PRAUC 0.513 0.547 0.568 0.564 0.567 0.689 0.726 0.683 ± 0.007

Phase II AUROC 0.600 0.611 0.625 0.628 0.645 0.630 0.706 0.655 ± 0.003
PRAUC 0.586 0.604 0.600 0.604 0.629 0.685 0.733 0.700 ± 0.002

Phase III AUROC 0.667 0.681 0.699 0.700 0.723 0.711 0.734 0.720 ± 0.006
PRAUC 0.697 0.747 0.777 0.782 0.811 0.856 0.881 0.874 ± 0.003

Table 2: Transfer learning experiments for IngesTables using Airbnb-2019 for pretraining and
Airbnb-2023 for fine tuning, which have different sets of features. We focus on the MSE metric on
the test set (lower is better). The goal is to test how knowledge can be transferred from Airbnb-2019
to the Airbnb-2023 dataset, which exhibits a distribution shift, under three settings: warm start
adaptation (pretraining on 2019 and finetuning on 2023), cold start standard training on 2019 only,
and zero-shot evaluation on the 2023 dataset using a checkpoint pretrained on the 2019 data. These
results show that pretraining on 2019 notably improves the training outcome on 2023, and that the
zero-shot performance for a 2019-pretrained checkpoint on 2023 actually exceeds standard training
on 2023 directly. In other words, IngesTablesis able to positively transfer knowledge from one
dataset to another dataset with a distribution shift.

Pretraining data Tuning data Test data Test MSE
Airbnb-2019 Airbnb-2023 Airbnb-2023 0.0996 ± 0.011

Airbnb-2023 Airbnb-2023 0.123 ± 0.018
Airbnb-2019 Airbnb-2023 0.101 ± 0.010

Table 1 overviews the comparisons of different modeling approaches on Clinical Trials Outcome. We
note that IngesTables significantly outperforms generic tabular learning models like XGBoost and
FFNN baselines by 15− 20% on all three tasks, and is competitive with deep neural network archi-
tectures with preprocessing setups that specialize on medical trial datasets (DeepEnroll, COMPOSE,
HINT, and SPOT). On the other hand, our model underperforms MediTab, a fine-tuned BioBERT
model that makes extensive use of GPT-3.5 for its preprocessing step. Despite this, as we will discuss
in our next section, once cost and latency is considered, the IngesTables approach is still overall a
more practical choice.

Table 2 shows the transfer learning capability of IngesTables with experiments on the Airbnb
dataset. We observe that even with partially overlapping features between pretraining and tuning
data, there is strong information transfer enabled by IngesTables. Interestingly, the zero-shot
performance from the large-scale pretraining can even outperform standard tuning setting with
smaller-scale data, indicating the strength of IngesTables in taking advantage of the information
from large-scale pretraining data.

4.3 Latency and cost comparisons with other LLM-based approaches

Other LLM-based approaches have the fundamental drawback of employing LLM calls at every step,
that causes significantly high training cost and inference latency. To further highlight the importance
of our particular design choices and computational optimizations, we illustrate key inference latency
and training cost comparison aspects below.
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When comparing experimental results with MediTab, it is important to note that MediTab’s input
preprocessing requires at least 5 forward passes of the LLM for every example during training (not to
mention the retries when the generated output fails the sanity check), and at least one forward pass of
the LLM for every example during inference. The number of tokens decoded by the LLM for each
inference call is also proportional to the number of features. To illustrate our point concretely, an
inference call on MediTab for an example with 100 features would require decoding roughly 400
tokens, it would take a staggering ∼10 seconds for each example for GPT 3.5 decoding! By contrast,
once IngesTables is done with the input preprocessing it needs to do for training, at inference,
unless there are out-of-vocabulary categorical features encountered, IngesTables only needs to
query its prepopulated vector store to prepare its inputs for a forward pass of MapTransformer,
whose latency is negligible compared to that of an LLM.

To exemplify the cost difference, consider 10 datasets, each with 10 million rows and 100 features
(50 categorical with up to 100 categories, 50 numeric), assuming each cell contains 4 tokens, and
using the pricing page from OpenAI [22]. We compare three ways of using LLMs:

• Decoder-only LLM (GPT-3.5 Turbo 4K): 10 · 10 million · 100 · 4 · ($0.002 / 1000) = $80,000
• Embedding model (Ada v2, no caching): 10 · 10 million · 100 · 4 · ($0.0001 / 1000) = $4000
• Embedding model (Ada v2, with caching): 10 · (100 · 4 + 50 · 100) · ($0.0001 / 1000) < $0.01

Such significant difference highlights the importance of employing embedding models to encode key
table attributes with caching, as the fundamental design choice of IngesTables.

5 Conclusion

We propose a novel architecture, MapTransformer, that is designed to be trained with the
IngesTables learning setup on multiple datasets with different schemas. We present promising
experimental results on a clinical trial dataset, and demonstrate its superior efficiency and scalability
in terms of the number of LLM forward passes needed.

We leave more demonstrations of the proposed MapTransformer for the scenarios of adaptation to
new tasks and domains, as well as scaling to many pretraining datasets, to future work.
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General Architecture for Structured Inputs & Outputs, 2022.

[14] Stefan Hegselmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi Jiang, and
David Sontag. Tabllm: Few-shot classification of tabular data with large language models,
2023.

[15] Yutian Chen, Xingyou Song, Chansoo Lee, Zi Wang, Qiuyi Zhang, David Dohan, Kazuya
Kawakami, Greg Kochanski, Arnaud Doucet, Marc’aurelio Ranzato, Sagi Perel, and Nando
de Freitas. Towards learning universal hyperparameter optimizers with transformers, 2022.

[16] Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. Tabpfn: A
transformer that solves small tabular classification problems in a second, 2023.

[17] Zifeng Wang, Chufan Gao, Cao Xiao, and Jimeng Sun. Meditab: Scaling medical tabular data
predictors via data consolidation, enrichment, and refinement, 2023.

[18] Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang.
Towards general text embeddings with multi-stage contrastive learning, 2023.

[19] Tianfan Fu, Kexin Huang, Cao Xiao, Lucas M. Glass, and Jimeng Sun. Hint: Hierarchical
interaction network for trial outcome prediction leveraging web data, 2022.

[20] New york city airbnb open data. https://www.kaggle.com/datasets/dgomonov/
new-york-city-airbnb-open-data.

[21] New york city airbnb 2023, public data. https://www.kaggle.com/datasets/
godofoutcasts/new-york-city-airbnb-2023-public-data.

[22] Open AI pricing page. https://web.archive.org/web/20230928125454/https://
openai.com/pricing. Accessed: 2023-09-28.

10

https://www.kaggle.com/datasets/dgomonov/new-york-city-airbnb-open-data
https://www.kaggle.com/datasets/dgomonov/new-york-city-airbnb-open-data
https://www.kaggle.com/datasets/godofoutcasts/new-york-city-airbnb-2023-public-data
https://www.kaggle.com/datasets/godofoutcasts/new-york-city-airbnb-2023-public-data
https://web.archive.org/web/20230928125454/https://openai.com/pricing
https://web.archive.org/web/20230928125454/https://openai.com/pricing

	Introduction
	Related Work
	The IngesTables Framework
	Input preprocessor
	MapTransformer: An attentive schema-independent architecture
	Learning objective

	Experiments
	Datasets
	Results
	Latency and cost comparisons with other LLM-based approaches

	Conclusion

