
On-Device Collaborative Language Modeling
via a Mixture of Generalists and Specialists

Dongyang Fan * 1 Bettina Messmer * 1 Nikita Doikov 1 Martin Jaggi 1

Abstract
On-device LLMs have gained increasing attention
for their ability to enhance privacy and provide a
personalized user experience. To facilitate private
learning with scarce data, Federated Learning has
become a standard approach. However, it faces
challenges such as computational resource hetero-
geneity and data heterogeneity among end users.
We propose CoMiGS (Collaborative learning with
a Mixture of Generalists and Specialists), the first
approach to address both challenges. A key inno-
vation of our method is the bi-level optimization
formulation of the Mixture-of-Experts learning
objective, where the router is optimized using a
separate validation set to ensure alignment with
the target distribution. We solve our objective
with alternating minimization, for which we pro-
vide a theoretical analysis. Our method shares
generalist experts across users while localizing
a varying number of specialist experts, thereby
adapting to users’ computational resources and
preserving privacy. Through extensive experi-
ments, we show CoMiGS effectively balances
general and personalized knowledge for each to-
ken generation. We demonstrate that CoMiGS re-
mains robust against overfitting—due to the gen-
eralists’ regularizing effect—while adapting to
local data through specialist expertise. We open
source our codebase for collaborative LLMs.

1. Introduction
Large Language Models (LLMs) have been showing great
success serving as foundation models, evidenced by their
capability to understand a wide range of tasks, such as
ChatGPT (OpenAI, 2023), Claude (Anthropic, 2023), Gem-
ini (DeepMind, 2023) and etc. However, cloud-based in-

*Equal contribution 1EPFL, Switzerland. Correspondence to:
Dongyang Fan <dongyang.fan@epfl.ch>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Figure 1: Chat box between two users with different charac-
teristics. Next word prediction for smart keyboards should
be tailored to users’ topic preferences for personalization.
However, to ensure factual accuracy and linguistic consis-
tency, the results of next word prediction should maintain
universality.

Figure 2: Diagram of our proposed method CoMiGS il-
lustrated with a simplified 2-heterogenous-models setup
(corresponding to the two users in Figure 1). Generalist ex-

perts (θG
1 , θG

2) are aggregated across users, and specialist

experts ({θSi
1 }3i=1 , {θS1

2 }) and Routers (ϕ1 , ϕ2) are
kept local.

ference introduces significant delays for end users, and it
often fails to meet their personalized needs (Ding et al.,
2024; Iyengar & Adusumilli, 2024). Recently, there has
been growing interest in deploying LLMs on edge devices,
which offer benefits like lower latency, data localization, and
more personalized user experiences (Xu et al., 2024). For
instance, Apple (2024) recently launched on-device founda-
tion models as part of its personal intelligence system. Meta
(2024), Qwen (2024) newly released lightweight models
with less than 3B parameters targeting edge AI.

On-device LLMs present challenges such as limited and vari-
able computational resources, scarce and heterogeneous lo-
cal data, and privacy concerns related to data sharing (Peng

1

CoMiGS: On-Device Collaborative Language Modeling

et al., 2024; Wagner et al., 2024). Fine-tuning is typically
performed on-device to quickly adapt to users’ individual
needs. While data sharing is a common solution to address
local data scarcity, on-device data is often privacy-sensitive
and must remain on the device. To overcome this, Federated
Learning has been proposed as a method for enabling col-
laborative learning while preserving user privacy, allowing
end users to collaborate by sharing model parameters (Chen
et al., 2023; Zhang et al., 2023).

Federated fine-tuning of LLMs is predominately done
through Low-Rank Adaptation (LoRA, Hu et al. (2021))
due to its lightweight nature so that the communication
costs can be largely mitigated. Yet end devices may have
different capacities, resulting in different LoRA ranks or
different numbers of LoRA modules allowed on devices.
Previous works have proposed various techniques for aggre-
gating LoRA modules of different ranks (Cho et al., 2023;
Bai et al., 2024). However, in both works, the devices are
only equipped with shared knowledge, which makes the
methods unsuitable when there is data heterogeneity across
users. In such cases, a more personalized solution is needed.

End users’ local data distributions can exhibit significant
statistical heterogeneity. For instance, mobile device users
may have distinct linguistic habits, topic preferences, or
language usage patterns, leading to widely varying word
distributions, as illustrated in different next word predictions
to the same prompt “In my free time, I like to” in Fig. 1. As
a result, personalized solutions are necessary. Wagner et al.
(2024) explored three personalized collaborator selection
protocols, allowing each end user to choose their collabo-
rators. Although these protocols effectively address data
heterogeneity, they depend on model aggregation, which can
only occur when users share the same model architecture.

There has not yet been a solution to deal with both model
heterogeneity and data heterogeneity. Towards this goal,
we propose a novel Collaborative learning approach via a
Mixture of Generalists and Specialists (CoMiGS). Our ap-
proach allows users to share part of the knowledge while
keeping some knowledge user-specific, thus providing per-
sonalized solutions. We name the shared part generalists and
the user-specific part specialists. Like all previous works,
the generalists and specialists are simply LoRA modules. At
the same time, as long as the shared part can be aggregated,
the user-specific part can be of different sizes, which can
be adapted to various device capacities, as illustrated by
different numbers of specialists across users in Figure 2.

We integrate the expertise of generalists and specialists us-
ing a learned router that determines aggregation weights,
following the Mixture-of-Experts (MoE) architecture (Fe-
dus et al., 2022b). As in typical MoE designs for language
modeling (Jiang et al., 2024; Fan et al., 2024), we also use
tokens as the routing unit. Although users may have differ-

ent topic preferences or linguistic styles, they should still
share common phrases, for example, when talking about
factual knowledge (the result of the US presidential election
should be a universal fact in Figure 1). Our goal is to route
these shared tokens to the generalists so they can be jointly
learned across users.

We further notice a hierarchical structure between the router
and the experts: the router dynamically assigns tokens based
on emerging expert specializations, while the experts refine
their roles to optimize token processing under the router’s
guidance. Towards addressing this, we formulate our learn-
ing objective as a bi-level optimization problem and propose
a new first-order algorithm based on alternating minimiza-
tion as a solution. Our method enjoys convergence guaran-
tees and is resource-efficient for deployment.

In summary, our contributions are as follows:

• We propose a novel approach (CoMiGS) for on-device
personalized collaborative fine-tuning of LLMs. Key parts
of our approach are: 1) an innovative bi-level formulation
of the MoE learning objective (Section 3.2); 2) a new al-
gorithm based on alternating minimization (Alg.1); 3) a
theoretical analysis with a proof showing linear conver-
gence rate under suitable assumptions (Section 3.4).

• Our collaborative framework effectively addresses both
data heterogeneity (Section 4.2), concerning diverse local
data distributions across users, and computational resource
heterogeneity (Section 4.3), with respect to varying local
model architectures, making it the first model to accom-
plish both.

• Our framework separates model heterogeneity from data
quantity (Section 4.4). Users with larger local datasets ben-
efit from a bigger model, while users with more powerful
models but smaller datasets are less prone to overfitting.

• CoMiGS is resource-efficient: it adds marginal (+1.25%)
computational overhead and memory requirement com-
pared to FedAvg, while reducing communication costs by
50% (Section 4.5).

• We release a codebase1 for collaborative LLMs that allows
users to easily implement various collaboration strategies,
facilitating and advancing future research efforts in this
field.

2. Related Work
Collaborative Fine-Tuning for LLMs. Recently, re-
searchers have been investigating the application of Fed-
erated Learning in language tasks. Due to the substantial
number of model parameters in LLMs, the research has
largely targeted the stages following pre-training, often uti-

1Our code base is available at https://github.com/
epfml/CoMiGS

2

https://github.com/epfml/CoMiGS
https://github.com/epfml/CoMiGS

CoMiGS: On-Device Collaborative Language Modeling

lizing parameter-efficient techniques such as adapters. Mo-
htashami et al. (2023) explored a teacher-student social
learning framework to aggregate private-sensitive instruc-
tions. Zhang et al. (2023) directly applied FedAvg (McMa-
han et al., 2017) to aggregate LoRA parameters during in-
struction tuning, and reported increased performance in
downstream tasks. Following that, there are various works
focusing on addressing resource heterogeneity where users
are equipped with different LoRA ranks. HetLoRA (Cho
et al., 2023) and FlexLoRA (Bai et al., 2024) provide dif-
ferent ways of aggregating and distributing LoRA modules
of heterogenous ranks. However, these approaches are not
designed to cope with heterogeneous data on device. In
contrast, Sun et al. (2024) demonstrated that freezing LoRA
A matrices at initialization leads to improved performance
on heterogeneous data. Building on this, Guo et al. (2024)
showed that consistently aggregating LoRA A matrices can
yield even greater performance gains. Meanwhile, Wagner
et al. (2024) introduced personalized approaches to effec-
tively address data heterogeneity by employing three dis-
tinct collaborator selection mechanisms. However, these
approaches require all users to utilize the same model archi-
tecture. Unlike previous works, our framework deals with
both model heterogeneity and data heterogeneity. Moreover,
our method offers personalized solutions at a token level, as
opposed to the client-level approach in Wagner et al. (2024).

Mixture of Global and Local Experts. Gaspar & Seddon
(2022) introduced a fusion of global and local experts for
activity prediction based on molecular structures. Each local
expert is tailored to a specific chemical series of interest us-
ing loss masking, while a global expert is trained across all
series. Simultaneously, a routing network learns to assign
soft merging scores. This approach yielded superior empir-
ical results compared to single experts. Dai et al. (2024)
developed DeepSeekMoE by deterministically assigning ev-
ery token to “shared” experts, whereas “routed” experts are
assigned tokens based on a learnable router. DeepSeekMoE
is able to approach the upper bound performance for MoE
models. For both works, the notion of shared/global is with
respect to input samples, i.e. a shared/global expert should
see all input samples. In a collaborative setup, FDLoRA (Qi
et al., 2024) learns dual LoRA modules on each client to
capture personalized and global knowledge respectively.
Client-wise fusion weights are learned towards the end of
training to combine the two sets of knowledge. In com-
parison, pFedMoE (Yi et al., 2024) jointly learns a shared
homogeneous small feature extractor, a localized heteroge-
neous feature extractor, and a localized routing network in
an end-to-end fashion, demonstrating strong performance
in the vision domain. Our work is closely related to these
two works, while introducing key innovations that adapt to
model heterogeneity and allow for fine-grained adaptation
to target distributions.

3. Method
We aim to improve personalized performance for each end
user, through a fine-grained mixture of general and person-
alized knowledge. Building on the hierarchical insights of
MoE learning, we formulate our learning objective into a
bi-level optimization problem, where expert parameters are
learned using the relatively large-sized training sets, while
routing parameters are updated using the small-sized vali-
dation sets. We further let experts diversify into generalists
and specialists via parameter aggregation or localization.
As the problem solver, we provide a multi-round gradient-
based algorithm, of which the pseudo codes are presented
in Appendix A.

3.1. Notions and Problem Setup

Each user has a training set X train
i , a small validation set

Xvalid
i and a test set X test

i , and the task is next token pre-
diction. The validation set Xvalid

i and the test set X test
i are

sampled from the same distribution P target
i (note this is a

fuzzy concept in the language domain, by the same distribu-
tion we mean from the same topic/category). The training
set, X train

i , can be sampled from a different distribution than
P target
i . This is to address scenarios where distribution shifts

may occur over time, such as changes in topics reflected
in the typing data of mobile phone users. As illustrated in
Figure 2, there are two sets of model parameters within each
user: expert parameters, denoted as Θ = θG∪{θS

i }, where
θG is shared across the users and {θS

i } are user-specific
specialist parameters; and routing parameters, denoted as
Φ = {ϕi}. i ∈ {1, 2, .., N} is the user index. We use
linear models as our routers. Thus, ϕix ∈ Rni produces
gating values which are used to combine the ni experts at
each layer, as in (1), where x is an input token, y is the
corresponding layer output and Ej is the jth expert.

pj(x) =
(expϕix)j∑
k(expϕix)k

, y =

ni∑
j=1

pj(x)Ej(x) (1)

Our experts are simply LoRA modules, which approximate
model updates ∆W ∈ Rm×n with a multiplication of two
low-rank matrices A ∈ Rm×r and B ∈ Rr×n with rank
r ≪ m,n. θG and θS are disjoint sets of LoRA A and B
matrices.

3.2. A Bi-Level Formulation

Instead of learning routing and expert parameters simultane-
ously like the conventional way in LLMs (Zoph et al., 2022;
Fedus et al., 2022a), we update the two sets of parameters
in an alternating fashion. We observe a natural hierarchy
between the experts and the router: the assignment of tokens
to experts depends on the router’s outputs, while the experts’
parameters are updated based on the assigned tokens. In this
way, the experts’ development follows the router’s decisions,

3

CoMiGS: On-Device Collaborative Language Modeling

establishing an inherent leader-follower structure. Follow-
ing Von Stackelberg (2010), we formulate the hierarchical
problem as a bi-level optimization objective as follows:

min
Φ

∑
i

L(Xvalid
i ,Θ⋆(Φ),ϕi) (upper)

s.t. Θ⋆(Φ) ∈ argmin
Θ

∑
i

L(X train
i ,θG,θS

i ,ϕi) (lower)

where L is the language modeling loss. The routing param-
eters Φ = {ϕi} are updated based on the validation loss,
which reflects the target distribution (upper optimization),
while the expert parameters Θ = θG ∪ {θS

i } are updated
using the training loss (lower optimization). This formu-
lation further brings in the following benefits: 1) routing
parameters are smaller in size, making them easier to overfit.
By separating the two losses, the routing parameters can
be updated less frequently using the smaller validation set
(visual evidence of less frequent router update leading to
improved performance is provided in Figure 8 in the Ap-
pendix); 2) this approach handles situations where target
distributions differ from training distributions more effec-
tively, as the router outputs (i.e., how the experts should be
weighted) can be tailored to specific tasks.

3.3. Our Algorithm

To solve our bi-level problem, we use alternating updates
of the two sets of parameters. The pseudo-code of our
proposed algorithm is detailed in Alg.1 in the Appendix.
Alternating Update of Θ and Φ. Alternating up-
date of two sets of parameters is a standard way
to solve bi-level optimization problems (Chen et al.,
2021). The alternating updates of expert and rout-
ing parameters are performed using local training and
validation sets separately. To simplify notations, we
denote fvalid(Θ,Φ) :=

∑
i L(Xvalid

i ,θG,θS
i ,ϕi) and

ftrain(Θ,Φ) :=
∑

i L(X train
i ,θG,θS

i ,ϕi). Note that in con-
trast to (upper) bi-level formulation, we allow parameter Θ
to be free in fvalid, which makes it easier to optimize. We
can write the alternating update steps as follows.

Φk+1 = argmin
Φ

fvalid(Θk,Φ), (2)

Θk+1 = argmin
Θ

ftrain(Θ,Φk+1). (3)

Since the updates of Θ and Φ are disentangled, they do
not need to be updated at the same frequency. The rout-
ing parameters are smaller in size and thus can be updated
less frequently. When updating model parameters, we in-
clude an additional load-balancing term as in Fedus et al.
(2022a), which is standard in MoE implementation and en-
courages even distribution of token assignments to experts.

A discussion over the load balancing term is included in
Appendix C.4. It is observed that a load-balancing term
can improve test performance compared to not having one.
However, directing more tokens to the generalists has no
noticeable effect.

Given that the data is distributed among clients, when solv-
ing optimization problem from equation (3), we first obtain
the solutions θG

i and θS
i to local problems, for each client i.

A parameter aggregation is then performed on the user-
specific θG

i via a trusted server to establish a shared θG
across all users.{

θ̃G,k+1
i , θ̃S,k+1

i

}N

i=1
= argmin

Θ
ftrain(Θ,Φk+1),

Θk+1 =

(
1

N

∑
i

θ̃G,k+1
i , {θ̃S,k+1

i }
)
.

(4)

In the next round, each user replaces their θG
i with the global

θG, while their θS
i remains local.

3.4. Convergence Results

We study the convergence properties of our alternating min-
imization process. First, we establish a linear rate of con-
vergence under general assumptions on our objectives, that
always hold locally, when the parameters are close to the
training solution (assuming the pretrained model is not far
from the fine-tuned models). Then, we show that in the case
of linear experts, the same optimization procedure possesses
global linear convergence.

We denote partial minimization operators from (2), (3) by

u1(Θ) := argmin
Φ

fvalid(Θ,Φ),

u2(Φ) := argmin
Θ

ftrain(Θ,Φ),

and their compositions by T := u2 u1 and P := u1 u2.
Note that both T and P act on the corresponding spaces of
Θ and Φ: T : R|Θ| → R|Θ| and P : R|Φ| → R|Φ|.

Assumption 1 (Shared Optima). There exist Θ⋆ and Φ⋆

such that

Θ⋆ = T (Θ⋆) and Φ⋆ = P (Φ⋆). (5)

Eq. (5) means that fvalid and ftrain share the same global
optima, which is reasonable when the train and validation
data are similar, X train

i ∼ Xvalid
i , and, hence, fvalid ≈ ftrain.

It also holds for overparametrized models, such as LLMs.

Assumption 2 (Contraction Property). Let u1 and u2 be
Lipschitz with some constants λ1, λ2 > 0, for any Θ, Θ̄
and Φ, Φ̄:

∥u1(Θ)− u1(Θ̄)∥ ≤ λ1∥Θ− Θ̄∥,

∥u2(Φ)− u2(Φ̄)∥ ≤ λ2∥Φ− Φ̄∥.
(6)

4

CoMiGS: On-Device Collaborative Language Modeling

Theorem 3.1 (Convergence under Contraction). If As-
sumptions 1, 2 hold, and λ1 · λ2 < 1, then the weights
(Θk,Φk) generated by alternating updates (2), (3) con-
verge to (Θ⋆,Φ⋆) with a linear rate.

The proof is provided in Appendix F.2. We show that the
contraction property holds when the objectives are convex
quadratics. As a consequence, it also holds locally for any
sufficiently smooth models, using their Taylor expansions
around a local minimum. Large models are usually smooth,
and when initialized with a well-pre-trained model, it suf-
fices to guarantee local convergence.

Our alternating minimization process can guarantee global
convergence as well, when the experts are linear models, see
Appendix F.4. This indicates a wide applicability of solving
MoE objectives via alternating minimization.
Theorem 3.2 (Global Convergence for Linear Experts). If
fvalid = ftrain and all the expert modules are linear models,
we have a global linear convergence rate for a practical
instance of our method.

4. Experiments
4.1. Setup

4.1.1. DATASETS

We selected the following datasets to demonstrate the effi-
cacy of our proposed algorithm: 1) Multilingual Wikipedia:
Wikipedia articles in four languages: German, French and
Italian from Wikimedia-Foundation, and Dutch from Guo
et al. (2020); 2) SlimPajama: We pick the following four
categories – StackExchange, Github Codes, ArXiv, Book
from Soboleva et al. (2023); 3) AG News: News from cat-
egories of World, Sports, Business, and Sci/Tech (Zhang
et al., 2016). 4) Common Corpus (pleias, 2024): specifi-
cally the following three categories – YouTube-Commons,
Public Domain Books, and EU Tenders collections, and the
Harvard US Patent dataset from Suzgun et al. (2022).

A distinct category is assigned to a user, as it simulates
the most challenging scenario for collaboration. Given our
emphasis on next token prediction, we anticipate shared pre-
dictions among users while maintaining category-specific
distinctions. We further create the following two scenarios
to showcase the wide applicability of our method:
In-Distribution Tasks. For each user, we construct vali-
dation and test datasets that follow the same distribution as
the training data. We address two scenarios in this context:
(i) variation in language usage across users (Multilingual
Wikipedia), and (ii) variation in topic coverage across users
(SlimPajama, Common-Corpus).
Out-of-Distribution Tasks. For each user, we create val-
idation and test datasets from a distribution different from
the training data. During training, each user is assigned a

single category, but their validation and test sets consist of a
uniform mixture of all categories. This approach accounts
for potential shifts in topics within users.

4.1.2. EXPERIMENTAL DETAILS

We choose the following base model architectures: GPT2
(124M, English only) and Llama 3.2(1B, Multilingual)2. We
incorporate LoRA modules into every linear layer, including
MLP and Self-Attention Layers, following the recommen-
dations of Fomenko et al. (2024). A routing mechanism is
exclusively implemented atop MLP layers. The number of
LoRA experts in MLP blocks depends on the local resource
abundance. For more experimental details, we refer readers
to Appendix B.

4.2. Data-Driven Selection: Generalist vs. Specialist
We start by equipping users with the same model architec-
ture locally, to illustrate the effectiveness of our hierarchical
learning of routing and expert parameters. We compare our
one generalist one specialist (CoMiGS-1G1S) method to
the following baselines. In order to match the trainable pa-
rameter count of our method, we use 2 times LoRA modules
within each user.

• Upper and lower bounds: 1) Pretrained: Pretrained
checkpoints. 2) Centralized: A single model trained
using data from all users. (Note this method is an unre-
alistic baseline as data cannot leave the devices due to
privacy concerns.)

• Baselines: 1) Local: Training individually using only
local data. 2) FedAvg: Aggregating LoRA parameters
across users using uniform weights, which is equivalent
to applying FedAvg (McMahan et al., 2017). 3) PCL:
Aggregating LoRA parameters using a client-level col-
laboration graph. The graph is updated using validation
performances. (Strategy 2 in Wagner et al. (2024)). 4)
pFedMoE: We directly apply the method from Yi et al.
(2024) in the language domain where we update routing
and expert parameters at the same time and choose tokens
as a routing unit. 5) FDLoRA: Global and local parame-
ters are learned, and a client-wise fusion weight is learned
to combine global and local parameters. (Qi et al., 2024)

• Ablations: 1) CoMiGS-2S: Both experts are specialists,
meaning their weights are neither shared nor aggregated.
The routing parameters are updated using a separate vali-
dation set like in CoMiGS-1G1S. 2) CoMiGS-2G: Both
experts are generalists, meaning their weights are always
shared and aggregated. The routing parameters are up-
dated like in CoMiGS-1G1S.

2We adopt the codes from https://github.
com/karpathy/nanoGPT and https://github.
com/danielgrittner/nanoGPT-LoRA, https:
//github.com/pjlab-sys4nlp/llama-moe

5

https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT
https://github.com/danielgrittner/nanoGPT-LoRA
https://github.com/danielgrittner/nanoGPT-LoRA
https://github.com/pjlab-sys4nlp/llama-moe
https://github.com/pjlab-sys4nlp/llama-moe

CoMiGS: On-Device Collaborative Language Modeling

Table 1: Mean (std) test perplexity over the users with ho-
mogeneous models, averaged across 3 seeds (the lower the
better). Light grey denotes in-distribution tasks and dark
grey denotes out-of-distrition tasks.

Base Model GPT2-124M LLAMA3.2-1B

Dataset Multilingual SlimPajama AG News Com-Corpus AG News

Pretrained 156.12 37.19 90.65 30.40 29.37
Centralized 55.41 (0.12) 19.53 (0.14) 28.19 (0.52) 17.97 (0.19) 16.12 (0.05)

Local 54.38 (0.32) 26.95 (0.14) 41.46 (0.06) 20.19 (0.11) 19.96 (0.01)
FedAvg 58.80 (0.34) 23.27 (0.05) 31.84 (0.02) 21.95 (0.11) 15.86 (0.05)
PCL 54.53 (0.19) 26.99 (0.19) 32.25 (0.12) 19.65 (0.03) 16.84 (0.05)
pFedMoE 52.27 (0.17) 25.40 (0.09) 38.72 (0.21) 20.41 (0.05) 17.84 (0.05)
FDLoRA 57.45 (0.81) 22.71 (0.40) 33.61 (0.07) 22.11 (0.05) 16.64 (0.02)

CoMiGS - 2S 46.36 (0.16) 22.51 (0.08) 35.81 (0.13) 18.46 (0.13) 18.03 (0.11)
CoMiGS - 2G 58.31 (0.17) 21.36 (0.01) 31.18 (0.05) 20.18 (0.09) 15.41 (0.05)
CoMiGS - 1G1S 47.19 (0.10) 21.79 (0.04) 33.53 (0.03) 18.37 (0.03) 16.31 (0.05)

4.2.1. RESULT ANALYSIS

The comparison between our method and the baseline meth-
ods is summarized in Table 1.
Effectiveness of Our Routing Mechanism. Depend-
ing on the dataset, either CoMiGS-2G or CoMiGS-2S
achieves the highest performance. The key distinction com-
pared to Local or FedAvg is the existence of a layer-wise
token-level router, which learns to combine the two general-
ists or specialists. This emphasizes while knowledge might
be present, the way it’s combined is the key. Moreover,
pFedMoE, despite having a learned router as well, under-
performs our method, even in the in-distribution scenario.
The reason is that the routing parameters are updated simul-
taneously with the expert parameters using the training set,
and thus cannot effectively adapt to the target distribution.
When a separate validation set is not available, CoMiGS
can alternatively sample a new training batch to update the
routers and still offer competitive results for in-distribution
tasks (see Table 5).
Token-level Collaborative Decisions Outperform Client-
Level. Compared to the state-of-the-art baseline PCL and
FDLoRA, our method demonstrates a clear performance
improvement. While both methods require a separate valida-
tion set as in our method to determine collaboration weights,
PCL determines the weights to combine each client’s mod-
els iteratively while FDLoRA determines the weights for the
global and local model at the end of training. Our method,
in contrast, decides the collaboration pattern based on each
input token, allowing the router weights to co-adapt with
the expert parameters throughout training. This enables a
more flexible and fine-grained collaboration.
The Necessity of the Co-existence of Generalists and
Specialists. The performances of CoMiGS-2G and
CoMiGS-2S are not consistent across the different sce-
narios, while our CoMiGS-1G1S can always closely track
the best-performing model, which is clearly visualized in
Figure 9. Even for in-distribution tasks, it is unclear whether
CoMiGS-2G or CoMiGS-2S will outperform, suggesting
both generalists and specialists are necessary as it is im-

possible to determine the language structure in advance.
Even drastically different users still share many of the same
tokens. A data-dependent combination of generalists and
specialists is required.

4.2.2. ROUTING ANALYSIS

Token-wise Analysis. Figure 3 visualizes token-level rout-
ing results for models fine-tuned on the SlimPajama dataset.
In the first layer, function words (e.g., ”and,” ”a,” ”on,”
”the”) are predominantly routed to generalists. In contrast,
in the last layer, content words are more frequently assigned
to generalists. This pattern is particularly evident for the first
two users, trained on math and programming texts, where
domain-specific terms are primarily routed to specialists.
These findings suggest that experts in later layers develop
more distinct role specializations. Importantly, only the top
choice is highlighted here. The abundance of blue does
not imply that generalist experts play no role in predict-
ing the next token. As compared to when only specialists
are present (CoMiGS-2S), our CoMiGS-1G1S gives more
consistent results. More detailed token-wise routing result
visualization including out-of-distribution tasks can be seen
in Appendix E. When dealing with out-of-distribution texts,
there is an increasing tendency to seek generalists, as shown
in the off-diagonal entries in Figure 14-19.

Layer-wise Analysis. Figure 4 depicts the evolution of
averaged layer-wise router outputs for the generalist and
specialist experts on the out-of-distribution task, compar-
ing CoMiGS-1G1S and pFedMoE. As training progresses,
CoMiGS-1G1S undergoes a phase transition: the layer-
wise routers initially favor generalists but gradually shift
towards specialists. This shift is not observed in pFedMoE,
highlighting the critical role of our routing mechanism in
handling out-of-distribution tasks. Additionally, we notice
different layers converge to a different expert score distri-
bution. When applying our CoMiGS-1G1S, for each user,
there are always certain layers where the routers consistently
prefer generalists, which aligns with the fact that our tar-
get distribution is a union of all local training distributions.
For in-distribution tasks (Figure 10), during early stage of
training, some layers favor generalists. When close to con-
vergence, all layers favor specialists. We attribute this to
the fact that generalists are updated with more tokens and
are thus knowledgable from an early stage, while it takes
longer for specialists to refine their knowledge with small
local training data.

4.3. Adaptation to Computational Resource
Heterogeneity

4.3.1. BASELINE COMPARISON

In this section, our focus is to deal with computational
resource heterogeneity, where users can have different num-

6

CoMiGS: On-Device Collaborative Language Modeling

StackEx User Codes User ArXiv User Book User

StackEx User Codes User ArXiv User Book User

Figure 3: Visualization of in-distribution token-level routing results for CoMiGS-1G1S trained on SlimPajama. Tokens are
colored with the Top1 expert choice at the first layer (top) and last layer (bottom). Orange denotes the generalist and blue
denotes the specialist. Texts are generated by ChatGPT. Further colored text plots are provided in Appendix E.

50 100 150 200

0.25

0.50

0.75

Av
er

ag
e

Sc
or

es

World User

50 100 150 200

0.25
0.50
0.75

Sports User

50 100 150 200

0.25

0.50

0.75

Business User

50 100 150 200

0.25

0.50

0.75

Sci/Tech User

50 100 150 200

0.25

0.50

0.75

Av
er

ag
e

Sc
or

es

50 100 150 200

0.25

0.50

0.75

50 100 150 200

0.25

0.50

0.75

50 100 150 200

0.25

0.50

0.75

Generalist Specialist

Figure 4: Expert Scores for the generalist expert and the
specialist expert, averaged across all tokens and multiple
batches for the out-of-distribution task (AG News). X-
axis: number of iterations. Top: CoMiGS-1G1S, Bottom:
pFedMoE. Darker colors indicate deeper layers.

bers of experts ni. We denote different experimental setup
by specifying the list of nis. We still keep one generalist
expert per device, but the number of specialists can vary
across the users (the variation is called One-Generalist-X-
Specialists, in short, CoMiGS-1GXS). It’s important to note
that the richness of computational resources doesn’t always
correlate with the complexity of local data. For instance,
some users may have ample computational resources but
local data in small quantities. In such cases, a crucial objec-
tive is to prevent overfitting due to redundant model-fitting
abilities.

We compare our approach to two state-of-the-art baselines:
HetLoRA from Cho et al. (2023) and FlexLoRA from Bai
et al. (2024), both of which adapt LoRA ranks based on
the resource capacity of each user. HetLoRA aggregates
LoRA matrices A and B by zero-padding to the maximum
rank and then distributes them back using rank truncation.
In contrast, FlexLoRA first reconstructs model updates
∆W and redistributes the aggregated updates using SVD.
We compare our method to these baselines by matching the
number of tunable parameters, measured as both active and
full parameters. For example, to match the full parameter

count of CoMiGS-1GXS with (4, 2, 2, 2) LoRA experts
(rank 8), LoRA modules of ranks (32, 16, 16, 16) would be
required. With Top2 routing, to match the active parameter
count, each user would need LoRA modules of rank 16.

Our results, presented in Table 2, are based on allocating
varying numbers of experts to users, with computational
resource availability decoupled from local task complexity.
Our method outperforms the baseline methods for all in-
distribution tasks, regardless of matching the full parameter
count or the active parameter count. This advantage stems
from the fact that both HetLoRA and FlexLoRA average
model parameters across users without allocating param-
eters for local adaptations, focusing on building a strong
generalist model. In contrast, our approach adaptively inte-
grates both generalist and specialist knowledge, excelling
in scenarios where specialized knowledge is crucial.

Table 2: Mean test ppl (std) over users with heterogeneous
models, averaged across 3 seeds. Light / dark grey denote
in-distribution and out-of-distribution tasks respectively.

OURS HETLORA FLEXLORA
COMIGS-1GXS ACTIVE FULL ACTIVE FULL

GPT2-124M
MULTILINGUAL
(2,2,4,4) 46.48 (0.16) 57.76 (0.10) 58.60 (0.20) 77.71 (0.15) 77.66 (0.06)
(4,4,2,2) 47.24 (0.09) 57.76 (0.10) 59.14 (0.04) 77.71 (0.15) 75.64 (0.19)
SLIMPAJAMA
(2,4,4,2) 22.10 (0.17) 23.33 (0.10) 23.15 (0.09) 22.98 (0.10) 23.03 (0.07))
(4,2,2,4) 22.28 (0.09) 23.33 (0.10) 23.17 (0.09) 22.98 (0.10) 23.03 (0.08)
AG NEWS
(4,2,2,2) 33.66 (0.07) 31.58 (0.14) 31.95 (0.13) 36.41 (0.18) 36.62 (0.11)
(2,4,4,4) 34.22 (0.09) 31.58 (0.14) 32.52 (0.19) 36.41 (0.18) 36.46 (0.04)

Llama3.2-1B
COMMON-CORPUS
(2,4,4,2) 18.74 (0.14) 21.41 (0.12) 21.74 (0.09) 24.63 (0.12) 25.18 (0.08)
(4,2,2,4) 18.68 (0.11) 21.41 (0.12) 21.61 (0.10) 24.63 (0.12) 24.74 (0.09)
AG NEWS
(4,2,2,2) 16.39 (0.11) 15.89 (0.05) 16.02 (0.05) 17.33 (0.04) 17.52 (0.04)
(2,4,4,4) 16.44 (0.07) 15.89 (0.05) 16.25 (0.11) 17.33 (0.04) 17.70 (0.10)

4.4. User-specific Analysis

In this section, we investigate how each user can benefit
from our CoMiGS-1GXS. It is observed that our approach
is more robust to overfitting due to the regularizing effect

7

CoMiGS: On-Device Collaborative Language Modeling

of the generalist, while at the same time better fitting local
data through the incorporation of specialist knowledge.

We conduct experiments using the Multilingual Wikipedia
dataset, where there are enough tokens to allocate different
data quantities to users. In practice, users may not know
their local data complexity, leading to a potential mismatch
in resource allocation relative to data quantity. To simulate
such scenarios, we allocate model capabilities—measured
by ni (the number of LoRA modules per user)—either posi-
tively or negatively correlated with their local data size. It
is important to note that one generalist is always assigned.
Top2 routing is always performed is ni ≥ 2.

More Specialists Help with Higher Data Quantity. High
data quantity users (French and Italian) consistently benefit
from having more specialists locally, as their test perplexi-
ties decrease when the number of specialists increases from
1 to 3 to 7. This suggests that when sufficient local training
data is available, adding more specialists leads to improved
performance.

50 100 150 200

50

60

70

Te
st

 P
er

pl
ex

ity

German User (low)

50 100 150 200

60

80

Dutch User (low)

50 100 150 200

40

50

60
French User (high)

50 100 150 200

60

80

Italian User (high)

1GXS: 2,2,2,2 1GXS: 2,2,4,4 1GXS: 2,2,8,8

Figure 5: Test Perplexity vs. the number of iterations. Low
and high denote data quantity. Legend denotes ni.

Generalists Help to Prevent Redundant Specialists from
Over-Fitting. For users with low data quantities, local
model training with just two LoRA modules already results
in overfitting (a trend observed in Figure 9). Our method suc-
ceeds to suppress overfitting, even when fine-tuning twice
or four times as many expert parameters. We attribute this
to the existence of the generalists.

50 100 150 200

50

60

70

Te
st

 P
er

pl
ex

ity

German User (low)

50 100 150 200

60

80

Dutch User (low)

50 100 150 200
40

50

French User (high)

50 100 150 200

60

80

Italian User (high)

1GXS: 2,2,2,2 1GXS: 4,4,2,2 1GXS: 8,8,2,2

Figure 6: Test Perplexity vs. the number of iterations. Low
and high denote data quantity. Legend denotes ni.

Specialists Can Benefit Generalists. What happens if
users can only support a maximum of one expert? In our
setup, such users must rely on the generalist expert when
participating in collaboration. Interestingly, even when their
collaborators are allocated more specialists, low-resourced
users with only one generalist still benefit from the refined
role diversification between generalists and specialists. As
a result, the generalists become more powerful, as demon-
strated in Figure 7.

We provide an additional example of the impact of local
data quantities in Appendix D using SlimPajama dataset.

50 100 150 200

60

65

70

Te
st

 P
er

pl
ex

ity

German User (low)

50 100 150 200

70

80

90

Dutch User (low)

50 100 150 200

40

50

60
French User (high)

50 100 150 200

60

80

Italian User (high)

1GXS: 1,1,1,1 1GXS: 1,1,4,4 1GXS: 1,1,8,8

Figure 7: Test Perplexity vs. the number of iterations. Low
and high denote data quantity. Legend denotes ni.

Similar conclusions can be drawn from our empirical results.
However, there is a limit to how much generalists can help
prevent overfitting when the local tasks are easy.

4.5. Computational and Communication Overhead

Our approach offers a significant advantage for on-device
deployment due to its minimal computational and communi-
cation overhead. We compare the resource consumption of
our CoMiGS-1G1S to FedAvg in Table 3, matching the
parameter count for LoRA modules.

The communication costs are halved compared to standard
FedAvg, as only the weights of generalist experts are ex-
changed. Our framework employs a first-order algorithm,
ensuring that computation and memory requirements re-
main on par with those of standard FedAvg algorithms.
The additional memory and computational overhead primar-
ily stem from the inclusion of the router, which is minimal
(1.25% increase) since the router consists of a single-layer
MLP.

Table 3: Extra resource consumption (per device)
CoMiGS-1G1S compared to standard FedAvg, assuming
base model is GPT-124M with bfloat16 training.

COMP. OVERHEAD MEMORY COMM. COSTS
/ FORWARD PASS / ROUND

+ 5 MFLOPS + 0.035 MB -1.41 MB
(+1.25%) (+1.25%) (-50%)

5. Conclusions
We propose a novel framework for on-device personalized
collaborative fine-tuning of LLMs, grounded in an innova-
tive bi-level formulation of the Mixture-of-Experts learning
objective. Our fine-grained integration of generalist and
specialist expert knowledge achieves superior performance
in balancing personalization and collaboration within Feder-
ated LLMs.

Furthermore, our framework is the first to address both
model and data heterogeneity in collaborative LLM train-
ing. It further decouples local data quantity from resource
availability, allowing high-resourced users to leverage larger
datasets for improved performance while remaining resilient
against overfitting in low-data scenarios. CoMiGS is both
theoretically sound and resource-efficient for practical de-
ployment.

8

CoMiGS: On-Device Collaborative Language Modeling

Impact Statement
We offer a collaboration framework for edge devices, aim-
ing to enable smaller devices to leverage large language
models (LLMs) despite limited resources and data availabil-
ity. Our approach enhances fairness and mitigates privacy
concerns by ensuring data remains on end devices. The pri-
vacy aspects can further be enhanced by differential private
aggregation of generalist weights, which we do not pursue
here.

The robustness towards attackers is beyond the scope of our
work. Our collaboration framework has no guarantee of
resilience towards adversarial attackers through the aggrega-
tion of the generalist weights, which could potentially lead
to misuse by certain parties. Further research is required on
top of our framework to guarantee its safe deployment.

Acknowledgements
This work was supported by the Swiss State Secretariat for
Education, Research and Innovation (SERI) under contract
number 22.00133 and received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 101017915 (DIGIPREDICT).

References
Almansoori, A. J., Horváth, S., and Takáč, M. Collaborative

and efficient personalization with mixtures of adaptors.
arXiv preprint arXiv:2410.03497, 2024.

Anthropic. Claude ai model, 2023. URL https://www.
anthropic.com/index/claude. Accessed: 2024-
09-24.

Apple. Apple intelligence foundation language mod-
els, 2024. URL https://arxiv.org/abs/2407.
21075.

Bai, J., Chen, D., Qian, B., Yao, L., and Li, Y. Feder-
ated fine-tuning of large language models under heteroge-
neous language tasks and client resources. arXiv preprint
arXiv:2402.11505, 2024.

Chen, C., Feng, X., Zhou, J., Yin, J., and Zheng, X. Feder-
ated large language model: A position paper, 2023. URL
https://arxiv.org/abs/2307.08925.

Chen, T., Sun, Y., and Yin, W. Closing the gap: Tighter anal-
ysis of alternating stochastic gradient methods for bilevel
problems. Advances in Neural Information Processing
Systems, 34:25294–25307, 2021.

Cho, Y. J., Liu, L., Xu, Z., Fahrezi, A., Barnes, M., and Joshi,
G. Heterogeneous loRA for federated fine-tuning of on-
device foundation models. In International Workshop on

Federated Learning in the Age of Foundation Models in
Conjunction with NeurIPS 2023, 2023. URL https:
//openreview.net/forum?id=EmV9sGpZ7q.

Dai, D., Deng, C., Zhao, C., Xu, R. X., Gao, H., Chen,
D., Li, J., Zeng, W., Yu, X., Wu, Y., Xie, Z., Li, Y. K.,
Huang, P., Luo, F., Ruan, C., Sui, Z., and Liang, W.
Deepseekmoe: Towards ultimate expert specialization in
mixture-of-experts language models, 2024.

DeepMind, G. Gemini ai model, 2023. URL https:
//www.deepmind.com/research/gemini. Ac-
cessed: 2024-09-24.

Ding, Y., Niu, C., Wu, F., Tang, S., Lyu, C., and Chen,
G. Enhancing on-device llm inference with histori-
cal cloud-based llm interactions. In Proceedings of
the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, KDD ’24, pp. 597–608,
New York, NY, USA, 2024. Association for Comput-
ing Machinery. ISBN 9798400704901. doi: 10.1145/
3637528.3671679. URL https://doi.org/10.
1145/3637528.3671679.

Fan, D., Messmer, B., and Jaggi, M. Towards an empir-
ical understanding of moe design choices, 2024. URL
https://arxiv.org/abs/2402.13089.

Fedus, W., Zoph, B., and Shazeer, N. Switch transformers:
Scaling to trillion parameter models with simple and ef-
ficient sparsity. Journal of Machine Learning Research,
23(120):1–39, 2022a.

Fedus, W., Zoph, B., and Shazeer, N. Switch transformers:
Scaling to trillion parameter models with simple and ef-
ficient sparsity, 2022b. URL https://arxiv.org/
abs/2101.03961.

Fomenko, V., Yu, H., Lee, J., Hsieh, S., and Chen, W. A
note on lora, 2024.

Gaspar, H. A. and Seddon, M. P. Glolloc: Mixture of global
and local experts for molecular activity prediction. In
ICLR2022 Machine Learning for Drug Discovery, 2022.

Guo, M., Dai, Z., Vrandecic, D., and Al-
Rfou, R. Wiki-40b: Multilingual language
model dataset. In LREC 2020, 2020. URL
http://www.lrec-conf.org/proceedings/
lrec2020/pdf/2020.lrec-1.296.pdf.

Guo, P., Zeng, S., Wang, Y., Fan, H., Wang, F., and Qu, L.
Selective aggregation for low-rank adaptation in federated
learning, 2024. URL https://arxiv.org/abs/
2410.01463.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation of

9

https://www.anthropic.com/index/claude
https://www.anthropic.com/index/claude
https://arxiv.org/abs/2407.21075
https://arxiv.org/abs/2407.21075
https://arxiv.org/abs/2307.08925
https://openreview.net/forum?id=EmV9sGpZ7q
https://openreview.net/forum?id=EmV9sGpZ7q
https://www.deepmind.com/research/gemini
https://www.deepmind.com/research/gemini
https://doi.org/10.1145/3637528.3671679
https://doi.org/10.1145/3637528.3671679
https://arxiv.org/abs/2402.13089
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2101.03961
http://www.lrec-conf.org/proceedings/lrec2020/pdf/2020.lrec-1.296.pdf
http://www.lrec-conf.org/proceedings/lrec2020/pdf/2020.lrec-1.296.pdf
https://arxiv.org/abs/2410.01463
https://arxiv.org/abs/2410.01463

CoMiGS: On-Device Collaborative Language Modeling

large language models. arXiv preprint arXiv:2106.09685,
2021.

Iyengar, A. and Adusumilli, P. Bigger isn’t always
better: How hybrid ai pattern enables smaller lan-
guage models, 2024. URL https://www.ibm.
com/blog/bigger-isnt-always-better\
-how-hybrid-ai-pattern-enables\
-smaller-language-models/.

Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A., Savary,
B., Bamford, C., Chaplot, D. S., de las Casas, D., Hanna,
E. B., Bressand, F., Lengyel, G., Bour, G., Lample, G.,
Lavaud, L. R., Saulnier, L., Lachaux, M.-A., Stock, P.,
Subramanian, S., Yang, S., Antoniak, S., Scao, T. L.,
Gervet, T., Lavril, T., Wang, T., Lacroix, T., and Sayed,
W. E. Mixtral of experts, 2024.

Jordan, M. I. and Jacobs, R. A. Hierarchical mixtures of
experts and the em algorithm. Neural computation, 6(2):
181–214, 1994.

Kalajdzievski, D. A rank stabilization scaling factor for
fine-tuning with lora, 2023.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Meta. Llama 3.2: Revolutionizing edge ai and vi-
sion with open, customizable models, Septem-
ber 2024. URL https://ai.meta.com/
blog/llama-3-2-connect-2024-vision\
protect\discretionary{\char\
hyphenchar\font}{}{}edge-mobile-devices/.
Accessed: 25.11.2024.

Mohtashami, A., Hartmann, F., Gooding, S., Zilka, L., Shar-
ifi, M., et al. Social learning: Towards collaborative
learning with large language models. arXiv preprint
arXiv:2312.11441, 2023.

Nesterov, Y. Lectures on convex optimization, volume 137.
Springer, 2018.

Nesterov, Y. Soft clustering by convex electoral model. Soft
Computing, 24(23):17609–17620, 2020.

OpenAI. Chatgpt (september 26 version), 2023. URL
https://chat.openai.com/. Large language
model.

Peng, D., Fu, Z., and Wang, J. PocketLLM: Enabling on-
device fine-tuning for personalized LLMs. In Habernal,
I., Ghanavati, S., Ravichander, A., Jain, V., Thaine, P.,
Igamberdiev, T., Mireshghallah, N., and Feyisetan, O.
(eds.), Proceedings of the Fifth Workshop on Privacy

in Natural Language Processing, pp. 91–96, Bangkok,
Thailand, August 2024. Association for Computational
Linguistics. URL https://aclanthology.org/
2024.privatenlp-1.10.

pleias. Common corpus, 2024. URL https:
//huggingface.co/datasets/PleIAs/
common_corpus.

Qi, J., Luan, Z., Huang, S., Fung, C., Yang, H., and Qian,
D. Fdlora: Personalized federated learning of large
language model via dual lora tuning. arXiv preprint
arXiv:2406.07925, 2024.

Qwen. Qwen2.5: A party of foundation models!, September
2024. URL https://qwenlm.github.io/blog/
qwen2.5-llm/.

Raschka, S. Practical tips for finetuning llms using
lora (low-rank adaptation), 2023. URL https:
//magazine.sebastianraschka.com/p/
practical-tips-for-finetuning-llms.

Soboleva, D., Al-Khateeb, F., Myers, R., Steeves, J. R.,
Hestness, J., and Dey, N. SlimPajama: A 627B
token cleaned and deduplicated version of RedPa-
jama. https://www.cerebras.net/blog/
slimpajama-a-627b-token-cleaned-and\
-deduplicated-version-of-redpajama,
2023. URL https://huggingface.co/
datasets/cerebras/SlimPajama-627B.

Sun, Y., Li, Z., Li, Y., and Ding, B. Improving lora in
privacy-preserving federated learning. ICLR, 2024.

Suzgun, M., Melas-Kyriazi, L., Sarkar, S. K., Kominers,
S. D., and Shieber, S. M. The harvard uspto patent dataset:
A large-scale, well-structured, and multi-purpose corpus
of patent applications. 2022. URL https://arxiv.
org/abs/2207.04043.

Von Stackelberg, H. Market structure and equilibrium.
Springer Science & Business Media, 2010.

Wagner, N., Fan, D., and Jaggi, M. Personalized collabo-
rative fine-tuning for on-device large language models.
Conference on Language Modeling, 2024.

Wikimedia-Foundation. Wikimedia downloads. URL
https://dumps.wikimedia.org.

Xu, J., Li, Z., Chen, W., Wang, Q., Gao, X., Cai, Q., and
Ling, Z. On-device language models: A comprehen-
sive review, 2024. URL https://arxiv.org/abs/
2409.00088.

Yi, L., Yu, H., Ren, C., Zhang, H., Wang, G., Liu, X., and Li,
X. pfedmoe: Data-level personalization with mixture of

10

https://www.ibm.com/blog/bigger-isnt-always-better\ -how-hybrid-ai-pattern-enables \ -smaller-language-models/
https://www.ibm.com/blog/bigger-isnt-always-better\ -how-hybrid-ai-pattern-enables \ -smaller-language-models/
https://www.ibm.com/blog/bigger-isnt-always-better\ -how-hybrid-ai-pattern-enables \ -smaller-language-models/
https://www.ibm.com/blog/bigger-isnt-always-better\ -how-hybrid-ai-pattern-enables \ -smaller-language-models/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision\protect \discretionary {\char \hyphenchar \font }{}{}edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision\protect \discretionary {\char \hyphenchar \font }{}{}edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision\protect \discretionary {\char \hyphenchar \font }{}{}edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision\protect \discretionary {\char \hyphenchar \font }{}{}edge-mobile-devices/
https://chat.openai.com/
https://aclanthology.org/2024.privatenlp-1.10
https://aclanthology.org/2024.privatenlp-1.10
https://huggingface.co/datasets/PleIAs/common_corpus
https://huggingface.co/datasets/PleIAs/common_corpus
https://huggingface.co/datasets/PleIAs/common_corpus
https://qwenlm.github.io/blog/qwen2.5-llm/
https://qwenlm.github.io/blog/qwen2.5-llm/
https://magazine.sebastianraschka.com/p/practical-tips-for-finetuning-llms
https://magazine.sebastianraschka.com/p/practical-tips-for-finetuning-llms
https://magazine.sebastianraschka.com/p/practical-tips-for-finetuning-llms
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and\ -deduplicated-version-of-redpajama
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and\ -deduplicated-version-of-redpajama
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and\ -deduplicated-version-of-redpajama
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://arxiv.org/abs/2207.04043
https://arxiv.org/abs/2207.04043
https://dumps.wikimedia.org
https://arxiv.org/abs/2409.00088
https://arxiv.org/abs/2409.00088

CoMiGS: On-Device Collaborative Language Modeling

experts for model-heterogeneous personalized federated
learning, 2024.

Zhang, J., Vahidian, S., Kuo, M., Li, C., Zhang, R.,
Wang, G., and Chen, Y. Towards building the feder-
ated gpt: Federated instruction tuning. arXiv preprint
arXiv:2305.05644, 2023.

Zhang, X., Zhao, J., and LeCun, Y. Character-level convo-
lutional networks for text classification, 2016.

Zoph, B., Bello, I., Kumar, S., Du, N., Huang, Y., Dean,
J., Shazeer, N., and Fedus, W. St-moe: Designing stable
and transferable sparse expert models. arXiv preprint
arXiv:2202.08906, 2022.

11

CoMiGS: On-Device Collaborative Language Modeling

A. Our Algorithm
The pseudo codes of our proposed CoMiGS method are presented in Alg. 1. While the scheme requires a server, it can
alternatively be implemented in a serverless all2all fashion, which requires N times more communication overhead and we
do not further pursue this here.

Algorithm 1 Pseudo code of our proposed algorithm

Input: Expert parameters {θG
i,0,θ

S
i,0}, routing parameters {ϕi,0}. Local training data and validation data {X train

i ,Xvalid
i },

i ∈ {1, 2, .., N}. Communication round T and routing update period τ . Load balancing weight λ.
for t = 1, ..., T do

Server aggregates generalist parameters: θG
t−1 = 1

N

∑
i θ

G
i,t−1

for i ∈ [0, N) do
Users download aggregated generalist weights and
prepare model parameters for training {θG

t−1,θ
S
i,t−1,ϕi,t−1}

Do gradient steps on (θG
t−1,θ

S
i,t−1) towards minimizing (7) and get (θG

i,t,θ
S
i,t)

min
θG
i ,θS

i

L(f(X train
i ;θG

i ,θ
S
i ,ϕi,t−1),X

train
i)+

λ · LLB
i (X train

i ;θG
i ,θ

S
i ,ϕi,t−1)

(7)

if t%τ = 0 then
Do gradient steps on ϕi,t−1 towards minimizing (8) and get ϕi,t

min
ϕi

L(f(Xvalid
i ;θG

i,t,θ
S
i,t,ϕi),X

valid
i)+

λ · LLB
i (Xvalid

i ;θG
i,t,θ

S
i,t,ϕi)

(8)

end if
end for
Each device i ∈ {1, 2, .., N} sends generalist weights θG

i,t to the server
end for
Return: Expert parameters {θG

i,T ,θ
S
i,T } and routing parameters {ϕi,T }

B. Extra Experimental Details
B.1. Training Details

Following Kalajdzievski (2023), we choose γ to be a rank-stabilized value, a technique which helps stabilize gradient norms.
α and the rank r are hyper-parameters to choose from. The LoRA modules function as follows:

W = W 0 + γ ·AB, γ =
α√
r

(9)

All our experiments except the centralized ones were conducted on a single A100-SXM4-40GB GPU. The centralized
learning baseline experiments were conducted on a single A100-SXM4-80GB GPU, as a batch size of 64*4 requires a larger
storage capacity.

We use a constant learning rate of 2× 10−3 for updating routing parameters and a 2× 10−3 learning rate with a one-cycle
cosine schedule for expert parameters during fine-tuning. The LoRA rank r is set to 8 unless otherwise specified, with LoRA
alpha α set to 16, following the common practice of setting alpha to twice the rank (Raschka, 2023). A load balancing
weight 0.01 is always applied.

GPT2 Experiments. For AG News and Multilingual Wikipedia data splits, we conduct 20 communication rounds. For
SlimPajama data splits, due to greater category diversity, we conduct 50 communication rounds. Between each pair of
communication rounds, there are 10 local iterations. In each iteration, a batch size of 64 is processed with a context length

12

CoMiGS: On-Device Collaborative Language Modeling

of 128. We set the routing update period to 30 iterations, and every time we update routing parameters, we do 10 gradient
steps on the validation loss. The choice of the hyperparamters is from a sweep run and we provide the evidence in Figure 8.

Llama3.2 Experiments. For AG News data splits, we conduct 10 communication rounds. For Common-corpus data splits,
due to greater category diversity, we conduct 20 communication rounds. Between each pair of communication rounds, there
are 10 local iterations. In each iteration, a batch size of 64 is processed with a context length of 128. We set the routing
update period to 30 iterations, and every time we update routing parameters, we do 10 gradient steps on the validation loss.

(1, 10) (1, 20) (1, 30) (10, 10) (10, 20) (10, 30) (20, 10) (20, 20) (20, 30) (5, 10) (5, 20) (5, 30)
(Routing Update Steps, Routing Update Period)

0

10

20

30

Te
st

 P
er

pl
ex

ity

Figure 8: Sweep results on SlimPajama data splits using GPT2-124M base model. We ablate the impact of the update period
(τ) and the number of update steps (s) on model performance.

B.2. Datasets

The number of tokens for our experiments within each user is shown in Table 4.

Given the extensive pre-training of Llama 3.2 models on over 15 trillion tokens from public sources, and the multilingual
capabilities of Llama 3.2 - 1B, fine-tuning on multilingual Wikipedia or SlimPajama resulted in negligible improvements
likely due to significant overlap with the pre-training data corpus. We curated another more difficult fine-tuning dataset –
Common Corpus to show case the distinctions of the baseline methods.

Table 4: Number of tokens in each dataset splits

User 1 User 2 User 3 User 4

Multilingual
TRAINING 557’662 407’498 556’796 451’584
VALIDATION 300’764 216’318 220’071 165’984
TEST 229’720 219’741 210’570 172’547

SlimPajama
TRAINING 1’000’000 1’000’000 1’000’000 1’000’000
VALIDATION 200’000 200’000 200’000 200’000
TEST 200’000 200’000 200’000 200’000

AG News
TRAINING 761’924 756’719 814’131 771’460
VALIDATION 48’809 48’730 50’398 48’249
TEST 48’167 47’721 48’344 49’377

Common Corpus
TRAINING 1’000’000 1’000’000 1’000’000 1’000’000
VALIDATION 200’000 200’000 200’000 200’000
TEST 200’000 200’000 200’000 200’000

C. More Tables and Figures
C.1. Learning Curves of Different Methods

See Figure 9.

13

CoMiGS: On-Device Collaborative Language Modeling

50 100 150 200

50
60
70

Te
st

 P
er

pl
ex

ity
German

50 100 150 200

60

80

Dutch

50 100 150 200
40

50

60
French

50 100 150 200

60

80

Italian

0 200 400

13

14

Te
st

 P
er

pl
ex

ity

StackEx

0 200 400

9
10
11

Codes

0 200 400
20.0

22.5

25.0

ArXiv

0 200 400

45
50
55

Book

50 100 150 200

35
40
45

Te
st

 P
er

pl
ex

ity

World

50 100 150 200

35
40
45

Sports

50 100 150 200

35
40

Business

50 100 150 200
30

40

Sci/Tech

Multilingual Wikipedia

SlimPajama

AG News

FedAvg Local CoMiGS-2G CoMiGS-2S CoMiGS-1G1S

Figure 9: Test Perplexity during training (base model: GPT2-124M): our method closely follows the best performing method

50 100 150 200

0.5

1.0

Av
er

ag
e

Sc
or

es

German User

50 100 150 200

0.25
0.50
0.75

Dutch User

50 100 150 200

0.25
0.50
0.75

French User

50 100 150 200

0.25
0.50
0.75

Italian User

0 200 400

0.25
0.50
0.75

Av
er

ag
e

Sc
or

es

StackEx User

0 200 400

0.25
0.50
0.75

Codes User

0 200 400

0.25
0.50
0.75

ArXiv User

0 200 400

0.25

0.50

0.75
Book User

Multilingual Wikipedia

SlimPajama

Generalist Specialist

Figure 10: Expert Scores for the generalist expert and the specialist expert from our CoMiGS-1G1S method, averaged
across all tokens and multiple batches for the in-distribution task, with x-axis being the number of iterations. Darker colors
represent deeper layers.

C.2. Extended Baseline Comparison

An extended version of Table 1 is presented in Table 5. In this extension, we incorporate two additional ablations: 1)
Integration of a routing mechanism, updated simultaneously with the expert networks; 2) Iterative updates alternating
between routing and expert parameters, with the routing parameters updated using newly-sampled training batches instead
of a dedicated validation set. 2) is to address the scenario where a validation set is not available.

14

CoMiGS: On-Device Collaborative Language Modeling

Moreover, we include two other baseline methods – FFA-LoRA from Sun et al. (2024) and FedSA from Guo et al. (2024).
FFA-LoRA keeps the LoRA A matrices fixed at initialization, while FedSA always aggregates LoRA A matrices but leave
LoRA B matrices localized.

Notably, the comparison between scenarios ii) and iii) reveals minimal disparity, underscoring the significance of having an
independent validation set exclusively for routing parameter updates.

Table 5: Mean test perplexity over users with homogenous models, averaged across 3 seeds. Mean (std) with a rank locator
for the mean (the lower the better). Green denotes the best performing methods and red denotes our method.

IN DISTRIBUTION OUT OF DISTRIBUTION
Multilingual SlimPajama AG News

I) WITHOUT ROUTING

Pretrained 156.12 37.19 90.65
Centralized 55.41 (0.12) 19.53 (0.14) 28.19 (0.52)
Local 54.38 (0.32) 26.95 (0.14) 41.46 (0.06)
FedAvg 58.80 (0.34) 23.27 (0.05) 31.84 (0.02)
FFA-LoRA 66.80 (0.20) 22.85 (0.12) 33.13 (0.09)
FedSa-LoRA 57.60 (0.14) 23.40 (0.13) 31.57 (0.10)
PCL 54.53 (0.19) 26.99 (0.19) 32.25 (0.12)

II) UPDATE ROUTING AND EXPERT PARAMS SIMULTANEOUSLY ON TRAINING LOSS

Local-MoE 55.27 (0.40) 27.16 (0.16) 41.49 (0.01)
FedAvg-MoE 56.77 (0.37) 23.32 (0.07) 32.24 (0.08)
pFedMoE 52.27 (0.17) 22.91 (0.18) 38.72 (0.21)

III) ALTERNATING UPDATE ROUTING PARAMS ON NEWLY SAMPLED BATCHES FROM TRAINING SET

Local-MoE - tr 53.78 (0.33) 27.78 (0.06) 41.46 (0.03)
FedAvg-MoE - tr 59.39 (0.13) 23.00 (0.01) 31.70 (0.16)
CoMiGS - tr 50.86 (0.14) 25.45 (0.01) 38.93 (0.08)

IV) ALTERNATING UPDATE ROUTING PARAMS ON A VALIDATION SET

CoMiGS - 2S 46.36 (0.16) 22.51 (0.08) 35.81 (0.13)
CoMiGS - 2G 58.31 (0.17) 21.36 (0.01) 31.18 (0.05)
CoMiGS - 1G1S 47.19 (0.10) 21.79 (0.04) 33.53 (0.03)

C.3. HetLoRA

Analogously to the baseline experiment comparison in FlexLoRA (Bai et al., 2024), we use γ = 0.99 as pruning strength
and sweep the regularization parameter in {5× 10−2, 5× 10−3, 5× 10−4}.

C.4. Is the Standard Load Balancing Loss Sufficient?

The standard load balancing loss encourages equal assignment of tokens to each expert. When the number of experts gets
larger, there might not be enough tokens routed to the generalists, which might lead to a under-developed general knowledge.
We will verify if this is indeed true.

To encourage enough tokens to be routed to the generalist expert such that more general knowledge can be developed, we
modify our load-balancing loss by introducing importance weighting. As we separate the 0-th expert to be the generalist
expert and conduct Top-2 routing, the modified load balancing loss is as follows:

LLB
i =

1

(ni − 1)2 + 1
· f0 · P0 +

ni−1∑
j=1

ni − 1

(ni − 1)2 + 1
· fj · Pj (10)

15

CoMiGS: On-Device Collaborative Language Modeling

Table 6: Test perplexity with different load balancing terms with (hetero) or without (homo) resource heterogeneity.

No LB LB (uniform) LB (generalist-favored)

AG News (homo) 33.69 (0.21) 33.53 (0.03) 33.53 (0.03)
AG News (hetero) 34.31 (0.05) 34.28 (0.11) 34.22 (0.09)
Multi-Wiki (homo) 47.31 (0.15) 47.19 (0.10) 47.19 (0.10)
Multi-Wiki (hetero) 46.36 (0.16) 46.15 (0.04) 46.48 (0.16)
SlimPajama (homo) 21.77 (0.02) 21.79 (0.04) 21.79 (0.04)
SlimPajama (hetero) 22.15 (0.07) 22.10 (0.11) 22.10 (0.17)

where

fj =
1

T

∑
x∈B

1{j ∈ Top2 indices of p(x)} Pj =
1

T

∑
x∈B

pj(x) (11)

j is the expert index and p(x) = [pj(x)]
ni
j=1 is the logit output from the routing network for a specific token x. The idea is that

one of the top 2 tokens should always be routed to the generalist expert, i.e. the 0-th expert. Thus, p0

1/2 should be equal to
pi

1/2(ni−1) for i ̸= 0. As the original load balancing loss encourages uniform distribution, this modification encourages the
generalist expert to have a routing probability of 0.5 on expectation. Note that when ni = 2, this LLB

i is the same as the
original load balancing loss as proposed in Fedus et al. (2022a).

We present the results in Table 6: in both scenarios, whether users have the same or different numbers of experts, including a
load-balancing term leads to a slight improvement compared to omitting it. However, encouraging more tokens to be routed
to the generalists does not make a significant difference.

D. Additional Experiments
We replicate the experiments in Section 4.3 with the SlimPajama dataset, where we assign four times as many tokens to
ArXiv User and Book User as to Stack Exchange User and Codes User.

More Specialists Help with Higher Data Quantity. From Figure 11, it is evident that ArXiv User and Book User, with
abundant local data, benefit from having more local experts.

0 200 400

13.0

13.5

14.0

Te
st

 P
er

pl
ex

ity

StackEx User (low)

0 200 400
9

10

11
Codes User (low)

0 200 400
16

18

20

22

ArXiv User (high)

0 200 400

33

34

35

Book User (high)

1GXS: 2,2,4,4 1GXS: 2,2,8,8 1GXS: 2,2,2,2

Figure 11: Test Perplexity during training for the SlimPajama setup. ArXiv User and Book User have more local data and
thus benefit from having more experts. The numbers in the legend indicate the number of experts ni within each user. Top-2
routing is performed.

Generalists Help to Prevent Redundant Specialists from Over-Fitting? From Figure 12, we observe more prominent
overfitting than in Figure 6, likely because the tasks are objectively easier, as indicated by lower test perplexity from the
beginning of fine-tuning. Generalists have limited power to prevent overfitting with easy tasks.

Specialists Can Benefit Generalists. Low-resourced users that can only support a single expert setup still benefit from
collaboration, as the generalist knowledge is refined through a more detailed distinction between specialist and generalist
roles via other high-resourced users. This is indicated by the enhanced performances for Stack Exchange and Codes Users.

16

CoMiGS: On-Device Collaborative Language Modeling

0 200 400

13.0

13.5

14.0

14.5

Te
st

 P
er

pl
ex

ity
StackEx User (low)

0 200 400
9

10

11
Codes User (low)

0 200 400

18

20

22

ArXiv User (high)

0 200 400

33

34

35

Book User (high)

1GXS: 4,4,2,2 1GXS: 8,8,2,2 1GXS: 2,2,2,2

Figure 12: In this SlimPajama setup, Stack Ex User and Codes User despite having low resources locally, overfit slightly
on their small-sized local data. Numbers in the legend denote the number of experts ni within each user. Top2 routing is
performed.

0 200 400

13

14

Te
st

 P
er

pl
ex

ity

StackEx User (low)

0 200 400

9

10

11

Codes User (low)

0 200 400

17.5

20.0

22.5

ArXiv User (high)

0 200 400

33

34

35

Book User (high)

1GXS: 1,1,1,1 1GXS: 1,1,4,4 1GXS: 1,1,8,8

Figure 13: In this SlimPajama setup, Stack Ex User and Codes User, despite having only one expert locally, still benefit
from other users having more experts, thereby enhancing the generalist’s performance. The numbers in the legend indicate
the number of experts, ni, within each user. Top-2 routing is applied when ni ≥ 2

E. Visualization of Expert Specialization
To visualize which tokens are routed to the generalist and specialist experts for our CoMiGS-1G1S model trained on
SlimPajama, we ask ChatGPT to generate texts in the style of StackExchange, Python Codes, ArXiv Paper and Books. We
then feed those texts to the user-specific models and color the token with the Top1 routed index. The routing results after the
very first layer (0th), a middle layer (5th), and the very last layer (11th) are presented in Figure 14, 15 and 16.

We perform the same experiments on AG News, asking ChatGPT to generate News text on the topics World, Sports,
Business, and Sci/Tech. The routing results after the very first layer (0th), a middle layer (5th), and the very last layer (11th)
are presented in Figure 17, 18 and 19.

For all the plots, diagonal entries are in-distribution texts and off-diagonal entries are out-of-distribution texts.

17

CoMiGS: On-Device Collaborative Language Modeling
St

ac
kE

x
Co

de
s

Ar
Xi

v

StackEx User

Bo
ok

Codes User ArXiv User Book User

Figure 14: Visualization of token-level routing results for CoMiGS-1G1S trained on SlimPajama. Tokens are colored with
the first expert choice at the 0th (first) layer. Orange denotes the generalist and blue denotes the specialist. Diagonal entries
are in-distribution texts and off-diagonal entries are out-of-distribution texts. Texts are generated by ChatGPT.

18

CoMiGS: On-Device Collaborative Language Modeling
St

ac
kE

x
Co

de
s

Ar
Xi

v

StackEx User

Bo
ok

Codes User ArXiv User Book User

Figure 15: Visualization of token-level routing results for CoMiGS-1G1S trained on SlimPajama. Tokens are colored with
the first expert choice at the 5th layer. Orange denotes the generalist and blue denotes the specialist. Diagonal entries are
in-distribution texts and off-diagonal entries are out-of-distribution texts. Texts are generated by ChatGPT.

19

CoMiGS: On-Device Collaborative Language Modeling
St

ac
kE

x
Co

de
s

Ar
Xi

v

StackEx User

Bo
ok

Codes User ArXiv User Book User

Figure 16: Visualization of token-level routing results for CoMiGS-1G1S trained on SlimPajama. Tokens are colored with
the first expert choice at the 11th (last) layer. Orange denotes the generalist and blue denotes the specialist. Diagonal entries
are in-distribution texts and off-diagonal entries are out-of-distribution texts. Texts are generated by ChatGPT.

20

CoMiGS: On-Device Collaborative Language Modeling
W

or
ld

Sp
or

ts
Bu

sin
es

s

World User

Sc
i/T

ec
h

Sports User Business User Sci/Tech User

Figure 17: Visualization of token-level routing results for CoMiGS-1G1S trained on AG News. Tokens are colored with
the first expert choice at the 0th (first) layer. Orange denotes the generalist and blue denotes the specialist. Diagonal entries
are in-distribution texts and off-diagonal entries are out-of-distribution texts. Texts are generated by ChatGPT.

21

CoMiGS: On-Device Collaborative Language Modeling
W

or
ld

Sp
or

ts
Bu

sin
es

s

World User

Sc
i/T

ec
h

Sports User Business User Sci/Tech User

Figure 18: Visualization of token-level routing results for CoMiGS-1G1S trained on AG News. Tokens are colored with
the first expert choice at the 5th (middle) layer. Orange denotes the generalist and blue denotes the specialist. Diagonal
entries are in-distribution texts and off-diagonal entries are out-of-distribution texts. Texts are generated by ChatGPT.

22

CoMiGS: On-Device Collaborative Language Modeling
W

or
ld

Sp
or

ts
Bu

sin
es

s

World User

Sc
i/T

ec
h

Sports User Business User Sci/Tech User

Figure 19: Visualization of token-level routing results for CoMiGS-1G1S trained on AG News. Tokens are colored with
the first expert choice at the 11th (last) layer. Orange denotes the generalist and blue denotes the specialist. Diagonal entries
are in-distribution texts and off-diagonal entries are out-of-distribution texts. Texts are generated by ChatGPT.

23

CoMiGS: On-Device Collaborative Language Modeling

F. Alternating Minimization Convergence
F.1. Notation

Let us recall our notation from Sections 3.3 and 3.4. We have two differentiable functions f1(Θ,Φ) ≡ fvalid(Θ,Φ) and
f2(Θ,Φ) ≡ ftrain(Θ,Φ) that constitute our problem. For the sake of generality, let us assume that the target variables Θ
and Φ belong to their corresponding feasible convex sets Q and Ω,

Θ ∈ Q ⊆ R|Θ|, Φ ∈ Ω ⊆ R|Φ|.

Then, we consider the following alternating minimization process, starting from some initial (Θ0,Φ0), for every k ≥ 0:

Φk+1 = argmin
Φ∈Ω

f1(Θk,Φ),

Θk+1 = argmin
Θ∈Q

f2(Θ,Φk+1).
(12)

If f1 ≡ f2 that would be a standard alternation minimization as for minimizing one function f1. However, in our setting f1
and f2 can be different.

For a fixed Θ and Φ, let us denote the corresponding argmin operators by

u1(Θ) := argmin
Φ∈Ω

f1(Θ,Φ)

and
u2(Φ) := argmin

Θ∈Q
f2(Θ,Φ).

Using this notation, we can rewrite algorithm (12) as follows:

Φk+1 = u1(Θk), Θk+1 = u2(Φk+1), k ≥ 0. (13)

We further define the following operators:

T (Θ) := u2(u1(Θ)) ∈ Q, Θ ∈ Q,

P (Φ) := u1(u2(Φ)) ∈ Ω, Φ ∈ Ω.

With this notation, we can rewrite the sequence {Θk}k≥0 simply as

Θk+1 = T (Θk), k ≥ 0. (14)

We use the following main assumption on functions f1 and f2:

Assumption 1. There exist Θ⋆ ∈ Q and Φ⋆ ∈ Ω such that

Θ⋆ = T (Θ⋆) and Φ⋆ = P (Φ⋆) (15)

Remark 1. Note that if f1 ≡ f2 ≡ f , condition (15) holds for the global minimizer of our function (Θ⋆,Φ⋆) =
argmin
Θ∈Q,Φ∈Q

f(Θ,Φ).

Clearly, this assumption should hold if functions f1 and f2 are sufficiently close: f1 ≈ f2, or in case of overparametrized
models. It remains an interesting open question: what are the general and joint conditions on f1 and f2 that imply (15).

F.2. Contraction and Convergence

As we will see, it is natural to assume that operators u1 and u2 are contractions. We will provide a working example of our
setting in the next section, where this condition will hold. We assume to have some norms fixed on Q and Ω, that are not
necessarily Euclidean. For simplicity, and when it is clear from the context, we will use the same symbol ∥ · ∥ for both
norms, even though they can be different for spaces of Θ and Φ.

24

CoMiGS: On-Device Collaborative Language Modeling

Assumption 2. Let u1 and u2 be Lipschitz with some constants λ1, λ2 > 0:

∥u1(Θ)− u1(Θ̄)∥ ≤ λ1∥Θ− Θ̄∥, ∀Θ, Θ̄ ∈ Q,

∥u2(Φ)− u2(Φ̄)∥ ≤ λ2∥Φ− Φ̄∥, ∀Φ, Φ̄ ∈ Ω.
(16)

Under these assumptions we can show the convergence of the sequence {Θk}k≥0 generated by (14). Indeed, for every
k ≥ 0, we have

∥Θk+1 −Θ⋆∥ = ∥T (Θk)−Θ⋆∥ (15)
= ∥T (Θk)− T (Θ⋆)∥

= ∥u2(u1(Θk))− u2(u1(Θ
⋆))∥

(6)

≤ λ2∥u1(Θk)− u1(Θ
⋆)∥

(6)

≤ λ1λ2∥Θk −Θ⋆∥,

and we see that Θk → Θ⋆ with the linear rate. The same reasoning can be applied to the sequence {Φk}k≥1. Thus, we
have established the following general convergence result.

Theorem F.1 (Theorem 3.1). Let Assumptions 1, 2 hold and λ1 · λ2 < 1. Then, the sequence (Θk,Φk)k≥0 generated by
alternating process (12) converges to (Θ⋆,Φ⋆) linearly, for every k ≥ 0:

∥Θk −Θ⋆∥ ≤ (λ1λ2)
k∥Θ0 −Θ⋆∥,

∥Φk −Φ⋆∥ ≤ (λ1λ2)
k∥Φ0 −Φ⋆∥.

(17)

Example 1. Consider the following quadratic objective

f(Θ,Φ) = 1
2 ⟨AΘ,Θ⟩+ 1

2 ⟨BΦ,Φ⟩+ ⟨CΘ,Φ⟩,

where A = A⊤ ∈ R|Θ|×|Θ| and B = B⊤ ∈ R|Φ|×|Φ| are symmetric matrices, and C ∈ R|Φ|×|Θ|. We assume that f is
strictly convex, which means

H =

[
A C⊤

C B

]
≻ 0.

Clearly, for this objective, we have Θ⋆ = 0 and Φ⋆ = 0. Then

u1(Θ) := argmin
Φ

f(Θ,Φ) = −B−1CΘ and

u2(Φ) := argmin
Θ

f(Θ,Φ) = −A−1C⊤Φ.

Hence, the composition operator T := u2 ◦ u1 is linear:

T (Θ) = A−1C⊤B−1CΘ, (18)

and it holds
∥T (Θ)−Θ⋆∥ ≤ ∥A−1C⊤B−1C∥ · ∥Θ−Θ⋆∥.

Now, denoting by µ > 0 and L ≥ µ the smallest and the largest eigenvalues of matrix H correspondingly, and using the
Schur complement, we conclude that

µI ⪯ A ⪯ LI, and µI ⪯ A−C⊤B−1C ⪯ LI, (19)

from which we are able to bound the norm of our matrix as follows:

∥A−1C⊤B−1C∥ = ∥A−1/2(C⊤B−1C)A−1/2∥
(19)

≤ L−µ
L < 1,

which proves the contraction property.

25

CoMiGS: On-Device Collaborative Language Modeling

Example 2. Note that for a general differentiable function f , using the Taylor expansion, the operator T = u2 ◦ u1, where
u1(Θ) := argmin

Φ
f(Θ,Φ) and u2(Φ) := argmin

Θ
f(Θ,Φ), can be expressed as follows (compare with (18)):

T (Θ)−Θ⋆ = H−1
11 H12H

−1
22 H21(Θ−Θ⋆),

where

H11 =
1∫
0

∂2f
∂Θ2 (Θ

⋆ + τ(T (Θ)−Θ⋆),Φ⋆ + τ(u1(Θ)−Φ⋆))dτ,

H12 =
1∫
0

∂2f
∂Θ∂Φ (Θ⋆ + τ(T (Θ)−Θ⋆),Φ⋆ + τ(u1(Θ)−Φ⋆))dτ,

H22 =
1∫
0

∂2f
∂Φ2 (Θ

⋆ + τ(Θ−Θ⋆),Φ⋆ + τ(u1(Θ)−Φ⋆))dτ,

H21 =
1∫
0

∂2f
∂Φ∂Θ (Θ⋆ + τ(Θ−Θ⋆),Φ⋆ + τ(u1(Θ)−Φ⋆))dτ.

Therefore, assuming that the Hessian is strictly positive definite and Lipschitz continuous in a neighborhood of the solution,
localizing the current point to the neighborhood, Θ ≈ Θ⋆ and Φ ≈ Φ⋆, we can obtain the contraction property, as in the
previous example (see, e.g., Theorem 1.2.5 in (Nesterov, 2018) for the local analysis of Newton’s method).

F.3. Linear Modeling and Decoupling

In this section, let us study an important example of linear models, applicable to both experts and the router. As we will
show, in this case and under very mild assumptions we can justify all conditions from the previous section and therefore
obtain the global linear convergence for our alternating process.

Problem Formulation For simplicity, we consider the case of one client and assume that training and validation datasets
are the same, X train = Xvalid. However, our observations can be generalized to a more general case of several clients, and
different but statistically similar datasets X train ∼ Xvalid. Hence, we have, f1 ≡ f2 ≡ f . Note that in this case, our bi-level
formulation is also equivalent to joint minimization of f w.r.t. all variables.

We assume that our client has one generalist expert model, that we denote by θ0 ∈ Rd, and N ≥ 0 specialist experts,
that we denote by θ1, . . .θN ∈ Rd. We compose these models together as matrix Θ = (θ0, . . . ,θN). In principle,
different models can have different expressivity, which we take into account in our modeling by a convex set of constraints:
Θ ∈ Q ⊆ Rd×(N+1).

We denote by ϕ0, . . . ,ϕN ∈ Rd the parameters of our Router, composed together as matrix Φ = (ϕ0, . . . ,ϕN), which can
also be constrained by a convex set: Φ ∈ Ω ⊆ Rd×(N+1). For a given data input x ∈ Rd, the Router decides which experts
to use with the SoftMax operation x 7→ πΦ(x) ∈ ∆N , where

∆N :=
{
y ∈ RN+1

+ :
N∑
j=0

y(j) = 1
}

is the standard Simplex, and
π
(j)
Φ (x) := exp(⟨ϕj ,x⟩)∑N

k=0 exp(⟨ϕk,x⟩) . (20)

Under these assumptions, we set the following structure of our optimization objective,

f(Θ,Φ) = 1
n

n∑
i=1

ℓi

(
N∑
j=0

π
(j)
Φ (xi) · ⟨θj ,xi⟩

)
+ α

2

(
∥Θ∥2F + ∥Φ∥2F

)
, (21)

where x1, . . . ,xn are given data vectors, and ℓi(·), 1 ≤ i ≤ n are the corresponding convex losses (e.g. the logistic loss for
binary classification, or the quadratic loss for regression problem). We use α ≥ 0 as a regularization parameter, which can
also be seen as the weight decay, and ∥ · ∥F is the Frobenius norm of a matrix.

26

CoMiGS: On-Device Collaborative Language Modeling

Decoupling Let us introduce the auxiliary variables, λi ∈ ∆N , 1 ≤ i ≤ n, and Λ = (λ1, . . . ,λn) ∈ ∆n
N ⊆ R(N+1)×n,

which is a column-stochastic matrix. Employing the matrix notation, we can rewrite our problem in the following form:

min
Θ∈Q,Φ∈Ω
Λ∈∆n

N

{
1
n

n∑
i=1

ℓi

(
⟨λi,Θ⊤xi⟩

)
+ α

2

(
∥Θ∥2F + ∥Φ∥2F

)
: λi = πΦ(xi), 1 ≤ i ≤ n

}
. (22)

Now, we apply the relaxation of constrained problem (22) by the following decouple of λi from πΦ(xi), with some
parameter µ ≥ 0 and a distance function V : ∆N ×∆N → R+ between distributions:

min
Θ∈Q,Φ∈Ω
Λ∈∆n

N

{
Fµ(Θ,Φ,Λ) := 1

n

n∑
i=1

ℓi

(
⟨λi,Θ⊤xi⟩

)
+ α

2

(
∥Θ∥2F + ∥Φ∥2F

)
+ µ

2n

n∑
i=1

V (λi;πΦ(xi))

}
. (23)

A natural choice for V is the Kullback–Leibler divergence, which gives, for every 1 ≤ i ≤ n:

V (λi;πΦ(xi)) :=
N∑
j=0

[
λi

](j)
ln
[
λi

](j) − N∑
j=0

[
λi

](j)
ln
[
πΦ(xi)

](j)
(20)
=

N∑
j=0

[
λi

](j)(
ln
[
λi

](j) − ⟨ϕj ,xi⟩
)
+ ln

(N∑
j=0

exp
(
⟨ϕj ,xi⟩

))
= d(λi)− ⟨λi,Φ⊤xi⟩+ s(Φ⊤xi),

where

d(λ) :=
N∑
j=0

λ(j) lnλ(j), λ ∈ ∆N ,

is the negative entropy, and

s(y) := ln
(N∑
j=0

exp y(j)
)
, y ∈ RN+1

is the log-sum-exp function. Note that both d(·) and s(·) are convex functions on their domains. Moreover, it is well known
that d(·) is strongly convex w.r.t. ℓ1-norm (see, e.g., Example 2.1.2 in (Nesterov, 2018)):

⟨∇2d(λ)h,h⟩ ≥ ∥h∥21, λ ∈ ∆N ,h ∈ RN+1. (24)

Therefore, we obtain the following decoupled optimization formulation:

min
Θ∈Q,Φ∈Ω
Λ∈∆n

N

{
Fµ(Θ,Φ,Λ)

= 1
n

n∑
i=1

[
ℓi

(
⟨λi,Θ⊤xi⟩

)
+ µ

(
d(λi) + s(Φ⊤xi)− ⟨λi,Φ⊤xi⟩

)]
+ α

2

(
∥Θ∥2F + ∥Φ∥2F

)}
.

(25)

It is clear that setting parameter µ := +∞, we obtain that (25) is equivalent to our original problem (22). However, for
µ < +∞ we obtain more flexible formulation with auxiliary distributions λi ∈ ∆N , each for every data sample 1 ≤ i ≤ n,
that makes it easier to treat the problem. Parameters (λi) has an interpretation of latent variables, which makes our approach
similar to the classical EM-algorithm (Jordan & Jacobs, 1994). We note a similar work from Almansoori et al. (2024), which
proposes to train a mixture of generalists on local routers, which resembles a simplified version of our method.

It is clear that function Fµ(Θ,Φ,Λ) is partially convex: it is convex w.r.t (Θ,Φ) when Λ is fixed, and it is also convex
w.r.t. Λ when (Θ,Φ) is fixed.

In what follows, we show that under very mild conditions and choosing regularization parameter α, µ ≥ 0 sufficiently large,
we can ensure that Fµ(·) is jointly strongly convex, regardless of non-convex cross terms: ℓi

(
⟨λi,Θ⊤xi⟩

)
and ⟨λi,Φ⊤xi⟩.

Our theory generalizes a recent approach to soft clustering (Nesterov, 2020). With this technique, we will be able to show
the global linear convergence rate for the alternating minimization approach that we discussed in the previous sections.

27

CoMiGS: On-Device Collaborative Language Modeling

Joint Strong Convexity Let us consider the i-th term of our objective (25) that correspond to the data sample with index
1 ≤ i ≤ n. Omitting extra indices, we obtain the following function,

F (Θ,Φ,λ) = ℓ
(
⟨λ,Θ⊤x⟩

)
− µ⟨λ,Φ⊤x⟩+ α

2

(
∥Θ∥2F + ∥Φ∥2F

)
+ µd(λ) + µs(Φ⊤x), (26)

where Θ ∈ Q, Φ ∈ Ω, λ ∈ ∆N . Our goal is to ensure that (26) is strongly convex w.r.t to the standard Euclidean norm of
the joint variable. Namely, we establish the following result.

Proposition 1. Let the loss function ℓ(·) be convex and assume that its first derivative is bounded: ρ ≥ maxt ℓ
′(t). Assume

that the regularization coefficient is sufficiently large:

α ≥ 2∥x∥2 max
{
µ, ρ2

µ

}
. (27)

Then the objective in (26) is strongly convex.

Proof. Note that our objective (26) can be separated in Φ and Θ. We construct the following functions g1 and g2.

g1(Θ,λ) := ℓ
(
⟨λ,Θ⊤x⟩

)
+ α

4 ∥Θ∥2F + µ
4 d(λ) and g2(Φ,λ) := −µ⟨λ,Φ⊤x⟩+ α

4 ∥Φ∥2F + µ
4 d(λ) ,

and F (Θ,Φ,λ) ≡ g1(Θ,λ) + g2(Φ,λ) + α
4

(
∥Θ∥2F + ∥Φ∥2F

)
+ µ

2 d(λ) + µs(Φ⊤x). Since the log-sum-exp function
s(·) is strictly convex, and the negative entropy d(·), as well as the Frobenius norm, are strongly convex, it suffices to prove
convexity for g1 and g2. Computing the second derivative of g1 and applying it to an arbitrary direction z = [H;h] of
corresponding shapes, we get

⟨∇2g1(Θ,λ)z, z⟩ = α
2 ∥H∥2F + µ

4 ⟨∇
2d(λ)h,h⟩

+ ℓ′′(⟨λ,Θ⊤x⟩) ·
[
⟨h,Θ⊤x⟩2 + ⟨λ,H⊤x⟩2 + ⟨h,Θ⊤x⟩ · ⟨λ,H⊤x⟩

]
︸ ︷︷ ︸

≥0

+ ℓ′(⟨λ,Θ⊤x⟩) · ⟨h,H⊤x⟩

≥ α
2 ∥H∥2F + µ

4 ∥h∥
2
1 − ρ∥h∥1 · ∥H∥F · ∥x∥

(∗)
≥ ∥h∥1 · ∥H∥F ·

(√
αµ
2 − ρ∥x∥

) (27)

≥ 0,

where we used Young’s inequality in (∗). The bound for g2 follows by the same reasoning, substituting ℓ(t) := µt and
therefore setting ρ := µ.

For the decoupled optimization formulation (25) it is natural to organize iterations in the following sequential order, starting
from an arbitrary Θ0 ∈ Q and Φ0 ∈ Ω, for some µ > 0:

Λk+1 = argmin
Λ∈∆n

N

Fµ(Θk,Φk,Λ),

Φk+1 = argmin
Φ∈Ω

Fµ(Θk,Φ,Λk+1),

Θk+1 = argmin
Θ∈Q

Fµ(Θ,Φk+1,Λk+1).

(28)

Note that each minimization subproblem in (28) is convex and can be implemented very efficiently by means of linear
algebra and convex optimization. At the same time, due to decoupling of variables and strong convexity we are able to
ensure the global convergence of this process to the solution of (25).

28

CoMiGS: On-Device Collaborative Language Modeling

F.4. Convergence for Functional Residual

Note that in our decoupled optimization formulation (25), variables Θ and Φ are independent of each other, when Λ is
fixed. Therefore, the second and third step in iteration process (28) can be done independently.

For the sake of notation, let us denote X ≡ Λ, concatenated variable Y ≡ (Θ,Φ), and the objective in new variables
as f(X,Y) ≡ Fµ(Θ,Φ,Λ). By our previous analysis, we can assume that f is strongly convex. We denote by µ the
parameter of strong convexity and by L the constant of Lipschitz continuity of the gradient of f . Its global minimum is
denoted by (X⋆,Y ⋆), and correspondingly f⋆ := f(X⋆,Y ⋆).

Then, iteration process (28) can be rewritten simply as the following alternating iterations, for k ≥ 0:

Yk+1 = argmin
Y ∈Y

f(Xk,Y),

Xk+1 = argmin
X∈X

f(X,Yk+1),

where X and Y are the corresponding convex domains (X ≡ ∆n
N and Y ≡ Ω×Q).

Then, the stationary condition for Yk+1 (see, e.g., Theorem 3.1.23 in (Nesterov, 2018)) gives

⟨ ∂f
∂Y (Xk,Yk+1),Y − Yk+1⟩ ≥ 0, ∀Y ∈ Y. (29)

Choosing
γ := µ

L ≤ 1, (30)

we obtain

γf(X⋆,Y ⋆) + (1− γ)f(Xk,Yk+1)

(∗)
≥ γ

[
f(Xk,Yk+1) + ⟨ ∂f

∂X (Xk,Yk+1),X
⋆ −Xk⟩+ ⟨ ∂f

∂Y (Xk,Yk+1),Y
⋆ − Yk+1⟩+ µ

2 ∥X
⋆ −Xk∥2

]
+ (1− γ)f(Xk,Yk+1)

(29),(30)

≥ f(Xk,Yk+1) + ⟨ ∂f
∂X (Xk,Yk+1), γ(X

⋆ −Xk)⟩+ L
2 ∥γ(X

⋆ −Xk)∥2

≥ min
X∈X

{
f(Xk,Yk+1) + ⟨ ∂f

∂X (Xk,Yk+1),X −Xk⟩+ L
2 ∥X −Xk∥2

}
(∗∗)
≥ min

X∈X

{
f(X,Yk+1)

}
= f(Xk+1,Yk+1),

where in (∗) we used strong convexity, and in (∗∗) we used the Lipschitz continuity of the gradient. Thus, we get the
following inequality:

f(Xk+1,Yk+1)− f⋆ ≤
(
1− γ

)(
f(Xk,Yk+1)− f⋆

)
,

and using the same reasoning for Yk 7→ Yk+1 update, we obtain

f(Xk+1,Yk+1)− f⋆ ≤
(
1− γ

)2(
f(Xk,Yk)− f⋆

)
,

which is the global linear rate. Thus, we have established formally the following convergence result.

Theorem F.2. Let f be strongly convex with constant µ > 0, and let its gradient be Lipschitz continuous with constant
L > 0. Then, for k ≥ 0 iteration of the alternating minimization process, we have

f(Xk,Yk)− f⋆ ≤
(
1− µ

L

)2k(
f(X0,Y0)− f⋆

)
.

Note that this result is directly applicable for our linear models from previous sections, f(X,Y) ≡ Fµ(Θ,Φ,Λ), as we
show that objective (25) is jointly strongly convex, when the regularization parameter is sufficiently large.

29

