
Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

SELF-SUPERVISED REPRESENTATION LEARNING ON
MANIFOLDS

Eric O. Korman
Striveworks
e.korman@striveworks.us

ABSTRACT

We explore the use of a topological manifold, represented as a collection of charts,
as the target space of neural network based representation learning tasks. This is
achieved by a simple adjustment to the output of an encoder’s network architecture
plus the addition of a maximal mean discrepancy based loss function for regular-
ization. Most algorithms in representation learning are easily adaptable to our
framework and we demonstrate its effectiveness by adjusting SimCLR to have
a manifold encoding space. Our experiments show that we obtain a substantial
performance boost over the baseline for low dimensional encodings. Code for
reproducing experiments is provided at https://github.com/ekorman/
neurve.

1 INTRODUCTION

Representation learning algorithms typically produce encodings into a Euclidean space. However,
if the manifold hypothesis (the assumption that the data is well-approximated by a manifold) is
taken seriously then a Euclidean target space is unnecessarily big for encoding this manifold: by the
Whitney embedding theorem, to embed an n-dimensional manifold into a Euclidean space one may
need up to 2n dimensions for the ambient space. Additionally, such algorithms seldom regularize the
encoding space (i.e. encourage it to look like a prior distribution) to ensure that it is well-behaved.

In this work we develop a framework for using a manifold as a target space of deep representation
learning algorithms. Following prior work (Korman, 2018), which uses manifolds as the latent
space of an autoencoder, this is done by having the encoding network output chart embeddings and
membership probabilities for an atlas of a manifold. In other words, instead of learning a single
encoder f : X → Rd (where X is the input data and Rd is the Euclidean encoding space), our
technique learns n-such encoders together with a scoring function q : X → [0, 1]n that determines
which encoding output to use for a given input. Figure 1 shows such an example for X a circle.
For matching the distribution of embeddings to a manifold prior, we introduce a maximal mean
discrepancy (MMD) (Gretton et al., 2012) loss for manifolds.

φ1

φ2

φ3

argmax q(x) =

1; x ∈
2; x ∈
3; x ∈

Figure 1: Example of a learned atlas (with d = 1) of a circle. Instead of a single encoder function,
we learn n = 3 many: φ1, φ2 and φ3, each a map X → [0, 1]. For a given point x, the learned
function q : X → [0, 1]3 specifies which of the φi to use.

1

https://github.com/ekorman/neurve
https://github.com/ekorman/neurve

Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

Our framework is flexible enough to apply to a variety of representation learning algorithms and in
this paper we do experiments with a manifold generalization of SimCLR (Chen et al., 2020a). Our
results show that, in low dimensions, replacing the Euclidean target space of these algorithms with
a manifold gives a significant improvement in the learned embeddings. Besides being of theoretical
interest, low dimensional embeddings have the practical benefits of having faster distance computa-
tions, requiring less storage, providing visualizations (in the case of dimensions 2 or 3), and avoiding
issues with curse of dimensionality for downstream tasks from the embedding (such as clustering).

1.1 RELATED WORK

Learning an atlas The idea of learning a manifold as an atlas was discussed in Pitelis et al. (2013)
where they learn a collection of linear charts via a generalization of principal component analysis.
Our earlier work (Korman, 2018), which we build upon, learns an atlas as the latent space of an
autoencoder. In that work the regularization of the latent space is via adversarial training instead of
the MMD loss we use in this paper.

Encoding space regularization Regularization of a latent space is typically only done in algo-
rithms that have a decoder/generator, such as variational autoencoders (Kingma & Welling, 2013)
and adversarial autoencoders (Makhzani et al., 2015). The effectiveness of using an MMD loss in
particular on such an encoding space is demonstrated in (Tolstikhin et al., 2017) and inspired our
MMD loss function. The work of Grattarola et al. (2019) is of similar spirit to ours, as they ex-
tend the latent spaces of adversarial autoencoders to more geometrically interesting ones, namely
constant curvature Riemannian manifolds.

2 MANIFOLDS AS ENCODING SPACES

2.1 REPRESENTING A DATASET AS A MANIFOLD

For formally modeling a distribution of data, X , as a manifold, we use the same approach as in
our earlier work (Korman, 2018). Namely we posit the existence of a latent space Z = [0, 1]d ×
{1, . . . , n} of n, d-dimensional charts with coordinate maps ψi : [0, 1]d → X that forms an atlas
of a manifold. We use the uniform distribution as the prior on Z and we let X,Z, J denote the
random variables on X , [0, 1]d, and {1, . . . , n}, respectively. We will denote by 1y the distribution
supported at a single point y. In our decoder-free setup, we wish to learn:

1. The inverse mappings of the ψi, which we denote by φi : X → [0, 1]d and which satisfy

p(z|J = i,X = x) = 1φi(x).

2. The chart membership function q = (q1, . . . , qn) : X → [0, 1]n defined by

q(x) = (p(J = 1 | X = x), . . . , p(J = n | X = x)) . (1)

We can then compute the posterior in terms of q and the φi as

p(z, j | x) = p(z | j, x)p(j | x) = qj(x)1φj(x)

which gives the prior on Z as
p(z, j) = Exqj(x)1φj(x), (2)

which we wish to be uniform.

An additional desire is that we have an efficient atlas in the sense that any point x should be in as
few charts as possible. Thus while p(J) should be uniform, we want the conditional distributions
p(J | X = x) to have low entropy: if the distributions p(J | X = x) are mostly deterministic
then encoding x requires us to only keep the coordinates and chart number for the chart with highest
probability for x. In other words, for the representation of x at inference time we take

x 7→ (φi(x), i) ∈ Rd × {1, . . . , n}, where i = argmax
j

qj(x), (3)

which has just log n-more bits of information than the Euclidean case.

2

Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

2.2 A MAXIMAL MEAN DISCREPANCY LOSS FOR MANIFOLDS

For a given embedding task, we propose to parameterize the functions {φ1, . . . , φn, q} using neu-
ral networks and optimize the parameters via gradient descent for a loss function consisting of a
task-specific term (e.g. a contrastive loss function) plus a regularization term that encourages the
distribution p(z, j) given by (2) to be close to uniform and the discrete distribution q(x) in (1) to be
close to a deterministic distribution for each x ∈ X .

In the Euclidean case (i.e. when n = 1), there are two popular ways for regularizing the latent space
to match a prior distribution: using adversarial training (Makhzani et al., 2015; Tolstikhin et al.,
2017) or via an MMD (Gretton et al., 2012) loss (Tolstikhin et al., 2017). In Korman (2018) we used
an adversarial loss for a manifold latent space but in this work we use an MMD loss due to better
training stability and less hyperparameters to tune. If P and Q are two distributions on a common
space and k is a reproducing kernel, then the MMD gives a measure of the difference between the
distributions, and is defined by

MMDk(P,Q)2 = Ey1,y2∼P×P k(y1, y2)− 2Ey1,y2∼P×Qk(y1, y2) + Ey1,y2∼Q×Qk(y1, y2). (4)

Let p and q be given by (2) and (1), respectively, UZ denote the uniform distribution on Z , and UJ
denote the uniform distribution on J = {1, . . . , n}. For the loss function encouraging p to be close
to UZ we will take an approximation of MMDkZ (p,UZ)2 and for the loss function encouraging q(x)
to be far from UJ , we take −ExMMDkJ (q(x),UJ). This will achieve the goal of encouraging p
to be uniform and for q(x) to be deterministic.

To get a kernel kZ on Z we can start with a kernel k0 on [0, 1]d and then define

kZ : Z × Z → R, ((z1, i), (z2, j)) 7→ δijk0(z1, z2)

where δii = 1, δij = 0 if i 6= j. For k0 we take, as in Tolstikhin et al. (2017), the inverse multi-
quadratics kernel but pulled back via the sigmoid function1: k0(x, y) =

d/6
d/6+|σ−1(x)−σ−1(y)|2 . We

approximate MMDkZ (p,UZ)2 using the U-statistic estimator in Gretton et al. (2012), adjusted to
our manifold setting. Explicitly:

Proposition 1. Let p be the distribution on Z defined by (2) and let UZ denote the uniform distribu-
tion on Z . Given a random sample {x1, . . . , xN} of X and a random sample {w1, . . . , wN} drawn
uniformly from [0, 1]d, an estimator for MMDkZ (p,UZ)2 is:

`Z(q, φ1, . . . , φn) =
1

N(N − 1)

N∑
j,k=1
j 6=k

n∑
i=1

qi(xj)qi(xk)k0(φi(xj), φi(xk)) (5)

− 2

nN2

N∑
j,k=1

n∑
i=1

qi(xj)k0(φi(xj), wk) +
1

nN(N − 1)

N∑
j,k=1
j 6=k

k0(wj , wk).

See section A.3 for the proof.

For ExMMDkJ (q(x),UJ) we take the kernel kJ : {1, . . . , n}×{1, . . . , n} → R, (i, j) 7→ δij and
define

`J (q) := −ExMMDkJ (q(x),UJ) = −Ex
n∑
i=1

(
qi(x)−

1

n

)2

.

The total regularization loss is then

`reg(q, φ1, . . . , φn) = λ1`Z(q, φ1, . . . , φn) + λ2`J (q) (6)

for some hyperparameters λ1, λ2 ∈ [0,∞).

1this avoids having to compute the final sigmoid activation.

3

Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

2.3 SUMMARY OF OUR FRAMEWORK

We now describe our general technique of turning a deep representation learning algorithm to one
that has a manifold encoding space. The typical setup for such an algorithm, A, is to learn an
encoder f mapping the dataset X to the space Rd via optimizing some loss function `A defined on
embeddings of a mini-batch {x1, . . . , xN} ⊂ X .

To adjust the algorithm to one that has a manifold as the encoding space, we see from the discussion
in 2.1 that f should be replaced by a collection of maps φ1, . . . , φn, q where φi : X → [0, 1]d is
the ith coordinate map and q : X → [0, 1]n is the chart membership function. In practice, for the
functions φ1, . . . , φn, q, we take a backbone network and attach n + 1 linear heads followed by a
sigmoid activation on the first n (which have output in Rd) and a softmax activation on the head
defining q (which has output in Rn).

In many contrastive representation learning algorithms (such as SimCLR (Chen et al., 2020a), MoCo
v2 (Chen et al., 2020b), and BYOL (Grill et al., 2020)), the loss `A is a function of an auxiliary
projection head h : Rd → Rd̃ applied to the embedding vectors. In these cases, for the manifold
version we use n-many projection heads (one for each coordinate chart), and then produce a single
projection vector for every data point by taking a sum of these individual projection vectors weighted
by q. We supplement the resulting loss `MA with the regularization loss (6).

At inference and evaluation time, we use the compressed representation (3). This ensures that the
representation is indeed d-dimensional and gives a fair evaluation comparison to A, which embeds
into a d-dimensional Euclidean space. For example, if qi(x) were the uniform distribution then
using the full-representation (φ1(x), . . . , φn(x)) instead of the compressed one would essentially
be “cheating” into an nd-dimensional Euclidean representation.

We summarize this procedure in Table 1. We also note that the case of d = 2 yields a powerful data
visualization by plotting the input data at their embedding coordinates for their most probable chart.
We show such visualizations in the appendix A.2.

Table 1: Summary of our framework for elevating an algorithm A to have a manifold encoding space.

TYPICAL SETUP MANIFOLD VERSION

learn a neural network encoder
f : X → Rd

learn a neural network encoder with n+ 1 heads
f = (φ1, . . . , φn, q) : X → [0, 1]d × · · · × [0, 1]d × [0, 1]n

auxiliary projection head h : Rd → Rd̃

giving projection map h ◦ f : X → Rd̃.
n auxiliary projection heads h1, . . . , hn : Rd → Rd̃

giving projection map X → Rd̃, x 7→
∑

i qi(x)hi(φi(x)).

on a minibatch {x1, . . . , xN} ⊂ X
optimize a loss `A(f(x1), . . . , f(xN)).

on a minibatch {x1, . . . , xN} ⊂ X optimize a loss
`MA(f(x1), . . . , f(xN)) + `reg(f(x1), . . . , f(xN)).

Representation of x ∈ X at inference/evaluation:
f(x) ∈ Rd.

Representation of x ∈ X at inference/evaluation:
(φi(x), i) ∈ Rd × {1, . . . , n}, where i = argmaxj qj(x).

3 MSIMCLR

We recall that SimCLR trains a neural network encoder f : X → Rd using a projection head
h : Rd → Rd̃. A mini-batch is formed by choosing N -images and augmenting in two different
ways, producing examples {x1, . . . , x2N}. The loss function over this batch is a function of the
projection head output of the embeddings of these images:

`SimCLR(x1, . . . , xn) = c(h(f(x1)), . . . , h(f(x2n))),

where c is a contrastive loss. We follow our meta-procedure from the previous section to adjust
SimCLR (Chen et al., 2020a) to have a manifold as encoding space (with resulting algorithm denoted
by MSimCLR) and run experiments on MNIST (LeCun et al., 2010), FashionMNIST (Xiao et al.,
2017), and CIFAR10 (Krizhevsky et al., 2009) for n ∈ {1, 4, 16, 32} and d ∈ {2, 4, 8}.

4

Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

In Chen et al. (2020a) representations of SimCLR are evaluated based on the accuracy of a linear
classifier trained on top of the representation. In our case, since we have a collection of charts,
we evaluate our manifold representation by putting a linear classifier on each chart. We report the
mean and standard deviation of the accuracy of our models on the hold out test sets in Table 2,
from which we see that our method provides a significant performance boost over vanilla SimCLR,
especially in dimensions two and four. Section A.1 outlines the details of our experiments, including
hyperparameter selection.

Table 2: Piecewise linear evaluation accuracy (* denotes no convergence)

METHOD # CHARTS DATASET

MNIST Fashion MNIST CIFAR10

ENCODING DIMENSION ENCODING DIMENSION ENCODING DIMENSION
2 4 8 2 4 8 2 4 8

SimCLR - 15.3± 6.8 75.4± 2.1 94.5± 1.5 39.8± 9.3 62.7± 1.8 79.3± 0.2 * 66.2± 0.2 79.6± 0.2

MSimCLR 1 35.4± 12.4 66.2± 0.5 90.5± 2.0 36.1± 10.8 59.1± 4.9 73.5± 3.9 30.2± 10.8 61.1± 2.4 78.0± 1.7

MSimCLR 4 75.1± 3.8 89.0± 1.7 94.1± 2.6 62.5± 1.2 71.9± 1.5 79.0± 0.3 54.5± 5.8 68.2± 4.5 81.0± 1.9

MSimCLR 16 90.4± 3.0 94.3± 3.5 97.1± 0.2 68.5± 2.2 73.9± 1.0 80.8± 0.1 74.2± 0.8 73.0± 2.0 77.3± 0.5

MSimCLR 32 91.3± 2.8 96.4± 0.2 96.6± 0.0 72.1± 1.0 72.7± 0.5 74.6± 2.2 71.4± 3.5 64.2± 1.1 73.3± 2.7

4 CONCLUSION

We presented a method for adjusting representation learning algorithms to learn an atlas of a mani-
fold instead of mapping into a Euclidean space. This allows, for a given encoding dimension, more
interesting geometries of the embedding space. Our experiments with SimCLR show that for low
encoding dimensions our approach gives much more powerful representations over the baseline. We
hope that this work leads to further research into atlas-based manifold learning techniques.

REFERENCES

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. arXiv preprint arXiv:2002.05709, 2020a.

Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum
contrastive learning. arXiv preprint arXiv:2003.04297, 2020b.

Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. Adversarial autoencoders with constant-
curvature latent manifolds. Applied Soft Computing, 81:105511, 2019.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola.
A kernel two-sample test. The Journal of Machine Learning Research, 13(1):723–773, 2012.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in Neural
Information Processing Systems, 33, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. arXiv preprint arXiv:1911.05722, 2019.

Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. arXiv preprint
arXiv:1312.6114, 2013.

Eric O Korman. Autoencoding topology. arXiv preprint arXiv:1803.00156, 2018.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

5

Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

Yann LeCun, Corinna Cortes, and CJ Burges. MNIST handwritten digit database. ATT Labs [On-
line]. Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan Frey. Adversarial
autoencoders. arXiv preprint arXiv:1511.05644, 2015.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. arXiv preprint arXiv:1912.01703, 2019.

Nikolaos Pitelis, Chris Russell, and Lourdes Agapito. Learning a manifold as an atlas. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1642–1649,
2013.

Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Schoelkopf. Wasserstein auto-
encoders. arXiv preprint arXiv:1711.01558, 2017.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms, 2017.

A APPENDIX

A.1 EXPERIMENTS SETUP

We ran our experiments using PyTorch Paszke et al. (2019). In all cases we use a batch size of 128
and the Adam optimizer with learning rate 10−4 and β1 = 0.9, β2 = 0.999 (the PyTorch defaults).
For MNIST and FashionMNIST we use a ResNet18 He et al. (2016) backbone and train for 100
epochs while for CIFAR10 we use a ResNet50 backbone and train for 1,000 epochs. We use the
same data augmentation used in the CIFAR10 experiments in the original work Chen et al. (2020a):
color jitter with strength 0.5 (and a probability of 0.8 of applying), random grayscale with probability
0.2, and a random resized crop.

Each of the datasets comes with a standard train/test split. For hyperparameter selection of λ1, λ2,
and τ (the temperature used in the contrastive loss function) we do a grid search (with d = 2, n =
16) over λ1 ∈ {0.1, 1, 5, 10, 20}, λ2 ∈ {0.05, 0.1, 0.2}, and τ ∈ {0.1, 0.5, 1} by training on a
random selection of 80% of the training data and then computing the piece-wise linear evaluation
on the remaining 20%. For MNIST and FashionMNIST we chose the hyperparameters that give
the best average rank across the two datasets. This yielded λ1 = 20, λ2 = 0.1, and τ = 1 for
MNIST and FashionMNIST and λ1 = 20, λ2 = 0.1, and τ = 0.5 for CIFAR10. Using these
parameters we train on the entire train dataset across d ∈ {2, 4, 8} (we noticed for higher d there is
not much improvement over the baseline) and n ∈ {1, 4, 16, 32}. We also train baseline SimCLR
for comparison (but were unable to get convergence in dimension two for CIFAR10). We repeat
each training configuration three times and report the mean ± std of accuracy on the holdout test set
in Table 2.

6

Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

A.2 VISUALIZATIONS

In this section we display visualizations for each dataset using a model with d = 2, n = 16. Each
image corresponds to a chart and every image in the test set gets plotted at its (x, y) coordinate in
the chart with highest probability. The images are best viewed by zooming in.

A.2.1 CIFAR10

7

Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

A.2.2 FASHION MNIIST

We note that in this case only 15 charts are displayed since the network did not end up assigning any
points to one of them.

8

Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

A.2.3 MNIST

9

Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

A.3 PROOF OF PROPOSITION 1

Proof. We breakdown the three terms defining MMD (4). For the first term, we have:

E(z1,i),(z2,j)∼p×pkZ((z1, i), (z2, j))

= Ex,x̃∼pdata×pdata

n∑
i,j=1

qi(x)qj(x̃)kZ((φi(x), i), (φj(x̃), j))

= Ex,x̃∼pdata×pdata

n∑
i=1

qi(x)qi(x̃)k0(φi(x), φi(x̃))

≈ 1

N(N − 1)

N∑
j,k=1
j 6=k

n∑
i=1

qi(xj)qi(xk)k0(φi(xj), φi(xk)),

where the first equality comes from (applying twice) the fact that

Ez,i∼pf(z, i) = Ex∼pdataEz,i∼q(·|x)f(z, i) = Ex∼pdata

∑
i

qi(x)f(φi(x), i), for any f : Z → R (7)

and the approximation in the last line uses the U-statistic estimate

Ey,ỹ∼Q×Qh(y, ỹ) ≈
1

N(N − 1)

N∑
j,k=1
j 6=k

h(yj , yk) for any h : X × X → R, (8)

which holds for any distribution Q and random sample {y1, . . . , yN} drawn from Q.

For the second term we have, letting U[0,1]d denote the uniform distribution on [0, 1]d,

E(z1,i),(z2,j)∼p×UZkZ((z1, i), (z2, j))

= Ex∼pdata

n∑
i=1

qi(x)Ez2,j∼UZkZ((φi(x), i), (z2, j))

= Ex∼pdata

n∑
i=1

qi(x)
1

n
Ew∼U

[0,1]d
k0(φi(x), w)

≈ 1

nN2

N∑
j,k=1

n∑
i=1

qi(x)k0(φi(xj), wk),

where the first equality again follows from (7) and the approximation in the last line uses the standard
expected value estimator applied to each factor. Finally for the third term we again use the estimate
(8) to obtain

E(z1,i),(z2,j)∼UZ×UZkZ((z1, i), (z2, j))

= Ew∼U
[0,1]d

Ew̃∼U
[0,1]d

n∑
i,j=1

1

n2
kZ((w, i), (w̃, j))

= Ew∼U
[0,1]d

Ew̃∼U
[0,1]d

1

n
k0(w, w̃)

≈ 1

nN(N − 1)

N∑
j,k=1
j 6=k

k0(wj , wk).

Combining these gives the right hand side of (5).

10

	Introduction
	Related work

	Manifolds as encoding spaces
	Representing a dataset as a manifold
	A Maximal Mean Discrepancy Loss for Manifolds
	Summary of our framework

	MSimCLR
	Conclusion
	Appendix
	Experiments setup
	Visualizations
	CIFAR10
	Fashion MNIIST
	MNIST

	Proof of proposition 1

