
Optimal Mistake Bounds
for Transductive Online Learning

Zachary Chase
Kent State University
zchase2@kent.edu

Steve Hanneke
Purdue University

steve.hanneke@gmail.com

Shay Moran
Departments of Mathematics, Computer Science,

and Data and Decision Sciences
Technion – Israel Institute of Technology;

Google Research
smoran@technion.ac.il

Jonathan Shafer
MIT

shaferjo@mit.edu

Abstract

We resolve a 30-year-old open problem concerning the power of unlabeled data in
online learning by tightly quantifying the gap between transductive and standard
online learning. In the standard setting, the optimal mistake bound is characterized
by the Littlestone dimension d of the concept classH (Littlestone, 1987). We prove
that in the transductive setting, the mistake bound is at least Ω

(√
d
)

. This consti-
tutes an exponential improvement over previous lower bounds of Ω(log log(d)),
Ω
(√

log(d)
)

, and Ω(log(d)), due respectively to Ben-David, Kushilevitz, and
Mansour (1995, 1997), and Hanneke, Moran, and Shafer (2023). We also show that
this lower bound is tight: for every d, there exists a class of Littlestone dimension d

with transductive mistake bound O
(√

d
)

. Our upper bound also improves upon the
best known upper bound of (2/3) · d from Ben-David et al. (1997). These results
establish a quadratic gap between transductive and standard online learning, thereby
highlighting the benefit of advance access to the unlabeled instance sequence. This
contrasts with the PAC setting, where transductive and standard learning exhibit
similar sample complexities.

1 Introduction

The transductive model is a basic and well-studied framework in learning theory, dating back to
the early works of Vapnik. It has been investigated both in statistical and online settings, and is
motivated by the principle that to make good predictions on a specific set of test instances, one need
not construct a fully general classifier that performs well on the entire domain — including points
that may never actually appear. Rather, it may be sufficient to tailor predictions for a fixed, known set
of instances.

This perspective naturally connects to a broader question in learning theory: what is the value
of unlabeled data? In the transductive setting, the learner is given the sequence of unlabeled test
instances in advance and is then required to predict their labels one by one. Thus, the transductive
model can be viewed as a natural formalization of learning with unlabeled data: the test instances are
known in advance, but their labels are not. The central question is whether such prior access to the

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

unlabeled sequence can help reduce the number of prediction mistakes — compared to the standard
online model, where the instances arrive and are labeled one at a time.

Recall for instance that in the standard PAC1 model of supervised learning, there are cases where
access to unlabeled data is not helpful. Indeed, the “hard population distributions” used to prove the
standard VC2 lower bound are constructed by taking a fixed and known marginal distribution over a
VC-shattered set. Namely, the cases that are hardest to learn in the PAC setting include ones where
the learner knows the marginal distribution over the domain, and can therefore generate as much
unlabeled data as it wishes. And yet, in those cases, access to unlabeled data provides no acceleration
compared to an algorithm (like ERM3) that does not use unlabeled data.

Seeing as unlabeled data is often a lot easier to obtain than labeled data, there have been considerable
efforts to understand when and to what extent can access to unlabeled data accelerate learning.4

In particular, it is natural to ask, for which plausible models of learning is access to unlabeled
data beneficial? Online learning (Littlestone, 1987) is perhaps the model of learning that is most-
extensively studied in learning theory after the PAC model and its variants. Therefore, the general
question considered in this paper is:

Question 1. Quantitatively, how much (if at all) is access to unlabeled data beneficial for learning in
the online learning setting?

This question is naturally instantiated by comparing transductive online learning — where the learner
has advance access to the full sequence x1, x2, . . . , xn of unlabeled instances — with standard online
learning, where no such access is given. This perspective has also been adopted in prior work: for
example, Kakade and Kalai (2005), Cesa-Bianchi and Shamir (2013), and Hoi, Sahoo, Lu, and Zhao
(2021) (Section 7.3) all describe transductive online learning as a setting in which the learner has
access to “unlabeled data”. We thus refine the question above as follows:

Question 2. Quantitatively, how much (if at all) is learning in the transductive online learning setting
easier than learning in the standard online learning setting? Specifically, how much is the optimal
number of mistakes in the transductive setting smaller than in the standard setting?

Addressing this question, our main result (Theorem 1.1) states that the optimal number of mistakes
in the transductive setting (with access to unlabeled data) is at most quadratically smaller than in
the standard setting (without unlabeled data). Furthermore, there are hypothesis classes for which a
quadratic gap is achieved.

1.1 Setting: Standard vs. Transductive Online Learning

Standard online learning (Littlestone, 1987) is a zero-sum, perfect- and complete-information game
played over n rounds between two players, a learner and an adversary. The game is played with
respect to a domain set X and a hypothesis classH ⊆ {0, 1}X (consisting of functions X → {0, 1}),
where n, X and H are fixed and known to both players. The game proceeds as in Game 1. The
number of mistakes for a learner L and an adversary A is Mstd(H, n, L,A) = |{t ∈ [n] : ŷt ̸= yt}|.
We are interested in understanding the optimal number of mistakes, which is

Mstd(H) = sup
n∈N

inf
L∈L

sup
A∈A

Mstd(H, n, L,A),

where A and L are the set of all deterministic adversaries and learners, respectively.5

1Probably Approximately Correct. For an exposition of the standard terminology and results mentioned in
this paragraph see, e.g., Shalev-Shwartz and Ben-David (2014).

2Vapnik–Chervonenkis.
3Empirical Risk Minimization.
4The literature on semi-supervised learning is surveyed in Joachims (1999); Zhu (2005); Zhu and Goldberg

(2009); Zhu (2010); Chapelle, Schölkopf, and Zien (2006). Theoretical works on the topic include Benedek
and Itai (1991); Blum and Mitchell (1998); Ben-David, Lu, Pál, and Sotáková (2008); Balcan and Blum (2010);
Darnstädt, Simon, and Szörényi (2013); Göpfert, Ben-David, Bousquet, Gelly, Tolstikhin, and Urner (2019).

5Because the adversary selects yt after seeing ŷt, randomness is not beneficial for either party, and we
assume without loss of generality that both the learner and the adversary are deterministic. As is common in
learning theory, we avoid questions of computability and allow the learner and adversary to be any function. See
Section A for formal definitions of A and L.

2

For each round t = 1, 2, . . . , n:

a. The adversary selects an instance xt ∈ X and sends it to the learner.

b. The learner selects a prediction ŷt ∈ {0, 1} and sends it to the adversary.

c. The adversary selects a label yt ∈ {0, 1} and sends it to the learner. The selected
label must be realizable, meaning that ∃h ∈ H ∀i ∈ [t] : h(xi) = yi.

Game 1: The standard online learning setting.

The adversary selects a sequence x1, x2, . . . , xn ∈ X and sends it to the learner.

For each round t = 1, 2, . . . , n:

a. The learner selects a prediction ŷt ∈ {0, 1} and sends it to the adversary.

b. The adversary selects a label yt ∈ {0, 1} and sends it to the learner. The selected
label must be realizable, meaning that ∃h ∈ H ∀i ∈ [t] : h(xi) = yi.

Game 2: The transductive online learning setting.

It is well known that Mstd(H) is characterized by the the Littlestone dimension, namely, Mstd(H) =
LD(H) (see Theorem A.7 and Definition A.6).

The transductive online learning setting (Ben-David et al., 1995, 1997) is similar, except that the
learner has access to the full sequence of unlabeled instances in advance. Namely, as in Game 2. The
optimal number of mistakes for the transductive setting is defined exactly as before,

Mtr(H, n, L,A) = |{t ∈ [n] : ŷt ̸= yt}|, and Mtr(H) = sup
n∈N

inf
L∈L

sup
A∈A

Mtr(H, n, L,A),

with the only difference between the standard quantity Mstd(H) and the transductive quantity Mtr(H)
being in how the game is defined.

1.2 Main Result

Notice that for every hypothesis class H, Mtr(H) ≤ Mstd(H). Indeed, in the transductive setting
the adversary declares the sequence x at the start of the game. This reduces the number of mistakes
because the transductive adversary is less powerful (it cannot adaptively alter the sequence mid-game),
and also because the transductive learner is more powerful (it has more information).6

While for some classes Mtr(H) = Mstd(H), we study the largest possible separation. The best
previous lower bound on Mtr, due to Hanneke, Moran, and Shafer (2023), states that for every
classH,

Mtr(H) ≥ Ω(log(d)),

where d = Mstd(H). In the other direction, Ben-David et al. (1997) constructed7 a classH such that
Mstd(H) = d and Mtr(H) ≤ 2

3d. This left an exponential gap between the best known lower and
upper bounds on Mtr, namely Ω(log d) versus 2

3d. Our main result closes this gap:
Theorem 1.1 (Main result).

• For every hypothesis classH ⊆ {0, 1}X ,

Mtr(H) = Ω
(√

d
)
,

where d = Mstd(H).
6One could also define an intermediate setting, where the adversary is less powerful because it must select the

sequence at the start of the game and cannot change it during the gameplay, but the learner does not have more
information because the adversary only reveals the instances in the sequence one at a time as in the standard
setting. However, this intermediate setting would not model the learner having access to unlabeled data.

7Their class consists of all disjoint unions of Θ(d) functions from a specific constant-sized class.

3

• On the other hand, for every d there exists a hypothesis classH with Mstd(H) = d and

Mtr(H) = O
(√

d
)
.

This result is stated in considerably greater detail in Theorems B.1 and D.1.

1.3 Related Works

The notion of transductive inference as a more efficient alternative to inductive inference in statistical
learning theory was introduced by Vapnik (1979, 2006); Gammerman, Vovk, and Vapnik (1998);
Chapelle, Vapnik, and Weston (1999). The online learning setting is due to Littlestone (1987), who
also proved that the optimal number of mistakes is characterized by the Littlestone dimension (see
Theorem A.7).

The transductive online learning setting studied in the current paper, was first defined by Ben-David,
Kushilevitz, and Mansour (1995), who used the name worst sequence off-line model. Among other re-
sults, they showed a lower bound of Ω(log log(d)) on the number of mistakes required to learn a class
with Littlestone dimension d. The authors subsequently presented an exponentially stronger lower
bound of Ω

(√
log(d)

)
in Ben-David, Kushilevitz, and Mansour (1997). However, understanding

where the optimal number of mistakes is situated within the range
[
Ω
(√

log(d)
)
, 2d/3

]
remained

an open question.

Kakade and Kalai (2005) presented an oracle-efficient algorithm for the transductive online learning
setting, and may have been the first to use that name. Their result was subsequently improved upon
by Cesa-Bianchi and Shamir (2013).

The present work is most similar to that of Hanneke, Moran, and Shafer (2023) which, among other
results, gave a quadratically-stronger mistake lower bound of Ω(log(d)) for classes with Littlestone
dimension d in the transductive online setting. The proof of our lower bound utilizes some of their
ideas, but yields a quantitative improvement by combining it with some new ideas.

Hanneke, Raman, Shaeiri, and Subedi (2024) studied a setting of multi-class transductive online
learning where the number of possible labels is unbounded.

2 Technical Overview

In this section we explain some of the main ideas in our proofs. Formal definition appear in Section A.
Full formal statements of the results, as well as detailed rigorous proofs, appear in Sections B to D.

2.1 Paths in Trees

We make extensive use of the following notion. Given a perfect binary tree Td of depth d, every
function f : Td → {0, 1} defines a unique path in the tree. The path is a sequence of nodes
path(f) = (xi0 , xi1 , . . . , xid), as explained in Figure 1c. See Section A for formal definitions.

2.2 Proof Ideas for the Lower Bound

We start with an elementary observation about the adversary’s dilemma in the transductive online
learning setting. Before round t of the game, the adversary selected a full sequence of instances
x1, x2, . . . , xn ∈ X , and assigned some initial labels y1, y2, . . . , yt−1 ∈ {0, 1}. At the start of round
t, the adversary must consider the version space,

Ht =
{
h ∈ H : (∀i ∈ [t− 1] : h(xi) = yi)

}
.

If all h ∈ Ht assign h(xt) = b for some b ∈ {0, 1}, then the adversary has no choice but to assign
the label yt = b. Otherwise, the adversary can force a mistake at time t. Namely, after seeing the
learner’s prediction ŷt, the adversary can assign yt = 1 − ŷt, incrementing the number of learner
mistakes by 1.

But “just because you can, doesn’t mean you should”. If the adversary is greedy and forces a mistake
at time t, they may pay dearly for that later. As an extreme example, consider the case where there

4

x0

x1

x3 x4

x2

x5 x6

(a) A perfect binary tree of depth 2. Each node is
labeled by an element of the domain X . These labels
need not be distinct (e.g., it is possible that x1 = x6).
x0 is the root of the tree, x0, x1 and x2 are internal
nodes, and x3, . . . , x6 are leaves.

x0

x1

x3

• •

x4

• •

x2

x5

• •

x6

• •

0

0

0 1

1

0 1

1

0

0 1

1

0 1

(b) A function f : X → {0, 1} assigns a binary label
to each node in the tree, represented here by edges
with arrowhead tips. This figure depicts the function
f(xi) = 1(i /∈ {2, 3}). (Note that the gray dots (•)
in the figure are purely a pictorial detail. In this paper
they are not considered nodes or leaves of the tree.)

x0

x1

x3

• •

x4

• •

x2

x5

• •

x6

• •

0

0

0 1

1

0 1

1

0

0 1

1

0 1

(c) Every function f : X → {0, 1} defines a path
in the tree, which is a sequence u0, u1, u2, . . . , ud−1,
where u0 is the root, d is the depth of the tree, and for
each i ∈ [d − 1], ui is the b-child of ui−1 with b =
f(ui−1) ∈ {0, 1}. This figure shows that the func-
tion f from Figure 1b has path(f) = (x0, x2, x5),
depicted in red. In particular, x2 is ‘on-path’ for f ,
but x6 is ‘off-path’ for f .

λ

0

00

• •

01

• •

1

10

• •

11

• •

0

0

0 1

1

0 1

1

0

0 1

1

0 1

(d) In this paper we use a naming convention where,
without loss of generality, we identify the domain
elements xi that are assigned to nodes with bit strings.
The root is identified with the empty string λ, and
for each pair of nodes u, v such that u is the b-child
of v (for b ∈ {0, 1}), we have u = v ◦ b, where ‘◦’
denotes string concatenation. (Because the xi’s may
not be distinct, a domain element may be identified
with more than one bit string.)

Figure 1: Paths in trees.

is a single h1 ∈ Ht that assigns h1(xt) = 1, and all other functions h ∈ Ht assign h(xt) = 0.
If the learner selects ŷt = 1 and the adversary forces a mistake at time t, the version space at all
subsequent times s > t will be Hs = {h1}, and the adversary will be prevented from forcing any
further mistakes.

A natural strategy for the adversary is therefore to be greedy up to a certain limit. Namely, at each
time t the adversary computes the ratio8

rt =
|{h ∈ Ht : h(xt) = 1}|

|Ht|
.

If rt ∈ [ε, 1 − ε] for some parameter ε > 0 (“the version space is not too unbalanced”), then
the adversary forces a mistake. Otherwise, the adversary assigns the majority label, i.e., yt =
1(rt ≥ 1/2). This ensures that the version space does not shrink too fast:

• If no mistake is forced, then |Ht+1| ≥ (1− ε) · |Ht|, and

• If a mistake is forced, |Ht+1| ≥ ε · |Ht|.
8For a class H of Littlestone dimension d, the adversary will use only a subset of H of cardinality 2d that

shatters a Littlestone tree of depth d− 1. So without loss of generality, we assume that H has cardinality 2d (in
particular, H is finite), and the ratio is well-defined.

5

In particular, at the end of the game, the version spaceHn+1 is of size

|Hn+1| ≥ εM · (1− ε)n−M · |H| ≥ εM · (1− ε)n · 2d, (1)

where M is the number of mistakes that the adversary forces and n is the length of the sequence. The
class has size |H| ≥ 2d because LD(H) = d, and by removing functions from the class if necessary
(which can only make learning easier), we may assume without loss of generality that |H| = 2d.
Namely, the class precisely shatters a Littlestone tree of depth d− 1 such that for every assignment
of labels to a root-to-leaf path in the tree, the class contains exactly one function that agrees with that
assignment (see Definition A.6 for detail).

Notice that we have not yet specified how the adversary selects the sequence x. While the adversary’s
labeling strategy is extremely simple (determined by the ratio rt and the prediction ŷt), constructing
of the sequence x requires some care, to ensure that it has the following two properties:

• Property I: The length n of the sequence satisfies n = 2Θ(
√
d), and

• Property II: For every sequence of predictions ŷ1, . . . , ŷn selected by the learner, the
resulting sequence of labels y1, . . . , yn selected by the adversary are consistent with some
function h ∈ H such that x contains all the nodes in path(h).9

These properties can be achieved by carefully simulating all possible execution paths of the adversary.

Observe that if path(h) = (u1, . . . , ud) then the sequence of labels h(u1), h(u2), . . . , h(ud)
uniquely identifies the function h within the class H. Hence, Property II and the assumption
|H| = 2d imply that at the end of the game, the version spaceHn+1 has cardinality

|Hn+1| = 1. (2)

Combining Property I (n = 2Θ(
√
d)), Eqs. (1) and (2), and choosing ε = 2−Θ(

√
d) gives

1 ≥ εM · (1− ε)n · 2d ≥ 2−Θ(M ·
√
d) · 2d,

which implies M = Ω
(√

d
)

, as desired.

2.3 Proof Ideas for the Upper Bound

In this section we explain the main ideas in the proof of Theorem D.1, which states that for every
d ∈ N, there exists a class of Littlestone dimension d that is learnable in the transductive online
setting with a mistake bound of O

(√
d
)

.

Of course, not every Littlestone class satisfies this property. For instance, the set of all functions
[d]→ {0, 1} has Littlestone dimension d, but the adversary can force the learner to make d mistakes
when learning this class in the transductive setting.10 So our task in this proof is to construct a class
that is especially easy to learn in the transductive setting (i.e., learnable with O

(√
d
)

mistakes), while
still being hard (requiring d mistakes) in the standard setting.

2.3.1 Sparse Encodings are Easy to Guess

We start with an elementary observation. Consider the following two bit strings:

Binary: 110101
One-hot: 00100000000000

Both of these strings encode the number 53. However, one of the encodings is much easier to guess
than the other: suppose we are tasked with guessing the bits in an encoding of an integer between
0 and 26 − 1. We guess the bits one at a time, and after each guess, an adaptive adversary tells us
whether our guess was correct.

9Recall that the path of a function h is depicted in Figure 1c, and defined in Definition A.5.
10The adversary simply selects the sequence x = (1, 2, 3, . . . , d), and for each xi, the adversary forces a

mistake by selecting yi = 1− ŷi. The adversary’s choice of labels is realizable because we are working with the
class of all function [d] → {0, 1}.

6

Now, if the bit string is a binary encoding, the task is hard. Each bit can either be 0 or 1, regardless of
the values of the previous bits, and so the adversary can force a mistake on every bit. On the other
hand, if we know that the string is a one-hot encoding, there exists an attractive strategy — always
guess 0. This ensures that we will make at most 1 mistake.

Note that at the end of the guessing game we have learned the same amount of information (for a
number between 0 and 2n − 1, we learned n bits of information), but the number of mistakes is very
different (n mistakes vs. 1 mistake).

2.3.2 Construction of the Hypothesis Class

We now describe a construction of a hypothesis class that is easy to learn in the transductive setting,
using the idea of a sparse encoding. Recall that a class H has Littlestone dimension at least d
(Definition A.6 in Section A) if there exists a Littlestone tree of depth d − 1 such that for every
b ∈ {0, 1}d there exists h = hb ∈ H such that the values on the path of h agree with b. More
formally, ∀i ∈ [d] : h(b<i) = bi, and in particular path(h) = (λ, b≤1, b≤2, b≤3, . . . , b≤d−1). Thus,
when constructing a class that shatters a specific Littlestone tree of depth d− 1, we need to define
2d functions

{
hb : b ∈ {0, 1}d

}
. For each function hb, the on-path values of the function are fixed

(fully determined by b), while for the remaining values there is complete freedom (for the nodes u
that are off-path we may assign any values hb(u) ∈ {0, 1}).
Perhaps the simplest way to construct a class of Littlestone dimension d is simply to assign all on-path
values as required, and assign 0 to all other values. Namely, if u is a prefix of b then hb(u) = b|u|+1,
and otherwise hb(u) = 0. In a sense, this is the ‘minimal’ class of Littlestone dimension d for a
specific Littlestone tree.11

Observe that the ‘minimal’ class does not have the desired property of being easy to learn in the
transductive setting.12 However, a certain variation of the ‘minimal’ class that embeds a sparse
encoding does satisfy the requirement. In this variation, on-path value of the function hb are assigned
as they must (as determined by b), while the off-path values are sampled independently using a biased
coin, such that each of them is 0 with high probability, but has a small probability of being 1. The
probability is chosen carefully so that the class satisfies some simple combinatorial properties, as
described further in Section 2.3.6 and Lemma D.2.

2.3.3 Naïve Learning Strategy

We now explain in broad strokes how the probabilistic construction of the hypothesis class in
Section 2.3.2 is useful for learning with few mistakes in the transductive setting.

Notice that when predicting labels for the ‘minimal’ class with nodes in breadth-first order, the learner
knows at each step whether they are labeling an on-path or off-path node, because the learner has
already seen the correct labels for all ancestors of the current node. For off-path nodes, the learner
knows that the true label is 0, so it never makes mistakes on off-path nodes, but it also gains no
new information when the true labels for off-path nodes are revealed. No risk, but no reward either.
Instead, all the information about the true labeling function is revealed only at on-path nodes, where
the adversary has complete freedom to assign labels and force mistakes. That’s why the adversary
can force d mistakes.

For the randomly-chosen class, when predicting labels for off-path nodes, the learner may still safely
predict a label of 0. But the reasoning for this is quite different. Conceptually, every off-path label is
part of a sparse codeword that identifies the correct labeling function.13 Because the coin is biased,
each bit of the codeword is easy to guess (it is likely to be 0), but every time that the adversary reveals
that the true label for an off-path node is indeed 0, the learner gains a small (nonzero) amount of

11More formally, this is a class with a minimal number of nodes labeled 1.
12The adversary can declare a sequence x consisting of all the nodes in the tree in breadth-first order, and then

force d mistakes — one mistake in each layer (depth) of the tree. Specifically, regardless of how the adversary
selects the labels, for each i ∈ [d] there exists a node ui at depth i that is on-path. When it is time for the learner
to predict a label for this ui, the learner knows that ui is on-path because it has seen the correct labels for all the
ancestors of ui. However, the adversary has the freedom to extend the path arbitrarily to the left or to the right,
and can therefore force a mistake on ui.

13The coin-flips for off-path labels are all independent. For example, if X is a set of nodes all of which are
off-path for a subset H of the hypothesis class, then the random variables {h(x) : h ∈ H, x ∈ X} are i.i.d.

7

information about the true labeling function. Additionally, when the adversary selects an off-path
label of 1, that reveals a lot of information about the true labeling function (such labels are rare in
the hypothesis class), and therefore the adversary cannot force many off-path mistakes. Overall, the
information about the true labeling function is ‘smeared’ throughout all labels of the tree (0s and 1s,
on-path and off-path).14

Thus, the naïve general strategy for the learner when using the probabilistically-constructed class is
to learn most of the information about the true labeling function by observing off-path labels. By
the time the learner reaches an on-path node, it hopefully has already learned enough about the true
labeling function in order to make a good prediction on that node.

However, making this general strategy work requires overcoming some very substantial obstacles:

1. Recall that in the transductive setting, the adversary can present the nodes of the tree in any
order of its choosing — it does not have to present the tree in breadth-first order. The naïve
strategy works only if the learner sees many off-path nodes before it sees most on-path nodes.
But what happens if the adversary decides to present many on-path nodes near the beginning
of the sequence? To handle this, the learner incorporates a strategy we call ‘danger zone
minimization’, as described in Section 2.3.4.

2. Another, equally problematic, issue also arises from the fact that the sequence presented by
the adversary might not be in breadth-first order. Recall that breadth-first order15 has the
property that for every node u in the sequence, all the ancestors of u appear before u in the
sequence. This means that by the time the learner needs to predict a label for u, the learner
knows whether u is on-path or off-path for the true labeling function. But what happens if
the adversary presents u before some of u’s ancestors? Or omits some of u’s ancestors from
the sequence altogether? In this case the learner doesn’t know if u is on-path or off-path,
and this presents a double hazard. One hazard is that the leaner doesn’t know what label to
predict for u — if u is off-path, the learner can simply predict 0, but if it is on-path it must do
something more elaborate. The second hazard is that, after seeing the correct label for u, it
is not clear what the learner can infer from it. If u is off-path, its label should be interpreted
as part of a sparse encoding of the labeling function. But if u is on-path, the interpretation
must be entirely different. To overcome this challenge, the learner incorporates a strategy
we call ‘splitting experts’, described in Section 2.3.5.

3. Limiting off-path mistakes. Thanks to the coin’s bias, most off-path nodes have a true label
of 0. Nonetheless, each function in the hypothesis class still has an expected number of 2Ω(d)

off-path nodes labeled 1, so the learner can afford to misclassify only a vanishing fraction
of them! To limit the number of mistakes, the learner extracts information from the sparse
encoding and executes a ‘transition to Halving’ strategy, as described in Section 2.3.6.

2.3.4 Danger Zone Minimization

Utilizing information from the ‘sparse encoding’ of the off-path nodes to make good predictions for
on-path nodes requires that the learner first see the true labels for many off-path nodes. Until that
happens, the learner expects to make many mistakes on on-path nodes. However, whether a node is
on-path or off-path is not fixed in advanced — the adversary may decide this adaptively, in response
to the learners predictions.

Danger zone minimization is a strategy used by the learner, to force the adversary to assign few nodes
in the beginning of the sequence as on-path (otherwise, if initial nodes are assigned to be on-path
by the adversary, then the learner will make few mistakes on those nodes). This is analogous to the
standard Halving algorithm (Algorithm 7), but instead of minimizing the cardinality of the set of
consistent hypotheses (the ‘version space’), the learner minimizes a subset of the domain (the ‘danger
zone’).

14Furthermore, the labels for most not-too-small subsets of the nodes reveal a lot of information about the
correct labeling function — not just for a particular subset of nodes. These properties led us to code-name this
construction while working on the paper as ‘everything everywhere all at once’ (in reference to a 2022 film of
that name). This is in contrast to the ‘minimal’ function, where the information is concentrated entirely on the
function path. The asymmetry between the ‘minimal’ class and the probabilistic class is similar to that between
the binary and one-hot encodings in Section 2.3.1 above.

15As well as depth-first order.

8

Concretely, at the beginning of the game the learner initializes a set S = {x1, x2, . . . , xtmax} consisting
of the first tmax = 2Ω(

√
d) instances in the sequence x selected by the adversary. This set represents

the ‘danger zone’ — nodes in the beginning of the sequence that have not been labeled yet, that might
be on-path, and that are not ancestors of a previously-labeled on-path node.16 To predict a label for
an instance xi, the learner selects a label ŷi such that if ŷi is wrong, the danger zone will shrink by at
least 1/3. That is, for b ∈ {0, 1}, if the set Sb of b-descendants of xi has cardinality |Sb| ≥ |S|/3, the
learner predicts ŷi = b. Then, if the adversary selects yi = 1− b, that implies that all b-descendants
of xi are off-path for the true labeling functions. Therefore, the learner removes all b-descendants of
xi from the danger zone, and the new cardinality is |S \ Sb| ≤ (2/3) · |S|. This guarantees that the
learner can make at most O(log(tmax)) = O

(√
d
)

such mistakes before the danger zone is empty.17

If neither S0 nor S1 have cardinality at least |S|/3, the learner predicts ŷi = 0. If yi = 1 and xi is
on-path for the true labeling function, then the learner updates the danger zone to be S0 ∪ S1,18 again
shrinking the danger zone by a factor of at most 2/3. Otherwise, if yi = 1 and xi is off-path, then
it was an off-path node labeled 1 (which is rare), and the learner can afford to misclassify it (see
Section 2.3.6).

2.3.5 Splitting Experts

The danger zone minimization strategy requires that the learner know whether the node u being
classified is on-path or off-path for the true labeling function. However, if u appears in the sequence
before some of its ancestors, the learner does not know this. To overcome this difficulty, the learner
implements a variant of the standard multiplicative weights algorithm using splitting experts. This
means that initially there is a single expert executing danger zone minimization. When a node u is
reached for which danger zone minimization requires knowing whether u is on-path or off-path and
that information is not yet evident, each expert is split into two experts, one of which continues the
execution of danger zone minimization under the assumption that u is on-path, and the other under
the opposite assumption. Thus, at each point in time, there exists precisely one expert for which all
path-related assumptions are correct, and therefore that expert will make at most O

(√
d
)

mistakes.
The multiplicative weights algorithm guarantees that the overall number of mistakes will be linear in
the the number of mistakes of the best expert, i.e., O

(√
d
)

.

2.3.6 Transition to Halving

The hypothesis class is engineered such that it satisfies the following property: there are at most
2O(

√
d) functions in the hypothesis class that agree with any set of tmax = 2Ω(

√
d) labels, or that

agree that a set of Θ
(√

d
)

nodes are all off-path and labeled 1 (this follows from Lemma D.2).

Therefore, once the true labels for the first tmax instances x1, x2, . . . , xtmax have been revealed, or once
Θ
(√

d
)

off-path labels of 1 have been revealed (whichever happens first), the learner can transition
to halving: stop doing danger zone minimization, and instead predict the labels for the remaining
nodes using the standard Halving algorithm (Algorithm 7) on the subset of the hypothesis class that
survived. Halving on 2O(

√
d) functions is guaranteed to make at most O

(√
d
)

mistakes (Fact E.1).

However, seeing as the learner lacks information on which nodes are off-path, it uses experts, and
each expert maintains different path-related assumptions. Thus, each expert decides separately at
which point to transition to Halving. The unique expert that makes only correct assumptions will

16If u is an ancestor of some on-path node v, and v is a b-descendant of u for b ∈ {0, 1}, then the true label
for u must be b.

17Once the danger zone is empty, the learner cannot make any further on-path mistakes within the prefix
x1, x2, . . . , xtmax . And it will make at most O

(√
d
)

mistakes on the remaining nodes xtmax+1, xtmax+2, . . . , as
explained in Section 2.3.6.

18Because on-path nodes must be either be descendants or ancestors of xi, and the definition of the danger
zone does not require that it contain ancestors of nodes that have been labeled.

9

transition ‘at the right time’. That expert will make at most O
(√

d
)

mistakes during danger zone

minimization, and then at most O
(√

d
)

additional mistakes during halving.

2.4 Some Intuition for the Quantity
√
d

We briefly sketch where the quantity
√
d arises from. This is a back-of-the-envelope calculation

without proof, intended purely as an aid for intuition. Suppose we assigned off-path labels of 1 with
probability 2−k instead of 2−

√
d. Consider a sequence x1, . . . , xn of n = d/2k leaves. For any

sequence of labels y1, . . . , yn ∈ {0, 1}, taking s =
∑

i∈[n] yi, there exist roughly

2d ·
(
2−k

)s · (1− 2−k
)n−s ≥ 2d ·

(
2−k

)n ≫ 0

functions in the class for which these leaves are off-path and which agree with the labels y1, . . . , yn.
Therefore, the adversary can force at least n = Ω(d/k) mistakes.

Similarly, for the sequence x1, . . . , xn consisting of all the nodes in the tree of depth at most k/2 in
breadth-first order, the adversary can force a mistake on every on-path node while assigning a label of
0 to all off-path nodes, for a total of k/2 mistakes. This is true because for any assignment of on-path
labels, the fraction of functions which agree with the on-path labels that assign a label of 0 to all

off-path nodes is roughly
(
1− 2−k

)2k/2

≈ 1, so in particular for any labeling of the on-path nodes
there exists a function in the class that agrees with that labeling and assigns 0 to all off-path nodes.

Therefore, for any k, we obtain a lower bound of Ω
(
d
k + k

)
on the number of mistakes. For any k,

d
k + k ≥

√
d, giving a lower bound of Ω

(√
d
)

. Choosing k =
√
d to minimize the lower bound

will in fact yield a matching upper bound of O
(√

d
)

, as we show in this paper. This completes our
overview of the upper bound.

3 Directions for Future Work

Following are some interesting open questions:

1. Does there exist an efficient learning algorithm that achieves the O
(√

d
)

upper bound of
Theorem D.1? One needs to be careful about the definition of efficiency here, but one
possible formalization is as follows. Does there exist a learning algorithm A and a sequence
of classesH1,H2, . . . , such that for every d ∈ N:

• LD(Hd) = d, and
• Given as input the index d and a sequence x1, . . . , xn, the algorithm A runs in time
poly(d, n) and makes at most O

(√
d
)

mistakes assuming the labels are realizable
byHd.

2. Is there a tradeoff between the cardinality of the domain X and the upper bound on the
number of mistakes? We used a domain of size roughly 2d in order to obtain our upper
bound of O

(√
d
)

. Is it possible to get the same bound with a domain of size poly(d)?

3. Obtaining more precise asymptotics; for example, is there (an explicit) constant α > 0 such
that the optimal transductive mistake bound is

(
α+ o(1)

)√
d?

4 Organization
Complete rigorous mathematical details are deferred to the appendices. Formal definitions appear in
Section A. Formal statements and proofs for the lower bound and upper bound appear in Section B
and Section D, respectively. Optimal sequence length is discussed in Section C.

10

Acknowledgments and Disclosure of Funding

ZC is supported in part by NSF EnCORE inst (award #2217058) and by Shachar Lovett’s Simons
Investigator Award (#929894). SM is a Robert J. Shillman Fellow; he acknowledges support
by ISF grant 1225/20, by BSF grant 2018385, by Israel PBC-VATAT, by the Technion Center
for Machine Learning and Intelligent Systems (MLIS), and by the the European Union (ERC,
GENERALIZATION, 101039692). JS is supported in part by NSF CNS-2154149, an Amazon
Research Award, and by Vinod Vaikuntanathan’s Simons Investigator Award.

Views and opinions expressed are however those of the author(s) only and do not necessarily reflect
those of the European Union or the European Research Council Executive Agency. Neither the
European Union nor the granting authority can be held responsible for them.

References

Maria-Florina Balcan and Avrim Blum. A discriminative model for semi-supervised learning. J.
ACM, 57(3):19:1–19:46, 2010. doi:10.1145/1706591.1706599. URL https://doi.org/10.
1145/1706591.1706599.

Shai Ben-David, Eyal Kushilevitz, and Yishay Mansour. Online learning versus offline learning.
In Paul M. B. Vitányi, editor, Computational Learning Theory, Second European Conference,
EuroCOLT ’95, Barcelona, Spain, March 13-15, 1995, Proceedings, volume 904 of Lecture
Notes in Computer Science, pages 38–52. Springer, 1995. doi:10.1007/3-540-59119-2_167. URL
https://doi.org/10.1007/3-540-59119-2_167.

Shai Ben-David, Eyal Kushilevitz, and Yishay Mansour. Online learning versus offline learning.
Mach. Learn., 29(1):45–63, 1997. doi:10.1023/A:1007465907571. URL https://doi.org/10.
1023/A:1007465907571.

Shai Ben-David, Tyler Lu, Dávid Pál, and Miroslava Sotáková. Learning low-density separators.
CoRR, abs/0805.2891, 2008. URL http://arxiv.org/abs/0805.2891.

Gyora M. Benedek and Alon Itai. Learnability with respect to fixed distributions. Theor. Comput.
Sci., 86(2):377–390, 1991. doi:10.1016/0304-3975(91)90026-X. URL https://doi.org/10.
1016/0304-3975(91)90026-X.

Avrim Blum and Tom M. Mitchell. Combining labeled and unlabeled data with co-training. In
Peter L. Bartlett and Yishay Mansour, editors, Proceedings of the Eleventh Annual Conference on
Computational Learning Theory, COLT 1998, Madison, Wisconsin, USA, July 24-26, 1998, pages
92–100. ACM, 1998. doi:10.1145/279943.279962. URL https://doi.org/10.1145/279943.
279962.

Olivier Bousquet, Steve Hanneke, Shay Moran, Ramon van Handel, and Amir Yehudayoff. A
theory of universal learning. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC
2021: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy,
June 21-25, 2021, pages 532–541. ACM, 2021. doi:10.1145/3406325.3451087. URL https:
//doi.org/10.1145/3406325.3451087.

Nicolò Cesa-Bianchi and Ohad Shamir. Efficient transductive online learning via randomized
rounding. In Bernhard Schölkopf, Zhiyuan Luo, and Vladimir Vovk, editors, Empirical Inference -
Festschrift in Honor of Vladimir N. Vapnik, pages 177–194. Springer, 2013. doi:10.1007/978-3-
642-41136-6_16. URL https://doi.org/10.1007/978-3-642-41136-6_16.

Olivier Chapelle, Vladimir N. Vapnik, and Jason Weston. Transductive inference for estimating
values of functions. In Sara A. Solla, Todd K. Leen, and Klaus-Robert Müller, editors, Advances in
Neural Information Processing Systems 12, [NIPS Conference, Denver, Colorado, USA, November
29 - December 4, 1999], pages 421–427. The MIT Press, 1999. URL http://papers.nips.cc/
paper/1699-transductive-inference-for-estimating-values-of-functions.

Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien, editors. Semi-Supervised Learning. The
MIT Press, 2006. ISBN 9780262033589. doi:10.7551/MITPRESS/9780262033589.001.0001.
URL https://doi.org/10.7551/mitpress/9780262033589.001.0001.

Malte Darnstädt, Hans Ulrich Simon, and Balázs Szörényi. Unlabeled data does provably help.
In Natacha Portier and Thomas Wilke, editors, 30th International Symposium on Theoreti-

11

https://doi.org/10.1145/1706591.1706599
https://doi.org/10.1145/1706591.1706599
https://doi.org/10.1145/1706591.1706599
https://doi.org/10.1007/3-540-59119-2_167
https://doi.org/10.1007/3-540-59119-2_167
https://doi.org/10.1023/A:1007465907571
https://doi.org/10.1023/A:1007465907571
https://doi.org/10.1023/A:1007465907571
http://arxiv.org/abs/0805.2891
https://doi.org/10.1016/0304-3975(91)90026-X
https://doi.org/10.1016/0304-3975(91)90026-X
https://doi.org/10.1016/0304-3975(91)90026-X
https://doi.org/10.1145/279943.279962
https://doi.org/10.1145/279943.279962
https://doi.org/10.1145/279943.279962
https://doi.org/10.1145/3406325.3451087
https://doi.org/10.1145/3406325.3451087
https://doi.org/10.1145/3406325.3451087
https://doi.org/10.1007/978-3-642-41136-6_16
https://doi.org/10.1007/978-3-642-41136-6_16
https://doi.org/10.1007/978-3-642-41136-6_16
http://papers.nips.cc/paper/1699-transductive-inference-for-estimating-values-of-functions
http://papers.nips.cc/paper/1699-transductive-inference-for-estimating-values-of-functions
https://doi.org/10.7551/MITPRESS/9780262033589.001.0001
https://doi.org/10.7551/mitpress/9780262033589.001.0001

cal Aspects of Computer Science, STACS 2013, February 27 - March 2, 2013, Kiel, Ger-
many, volume 20 of LIPIcs, pages 185–196. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2013. doi:10.4230/LIPICS.STACS.2013.185. URL https://doi.org/10.4230/LIPIcs.
STACS.2013.185.

Alexander Gammerman, Volodya Vovk, and Vladimir N. Vapnik. Learning by transduction.
In Gregory F. Cooper and Serafín Moral, editors, UAI 1998: Proceedings of the Four-
teenth Conference on Uncertainty in Artificial Intelligence, University of Wisconsin Business
School, Madison, Wisconsin, USA, July 24-26, 1998, pages 148–155. Morgan Kaufmann,
1998. URL https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&
article_id=243&proceeding_id=14.

Christina Göpfert, Shai Ben-David, Olivier Bousquet, Sylvain Gelly, Ilya O. Tolstikhin, and Ruth
Urner. When can unlabeled data improve the learning rate? In Alina Beygelzimer and Daniel
Hsu, editors, Conference on Learning Theory, COLT 2019, 25-28 June 2019, Phoenix, AZ, USA,
volume 99 of Proceedings of Machine Learning Research, pages 1500–1518. PMLR, 2019. URL
http://proceedings.mlr.press/v99/gopfert19a.html.

Steve Hanneke, Shay Moran, and Jonathan Shafer. A trichotomy for transductive online learn-
ing. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey
Levine, editors, Advances in Neural Information Processing Systems 36: Annual Conference on
Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, Decem-
ber 10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
3e32af2df2cd13dfbcbe6e8d38111068-Abstract-Conference.html.

Steve Hanneke, Vinod Raman, Amirreza Shaeiri, and Unique Subedi. Multiclass transductive online
learning. In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet,
Jakub M. Tomczak, and Cheng Zhang, editors, Advances in Neural Information Processing Systems
38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver,
BC, Canada, December 10 - 15, 2024, 2024. URL http://papers.nips.cc/paper_files/
paper/2024/hash/6f244818d72b2a4be9b1225d1344e950-Abstract-Conference.html.

Steven C. H. Hoi, Doyen Sahoo, Jing Lu, and Peilin Zhao. Online learning: A comprehensive
survey. Neurocomputing, 459:249–289, 2021. doi:10.1016/J.NEUCOM.2021.04.112. URL
https://doi.org/10.1016/j.neucom.2021.04.112.

Thorsten Joachims. Transductive inference for text classification using support vector machines. In
Ivan Bratko and Saso Dzeroski, editors, Proceedings of the Sixteenth International Conference
on Machine Learning (ICML 1999), Bled, Slovenia, June 27 - 30, 1999, pages 200–209. Morgan
Kaufmann, 1999.

Sham M. Kakade and Adam Kalai. From batch to transductive online learning. In
Advances in Neural Information Processing Systems 18 [Neural Information Process-
ing Systems, NIPS 2005, December 5-8, 2005, Vancouver, British Columbia, Canada],
pages 611–618, 2005. URL https://proceedings.neurips.cc/paper/2005/hash/
17693c91d9204b7a7646284bb3adb603-Abstract.html.

Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm. Mach. Learn., 2(4):285–318, 1987. doi:10.1007/BF00116827. URL https://doi.
org/10.1007/BF00116827.

Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learn-
ing: From Theory to Algorithms. Cambridge University Press, 2014.
ISBN 978-1-10-705713-5. URL http://www.cambridge.org/de/academic/
subjects/computer-science/pattern-recognition-and-machine-learning/
understanding-machine-learning-theory-algorithms.

Vladimir N. Vapnik. Estimation of Dependencies Based on Empirical Data. Nauka, Moscow, 1979.
URL https://www.ipu.ru/node/63854/publications. In Russian.

Vladimir N. Vapnik. Estimation of Dependences Based on Empirical Data. Springer, 2nd edition,
2006. ISBN 978-0-387-30865-4. doi:10.1007/0-387-34239-7. URL https://doi.org/10.
1007/0-387-34239-7.

Xiaojin Zhu. Semi-supervised learning literature survey. Technical report, Department of Computer
Sciences, University of Wisconsin–Madison, 2005.

12

https://doi.org/10.4230/LIPICS.STACS.2013.185
https://doi.org/10.4230/LIPIcs.STACS.2013.185
https://doi.org/10.4230/LIPIcs.STACS.2013.185
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=243&proceeding_id=14
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=243&proceeding_id=14
http://proceedings.mlr.press/v99/gopfert19a.html
http://papers.nips.cc/paper_files/paper/2023/hash/3e32af2df2cd13dfbcbe6e8d38111068-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/3e32af2df2cd13dfbcbe6e8d38111068-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/6f244818d72b2a4be9b1225d1344e950-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/6f244818d72b2a4be9b1225d1344e950-Abstract-Conference.html
https://doi.org/10.1016/J.NEUCOM.2021.04.112
https://doi.org/10.1016/j.neucom.2021.04.112
https://proceedings.neurips.cc/paper/2005/hash/17693c91d9204b7a7646284bb3adb603-Abstract.html
https://proceedings.neurips.cc/paper/2005/hash/17693c91d9204b7a7646284bb3adb603-Abstract.html
https://doi.org/10.1007/BF00116827
https://doi.org/10.1007/BF00116827
https://doi.org/10.1007/BF00116827
http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms
http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms
http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms
https://www.ipu.ru/node/63854/publications
https://doi.org/10.1007/0-387-34239-7
https://doi.org/10.1007/0-387-34239-7
https://doi.org/10.1007/0-387-34239-7

Xiaojin Zhu. Semi-supervised learning. In Claude Sammut and Geoffrey I. Webb, editors, Encyclo-
pedia of Machine Learning, pages 892–897. Springer, 2010. doi:10.1007/978-0-387-30164-8_749.
URL https://doi.org/10.1007/978-0-387-30164-8_749.

Xiaojin Zhu and Andrew B. Goldberg. Introduction to Semi-Supervised Learning. Synthesis Lectures
on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers, 2009. ISBN
978-3-031-00420-9. doi:10.2200/S00196ED1V01Y200906AIM006. URL https://doi.org/
10.2200/S00196ED1V01Y200906AIM006.

13

https://doi.org/10.1007/978-0-387-30164-8_749
https://doi.org/10.1007/978-0-387-30164-8_749
https://doi.org/10.2200/S00196ED1V01Y200906AIM006
https://doi.org/10.2200/S00196ED1V01Y200906AIM006
https://doi.org/10.2200/S00196ED1V01Y200906AIM006

Technical Appendices and Supplementary Material

A Preliminaries

A.1 Basic Notation

Notation A.1. N = {1, 2, 3, . . .}, i.e., 0 /∈ N. log(·) and ln(·) denote logarithm to base 2 and e,
respectively.
Notation A.2 (Sequences). Let X be a set and n, k ∈ N. For a sequence x = (x1, . . . , xn) ∈ Xn,
we write x≤k to denote the subsequence (x1, . . . , xk). If k ≤ 0 then x≤k denotes the empty sequence,
which is also denoted by λ = X 0. We use the notation X≤n = ∪ni=0X i.

A.2 Standard Online Learning

Let X be a set, and letH ⊆ {0, 1}X be a collection of functions called a hypothesis class. A learner
strategy or simply learner for the standard online learning game (Game 1) is a function

L :
n−1⋃
i=0

(X × {0, 1})i ×X → {0, 1},

where n ∈ N is the number of rounds in the game. The set of all such learner strategies is denoted Ln.
An adversary strategy or simply adversary for the standard online learning game is a pair of functions

Ainstance :

n−1⋃
i=0

(X × {0, 1} × {0, 1})i → X , and

Alabel :

n−1⋃
i=1

(X × {0, 1} × {0, 1})i × {0, 1} → {0, 1}.

The set of all such adversary strategies is denoted An.

Semantically, the interpretation of these strategies is that in each round t ∈ [n] of Game 1, the
adversary selects an instance

xt = Ainstance(x1, ŷ1, y1, . . . , xt−1, ŷt−1, yt−1) ∈ X ,
then the learner makes a prediction

ŷt = L(x1, y1, . . . , xt−1, yt−1, xt) ∈ {0, 1},
and finally, the adversary assigns a label

yt = Alabel(x1, ŷ1, y1, . . . , xt−1, ŷt−1, yt−1, ŷt) ∈ {0, 1}.
The adversary’s function Alabel must satisfy realizability, meaning that there exists h ∈ H such that

∀t ∈ [n] : yt = h(xt).

The number of mistakes in a game with n rounds and hypothesis class H between learner L and
adversary A is

Mstd(H, n, L,A) = |{t ∈ [n] : ŷt ̸= yt}|.

A.3 Transductive Online Learning

Given X and H as in Section A.2, a learner strategy for the transductive online learning setting
(Game 2) is a function

L : Xn ×
n−1⋃
i=0

{0, 1}i → {0, 1},

where n ∈ N is the number of rounds in the game. An adversary strategy consists of a sequence
x ∈ Xn and an adversary labeling strategy, which is a function

A :

(
n−1⋃
i=0

{0, 1}2i
)
× {0, 1} → {0, 1}.

14

The sets of all such learner and adversary strategies are denoted Ln and An respectively.

Semantically, the interpretation of these strategies is that at the start of Game 2, the adversary selects
the sequence x. Then, in each round t ∈ [n], the learner makes a prediction

ŷt = L(x, y1, . . . , yt−1) ∈ {0, 1},
and then the adversary assigns a label

yt = A(ŷ1, y1, . . . , ŷt−1, yt−1, ŷt) ∈ {0, 1}.
Exactly as in Section A.2, the adversary’s function A must satisfy realizability, namely,

∃h ∈ H ∀t ∈ [n] : yt = h(xt),

and the number of mistakes in a game with sequence length n and hypothesis classH between learner
L and adversary A is

Mtr(H, n, L,A) = |{t ∈ [n] : ŷt ̸= yt}|.

A.4 Mistake Bounds

In this paper, we study optimal mistake bounds, or the optimal number of mistakes, which is the value
of Games 1 and 2. For M ∈ {Mstd,Mtr}, the optimal number of mistakes in a game with hypothesis
classH and sequence length n is,

M(H, n) = inf
L∈Ln

sup
A∈An

M(H, n, L,A).

The optimal number of mistakes for hypothesis classH is

M(H) = sup
n∈N

M(H, n).

Remark A.3. As is common in learning theory literature, in both Game 1 and Game 2, we take
the sets Ln and An to be the sets of all (deterministic) functions. In this paper, we do not consider
randomized strategies. By allowing arbitrary functions, we ignore issues relating to computability.

A.5 Trees

Definition A.4 (Notation for binary trees). Let d ∈ N ∪ {0}. A perfect binary tree of depth d is a
collection of 2d+1 − 1 nodes, which we identify with the collection of binary strings

Td =
{
{0, 1}k : k ∈ {0, 1, 2, . . . , d}

}
.

The empty string, denoted λ = {0, 1}0, is a member of Td and is called the root of the tree. Every
string u ∈ {0, 1}d is called a leaf. The depth of a node u ∈ Td, denoted |u|, is the length of u as a
string, namely, the integer k such that u ∈ {0, 1}k.

For two nodes u, v ∈ Td, we say that u is a parent of v, and that v is a child of u, if v = u ◦ 0 or
v = u ◦ 1, where ◦ denotes string concatenation. More fully, for b ∈ {0, 1}, we say that v is a b-child
of u if v = u ◦ b.
Recursively, we define that u is an ancestor of v and that v is a descendant of u, and write u ≼ v, if
one of the following holds:

• u = v, or

• ∃w ∈ Td ∃b ∈ {0, 1} : (u ≼ w) ∧ (w ◦ b = v).

For b ∈ {0, 1}, we say that v is a b-descendant of u, denoted u ≼b v, if v is a descendant of the
b-child of u.

A function f : Td → {0, 1} specifies a particular root-to-leaf path in the tree Td (see Figure 1). The
on-path nodes for f are the set of d+ 1 nodes on that root-to-leaf path, as in the following definition.

15

Definition A.5 (Paths in a binary tree). Let d, k ∈ N, k ≤ d. Let u ∈ {0, 1}k be a node in Td.
The path to u is the unique sequence path(u) = (u0, u1, u2, . . . , uk) such that u0 = λ is the root,
uk = u, and ui is a child of ui−1 for all i ∈ [k].

Let f : Td → {0, 1} be a function. The path of f is the unique sequence path(f) =
(u0, u1, u2, . . . , ud) such that u0 = λ is the root, and for each i ∈ [d], ui = ui−1 ◦ f(ui−1).
Namely, ui is the f(ui−1)-child of ui−1.

For a node v ∈ Td and a function f : Td → {0, 1}, we write v ∈ path(f) if path(f) = (u0, . . . , ud)
and there exists i ∈ {0, . . . , d} such that ui = v. Otherwise, we write v /∈ path(f).

For a node v ∈ Td and a set of functions F ⊆ {0, 1}Td , we write v ∈ path(F) if

∀f ∈ F : v ∈ path(f).

Otherwise, we write u /∈ path(F).

A.6 Littlestone Dimension

Definition A.6 (Littlestone, 1987). Let X be a set, let H ⊆ {0, 1}X , and let d ∈ N ∪ {0}. We say
thatH shatters the binary tree Td if there exists a mapping Td → X given by u 7→ xu such that for
every u ∈ {0, 1}d+1 there exists hu ∈ H such that

∀i ∈ [d+ 1] : h(xu≤i−1
) = ui.

The Littlestone dimension of H, denoted LD(H), is the supremum over all d ∈ N such that there
exists a Littlestone tree of depth d− 1 that is shattered byH.

Note that by defining the Littlestone dimension this way, every class with Littlestone dimension
d ∈ N contains at least 2d functions.

0

1

0

1

0

1

0

1

0

1

1

0

1

0
xλ

x0

x1

x00

x01

x10

x11

∃h ∈ H :
h(xλ) = 1

h(x1) = 0

h(x10) = 1

Figure 2: A shattered Littlestone tree of depth 2. The empty sequence is denoted by λ.
(Source: Bousquet et al., 2021)

Theorem A.7 (Littlestone, 1987). Let X be a set and letH ⊆ {0, 1}X such that d = LD(H) <∞.
Then there exists a strategy for the learner that guarantees that the learner will make at most d
mistakes in the standard (non-transductive) online learning setting, regardless of the adversary’s
strategy and of the number n of instances to be labeled. Furthermore, there exists an adversary that
forces every learner to make at least min {n, d} mistakes.

B Lower Bound

B.1 Statement

Our Ω
(√

d
)

lower bound states the following.

Theorem B.1 (Lower bound). There exists a constant d0 ≥ 0 as follows. Let d ∈ N, d ≥ d0, let X
be a set, and let H ⊆ {0, 1}X be a hypothesis class with LD(H) = d. Then there exist a sequence

16

x ∈ Xn of length n = O
(
d · 2

√
d
)

and an adversary A that always selects the sequence x and uses
a simple adaptive labeling strategy (as in Algorithm 1), such that for every learning rule L,

Mtr(H, n, L,A) ≥
√
d/10. (3)

Furthermore, for every integer n ∈ N,

Mtr(H, n) ≥ min
{√

d/10, ⌊log(n+ 1)⌋
}
. (4)

Remark B.2. The assumption LD(H) = d implies that for all k ∈ [d],H shatters a Littlestone tree
of depth k. Thus, the lower bound of Eq. (3) in Theorem B.1 immediately implies that for every
k ∈ [d] there exists a sequence x(k) ∈ Xnk of length nk = O

(
k · 2

√
k
)

such that the adversary Ak

that presents the sequence x(k) and assigns labels using the simple labeling strategy of Algorithm 1
ensures that for every learner L,

Mtr(H, nk, L,Ak) ≥
√
k/10.

See Section 2.2 for a general overview of Theorem B.1 and the main proof ideas. In the following
subsections we prove Theorem B.1. Algorithm 1 gives an explicit construction of the adversary that
witnesses the lower bound, using Algorithm 2 as a subroutine. We start with presenting some initial
observations about the behavior of these algorithms in Section B.2.

Assumptions:

• d ∈ N, ε = 2−
√
d/2.

• T = Td is a perfect binary tree of depth d.
• H ⊆ {0, 1}T is a class that shatters T .

TRANSDUCTIVEADVERSARY (H):

(x1, x2, . . . , xn)← CONSTRUCTSEQUENCE (H) ▷ See Algorithm 2.

send (x1, x2, . . . , xn) to learner

H0 ← H
for t ∈ [n]:

receive ŷt from learner

rt ←
|{h ∈ Ht−1 : h(xt) = 1}|

|Ht−1|
ymaj ← 1(rt ≥ 1/2)

yt ←
{

ymaj rt /∈ [ε, 1− ε]
1− ŷt otherwise

send yt to learner

Ht ← {h ∈ Ht−1 : h(xt) = yt}

Algorithm 1: The strategy for the adversary that achieves the lower bound in Theorem B.1. Note that
while the construction of the sequence x is not entirely trivial, the adversary’s strategy for labeling
this sequence is very simple.

B.2 Analysis of the Adversary

Claim B.3. Let d ∈ N, let M =
√
d/10, and letH ⊆ {0, 1}Td be a hypothesis class. Consider an

execution of CONSTRUCTSEQUENCE (H) as in Algorithm 2 that produces a sequence x1, x2, . . . , xn.
Then:

17

Assumptions:

• d ∈ N, M =
√
d/10, ε = 2−

√
d/2.

• T = Td is a perfect binary tree of depth d.
• λ, the empty string, is the root of T .
• H ⊆ {0, 1}T is a class that shatters T .

CONSTRUCTSEQUENCE (H):

Hλ ← H
H0 ← {Hλ} ▷ A set of classes indexed by bit strings.

Q ← {λ} ▷ A set of nodes to be processed.

t← 0

while |Q| > 0:

t← t+ 1

xt ← arbitrary element from Q ▷ Pop an arbitrary element from Q
and add it to the output sequence.Q ← Q \ {xt}

Ht ← ∅
for Hb ∈ Ht−1:

r ← |{h ∈ Hb : h(xt) = 1}|
|Hb|

Y ←
{
{0, 1}

(
r ∈ [ε, 1− ε]

)
∧
(
|b| < M

)
{1(r ≥ 1/2)} otherwise ▷ Adversary will force

mistakes on the first
M balanced nodes.

for y ∈ Y:

b′ ←
{

b |Y| = 1
b ◦ y |Y| = 2

▷ Restrict class to agree with y. If split-
ting the class in two to force a mis-
take then create new indices.Hb′ ← {h ∈ Hb : h(xt) = y}

Ht ← Ht ∪ {Hb′}
if xt ∈ path(Hb′) ∧ |xt| < d: ▷ If xt is on-path for Hb′ and it has a

y-child, add that child to Q.Q ← Q∪ {xt ◦ y}

return (x1, x2, . . . , xt)

Algorithm 2: A subroutine of Algorithm 1 for selecting the sequence x.

(a) For all i ∈ [n], path(xi) is a subsequence of x0, x1, . . . , xi.

(b) The length n of the sequence satisfies n < nd, where nd = (d+ 1) · 2M+1.

Proof.

(a) Fix i ∈ [n]. It suffices to show that for all u ∈ Td, if u ≼ xi then u ∈ (x1, x2, . . . , xi).
Proceed by induction on i. For the base case i = 1, the claim holds because x1 = λ.

For the induction step, assume the claim holds for i ∈ [n− 1]. Let u ≼ xi+1, we prove that
u ∈ (x1, x2, . . . , xi+1). Assume xi+1 ̸= λ (otherwise, there is nothing to prove).

18

Because xi+1 appears in the sequence x, it must have been added toQ before it was added to
x. The only place where items that are not λ are added toQ is in the lineQ ← Q∪{xt ◦ y}.
Namely, there exist an index j ∈ [i] and a bit y ∈ {0, 1} such that xi+1 = xj ◦ y (note
that j < i + 1 because xj was added to the sequence before xi+1). If xj = u we are
done. Otherwise, note that xj is the parent of xi+1, and therefore u ≼ xj . By the induction
hypothesis, u ∈ (x1, x2, . . . , xj). This concludes the proof.

(b) Items are added to the sequence x only if they were previously added to Q. By induction
on i ∈ [n], for each xi in the sequence, there is at most one iteration of the “while |Q| > 0”
loop in which xi is added to Q. The base case i = 1 holds because x1 = λ is the root, which
is added to Q before the while loop, and λ is never added to Q within that loop because the
line “Q ← Q∪ {xt ◦ y}” can only add non-empty bit strings. For the induction step, if the
claim holds for all natural numbers j such that 1 ≤ j < i ≤ n then it holds for i. Indeed, for
i ≥ 2, xi can be added to Q only via the line “Q ← Q∪ {xt ◦ y}”, and only in the iteration
of the while loop where xt is the parent of xi in the tree Td. In that iteration, the parent xt of
xi is popped from Q, which implies that xt was added to Q in some previous iteration of the
while loop (t < i), and is no longer in Q after being popped. By the induction hypothesis,
xt will never be added to Q again, and therefore in all subsequent iterations of the while
loop xt will not be the parent of xi, so xi cannot be added to Q in subsequent iterations via
the line “Q ← Q∪ {xt ◦ y}”.

Furthermore, if a node xi is added to Q in some iteration of the while loop, then it remains
in Q for the duration of that iteration. So for all i ∈ {2, 3, . . . , n}, there is precisely one
execution of the line “Q ← Q∪ {xt ◦ y}” that adds xi to Q. Namely, there is precisely one
point in time during the execution of Algorithm 2 in which xi = xt ◦ y, xi /∈ Q, and the
line “Q ← Q∪ {xt ◦ y}” is executed resulting in xi ∈ Q.

Consider a function f that maps i ∈ {2, 3, . . . , n} to the value of the index b′ during the
unique execution of the line “Q ← Q∪ {xt ◦ y}” that adds xi to Q. Namely, if b′ had some
value β when xi was added to Q, then f(i) = β.

Notice that “Q ← Q∪{xt◦y}” is executed only if the condition xt ∈ path(Hb′) is satisfied
in the previous line. Furthermore, the line “Hb′ ← {h ∈ Hb : h(xt) = y}” ensures that the
node xi = xt ◦ y being added to Q satisfies xt ◦ y ∈ path(Hb′), namely

∀h ∈ Hb′ : xi ∈ path(h).

Consequently, xi ∈ path(G) for any class G that is a subset ofHb′ ; in particular, because
the only way that Hb′ might be modified later during the execution of Algorithm 2 is by
removing elements, it follows that xi ∈ path(Hb′) when the line “Q ← Q∪ {xt ◦ y}” is
executed and in all subsequent times.

However, |path(G)| = d+ 1 for any class G ⊆ {0, 1}Td . This implies that f maps at most
(d+ 1) nodes to each bit string. In other words, for any bit string b, the size of the preimage
satisfies |f−1(b)| ≤ d+ 1.

The condition “|b| < M” in Algorithm 2 ensures that |b′| ≤ M , namely, b′ ∈ {0, 1}k for
k ∈ {0, 1, 2, . . . ,M}. Thus,

n = 1 + |{2, 3, . . . , n}|
= 1 +

∑
b∈{0,1}k

k∈{0,...,M}

|{i ∈ {2, 3, . . . , n} : f(i) = b}|

= 1 +
∑

b∈{0,1}k

k∈{0,...,M}

|f−1(b)|

≤ 1 +
∑

b∈{0,1}k

k∈{0,...,M}

(d+ 1)

≤ 1 + (d+ 1) · (2M+1 − 1).

< (d+ 1) · 2M+1,

19

as desired.

Claim B.4. Let d ∈ N, let M =
√
d/10, and letH ⊆ {0, 1}Td be a hypothesis class. Consider an

execution of TRANSDUCTIVEADVERSARY (H) as in Algorithm 1. Let

H0,H1, . . . ,Hn

be the sequence of hypothesis classes created by TRANSDUCTIVEADVERSARY, let

S =
{
t ∈ [n] : rt ∈ [ε, 1− ε]

}
be the set of indices where TRANSDUCTIVEADVERSARY forces a mistake, and let

H0,H1, . . . ,Hn

be the sequence of collections created by the subroutine CONSTRUCTSEQUENCE (Algorithm 2). If
|S| ≤M then

∀t ∈ {0, 1, . . . , n} : Ht ∈ Ht.

Proof. Proceed by induction on t ∈ {0, 1, . . . , n}. The base case t = 0 is satisfied, because
H0 = H ∈ {H} = H0. For the induction step, assume that Hi−1 ∈ Hi−1 for some i ∈ [n]. We
prove thatHi ∈ Hi.

Let yi be the label assigned to xi by TRANSDUCTIVEADVERSARY. Then

Hi = {h ∈ Hi−1 : h(xi) = yi}.
Consider the iteration of the while loop in CONSTRUCTSEQUENCE that starts with t ← i. By the
induction hypothesis,Hi−1 ∈ Hi−1. Therefore, in this iteration of the while loop, there will be an
iteration of the “forHb ∈ Ht−1” loop whereHb = Hi−1. In that iteration, yi ∈ Y by construction of
yi and Y . Therefore, in the iteration of the “for y ∈ Y” loop in which y = yi,

Hb′ = {h ∈ Hb : h(xt) = y} = {h ∈ Hi−1 : h(xi) = yi} = Hi.

The class Hb′ is then added to Hi = Ht in the line “Ht ← Ht ∪ {Hb′}”. Furthermore, no class is
ever removed from Ht. SoHi ∈ Hi, as desired.

Claim B.5. Let d ∈ N, let M =
√
d/10, and letH ⊆ {0, 1}Td be a hypothesis class. Consider an

execution of TRANSDUCTIVEADVERSARY (H) as in Algorithm 1 where the adversary constructs a
sequence of nodes x1, x2, . . . , xn ∈ Td and a sequence of classesH0,H1, . . . ,Hn ⊆ {0, 1}Td . Let

S =
{
t ∈ [n] : rt ∈ [ε, 1− ε]

}
be the set of indices where TRANSDUCTIVEADVERSARY forces a mistake, and assume that |S| ≤M .
Then for all k ∈ {0, 1, . . . , d} there exists i ∈ [n] such that

1. |xi| = k, and

2. xi ∈ path(Hi−1),

Proof. Proceed by induction on k. For the base case k = 0, notice that x1 = λ, |λ| = 0, and
λ ∈ path(H−1).

For the induction step, assume the claim holds for some k ∈ {0, 1, . . . , d − 1}, and take ik ∈ [n]
such that |xik | = k and xik ∈ path(Hik−1); we prove that the claim holds for k + 1 as well.

Consider the iteration of the while loop in CONSTRUCTSEQUENCE in which xik is added to the
sequence (i.e., the iteration starting with t ← ik). By Claim B.4 and the assumption |S| ≤ M ,
Hik−1 ∈ Hik−1. Hence, within this iteration of the while loop, there is an iteration of the “for
Hb ∈ Ht−1” loop such that Hb = Hik−1. By construction, the set Y always contains the label
predicted by the adversary, so yik ∈ Y . Consider the iteration of the “for y ∈ Y” loop such that
y = yik . By the induction hypothesis, xi ∈ path(Hik−1), and sinceHb′ ⊆ Hb = Hik−1, it follows
that xik ∈ path(Hb′). Seeing as |xik | < d, in the last line of this iteration of the “for y ∈ Y” loop,
the node xik+1

:= xik ◦ yik is added toQ. This guarantees that xik+1
will eventually be popped from

20

Q and added to the sequence returned by CONSTRUCTSEQUENCE. Once a node has been added to
the sequence, it is never removed.

Notice that |xik+1
| = |xik | + 1 = k + 1, satisfying Item 1. Therefore, it remains to show Item 2,

namely, to show that xik+1
∈ path

(
Hik+1−1

)
.

Indeed, by the induction hypothesis, xi ∈ path(Hik−1), and in the iteration of the “for y ∈ Y”
discussed above,Hb = Hik−1,Hb′ = Hik , andHb′ = {h ∈ Hb : h(xik) = yik}. Hence,

∀h ∈ Hik : xik ∈ path(h) ∧ h(xik) = yik .

Seeing as xik+1
= xik ◦ yik This implies that

∀h ∈ Hik : xik+1
∈ path(h).

Item 2 follows from the inclusionHik+1−1 ⊆ Hik .

B.3 Proof

Finally, we complete the proof of the lower bound.

Proof of Theorem B.1. Fix d0 = 800 and assume d ≥ d0. Seeing as LD(H) = d,H shatters the tree
Td. By replacing H with a suitable subset of H of cardinality 2d+1, renaming the elements in the
domain ofH to nodes of Td, and restricting the domain of each function inH to Td, assume without
loss of generality thatH ⊆ {0, 1}Td , |H| = 2d+1, andH shatters Td.

Consider the loop “for t ∈ [n]” in Algorithm 1, and let

S = {s1, s2, . . . , sm} =
{
t ∈ [n] : rt ∈ [ε, 1− ε]

}
be the set of indices where the adversary forces a mistake, such that the learner makes at least m = |S|
mistakes. Let M =

√
d/10, and assume for contradiction that m ≤M .

By Claim B.5, there exists t ∈ [n] such that |xt| = d (i.e., xt is a leaf in Td) and xt ∈ path(Ht−1),
namely,

∀h ∈ Ht−1 : xt ∈ path(h).

Seeing as xt is a leaf,
∀h ∈ Ht−1 : path(xt) = path(h). (5)

By construction,
Ht ⊆

{
h ∈ H : (∀i ∈ [t] : h(xi) = yi)

}
,

andHt is not empty. Fix some h∗ ∈ Ht ⊆ Ht−1. By Item (a) in Claim B.3, path(xt) = path(h∗)
is a subsequence of x1, x2, . . . , xt, so

∀h ∈ Ht ∀x ∈ path(h∗) : h(x) = h∗(x).

Seeing asH shatters Td and |H| = 2k+1, if two functions h, h∗ ∈ H agree on the labels for all nodes
in path(h∗), then h = h∗. We conclude thatHt = {h∗} and |Ht| = 1.

Consider the loop “for t ∈ [n]” in Algorithm 1. For each t ∈ [n],

|Ht| ≥
{
ε · |Ht−1| t ∈ S

(1− ε) · |Ht−1| t /∈ S.

Hence,

1 = |Ht|
≥ εm · (1− ε)n−m · |H0|
= εm · (1− ε)n−m · 2d+1

≥ εm · (1− ε)n · 2d+1

≥ εm · (1− ε)nd · 2d+1 (by Item (b) in Claim B.3.)

≥ εm · 2d = 2−m
√
d/2+d, (6)

21

where the final line holds because ε = 2−
√
d/2, nd = (d+ 1) · 2

√
d/10+1, and

(1− ε)
nd =

(
1− 2−

√
d/2
)(d+1)·2

√
d/10+1

≥ 1

2

for our choice of d ≥ 800. Rearranging Eq. (6) yields

2
√
d ≤ m.

This is a contradiction to the assumption m ≤ M =
√
d/10. We conclude that an adversary A

following Algorithm 1 satisfies

inf
L∈Ln

Mtr(H, n, L,A) ≥ m > M =
√
d/10, (7)

as desired.

To establish the “furthermore” part of the theorem, fix a length n ∈ N. Let k be the largest integer
such that 2⌈

√
k/10⌉ ≤ n+1 and k ≤ d. By Eq. (7), there exists some sequence on which the adversary

can force every learning rule to make at least
⌈√

k/10
⌉

mistakes. By Theorem C.2, this implies that

there exists a sequence of length 2⌈
√
k/10⌉ − 1 ≤ n on which the adversary can force every learning

rule to make at least
⌈√

k/10
⌉
= min

{⌈√
d/10

⌉
, ⌊log(n+ 1)⌋

}
mistakes. Namely,

Mtr(H, n) ≥ min
{⌈√

d/10
⌉
, ⌊log(n+ 1)⌋

}
,

as in Eq. (4).

C Sequence Length

In this section, we show that if there exists a sequence on which the adversary can force M mistakes,
then a sequence of length 2M − 1 is sufficient, and this upper bound is tight for some classes.19

Definition C.1 (Minimal sequence). Let X be a set, letH ⊆ {0, 1}X be a class, and let M ∈ N.

The minimal sequence length for forcing M mistakes for the classH, denoted MinLen(H,M) is

MinLen(H,M) = inf {n ∈ N : (∃x ∈ Xn : Mtr(H, x) ≥M)}.
In words, MinLen(H,M) is the smallest integer n for which there exists a sequence of length
n on which the adversary can force at least n mistakes; if no such sequence exists, then
MinLen(H,M) =∞.

Theorem C.2 (Minimal sequence bound). Let X be a set, and fix M ∈ N. Then for any class
H ⊆ {0, 1}X , if MinLen(H,M) <∞ then

MinLen(H,M) ≤ 2M − 1.

Furthermore, there exists a classH ⊆ {0, 1}X for which MinLen(H,M) = 2M − 1.

Theorem C.2 is a corollary of the tree rank characterization of Mtr from Ben-David et al. (1997).
For completeness, we present a direct proof of Theorem C.2 that does not directly invoke that
characterization. Roughly, given an adversary A0 that forces every learner to make at least M
mistakes on a (possibly long) sequence x, we apply two modifications to obtain new adversaries

A0 ⇝ A1 ⇝ A2.

A1 forces M mistakes and has a specific structure that we call ‘rigidity’, but it still uses the same
(possibly long) sequence x. Capitalizing on the rigid structure, A2 selects a subsequence of x of
length at most 2M − 1, and forces M mistakes on that subsequence.

19Of course, there also exist classes for which a shorter sequence is sufficient. For instance, if the class shatters
(in the VC sense) a subset of the domain of cardinality M , then a sequence of length M suffices.

22

C.1 Rigid Adversary

Definition C.3 (Rigid adversary). Let n ∈ N, let X be a set, and let

A :

(
n−1⋃
k=0

{0, 1}2k
)
× {0, 1} → {0, 1}

be an adversary strategy for some fixed sequence x ∈ Xn. We say that A is rigid if there exists a
function

f :

n−1⋃
k=0

{0, 1}k → {0, 1, ⋆}

such that for all k ∈ {0, 1, . . . , n− 1} and all y, ŷ ∈ {0, 1}k,

A(ŷ1, y1, . . . , ŷk, yk, ŷk+1) =

{
f(y1, . . . , yk) f(y1, . . . , yk) ∈ {0, 1}
1− ŷk+1 f(y1, . . . , yk) = ⋆

.

Note that if an adversary is rigid, then the function f that witnesses this is uniquely determined.
Claim C.4 (Rigid adversary exists). Let n,M ∈ N, let X be a set, let x ∈ Xn, and letH ⊆ {0, 1}X
be a class. Let A be an adversary strategy that forces every learner to make at least M mistakes on x.
Then there exists an adversary strategy A∗ such that:

1. A∗ forces every learner to make at least M mistakes on x and A∗ is rigid.

2. Let f be the function that witnesses the rigidity of A∗. Then for every y ∈ {0, 1}n, the
sequence

f(y≤0), f(y≤1), f(y≤2), . . . , f(y),

has at least M members equal to ⋆.

Proof of Claim C.4. For Item 1, consider the adversary strategy A∗ that simulates an execution of A,
as in Algorithm 3. In broad strokes, A∗ functions as a middle-man between the learner and A. As
the learner makes a sequence of predictions ŷ ∈ {0, 1}n, the adversary A∗ generates a sequence of
(possibly different) predictions ỹ ∈ {0, 1}n, and sends those to the adversary A. Adversary A sees
only the predictions ỹ, and assigns labels y ∈ {0, 1}n, which are relayed back to the learner by A∗

with no modifications.

First, observe that A∗ satisfies the realizability requirement. Indeed, A∗ simulates an execution of A
such that the sequence of labels y1, . . . , yn sent by A∗ to the learner is exactly the sequence of labels
selected by A. Seeing as A is realizable, every sequence of labels selected by A is realizable, and
therefore every sequence of labels selected by A∗ must be realizable as well.

Second, observe that A∗ forces every leaner to make at least M mistakes. To see this, notice that in
Algorithm 3, ∑

t∈[n]

1(ỹt ̸= yt) ≥M. (8)

Indeed, A forces every learner to make at least M mistakes, and in particular this applies to a learner
that makes predictions ỹ as in the simulation. Furthermore, observe that A∗ only alters the predictions
it receives from the learner in cases when it selects a label that is accepted by A, namely,

∀t ∈ [n] : ỹt ̸= ŷt =⇒ ỹt = yt. (9)

Therefore, if E = {t ∈ [n] : ỹt = ŷt}, then∑
t∈[n]

1(ỹt ̸= yt) =
∑
t∈E

1(ỹt ̸= yt) +
∑

t∈[n]\E

1(ỹt ̸= yt)

=
∑
t∈E

1(ỹt ̸= yt) + 0 (By Eq. (9))

=
∑
t∈E

1(ŷt ̸= yt) (Defintion of E)

23

Assumptions:

• n ∈ N, X is a set, x ∈ Xn is a fixed sequence of instances.

• A :
(⋃n−1

k=0 {0, 1}2k
)
× {0, 1} → {0, 1} is an adversary labeling strategy for x.

RIGIDADVERSARY:

send x1, . . . , xn to the learner

for t = 1, 2, . . . , n:

receive prediction ŷt from learner

if A(ỹ1, y1, . . . , ỹt−1, yt−1, 0) = 0:
ỹt ← 0

else if A(ỹ1, y1, . . . , ỹt−1, yt−1, 1) = 1:
ỹt ← 1

else:
ỹt ← ŷt

send prediction ỹt to A

receive label yt from A

send label yt to learner

Algorithm 3: Construction of a rigid adversary, by simulating a given adversary A.

≤
∑
t∈[n]

1(ŷt ̸= yt). (10)

Combining Eqs. (8) and (10) implies that A forces at least M mistakes.

Third, we show that A∗ is rigid. We claim that there exists a function g : {0, 1}≤n−1 → {0, 1}≤n−1

such that for every t ∈ {0, 1, 2, . . . , n− 1},
(ỹ1, . . . , ỹt) = g(y1, . . . , yt).

Proceed by induction on t. For the base case t = 0 there is nothing to prove. For the induction step,
we assume the claim holds for some t = k < n − 1, and show that it holds for t = k + 1. From
Algorithm 3, ỹk+1 satisfies

ỹk+1 =

{
0 A(ỹ1, y1, . . . , ỹk, yk, 0) = 0
1 A(ỹ1, y1, . . . , ỹk, yk, 0) = A(ỹ1, y1, . . . , ỹk, yk, 1) = 1
1− yk+1 otherwise

. (11)

The first two cases in Eq. (11) are immediate from Algorithm 3, and the remaining case occurs when
A forces a mistake at time k+1, namely, when A selects yk+1 = 1− ỹk+1. Thus, ỹk+1 is a function
of y≤k+1 and ỹ≤k. By the induction hypothesis, ỹ≤k = g(y≤k), so ỹk+1 is simply a function of
y≤k+1. This establishes the existence of the desired function g.

Hence, A∗ is rigid, as witnessed by the function

f(y1, . . . , yk) =

{
0 A(ỹ1, y1, . . . , ỹk, yk, 0) = 0
1 A(ỹ1, y1, . . . , ỹk, yk, 0) = A(ỹ1, y1, . . . , ỹk, yk, 1) = 1
⋆ otherwise

,

where f is a well-defined function because ỹ≤k = g(y≤k).

We have seen that A∗ is a valid (realizable) adversary that forces every learner to make at least M
mistakes, and it is rigid. This concludes the proof of Item 1.

Finally, For Item 2, note that ỹt ̸= yt only if A forces a mistake at time t in the sense that A selects
yt = 1− b for any prediction b ∈ {0, 1} provided at time t. If A forces a mistake at time t, then A∗

forces a mistake at time t as well. Therefore, if ỹt ̸= yt, then f(y<t) = ⋆, namely, ỹt makes mistakes
only when the value of f is ⋆. By Eq. (8), ỹt makes at least M mistakes throughout the game, so
there must be at least M rounds where f outputs ⋆, as desired.

24

C.2 Essential Indices

Definition C.5. Let n,M ∈ N, let X be a set, let x ∈ Xn, and let H ⊆ {0, 1}X be a class. Let A
be a rigid adversary strategy witnessed by function f . We say that an index t ∈ [n] is essential for
A for forcing M mistakes on x if there exists a sequence y ∈ {0, 1}t−1 such that f(y) = ⋆ and the
sequence

f(y≤0), f(y≤1), f(y≤2), . . . , f(y≤t−1)

contains at most M − 1 members equal to ⋆.

Claim C.6. Let n,M ∈ N, let X be a set, let x ∈ Xn, and let H ⊆ {0, 1}X be a class. Let A be
a rigid adversary strategy. Then [n] contains at most 2M − 1 indices that are essential for A for
forcing M mistakes on x.

Proof. For each essential index t ∈ [n], there exists a label sequence y ∈ {0, 1}t−1 that witnesses
that t is essential, as in Definition C.5. Each label sequence y is a witness for at most one index (the
index |y|+ 1), so it suffices to show that the set Y ⊆ {0, 1}≤n−1 of all witness label sequences is of
cardinality at most 2M − 1.

Think of Y as a collection of nodes in the binary tree Tn−1 (Definition A.4). By Definition C.5, if
y ∈ Y , then the collection of all ancestors of y in Y has cardinality∣∣{y≤i : i ∈ {0, 1, 2, . . . , |y| − 1}

}
∩ Y

∣∣ ≤M − 1.

Namely, Y is a subtree of depth at most d = M − 1 in the binary tree Tn−1.20 Hence, the number of
nodes in Y is at most

2d+1 − 1 = 2M − 1,

as desired.

C.3 Proof

Proof of Theorem C.2. If MinLen(H,M) <∞, then there exist a sequence x ∈ Xn, and an adver-
sary A0 that forces every learner to make at least M mistakes on x. By Claim C.4, there exists a rigid
adversary A1 that causes every learner to make at least M mistakes on x,21 and also satisfies Item 2
in Claim C.4. Let f be the function that witnesses the rigidity of A1. By Claim C.6, the set I ⊆ [n]
of indices that are essential for A1 for forcing M mistakes on x has cardinality k = |I| ≤ 2M − 1.

Algorithm 4 defines a new adversary, A2, which forces every learner to make at least M mistakes on
a sequence of length k. A2 is realizable, because A1 is realizable.22

To see that adversary A2 forces every learner to make at least M mistakes, let y1, . . . , yn be the
sequence of labels assigned by A2. Seeing as A2 assigns the same labels as A1, and A1 satisfies
Item 2 in Claim C.4, it follows that there are at least M indices j ∈ [n] such that f(y≤j−1) = ⋆. Fix
J ⊆ [n] to be the first M such indices. Then J ⊆ I , namely, all the indices in J are essential for A1

for forcing M mistakes on x (Definition C.5).

Therefore, for each j ∈ J , A2 includes the instance xj in the sequence of length k sent to the learner.
Then, in round j of the n rounds simulated by A2:

• The leaner makes a prediction ŷj ∈ {0, 1} corresponding to instance xj .

• Adversary A2 sends prediction ŷj to adversary A1. Because f(y≤j−1) = ⋆, adversary A1

assigns the label yj = 1− ŷj . Adversary A2 then sends that label yj to the learner. So the
learner makes a mistake on xj .

Hence, the learner makes at least |J | = M mistakes, as desired.

20The depth of a subtree is s if the longest root-to-node path contains s+ 1 nodes from the subtree.
21This is Item 1 in Claim C.4.
22The argument for realizability is the same as in the proof of Claim C.4.

25

Assumptions:

• n,M ∈ N, X is a set, x ∈ Xn is a fixed sequence of instances.

• A1 :
(⋃n−1

k=0 {0, 1}2k
)
× {0, 1} → {0, 1} is a rigid adversary labeling strategy

for x that forces every learner to make at least M mistakes on the sequence x, and
satisfies Items 1 and 2 in Claim C.4.

• I = {i1, i2, . . . , ik} ⊆ [n] is the set of indices that are essential for A for forcing
M mistakes on x, and i1 ≤ i2 ≤ · · · ≤ ik. By Claim C.6, k ≤ 2M − 1.

MINIMALADVERSARY:

send xi1 , xi2 , . . . , xik to the learner

for t = 1, 2, . . . , n:

if t ∈ I:
receive prediction ŷt from learner

send prediction ŷt to A1

receive label yt from A1

send label yt to learner

else:

send prediction ŷt = 0 to A1

receive label yt from A1

Algorithm 4: Construction of an adversary that forces M mistakes using a sequence x of length at
most 2M − 1. In the proof of Theorem C.2, this adversary is A2. Internally, it simulates a rigid
adversary A1.

D Upper Bound

D.1 Statement

The following result states that the lower bound of Theorem B.1 is tight for some classes.
Theorem D.1 (Upper bound, and separation between standard and transductive online learning).
For every integer d ≥ 43, there exists a hypothesis class H ⊆ {0, 1}X with a domain X of size
|X | = 2d − 1 such that LD(H) = d and the following two conditions hold for all n ∈ N:

1. Mtr(H, n) ≤ 48 ·
√
d.

2. Mstd(H, n) = min {n, d}.

D.2 Hypothesis Class

In this section we construct the hypothesis class for Theorem D.1.
Lemma D.2. Let d ∈ N, d ≥ 42. Let Td be a perfect binary tree of depth d, as in Definition A.4.
Then there exists a collection of functionsH ⊆ {0, 1}Td such that LD(H) = d+ 1 and the following
two conditions hold for all H ⊆ H and all X ⊆ Td:

1. If ∀h ∈ H ∀x ∈ X : x /∈ path(h) ∧ h(x) = 0, then min {|H|, |X|} < 22
√
d.

2. If ∀h ∈ H ∀x ∈ X : x /∈ path(h) ∧ h(x) = 1, then |H| < 22
√
d or |X| < 3

√
d.

The proof employs the probabilistic method, showing that a hypothesis class sampled randomly from
a suitable distribution has the desired properties with very high probability.

26

Proof. Let P be a probability distribution over hypothesis classes. Formally, P ∈
∆
(
({0, 1}Td)2

d+1
)

is a distribution over vectors of hypotheses. Each vectorH ∈ supp(P) consists

of 2d+1 hypotheses,
H = (hb)b∈{0,1}d+1 ,

where for each b ∈ {0, 1}d+1, hypothesis hb is a function hb : Td → {0, 1} sampled independently
as follows:

• For each i ∈ [d] ∪ {0}: hb(b≤i) = bi+1. (In particular, with probability 1, path(hb) =
(b≤0, b≤1, . . . , b≤d), each entry in the vectorH is unique, andH shatters Td.)

• For each x ∈ Td\path(hb), the bit hb(x) ∈ {0, 1} is sampled Ber
(
2−

√
d
)

independently of

all other bits inH, i.e., P[hb(x) = 1] = P[hb(x) = 1 | {hb′}b′ ̸=b, {hb(x
′)}x′ ̸=x] = 2−

√
d.

In words, for all nodes on the path in the tree corresponding to b, the function hb assigns a label
according to b, and for all other nodes, hb assigns a label of 1 with probability 2−

√
d, and a label of 0

otherwise. In particular, the collectionH Littlestone-shatters the tree Td.

Fix B ⊆ {0, 1}d+1 and X ⊆ Td, and let E(B,X, y) denote the event

{∀b ∈ B ∀x ∈ X : x /∈ path(hb) ∧ hb(x) = y}. (12)

Seeing as each off-path label hb(x) ∈ {0, 1} is sampled independently,

PH∼P [E(B,X, 0)] =
∏

(b,x)∈B×X

PH∼P [x /∈ path(hb) ∧ hb(x) = 0]

≤ (1− 2−
√
d)|B×X|. (13)

Hence,

PH∼P

[
∃B ⊆ {0, 1}d+1 ∃ X ⊆ Td : E(B,X, 0) ∧ min {|B|, |X|} ≥ 22

√
d
]

= PH∼P

[
∃B ⊆ {0, 1}d+1 ∃ X ⊆ Td : E(B,X, 0) ∧ |B| = |X| =

⌈
22

√
d
⌉]

≤
(|{0, 1}d+1|⌈

22
√
d
⌉)(|Td|⌈

22
√
d
⌉)(1− 2−

√
d)2

4
√

d

(union bound, Eq. (13))

<

(
2d+1

22
√
d + 1

)2

· (1− 2−
√
d)2

4
√

d

(22
√
d may not be an integer; for-

mally, we use the generalized bino-
mial coefficient, or simply skip to
the next line)

< 2
2·(d+1)·

(
22

√
d+1

)
· e−2−

√
d·24

√
d

(
(
n

k

)
< nk for k ≥ e; 1 + x ≤ ex for x ∈ R)

< 22·(d+2)·22
√

d · 2−2−
√

d·24
√

d

(22
√
d ≥ d+ 1 for d ≥ 0)

= 22
2
√

d·(2d+4−2
√

d)

< 2−22
√

d

. (2d+ 4− 2
√
d < −1 for d ≥ 42)

(14)

Similarly,

PH∼P [∀b ∈ B ∀x ∈ X : x /∈ path(hb) ∧ hb(x) = 1] ≤ 2−
√
d·|B×X|, (15)

so

PH∼P

[
∃B ⊆ {0, 1}d+1 ∃ X ⊆ Td : E(B,X, 0) ∧ |H| ≥ 22

√
d ∧ |X| ≥ 3

√
d
]

27

≤
(|{0, 1}d+1|⌈

22
√
d
⌉)(|Td|⌈

3
√
d
⌉) · 2−√

d·22
√

d·3
√
d (union bound, Eq. (15))

≤
(

2d+1

22
√
d + 1

)(
2d+1

3
√
d+ 1

)
· 2−3d·22

√
d

< 2
(d+1)·

(
22

√
d+1

)
· 2(d+1)·(3

√
d+1) · 2−3d·22

√
d

(
(
n

k

)
< nk for k ≥ e)

< 2
(d+1)·

(
22

√
d+3

√
d+2

)
· 2−3d·22

√
d

< 22d·2
2
√

d · 2−3d·22
√

d

(for d ≥ 4)

< 2−d2
√

d

. (16)

Applying a union bound to Eqs. (14) and (16) gives

PH∼P [H satisfies Items 1 and 2] ≥ 1− 2−22
√

d − 2−d2
√

d ≥ 1− 10−100.

In particular, there exists a collection H that satisfies Items 1 and 2. Furthermore, this collection
has LD(H) = d+ 1 (namely, LD(H) ≥ d+ 1 because it shatters Td; and LD(H) ≤ d+ 1 because
|H| = 2d+1).

D.3 Algorithm

In this section we describe Algorithms 5, 6a, and 6c, which together constitute the learning algorithm
that achieves the O

(√
d
)

mistake upper bound in the transductive setting, as in Theorem D.1. See
Section 2.3 for a general overview of these algorithms.

D.3.1 How Experts Work

We start with some preliminary remarks about experts in Algorithms 5, 6a, and 6c.

Experts. A tuple e = (S, u,H) defines an expert that can make predictions using the procedure
EXPERT.PREDICT(e, ·). The tuple e reflects two kinds of information:

1. Knowledge. Information that the expert knows with certainty. Specifically, this reflects the
labels y1, y2, . . . sent by the adversary so far. All experts see the labels sent by the adversary,
so this knowledge is the same for all experts.

2. Assumptions. At certain times, experts make assumptions about things that are not known
for certain. Specifically, experts assume that certain nodes x are on-path (x ∈ path(h))
or off-path (x /∈ path(h)) with respect to the correct labeling function h : Td → {0, 1}.
Assumptions are simply guesses that may be wrong, and therefore when an expert needs to
make such an assumption, it splits into two experts (as described below), with one expert
assuming x ∈ path(h), and the other expert assuming x /∈ path(h). This ensures that there
always exists an expert for which all assumptions are correct.

In greater detail, the contents of the state tuple e = (S, u,H) represents the knowledge and assump-
tions of the expert as follows:

◦ u ∈ Td – This single node encodes everything the expert knows and assumes about which of
the nodes labeled so far are on-path. Observe that if v1, v2, . . . , vk ∈ Td are nodes that are
assumed to be on-path (and all these assumptions are consistent), then these k assumptions
can be represented succinctly by assigning u = vi∗ where vi∗ is the deepest node among
v1, v2, . . . , vk. Therefore, u simply holds the deepest node in the tree that is known or
assumed to be on-path. At the start of the algorithm, this value is initialized to be u = λ,
because the root is known to be on-path regardless of the target function.

◦ S ⊆ Td – the ‘danger zone’, as described in Section 2.3.4. This is a collection that contains
all nodes in the prefix x≤tmax = (x1, x2, . . . , xtmax) of the sequence to be classified that
have not been labeled yet and might be on-path for the true labeling function h given what

28

the expert knows and assumes so far. However, S is not required to contain ancestors of
nodes that are assumed to be on-path. Initially, S equals the prefix x≤tmax . As information
accumulates, nodes that cannot be on-path are removed from S. For instance, if xi ∈ Td is
assigned label yi ∈ {0, 1} by the adversary, then any (1− yi)-descendant of xi (including
xi itself) may safely be removed from S.

◦ H ⊆ {0, 1}Td – the version space of the experts, i.e., the collection of all functions that could
be the correct labeling function given everything that the expert knows and assumes. Initially,
H contains all functions inH. As information accumulates, some functions are ruled out.
Specifically, a function h can be removed from H for two reasons: (i) the adversary assigns
a label y ̸= h(x) to some node x ∈ Td; (ii) the expert makes an assumption that some
x ∈ Td is on-path for the correct labeling function but x /∈ path(h), or vice versa, the expert
assumes that x is off-path for the correct labeling function but x ∈ path(h).

Updates and splits. An expert can be modified using the procedure
EXPERT.EXTENDEDUPDATE(e, ·, ·). This procedure either returns a single modified tuple
(S, u,H) (in the first two return statements in the procedure), in which case we think of the
expert as being updated; or alternatively, the procedure returns two tuples e∈ = (S∈, u∈, H∈) and
e/∈ = (S/∈, u/∈, H/∈) (in the third return statement), in which case we think of the expert as being
split into two experts. The expert e∈ corresponds to adding an assumption that the most recently
presented node xt is on-path for the correct labeling function, and e/∈ corresponds to adding the
opposite assumption.

Ancestry. At the end of each iteration of the outer ‘for’ loop in Algorithm 5, for each expert
e ∈ Et+1 there exists a unique ancestry sequence ancestry(e) = (e1, e2, . . . , et+1) such that
e1 = ({x1, . . . , xtmax}, λ,H) is the initial single expert that was created before the start of the outer
‘for’ loop, et+1 = e is the latest version of the expert, and for each i ∈ [t], the expert ei+1 was
created by an execution of EXPERT.BASICUPDATE(ei, ·, ·) possibly followed by an execution of
EXPERT.EXTENDEDUPDATE.23

D.4 Analysis

In this section we prove our main result, Theorem D.1.

D.4.1 Assumption-Consistent Expert

Occasionally, when an expert is updated, it makes an assumption about whether the most-recently
presented node xt is on-path or off-path with respect to the true labeling function h. In these
updates, the expert is split into two: one expert assumes that xt ∈ path(h), and the other assumes
xt /∈ path(h). Clearly, by splitting into two in this manner, we preserve the invariant that the set of
experts always contains a ‘vindicated’ expert e∗ such that all the assumptions made by e∗ are correct.
This simple observation is made formal in the following definition and claim.

Definition D.3 (Assumption consistency). For an expert e ∈ Et+1 with ancestry(e) =
(e1, e2, . . . , et+1), and an index i ∈ [t], we say that the i → (i + 1) update of e was assump-
tion-consistent with a function h : Td → {0, 1} if one of the following conditions holds:

• ei+1 = EXPERT.BASICUPDATE(ei, xi, yi); or

23Note that in this paper, we use genealogical metaphors in two distinct contexts that should not be confused.
First, as is customary, we use “child”, “parent”, “ancestor” and “descendant” to describe relations between
nodes in the binary tree Td, which constitutes the domain of our hypothesis class. Separately from that, we use
“ancestor” and “descendant” to describe relations between experts.

This overlap in terminology can partially be excused by the fact that the history of experts also forms a binary
tree. Indeed, initially there is a single expert (the root of the tree), and experts can split into two, corresponding
to a node having two children as in a binary tree. Seeing as experts cannot merge, the expert history corresponds
precisely to a binary tree. (However, the domain Td is a perfect binary tree, whereas the binary tree corresponding
to expert genealogy need not be balanced).

To reduce confusion, we use path(·) only for nodes in Td, and ancestry(·) only for experts, even though
these operators are mathematically equivalent (however, path(·) is defined not only for nodes in Td but also for
functions Td → {0, 1}).

29

Assumptions:
• d, n ∈ N, λ is the empty string.
• H ⊆ {0, 1}Td is the class that exists by Lemma D.2.
• x1, x2, . . . , xn ∈ Td are points to be classified.

TRANSDUCTIVELEARNER(H, d, (x1, x2, . . . , xn)):

t← 0, tmax ← 24
√
d

e← ({x1, . . . , xtmax}, λ,H) ▷ The initial expert. An expert is defined by a 3-tuple.
w(e)← 1 ▷ Assign the initial expert a weight of 1.
E1 ← {e} ▷ Et is the set of experts used for predicting ŷt.
E2, . . . , En, En+1 ← ∅
for t← 1, 2, . . . , n:

ŷt ← 1

(∑
e∈Et

w(S) · EXPERT.PREDICT(e, xt) ≥
1

2

)
▷

A weighted majority, using
Algorithm 6a.

send prediction ŷt to adversary

receive correct label yt ∈ {0, 1} from adversary

for e ∈ Et: ▷ Update the experts.

e← EXPERT.BASICUPDATE(e, xt, yt) ▷ Remove functions that disagree with
the label yt from the version space.

if EXPERT.PREDICT(e, xt) = yt:
Et+1 ← Et+1 ∪ {e} ▷ If expert e made a correct prediction,

no further update is needed.
else:

U ← EXPERT.EXTENDEDUPDATE(e, xt, yt) ▷ If e made a mistake,
update e using Algo-
rithm 6c. This might
cause e to be split into
two experts.

for e′ ∈ U :
Et+1 ← Et+1 ∪ {e′} ▷ Add updated expert(s) to Et+1.
w(e′)← w(e)/(2 · |U |) ▷ When e makes a mistake, its weight

is decreased by a factor of 2 and then
split equally between its descendants.

Algorithm 5: A transductive online learning algorithm that makes at most O
(√

d
)

mistakes. It is a
variant of the multiplicative weights algorithm that employs splitting experts. Namely, we start with a
single expert, and when an expert makes a mistake it may split into two experts. The behavior of the
experts is defined in Algorithms 6a and 6c.

• ei+1 was the single expert returned when executing EXPERT.EXTENDEDUPDATE(e′i, xi, yi)
for e′i = EXPERT.BASICUPDATE(ei, xi, yi); or

• Executing EXPERT.EXTENDEDUPDATE(e′i, xi, yi) with e′i =
EXPERT.BASICUPDATE(ei, xi, yi) returned two experts (S∈, u∈, H∈) and (S/∈, u/∈, H/∈)
(as in the third return statement), and furthermore,

ei+1 =

{
(S∈, u∈, H∈) xi ∈ path(h)
(S/∈, u/∈, H/∈) xi /∈ path(h).

(17)

30

Assumptions:
• d ∈ N, x ∈ Td.
• e = (S, u,H) is a tuple that defines an expert:
◦ S ⊆ Td – a collection of nodes that could be on-path for the true labeling

function given what the expert knows and assumes.
◦ u ∈ Td – the deepest node known or assumed to be on-path by the expert.
◦ H ⊆ {0, 1}Td – the collection of all functions that could be the correct

labeling function given what the expert knows and assumes.

EXPERT.PREDICT(e, x):

(S, u,H)← e ▷ Unpack the state that defines the expert.

if |H| ≤ 22
√
d:

return HALVING.PREDICT(H,x) ▷ Once H becomes small enough, simu-
late the Halving algorithm (Algorithm 7).
[Case I]

if x ≼ u:
return b ∈ {0, 1} such that x ≼b u ▷ u is assumed to be on-path. If u is a b-

decendant of x, then the correct label for x
must be b. [Case II]

return 1(|{x′ ∈ S : x ≼1 x′}| > |S|/3) ▷ Output some b ∈ {0, 1} such that more
than 1/3 of suspected on-path nodes are
b-decendants of x, if such a b exists. Oth-
erwise (when at least 1/3 of S are non-
descendants of x), output 0. [Cases III
to VI]

Algorithm 6a: A subroutine of Algorithm 5 that defines how an expert makes predictions.

Assumptions:
• x, e, S, u, H – as in Algorithm 6a.
• y – the correct label for x, as selected by the adversary.

EXPERT.BASICUPDATE(e, x, y):

(S, u,H)← e ▷ Unpack the state that defines the expert.

H ← HALVING.UPDATE(H,x, y) ▷ Update the version space, as in the Halving
algorithm (Algorithm 7).

return (S, u,H)

Algorithm 6b: A subroutine of Algorithm 5 that defines how an expert is updated each time that a
label is selected by the adversary.

We say that an expert e ∈ Et+1 is assumption-consistent with h if for all i ∈ [t], the i → (i + 1)
update of e was assumption-consistent with h.
Claim D.4 (Existence of assumption-consistent expert). Let d, n, t ∈ N, t ≤ n, letH ⊆ {0, 1}Td , let
x1, . . . , xn ∈ Td, and let h : Td → {0, 1}. Consider an execution of

TRANSDUCTIVELEARNER(H, d, (x1, x2, . . . , xn))

as in Algorithm 5. Then, at the end of the t-th iteration of the outer ‘for’ loop in TRANSDUCTIVE-
LEARNER, there exists a unique expert e∗t+1 ∈ Et+1 that is assumption-consistent with h.

31

Assumptions:
• d, x, e, S, u, H – as in Algorithm 6a.
• y – the correct label for x, as selected by the adversary.

EXPERT.EXTENDEDUPDATE(e, x, y):

(S, u,H)← e ▷ Unpack the state that defines the expert.

if |H| ≤ 22
√
d: ▷ If the version space is small, we just simu-

late the Halving algorithm, so the update is
complete. [Case III]

return {(S, u,H)}

for b ∈ {0, 1}:
Sb ← {x′ ∈ S : x ≼b x

′} ▷ Set of suspected on-path nodes that are b-
descendant of x.

if |S(1−y)| > |S|/3:

S′ ← S \ S(1−y) ▷ At least 1/3 of suspected on-path nodes were b-
decendants of x, and therefore the expert predicted
label ŷ = b. But the correct label was y = 1 − b.
Remove all b-descendants of x from S. [Case IV]

return {(S′, u,H)}

else:
S/∈ ← S; u/∈ ← u ▷ Split e in two. First, construct e/∈ to be an

updated version of e after adding the assump-
tion that x /∈ path(h) for the correct label-
ing function h.

H/∈ = {h ∈ H : x /∈ path(h)}
e/∈ ← (S/∈, u/∈, H/∈)

S∈ ← S0 ∪ S1 ▷ Next, construct e∈ to be an updated version
of e adding the assumption x ∈ path(h).
S∈ contains only nodes that are descendants
of x.

u∈ ← u ▷ u∈ represents updating the prior assumption
that u is on path by adding that x is also on
path.

if u∈ ≼ x:
u∈ ← x

H∈ = {h ∈ H : x ∈ path(h)} ▷ H∈ is obtained by updating the version
space to include only function where x is
on path.

e∈ ← (S∈, u∈, H∈)

return {e/∈, e∈} ▷ [Cases V and VI]

Algorithm 6c: A subroutine of Algorithm 5 that defines how an expert is updated (and possibly split
into two) when it makes a mistake.

Proof. We prove by induction that, for all s ∈ [t+1], Es contains a unique expert that is assumption-
consistent with h. The base case s = 1 is clear, because E1 contains only a single expert that was
never modified. For the induction step, let e∗s be the unique assumption-consistent expert in Es, and
consider the s→ (s+ 1) update. Notice that by Definition D.3,

• For all e ∈ Es \ {e∗s}, every expert e′ ∈ Es+1 such that e′ was created from e
by executing EXPERT.BASICUPDATE(es, xs, ys) possibly followed by an execution of
EXPERT.EXTENDEDUPDATE is not assumption-consistent with h; and

• Either EXPERT.BASICUPDATE(e∗s, xs, ys) ∈ Es+1 and
EXPERT.EXTENDEDUPDATE(e∗s, xs, ys) is not executed (e∗s is added to Es+1 with
just a basic update), or precisely one of the experts that were created from e∗s by executing
EXPERT.EXTENDEDUPDATE and added to Es+1 is assumption-consistent with h.

32

Assumptions:
• X a set, k ∈ N.
• H ⊆ {0, 1}X is a finite hypothesis class.
• x, x1, . . . , xk ∈ X , y ∈ {0, 1}.

HALVING(H, (x1, x2, . . . , xk)):

H1 ← H
for i ∈ [k]:

ŷi ← HALVING.PREDICT(H, xi)

send prediction ŷi to adversary

receive correct label yi ∈ {0, 1} from adversary

Hi+1 ← HALVING.UPDATE(Hi, xi, yi)

HALVING.PREDICT(H, x):

return 1
(

1
|H|
∑

h∈H h(x) ≥ 1
2

)
HALVING.UPDATE(H, x, y):

return
{
h ∈ H : h(x) = y

}
Algorithm 7: This is the well-known halving algorithm. The experts in Algorithms 6a and 6c simulate
this algorithm once their version space becomes small enough.

Seeing as the s → (s + 1) update executes EXPERT.BASICUPDATE and
EXPERT.EXTENDEDUPDATE at most once for each e ∈ Es, it follows that Es+1 contains
precisely one expert that is assumption-consistent with h.

An expert e = (S, u,H) that is assumption-consistent with the correct labeling function enjoys two
simple properties. The first property is that the node u in the expert encodes correct information
about which previously seen nodes are on-path for the correct labeling function.

The second property is that the set S contains all future nodes that are on-path for the correct labeling
function and are also deeper in the tree than all nodes assumed to be on-path so far. These two
properties are formalized in the following claim.

Claim D.5 (Properties of assumption-consistent expert). Let d, n, t ∈ N, t ≤ n+1, letH ⊆ {0, 1}Td ,
let x1, . . . , xn ∈ Td. Consider an execution of

TRANSDUCTIVELEARNER(H, d, (x1, x2, . . . , xn))

as in Algorithm 5. Assume that the adversary selects labels y1, y2, . . . , yn ∈ {0, 1} that are consistent
with some function h : Td → {0, 1}. Let e∗t = (S∗

t , u
∗
t , H

∗
t) ∈ Et be the unique expert in Et that is

assumption-consistent with h.24 Then the following two properties hold:

1. u∗
t ∈ path(h).

2. {x ∈ {xt, xt+1, . . . , xtmax} : x ∈ path(h) ∧ x ̸≼ u∗
t } ⊆ S∗

t .

Proof of Claim D.5. The proof proceeds by induction on t. For the base case t = 1, E1 contains
a single expert e∗1 = (S∗

1 , u
∗
1, H

∗
1) where u∗

1 = λ is the root of Td. Indeed, λ ∈ path(h) for

24Recall that e∗t exists by Claim D.4.

33

any function h : Td → {0, 1}. This establishes the base case for Item 1. Additionally, S∗
1 =

{x1, x2, . . . , xtmax}, satisfying the base case for Item 2.

For the induction step, we assume that the claim holds for some integer t = i, and show that it holds
for t = i+ 1 as well. First, we establish Item 1. If e∗i+1 = EXPERT.BASICUPDATE(e∗i , xi, yi), then
the claim is immediate because u∗

i+1 = u∗
i ∈ path(h). Otherwise, by Definition D.3 and the first

first two return statements in EXPERT.EXTENDEDUPDATE, either e∗i+1 = (S∗
i+1, u

∗
i+1, H

∗
i+1) has

u∗
i+1 = u∗

i ∈ path(h), in which case the claim is immediate, or else e∗i+1 satisfies Eq. (17), namely,

e∗i+1 =

{
(S∈, u∈, H∈) xi ∈ path(h)
(S/∈, u/∈, H/∈) xi /∈ path(h).

As defined in EXPERT.EXTENDEDUPDATE, u∈ is equal either to u∗
i or to xi, so if xi ∈ path(h) then

u∗
i+1 = u∈ ∈ {u∗

i , xi} ⊆ path(h).

On the other hand, if xi /∈ path(h) then we get u∗
i+1 = u/∈ = u∗

i ∈ path(h). We see that in all cases,
u∗
i+1 ∈ path(h) as desired. This concludes the proof of Item 1.

For Item 2, again, if e∗i+1 = EXPERT.BASICUPDATE(e∗i , xi, yi), then the claim is immediate because
S∗
i+1 = S∗

i and u∗
i+1 = u∗

i . Otherwise, consider the various ways in which u∗
i+1 and S∗

i+1 can be
assigned by EXPERT.EXTENDEDUPDATE. In the first return statement, u∗

i+1 = u∗
i and S∗

i+1 = S∗
i ,

and the claim is immediate.

The second return statement assigns u∗
i+1 = u∗

i and S∗
i+1 = S∗

i \ S1−yi , where S1−yi is the set of
(1− yi)-descendants of xi (including xi itself). Notice that regardless of whether xi is on-path for
the correct labeling function h or not, none of the (1 − yi)-descendants of xi (except possibly xi

itself) can be on-path for h, because h assigns a label yi to xi. And seeing as Item 2 only requires that
S∗
i+1 contain nodes from {xi+1, xi+2, . . . , xtmax}, it is also safe to remove xi. Therefore, removing

S1−yi
preserves Item 2.

For the third return statement, there are two possibilities. The first possibility is that u∗
i+1 = u/∈ = u∗

i
and S∗

i+1 = S/∈ = S∗
i , in which case the claim is immediate. The second possibility assigns

u∗
i+1 = u∈, and S∗

i+1 = S∈ = S0 ∪ S1, namely, S∗
i+1 is constructed by removing the non-

descendants of xi from S∗
i . By Eq. (17), this happens when xi ∈ path(h), so all non-descendants of

xi or either off-path for h, or they are ancestors of xi. Seeing as xi ∈ path(h) and u∗
i ∈ path(h),

and u∈ is the deeper node between these two, any node that is an ancestor of xi is also an ancestor
of u∗

i+1 = u∈. Thus, all the nodes removed or either off-path for h, or they are ancestors of u∗
i+1,

satisfying Item 2. (Similarly, any node that is an ancestor of u∗
i is also an ancestor of u∗

i+1, so we do
not need to add any new nodes to S∗

i+1 that are not included in S∗
i .)

We see that in all cases, Item 2 is preserved, as desired.

D.4.2 Transition to Halving

Claim D.6. Let d, n, t ∈ N, d ≥ 16, let H ⊆ {0, 1}Td , and let x1, . . . , xn ∈ Td. Consider an
execution of

TRANSDUCTIVELEARNER(H, (x1, x2, . . . , xn))

as in Algorithm 5. Let t > tmax = 24
√
d and let e = (S, u,H) ∈ Et be an expert. Then

|H| ≤ 22
√
d.

Proof of Claim D.6. Assume for contradiction that |H| > 22
√
d. Let H ′ ⊆ H be an arbitrary subset

of size 22
√
d + 1. Let

P = ∪h∈H′ path(h).

Seeing as each root-to-leaf path contains d+ 1 nodes,

|P | ≤ |H ′| · (d+ 1) ≤
(
22

√
d + 1

)
· (d+ 1) ≤ d22

√
d+1. (18)

Let y1, y2, . . . , yt be the labels provided by the adversary in the first tmax iterations. The line in
EXPERT.BASICUPDATE constructing H using HALVING.UPDATE(H,x, y) ensures that

∀h ∈ H ∀i ∈ [tmax] : h(xi) = yi. (19)
Consider two cases:

34

• Case I.
∑tmax

i=1 yi ≤ tmax/2. Then the set

X0 = {xi : i ∈ [tmax] ∧ yi = 0}
has cardinality |X0| ≥ tmax/2. Let X ′

0 = X0 \ P . By Eq. (18),

|X ′
0| ≥

tmax

2
− d22

√
d+1 = 24

√
d − d22

√
d+1. (20)

From the choice of X ′
0, the inclusion H ′ ⊆ H , and Eq. (19),

∀h ∈ H ′ ∀x ∈ X ′
0 : x /∈ path(h) ∧ h(x) = 0. (21)

Seeing as |H ′| > 22
√
d, Eq. (21) and Item 1 from Lemma D.2 imply that

|X ′
0| ≤ 22

√
d. (22)

Combining Eqs. (20) and (22) yields

22
√
d ≥ |X ′

0| ≥ 24
√
d − d22

√
d+1

≥ 24
√
d−1 (d ≥ 16),

which is a contradiction.

• Case II.
∑tmax

i=1 yi > tmax/2. A similar argument gives a contradiction by defining

X1 = {xi : i ∈ [tmax] ∧ yi = 1}, and X ′
1 = X1 \ P.

As before,

|X ′
1| ≥

tmax

2
− d22

√
d+1 ≥ 24

√
d − d22

√
d+1. (23)

for all d ∈ N. However, |H ′| > 22
√
d and Item 2 imply that

|X ′
1| < 3

√
d, (24)

which is a contradiction.

D.4.3 Performance of Best Expert

Claim D.7 (Existence of expert with large weight). Let d, n ∈ N, d ≥ 16, letH ⊆ {0, 1}Td , and let
x1, . . . , xn ∈ Td. Consider an execution of

TRANSDUCTIVELEARNER(H, (x1, x2, . . . , xn))

as in Algorithm 5. Then, at the end of the execution, there exists e ∈ En+1 such that

w(e) ≥ 2−48
√
d. (25)

Note that the lower bound in Eq. (25) does not depend on n.

Proof. Fix a hypothesis h ∈ H such that h(xt) = yt for all t ∈ [n] (such an h exists because the
adversary must always select a realizable label).

By Claim D.4, there exists e∗n+1 ∈ En+1 that is assumption-consistent with h. Let ancestry
(
e∗n+1

)
=

(e∗1, e
∗
2, . . . , e

∗
n+1). We argue that this ancestry sequence makes few mistakes. Specifically, for each

t ∈ [n], let ŷ∗t = EXPERT.PREDICT(e∗t , xt). We claim that

m :=

n∑
t=1

1(ŷ∗t ̸= yt) ≤ 24
√
d.

Indeed, let B = {t ∈ [n] : ŷ∗t ̸= yt} be the set of m indices where a mistake was made. For
each t ∈ B, let e∗t = (S, u,H), and note that each t ∈ B has a corresponding execution of
EXPERT.PREDICT(e∗t , xt), and an execution of e′t = EXPERT.BASICUPDATE(e∗t , xt, yt) followed
by EXPERT.EXTENDEDUPDATE(e′t, xt, yt) that produces e∗t+1 (EXPERT.EXTENDEDUPDATE is ex-
ecuted because t ∈ B, i.e., a mistake was made). We partition the indices in B into six cases (six
disjoint sets), and bound the number of indices that fall in each.

35

• Case I. The execution of EXPERT.PREDICT(e∗t , xt) exited via the first return statement in that
procedure. This happens once |H| ≤ 22

√
d, and from that point on, the expert and

all subsequent experts in the ancestry are exactly simulating the HALVING algorithm
(Algorithm 7) in both predictions and updates. Hence, by Fact E.1, B contains at most
mI = 2

√
d such indices.

• Case II. The execution of EXPERT.PREDICT(e∗t , xt) exited via the second return statement in
that procedure. In particular x ≼ u, and the predicted label was ŷ∗t = b ∈ {0, 1} such
that xt ≼b u. Because e∗t is assumption-consistent with h, Item 1 in Claim D.5 implies
that u ∈ path(h). Namely, we see that u is a b-descendant of xt and u ∈ path(h). It
follows that ŷ∗t = b = h(xt) = yt. So no mistakes are made in Case II, and the number
of indices t ∈ B that belong to Case II is simply mII = 0.

In the remaining cases, we assume that EXPERT.PREDICT(e∗t , xt) exited via the third return statement
in that procedure, so the prediction was

ŷ∗t = 1(|S1| > |S|/3), (26)

where S1 = {x′ ∈ S : xt ≼1 x′}. These cases are as follows.

• Case III. The execution of EXPERT.EXTENDEDUPDATE(e′t, xt, yt) exited via the first return
statement in that procedure. Namely, after the update, the resulting expert e∗t+1 has
|H| ≤ 22

√
d. However, because we are not in Case I, at the beginning of the iteration

expert e∗t had |H| > 22
√
d. Seeing as the cardinality of H decreases monotonically

throughout the ancestry e∗1, . . . , e
∗
n+1, this type of mistake can happen at most mIII = 1

times.

• Case IV. The execution of EXPERT.EXTENDEDUPDATE(e′t, xt, yt) exited via the second return
statement in that procedure. In this case, |S(1−yt)| > |S|/3, and e∗t+1 = (S′, u,H)
with S′ = S \ S1−yt

. So |S′| < 2|S|/3. Namely, the update causes the cardinality of
the set S to be multiplied by a factor of at most 2/3 and it strictly decreases. Seeing as
the initial cardinality is tmax, and cardinalities are integers, the number of times this
can happen is at most

mIV =
log(tmax)

log(3/2)
+ 1 =

4
√
d

log(3/2)
+ 1. (27)

In the remaining cases, we assume that the execution of EXPERT.EXTENDEDUPDATE(e∗t , xt, yt)
exited via the third return statement in that procedure. This implies that

|Sŷ∗
t
| ≤ |S|/3 (28)

Combining this with Eq. (26), it follows ŷ∗t = 0 and therefore yt = 1. The remaining cases are as
follows.

• Case V. xt ∈ path(h). Let e∗t = (S, u,H). Seeing as |H| > 22
√
d (because we are not in

Case I), Claim D.6 (with the assumption d ≥ 16) implies that t ≤ tmax. By Item 2
of Claim D.5, the facts xt ̸≼ u (we are not in Case II) and xt ∈ path(h) imply that
xt ∈ S. In particular, S is not empty.

Because the t → (t + 1) update of e∗t+1 was assumption-consistent with h, Eq. (17)
implies that e∗t+1 = (S∈, u∈, H∈), with S∈ = S0 ∪ S1. Observe that

• |S0| ≤ |S|/3 (plugging ŷ∗t = 0 into Eq. (28)); and
• |S1| ≤ |S|/3 (because otherwise, by Eq. (26), the prediction would have been
ŷ∗t = 1).

Therefore,
|S∈| ≤ |S0|+ |S1| ≤ 2|S|/3. (29)

As in Case IV, combining Eq. (29) and the fact that S is not empty imply an upper
bound mV on the number of times Case V can happen, with the bound being the same
number mV = mIV as in Eq. (27).

36

• Case VI. xt /∈ path(h). So (xt, yt) is a pair such that xt /∈ path(h) and yt = 1. Assume for
contradiction that this type of mistake can happen strictly more than

mVI = 3
√
d

times. Let t1, t2, . . . , tmVI be the indices of the first mVI iterations of the outer ‘for’
loop of TRANSDUCTIVELEARNER in which this type of mistake happened. Note that
if at the end of iteration tmVI , we had expert e∗tmVI+1 = (StmVI+1, utmVI+1, HtmVI+1)

such that |HtmVI+1| ≤ 22
√
d, then from that point onwards, the expert would be

simulating the halving algorithm, and in particular, it would not make any further
mistake of the type in Case VI (all subsequent mistakes would belong to Case I). Hence,
by the assumption that strictly more than mVI mistakes were made, it follows that
|HtmVI+1| > 22

√
d. Let

H∗ =
{
h′ ∈ H : (∀t ∈ [mVI] : h′(xtt) = 1 ∧ xt /∈ path(h′))

}
.

Because e∗tmVI+1 is assumption-consistent with h, and from the construction of HtmVI+1

using H∈ and H/∈ in EXPERT.EXTENDEDUPDATE, it follows that HtmVI+1 ⊆ H∗. So
there exist collections H∗ ⊆ H and X = {xtt : t ∈ [mVI]} ⊆ Td such that

• |H∗| ≥ |HtmVI+1| > 22
√
d,

• |X| = mVI = 3
√
d,

• ∀h′ ∈ H∗ ∀x ∈ X : h′(x) = 1.
• ∀h′ ∈ H∗ ∀x ∈ X : x /∈ path(h′).

This is a contradiction to the choice ofH, specifically, to Item 2 in Lemma D.2.

Thus, combining the analyses of all cases, we see that the number of mistakes made by the
ancestry

(
e∗n+1

)
is at most

m ≤ mI +mII +mIII +mIV +mV +mVI

≤ 2
√
d+ 0 + 1 +

(
4
√
d

log(3/2)
+ 1

)
+

(
4
√
d

log(3/2)
+ 1

)
+ 3
√
d

≤ 24
√
d.

The weights satisfy

w(e∗t+1)

{
= w(e∗t) ŷ∗t = yt
≥ 1

4 · w(e∗t) ŷ∗t ̸= yt.

This implies that w(e∗n+1) ≥ w(e∗1) ·
∏n

t=1 4
−1(ŷi ̸=yi) = w(e∗1) · 4−m ≥ 4−24

√
d = 2−48

√
d, as

desired.

D.4.4 Multiplicative Weights Mistake Bound

Claim D.8 (Mistake bound for multiplicative weights). Let d, n ∈ N, let α > 0, let H ⊆ {0, 1}Td ,
and let x1, . . . , xn ∈ Td. Consider an execution of

TRANSDUCTIVELEARNER(H, (x1, x2, . . . , xn))

as in Algorithm 5. Assume that at the end of the execution, there exists e∗ ∈ En+1 such that

w(e∗) ≥ 2−α.

Then TRANSDUCTIVELEARNER makes at most α mistakes.

Proof of Claim D.8. For all i ∈ [n+ 1], let w(Ei) =
∑

e∈Ei
w(e). For each i ∈ [n], if ŷi ̸= yi, then

w(Ei+1) ≤ w(Ei)/2. Hence, if TRANSDUCTIVELEARNER makes m mistakes, then by induction

w(En+1) ≤ w(E1) ·
n∏

t=1

2−1(ŷi ̸=yi) = 2−m · w(E1).

37

So
2−α ≤ w(e∗) ≤

∑
e∈En+1

w(e) = w(En+1) ≤ 2−m · w(E1) = 2−m.

We conclude that
m ≤ α,

as desired.

D.5 Proof

Proof of Theorem D.1. Fix an integer d ≥ 43. Let H ⊆ {0, 1}Td−1 be the class constructed by
invoking Lemma D.2 for the integer d− 1 ≥ 42. We argue that this class satisfies the requirements
of Theorem D.1.

By construction,H is a class of Littlestone dimension precisely d. By Theorem A.7, this implies the
equality in Item 2.

We now show the upper bound in Item 1. We argue that TRANSDUCTIVELEARNER (Algorithm 5)
satisfies this upper bound. By Claim D.7, at the end of the execution of TRANSDUCTIVELEARNER

there exists an expert e ∈ En+1 such that w(e) ≥ 2−48
√
d. By Claim D.8, this implies that the

number of mistakes made by TRANSDUCTIVELEARNER is at most 48
√
d, as desired.

E Halving

Fact E.1. Let X be a set, and let H ⊆ {0, 1}X be a hypothesis class. Then for all n ∈ N, all
sequences x ∈ Xn, and all realizable adversaries, HALVING (Algorithm 7) makes at most log(|H|)
mistakes in the transductive online learning (Game 2).25 Namely,

sup
n∈N

sup
A∈An

Mtr(H, n, HALVING, A) ≤ log(|H|).

25With the suitable syntactic modification, it also makes at most log(|H|) mistakes in the standard online
learning (Game 1).

38

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [NA]
Justification: Purely rigorous mathematical results. We explain precisely what our proofs
imply (and therefore also what they do not imply).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

39

Answer: [Yes]

Justification: For each theoretical result, the paper provides the full set of assumptions and a
complete (and correct) proof.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: The paper has no experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

40

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: The paper does not include experiments requiring code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

41

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: The work is purely theoretical with no immediate direct societal impacts
forseeable.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

42

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

43

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

44

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMS as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

45

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Setting: Standard vs. Transductive Online Learning
	Main Result
	Related Works

	Technical Overview
	Paths in Trees
	Proof Ideas for the Lower Bound
	Proof Ideas for the Upper Bound
	Sparse Encodings are Easy to Guess
	Construction of the Hypothesis Class
	Naïve Learning Strategy
	Danger Zone Minimization
	Splitting Experts
	Transition to Halving

	Some Intuition for the Quantity Root d

	Directions for Future Work
	Organization
	References
	Preliminaries
	Basic Notation
	Standard Online Learning
	Transductive Online Learning
	Mistake Bounds
	Trees
	Littlestone Dimension

	Lower Bound
	Statement
	Analysis of the Adversary
	Proof

	Sequence Length
	Rigid Adversary
	Essential Indices
	Proof

	Upper Bound
	Statement
	Hypothesis Class
	Algorithm
	How Experts Work

	Analysis
	Assumption-Consistent Expert
	Transition to Halving
	Performance of Best Expert
	Multiplicative Weights Mistake Bound

	Proof

	Halving

