
Under review as a conference paper at ICLR 2021

NASLIB: A MODULAR AND FLEXIBLE
NEURAL ARCHITECTURE SEARCH LIBRARY

Michael Ruchte1∗, Arber Zela1∗, Julien Siems1, Josif Grabocka1, & Frank Hutter1,2
1Department of Computer Science, University of Freiburg
2Bosch Center for Artificial Intelligence
{ruchtem, zelaa, siemsj, grabocka, fh}@cs.uni-freiburg.de

ABSTRACT

Neural Architecture Search (NAS) is one of the focal points for the Deep Learning
community, but reproducing NAS methods is extremely challenging due to nu-
merous low-level implementation details. To alleviate this problem we introduce
NASLib, a NAS library built upon PyTorch. This framework offers high-level ab-
stractions for designing and reusing search spaces, interfaces to benchmarks and
evaluation pipelines, enabling the implementation and extension of state-of-the-
art NAS methods with a few lines of code. The modularized nature of NASLib
allows researchers to easily innovate on individual components (e.g., define a new
search space while reusing an optimizer and evaluation pipeline, or propose a new
optimizer with existing search spaces). As a result, NASLib has the potential to
facilitate NAS research by allowing fast advances and evaluations that are by de-
sign free of confounding factors. To demonstrate that NASLib is a sound library,
we implement and achieve state-of-the-art results with one-shot NAS optimizers
(DARTS and GDAS) over the DARTS search space and the popular NAS-Bench-
201 benchmark. Last but not least, we showcase how easily novel approaches are
coded in NASLib, by training one-shot optimizers on a hierarchical search space.
We open source our code at https://github.com/automl/NASLib.

1 INTRODUCTION

The remarkable spread of deep learning in research and applications during the last decade is linked
to its ability to learn useful representations in an end-to-end fashion, in contrast to features engi-
neered by humans. Following the successes of more complex hand-designed architectures, such as
AlexNet (Krizhevsky et al., 2012), VGG (Simonyan & Zisserman, 2015), Inception (Szegedy et al.,
2015), Resnet (He et al., 2016) and MobileNet (Tan et al., 2019), Neural Architecture Search (NAS,
see Elsken et al. (2019) for a review) as a sub-field of AutoML (Hutter et al., 2019) is the logical next
step to automate the learning of representations by automating the time-consuming manual design
of neural architectures.

Despite clear indications of the advantages that NAS could bring to Deep Learning systems (Zoph
& Le, 2017; Zoph et al., 2018; Real et al., 2019; Liu et al., 2019b; Pham et al., 2018; Saikia et al.,
2019; So et al., 2019; Liu et al., 2019a), research in this field has initially been constrained by the
industry-level computational resources it required (Zoph & Le, 2017). A decisive improvement to
increasing the efficiency of NAS was provided by the weight-sharing paradigm (Pham et al., 2018;
Brock et al., 2018; Liu et al., 2019b) which creates a joint parameterization over all architectures in
a search space and allows the discovery of efficient architectures in less than a day.

Apart from the required compute power, an additional burden to conduct NAS research has been
the lack of a shared standard code base which can express the diversity of search spaces and search
methods using an intuitive interface (Lindauer & Hutter, 2019). The DeepArchitect library (Ne-
grinho et al., 2019) advanced the status-quo with a first NAS library for discrete NAS. However,
the framework does not include current weight-sharing (one-shot) NAS methods. So far, the code
base of DARTS (Liu et al., 2019b) has been frequently used as a starting point for development

∗Equal contribution

1

https://github.com/automl/NASLib


Under review as a conference paper at ICLR 2021

(e.g. for GDAS (Dong & Yang, 2019), RandomNAS (Li & Talwalkar, 2019), PC-DARTS (Xu et al.,
2020), PDARTS (Chen et al., 2019), SNAS (Xie et al., 2019), etc). The main drawback of using this
non-standardized, non-modular code base is its implicit search space representation using nested
function calls representing the search space components, which severely limits the transferability of
implemented NAS optimizers to other search spaces. Furthermore, many methods also use different,
incompatible, representations of the search space; for example, some embed the operation choices
in the nodes of a directed acyclic graph (DAG) (Zoph et al., 2018; Bender et al., 2018; Pham et al.,
2018), while others embed them in the DAG’s edges (Liu et al., 2019b; Xu et al., 2020; Dong &
Yang, 2019). Furthermore, some use a fixed number of edges in the graph (Liu et al., 2019b) while
others can find architectures with e.g. up to a fixed maximum of edges (Ying et al., 2019). A unified
search space representation that all of these approaches could act on (and be compared on) would
therefore be a major step forwards for NAS research.

In order to resolve the aforementioned burdens raised by the lack of a standardized, flexible and
modular NAS framework, we introduce NASLib, a new library developed to make NAS research
extendable and reproducible with minimal code engineering efforts, while also allowing apples-to-
apples comparisons without confounding factors (Lindauer & Hutter, 2019) by design. Our library
combines the flexibility of PyTorch (Paszke et al., 2019) with the graph framework NetworkX (Hag-
berg et al., 2008) to explicitly create nested graphs that express the search space (e.g., hierarchical
and cell search spaces) in an intuitive and modular manner.

Overall, the features of NASLib can be summarized as:

• It is an easy-to-use modular library which provides a flexible and powerful framework
both for designing novel NAS methods or search spaces with minimal prototyping time,
as well as facilitating the implementation of baseline papers on a common ground, in or-
der to conduct fair experimental comparisons, eliminate redundant engineering and foster
reproducibility (Li & Talwalkar, 2019; Lindauer & Hutter, 2019; Yang et al., 2020).

• It streamlines the implementation of prominent state-of-the-art NAS methods, both black-
box (discrete optimizers) and weight-sharing ones (one-shot optimizers).

• It provides a unified interface to commonly used cell search spaces, hierarchical search
spaces, and additionally tabular NAS benchmarks, such as NAS-Bench-201 which allows
designing novel search spaces in a flexible way by means of high-level graph abstractions
and manipulations.

• It implements optimizers in a way that is agnostic to the search space, allowing to change
the optimizer or the search space with one line of code. This modular structure permits
painless combinations of components from different published methods. For example,
in Section 4, we showcase the ease with which NASLib allows to use the DARTS opti-
mizer (Liu et al., 2019b) on a hierarchical search space (Liu et al., 2018), which to the best
of our knowledge is the first application of a oneshot method to a hierarchical search space.

• It incorporates mature implementations of common search spaces, NAS optimizers and
evaluation pipelines. In Section 4 we demonstrate that NAS methods coded in NASLib
match the empirical performances of the codes released by the respective papers’ authors.

2 RELATED WORK

A whole line of research and engineering has been focused on automating machine/deep learning
pipelines and remove the need for the machine learning expert in the loop Hutter et al. (2019).
Derivatives of these community efforts include AutoML systems, such as Auto-WEKA (Thorn-
ton et al., 2013), auto-sklearn (Feurer et al., 2015), TPOT (Olson et al., 2016), or AutoGluon-
Tabular (Erickson et al., 2020), which mainly focus on non-deep learning pipelines that work on
tabular data. With the advent of NAS, a special focus has been given to developing tools that can
facilitate the deployment of various NAS algorithms for researchers. Popular examples are Auto-
Keras (Jin et al., 2019), which uses network morphisms (Wei et al., 2016) to optimize the neural
network architecture; Auto-PyTorch Tabular (Zimmer et al., 2020), which uses multi-fidelity meta-
learning to jointly optimize the architecture of feed-forward networks on tabular data along with
their hyperparameters; the NAS API in AutoGluon (Klein et al., 2020), which only supports multi-
fidelity optimizers, such as BOHB (Falkner et al., 2018) or ASHA (Li & Talwalkar, 2019); and

2



Under review as a conference paper at ICLR 2021

NNI1, a broad collection of tools related to AutoML. While these libraries aim to simplify the prac-
tical everyday use of machine learning, none of them aims to support machine learning experts who
develop NAS methods or aim to apply NAS to a new problem domain. Of the above, only NNI in-
cludes one-shot NAS methods (Pham et al., 2018; Liu et al., 2019b), but as a collection of methods
rather than as a toolbox to facilitate further developments.

The main purpose of NASLib is to unify and simplify NAS research, allowing NAS practitioners to
focus on novel ideas rather than spending time on low-level implementation issues. This is moti-
vated by the benefits which standard libraries have delivered in other fields of machine learning,
such as PyTorch Geometric (Fey & Lenssen, 2019) for Graph Convolutional Neural Networks, or
RLLib (Liang et al., 2017) for reinforcement learning.

The DeepArchitect library (Negrinho et al., 2019) was an important first step towards this direction
in the NAS community. It describes the key property that a NAS library should keep its search space
definition independent from the optimizer being used. However, DeepArchitect is not compatible
with one-shot NAS methods (and not being maintained; the last commit is more than one year ago).
NASLib offers more flexibility in the search space objects and extends them further to be compatible
with both one-shot and discrete NAS optimizers. Concurrently to this work, we are aware of two
other (so far unpublished) libraries that are being developed to facilitate NAS research by providing
a collection of different abstractions levels such as, NAS optimizers, search spaces or evaluators:
archai2 and aw nas3. While we explicitly welcome the development of these related open-source
NAS libraries, NASlib is unique in the great flexibility of its search space, which we expect to
substantially facilitate NAS research.

3 NASLIB: ARCHITECTURE AND BUILDING BLOCKS

In this section we provide an overview of the NASLib architecture and then go into more detail on
the basic building blocks, showcased also with code snippets from the library.

3.1 NASLIB ARCHITECTURE OVERVIEW

1from naslib.search_spaces import DartsSearchSpace
2from naslib.optimizers import DARTSOptimizer
3from naslib.defaults.trainer import Trainer
4
5config = utils.get_config_from_args()
6
7search_space = DartsSearchSpace()
8optimizer = DARTSOptimizer(config)
9
10optimizer.adapt_search_space(search_space)
11trainer = Trainer(optimizer, config)
12trainer.search()
13trainer.evaluate()

Snippet 1: A minimal example on how one can
run both the search and evaluation for DARTS using
NASLib. Note that both the search space and the
optimizer can be changed in one line of code.

NASLib was designed to have the search
space and optimizers completely disentan-
gled. This allows to easily benchmark var-
ious NAS optimizers on different search
spaces (including the ones from tabular
NAS benchmarks (Ying et al., 2019; Dong
& Yang, 2020)) via the same API and in just
a few lines of code.

Snippet 1 shows a minimal example on how
one can run both the search and evaluation
for a NAS optimizer (DARTS (Liu et al.,
2019b) in this case) using NASLib. Given a
configuration object (line 5), which defines
all the hyperparameters and other search or
evaluation pipeline settings, we can use that
to instantiate a NAS optimizer (line 8). A search space object can be imported from the pre-defined
ones existing already in NASLib such as the DARTS cell search space (line 7), or be defined
in a custom manner by the user (see Section 3.2). We again emphasize that the optimizers and
search spaces are agnostic to one another, in the sense that one can import any optimizer from
naslib.optimizers and run them on any search space. After the search space and optimizer
objects are instantiated, they interact with each other via the adapt search spacemethod of the
optimizer (line 10). The third component of naslib is the Trainer (line 11), which is responsible
for the search (line 12) and final evaluation (line 13) phase of every NAS algorithm.

1https://github.com/microsoft/nni
2https://github.com/microsoft/archai
3https://github.com/walkerning/aw_nas

3

https://github.com/microsoft/nni
https://github.com/microsoft/archai
https://github.com/walkerning/aw_nas


Under review as a conference paper at ICLR 2021

Figure 1: An high-level overview of NASLib which contains 3 main building blocks that interact
with each other: (1) Search spaces, (2) Optimizers and (3) Trainers/Evaluators.

An overview of NASLib is given in Figure 1. It shows the main building blocks: search spaces,
optimizers and evaluation. The library follows the natural steps of NAS: first define the search space,
then the optimizer (which performs architecture search and aims to determine the best architecture),
and finally the evaluation of the final architecture. We now discuss each of these buildings blocks.

3.2 NASLIB SEARCH SPACES

The search space representation is of primary importance for NASLib in ensuring that optimizers
and search spaces can be combined in a variety of ways. The predominant way of representing NAS
search spaces is the directed acyclic graph (DAG). While it can be easily implemented as a compu-
tational graph in PyTorch (Paszke et al., 2019), it is the composition of various components (e.g.,
cells in a macro architecture, graphs nested at multiple levels) in a search space which might require
an additional multi-level graph representation, to ensure that optimizers and search spaces remain
separate. The importance of this abstract representation is underlined by the rapid recent develop-
ments in methods inspired by DARTS (Liu et al., 2019b), which usually integrate their contributions
into the DARTS code. NASLib aims to foster the reusability of search methods for different search
spaces, thereby eliminating the overhead incurred by the search space construction code.

NASLib’s search space builds upon NetworkX (Hagberg et al., 2008), a well-maintained and tested
Python package for graph creation and manipulation, where node and edge attributes can be arbitrary
Python objects. As a consequence, the complete search space definition is done in one place, using
recursive calls of the same object that represents both high-level level abstractions such as the macro
graph, or low-level ones such as operations in edges and/or nodes of the DAG. Overall, one of the
main principles in NASLib is to offer maximum freedom for altering the graph while ensuring that
a researcher does not have to worry about the cumbersome details. Below we briefly describe some
of the main features of the search space objects in NASLib.

1def set_scope(self, scope: str):
2self.scope = scope
3for g in self._get_child_graphs(

single_instances=False):
4g.scope = scope
5return self

Snippet 2: set scope sub-routine that
sets the scope of all NASLib graph
components.

Flexible search space objects. One of the main
components of NASLib is the Graph class, which can
cover a wide range of search spaces using the Net-
workX encoding. For constructing the search space
object, Graph recursively calls itself, by repeatedly
placing Graph objects on edges or nodes (see Fig-
ure 1, left). After the graph object has been instan-
tiated, NASLib takes care of parsing it as a PyTorch
module, as well as traversing, copying and updating it.

Scopes. Via the concept of scopes the researcher can treat instances of the same graph differently,
e.g., for setting different channels for different parts of the network. A popular example would
include the macro cell search space in DARTS. That would involve 3 scopes, since there are 2

4



Under review as a conference paper at ICLR 2021

reduction cells which reduce the resolution by a factor of 2 throughout the network. The scopes of
all cell components are set by iteratively calling the set scope method (see Snippet 2).

Shared and private attributes. NASLib ensures proper handling of nested and copied graphs and
supports shared (e.g., architectural weights α) and private attributes (e.g., convolutional weights w).

Hooks. Hooks are provided by the framework to be able to handle edge cases, such as removing
edges before discretization or increasing the number of cells per stage for evaluation.

NASLib already comes with the implementation of the following popular search spaces:
DARTS (Liu et al., 2019b), Nas-Bench-201 (Dong & Yang, 2020), and the hierarchical search space
by Liu et al. (2018). More search spaces will be added soon.

3.2.1 CASE STUDY: THE NAS-BENCH-201 SEARCH SPACE

1class NasBench201SearchSpace(Graph):
2OPTIMIZER_SCOPE = [
3"stage_1",
4"stage_2",
5"stage_3", ]
6
7def __init__(self):
8super().__init__()
9# Cell definition
10cell = Graph()
11cell.name = "cell"
12cell.add_nodes_from([1, 2, 3, 4])
13cell.add_edges_densly()
14
15# Macro graph omitted for brevity
16
17# Set primitives as ops at the cells
18channels = [16, 32, 64]
19for c, scope in zip(channels,
20self.OPTIMIZER_SCOPE):
21self.update_edges(
22update_func=lambda current_edge_data:
23_set_cell_ops(
24current_edge_data, C=c),
25scope=scope,
26private_edge_data=True
27)

Snippet 3: The Nas-Bench-201 cell search space
written using the language in NASLib. The macro
graph definition is omitted for brevity. The search
space is entirely defined as a graph object.

Snippet 3 shows how the NAS-Bench-
201 (Dong & Yang, 2020) cell search space
can be defined in NASLib. We label the DAG
nodes by indices starting from 1 to 4 and add
edges u, v ∈ {1, 2, 3, 4} such that u < v.
Nodes without an incoming edge are identified
as input nodes, and the node with the highest
index is identified as output node. Up to this
point the operations at the edges and nodes are
the ones we defined as default: Identity at the
edges and summation as combine operation at
the nodes.

Setting the primitive operations requires to han-
dle different settings for each stage of the
overall search space, e.g., to set the channels.
Therefore, NASLib uses the concept of scopes
to differentiate instances of the same graph and
select graphs to be optimized (i.e., in cases
where we do not want to optimize the macro
graph). Additionally, edges can be flagged as
final so they will not be altered by the opti-
mizer. For instance, this is used in the DARTS
search space for the edges connecting interme-
diate nodes with the output node.

Since the same cell is used at different levels,
NASLib offers private (e.g., w) and shared attributes (e.g., α), which allows proper handling of
attributes even for possibly deeply nested graphs. This approach is implemented by executing a user-
defined function on each edge in the given scope, e.g., setting the primitives in Snippet 3 (in line 21
note private edge data=True because of the private weights w of the primitive operations).
We refer to Snippet 6 in the appendix for the full search space definition. The same logic is used by
the optimizers to adapt the search space for their requirements (see Section 3.3).

3.2.2 CASE STUDY: A HIERARCHICAL SEARCH SPACE

With NASLib, one can also easily construct hierarchical search spaces, such as the one from Liu
et al. (2018) (see Snippet 5 in the appendix). We create all motifs and the macro graph as Graph
instances with their specified topology (Liu et al., 2018). Since NASLib natively handles graphs
at edges the same way as primitives, we can build the search space bottom-up: level-1 primitive
operations are used on the edges of level-2 motifs, and level-2 motifs are used on the edges of level-
3 motifs, etc. In Snippet 5, setting the primitives for level-1 motifs is done last, as they require the
number of channels at initialization. By setting copies of one initial motif at edges, NASLib ensures
that architectural parameters are shared between the instances. The hierarchical search space can
now be optimized by one-shot or discrete optimizers as any other search space.

5



Under review as a conference paper at ICLR 2021

3.3 NASLIB OPTIMIZERS

A search space graph defines the boundary of the area an optimizer can search, i.e., by the con-
nections between the nodes or the available operations (primitives), such as convolutional layers,
identity mappings, etc. The optimizer adapts the search space by its specific logic, performs the
search, and determines the final architecture (which is still a naslib Graph object) to be evalu-
ated.

This is realized by using the framework functions update edges and update nodes. Both
apply a user-defined function on each edge or node for each graph in the scope. For instance, by
sampling a shared index of a primitive at a given edge and then later setting the operation on each
edge according to the index, the optimizer can discretize the architectural search space. By adding
a shared architecture weight and setting the operation on each edge as the weighted sum of the
primitives, the optimizer can realize a continuous relaxation of the space (Liu et al., 2019b) (see
Snippet 4). Note again that this is completely search space agnostic.

3.3.1 CASE STUDY: THE DARTS OPTIMIZER
1class DARTSOptimizer(MetaOptimizer):
2@staticmethod
3def add_alphas(edge_data):
4alpha = nn.Parameter(1e-3 * randn(
5[len(edge_data.op)],
6requires_grad=True
7))
8# alpha shared across copies
9edge_data.set(’alpha’, alpha,
10shared=True)
11
12def adapt_search_space(self,
13sspace, scope):
14
15graph = sspace.clone()
16
17# 1. add alphas
18graph.update_edges(
19self.add_alphas,
20scope=scope,
21private_edge_data=False)
22
23# 2. replace primitives with mixed_op
24graph.update_edges(
25self.update_ops,
26scope=scope,
27private_edge_data=True)
28
29# store alphas for optimizer
30self.architectural_weights = [
31a for a in
32graph.get_all_edge_data(’alpha’)
33]
34
35graph.parse() # convert to pytorch
36# store weights for optimizer
37weights = graph.parameters()

Snippet 4: Example showing how the DARTS
optimizer adapts the search space to its
requirements.

One example of altering the search space for op-
timization purposes is the continuous relaxation
done by DARTS (Liu et al., 2019b). Parts of
its implementation in NASLib are shown in Snip-
pet 4. We make use of the framework by ap-
plying two functions on the graph: add alphas
and update ops. The function add alphas
adds the architectural weight α at each edge of the
search space (given it is in the scope); α is shared
between different instances of possible cells or mo-
tifs, this is why private edge data=False
in line 21. The function update ops replaces the
primitives at the edges with the DARTS-specific
continuous mix operation, which completes the
preparation of the search space for the architecture
search.

Next, the architectural parameters are stored for the
architecture optimizer (lines 30-33) and the graph
is parsed as a PyTorch network which then allows
to access its parameters w. For the update step
and determining the final architecture see the more
comprehensive Snippet 7 in the appendix.

3.4 ADDITIONAL FEATURES

The final architecture can then either be evaluated
by using a standardized training pipeline and mea-
suring the final performance or queried via an in-
terface to tabular benchmarks which are both pro-
vided in NASLib. This allows for a quick development of new NAS algorithms and comparisons
to existing algorithms that are free of confounding factors by design. Also, NASLib provides com-
fort features, such as checkpointing, data loading and preprocessing currently for three datasets
(CIFAR-10, CIFAR-100, SVHN), and configuration via a yaml configuration file and command
line arguments. Additionally, NASLib captures searching and evaluation statistics and logs them to
dedicated files.

Finally, NASLib also comes with a unified interface to several NAS benchmarks. Currently available
benchmarks are NAS-Bench-201 (Dong & Yang, 2020) and NAS-Bench-301 (Siems et al., 2020),
which can be used to query anytime results or cheaply train discrete optimizers without having to
change a single line of code when switching the search space and its corresponding benchmark API.

6



Under review as a conference paper at ICLR 2021

4 EMPIRICAL EVALUATION

We evaluate NASLib on several search spaces. First, we reproduce published results for several
optimizers on two commonly-used search spaces: the space of NAS-Bench-201 (Dong & Yang,
2020) and the DARTS cell search space (Zoph et al., 2018). Using NAS-Bench-201 allows us to
obtain results quickly for discrete optimizers that have high computational demands, and the DARTS
search space allows us to either run the DARTS evaluation pipeline or query NAS-Bench-301 (Siems
et al., 2020). Additionally, due to its modular design, NASLib allows us to also run DARTS and
GDAS on a hierarchical search space (Liu et al., 2018); to the best of our knowledge, this is the first
application of any one-shot method to this type of space.

We refer to Appendix A.1 for the experimental setup.

Table 1: Results for final architecture found
by NASLib optimizers on NAS-Bench-201
CIFAR-10. We archive at least on par perfor-
mance compared to (Dong & Yang, 2019).

Optimizer NASLib (Dong & Yang, 2019)
test acc test acc

DARTS 86.26 ± 0.11 54.30 ± 0.00

GDAS 93.09 ± 0.63 93.51 ± 0.13

RE 94.23 ± 0.14 93.92 ± 0.10

RS 94.17 ± 0.19 93.70 ± 0.36

NAS-Bench-201. We first validate our implemen-
tation on NAS-Bench-201. We implement four opti-
mizers, DARTS (Liu et al., 2019b), GDAS (Dong &
Yang, 2019), Random Search (Bergstra & Bengio,
2012) and Regularized Evolution (Real et al., 2019).
Table 1 compares the results of NASLib to the re-
ported results by Dong & Yang (2020) on CIFAR-
10. We achieve on par results for GDAS and better
results for DARTS and Regularized Evolution.

Figure 2 shows anytime performance of the two op-
timizers during the search and the test error of the
optimal architecture transferred to CIFAR-100 and ImageNet16x16-200 (Chrabaszcz et al., 2017).
The results closely resemble the original ones from the NAS-Bench-201 paper. GDAS outperforms
DARTS on average and achieves a test error close to Reqularized Evolution. Figure 3 shows anytime
performance of discrete optimizers Regularized Evolution and Random Search.

0 10 20 30 40 50
Search Epochs

0

20

40

60

80

Te
st

 E
rro

r [
%

]

cifar10
GDAS
DARTS
RE final performance
GDAS validation error
DARTS validation error

20

40

60

80

Va
lid

at
io

n 
Er

ro
r [

%
]

0 10 20 30 40 50
Search Epochs

20

40

60

80

100

Te
st

 E
rro

r [
%

]

cifar100
GDAS
DARTS

0 10 20 30 40 50
Search Epochs

60

70

80

90

100

Te
st

 E
rro

r [
%

]

ImageNet16-120
GDAS
DARTS

Figure 2: Results for searching with DARTS, GDAS in the NAS-Bench-201 search space on CI-
FAR10 for 4 random seeds each. The performance of the intermediate architectures as queried from
NAS-Bench-201 is plotted on the left axis and the validation error of the one-shot model is shown
on the right axis (lighter colors). As NAS-Bench-201 contains the results for architectures on three
different datasets we can directly assess how well the architectures found on CIFAR10 (left plot)
transfer to CIFAR100 (middle plot) and ImageNet16-120 (right plot). We show the first 50 epochs.

Table 2: Results for final architecture found by NASLib optimizers
on DARTS search space for CIFAR-10. We archive on par perfor-
mance compared to the respective author’s implementation (as re-
ported in (Liu et al., 2019b; Dong & Yang, 2019)).

Space Optimizer NASLib implementation Author’s implementation
Test Error Params (M) Search Cost (D) Test Error Params Search Cost

DARTS
DARTS 3.26 ± 0.14 2.84 1.4 3.00 ± 0.14 3.3 1.5
GDAS 3.28 ± 0.17 3.17 0.8 2.82 ± 0.13 2.5 0.8

Hierarch.
DARTS 3.31 ± 0.09 7.94 2.75 - - -
GDAS 3.28 ± 0.02 10.73 0.29 - - -

Evolution 3.38 ± 0.14 10.71 - 3.75 ± 0.12 - 300

DARTS search space. We
also evaluate NASLib on the
DARTS search space to al-
leviate possible artifacts in-
troduced by the benchmarks.
Table 2 shows the test error
achieved by NASLib com-
pared to the one reported
by the respective authors
of DARTS and GDAS. We
achieve similar performance
for both optimizers compared to the original implementations, which validates our implementa-
tion of both the optimizers and of the search space (see Figure 5 in appendix for the cell found by

7



Under review as a conference paper at ICLR 2021

103 104

Wallclock time [h]

5.25

5.50

5.75

6.00

6.25

6.50

6.75

7.00

Te
st

 E
rro

r [
%

]

cifar10
RE
RS

Figure 3: Discrete optimizers regularized evo-
lution and random search on Nas-Bench 201
for CIFAR-10.

0 10 20 30 40 50
Search Epochs

5.5

6.0

6.5

7.0

7.5

Te
st

 E
rro

r [
%

]

Results on Nas-Bench 301
GDAS
DARTS
GDAS validation error
DARTS validation error

20

40

60

80

Va
lid

at
io

n 
Er

ro
r [

%
]

Figure 4: Anytime performance of DARTS
and GDAS queried on Nas-Bench 301.

DARTS). Note that the different search cost for GDAS is due to the fact the we report the search
cost for 4 runs which are needed to determine the final architecture following (Liu et al., 2019b).
In Figure 4, we also show the queried anytime performance of DARTS and GDAS from the recent
NAS-Bench-301 surrogate benchmark (Siems et al., 2020) on the DARTS search space.

Hierarchical search space. We also evaluate NASLib on the hierarchical search space to demon-
strate its flexibility regarding the search space definition. While Liu et al. (2018) ran evolution for
300 GPU days, due to resource constraints, we could only afford to run the much faster one-shot
optimizers on this search space. DARTS achieved a test error of 3.31% ± 0.09% and GDAS a test
error of 3.28% ± 0.02% (single search, 2 seeds for evaluation). This is superior to the architecture
found by Liu et al. (2018) trained on our pipeline which achieved 3.38% ± 0.14% test error (see
appendix for experimental results).

To the best of our knowledge, this is the first time any one-shot model has been run on a hierarchical
search space. This reduced the computational demand by a factor of 1000×, from 300 to 0.3 GPU
days!

5 CONCLUSIONS

In this paper we presented NASLib, a modular open source library which offers a unified platform
for implementing the state-of-the-art NAS methods. Even though NAS has experienced an explosion
of interest by the research community, to date there is no researcher-friendly library that enables the
reuse of NAS concepts and source code in a modular fashion.

We explained NASLib’s core architecture and its building blocks in depth along with exemplary
source code snippets that demonstrate the simplicity of implementing prominent baselines. To verify
the performance of the library, we implemented a series of state-of-the-art methods and conducted
multiple experiments on three datasets using a popular NAS benchmark search space (NAS-Bench-
201). The empirical findings suggest that it is easy to implement recent methods in NASLib and
actually achieve competitive results, at the benefit of requiring only a fraction of the usual coding
efforts. As a result, we believe NASLib has the potential to be a game-changer in the field of Neural
Architecture Search, facilitating rapid prototyping, code sharing, easy applications to different types
of applications and search spaces, and reproducible research.

In the future, we will enrich NASLib not only by integrating and evaluating more NAS search
spaces and optimizers, but also by adding more features that will help encapsulating further many
NAS paradigms. We also plan to integrate analysis tools, e.g. automatically computing correlations
between proxy and true performance metrics (Zela et al., 2020; Yu et al., 2020) or curvature infor-
mation in the architecture space (Zela et al., 2020). We believe that NASLib will become a valuable
framework to research community and will become a community project jointly developed by the
research community.

8



Under review as a conference paper at ICLR 2021

REFERENCES

Proceedings of the International Conference on Learning Representations (ICLR’17), 2017. Pub-
lished online: iclr.cc.

Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc Le. Understand-
ing and simplifying one-shot architecture search. In International Conference on Machine Learn-
ing, 2018.

J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. 13:281–305, 2012.

Andrew Brock, Theo Lim, J.M. Ritchie, and Nick Weston. SMASH: One-shot model architecture
search through hypernetworks. In International Conference on Learning Representations, 2018.
URL https://openreview.net/forum?id=rydeCEhs-.

Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive differentiable architecture search: Bridging
the depth gap between search and evaluation. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pp. 1294–1303, 2019.

Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A downsampled variant of imagenet as an
alternative to the cifar datasets. arXiv preprint arXiv:1707.08819, 2017.

Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in four GPU hours. In Proceed-
ings of the International Conference on Computer Vision and Pattern Recognition (CVPR’19), pp.
1761–1770, 2019.

Xuanyi Dong and Yi Yang. Nas-bench-102: Extending the scope of reproducible neural architec-
ture search. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=HJxyZkBKDr.

J. Dy and A. Krause (eds.). Proceedings of the 35th International Conference on Machine Learning
(ICML’18), volume 80, 2018. Proceedings of Machine Learning Research.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search. pp. 69–86.
Springer, 2019.

Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and Alexan-
der Smola. Autogluon-tabular: Robust and accurate automl for structured data. arXiv preprint
arXiv:2003.06505, 2020.

S. Falkner, A. Klein, and F. Hutter. BOHB: Robust and Efficient Hyperparameter Optimization at
Scale. In Dy & Krause (2018), pp. 1437–1446.

M. Feurer, A. Klein, K. Eggensperger, J. T. Springenberg, M. Blum, and F. Hutter. Efficient and
robust automated machine learning. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Gar-
nett (eds.), Proceedings of the 29th International Conference on Advances in Neural Information
Processing Systems (NeurIPS’15), pp. 2962–2970, 2015.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure, dynamics,
and function using networkx. In Gaël Varoquaux, Travis Vaught, and Jarrod Millman (eds.),
Proceedings of the 7th Python in Science Conference, pp. 11 – 15, Pasadena, CA USA, 2008.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

F. Hutter, L. Kotthoff, and J. Vanschoren (eds.). Automatic Machine Learning: Methods, Systems,
Challenges. Challenges in Machine Learning. Springer, 2019.

Haifeng Jin, Qingquan Song, and Xia Hu. Auto-keras: An efficient neural architecture search sys-
tem. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery
Data Mining, 2019.

9

iclr.cc
https://openreview.net/forum?id=rydeCEhs-
https://openreview.net/forum?id=HJxyZkBKDr
https://openreview.net/forum?id=HJxyZkBKDr


Under review as a conference paper at ICLR 2021

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv:1412.6980 [cs.LG],
2014.

Aaron Klein, Louis Tiao, Thibaut Lienart, Cedric Archambeau, and Matthias Seeger. Model-based
asynchronous hyperparameter and neural architecture search. arXiv preprint arXiv:2003.10865,
2020.

A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with deep convolutional neural
networks. In P. Bartlett, F. Pereira, C. Burges, L. Bottou, and K. Weinberger (eds.), Proceedings
of the 26th International Conference on Advances in Neural Information Processing Systems
(NeurIPS’12), pp. 1097–1105, 2012.

Liam Li and Ameet Talwalkar. Random search and reproducibility for neural architecture search. In
A. Globerson and R. Silva (eds.), Proceedings of the 35nd conference on Uncertainty in Artificial
Intelligence (UAI’19), pp. 129. AUAI Press, 2019.

Eric Liang, Richard Liaw, Philipp Moritz, Robert Nishihara, Roy Fox, Ken Goldberg, Joseph E
Gonzalez, Michael I Jordan, and Ion Stoica. Rllib: Abstractions for distributed reinforcement
learning. arXiv preprint arXiv:1712.09381, 2017.

Marius Lindauer and Frank Hutter. Best practices for scientific research on neural architecture
search. arXiv preprint arXiv:1909.02453, 2019.

Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig Adam, Wei Hua, Alan L. Yuille, and
Li Fei-Fei. Auto-deeplab: Hierarchical neural architecture search for semantic image segmen-
tation. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
82–92, 2019a.

Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray Kavukcuoglu. Hier-
archical representations for efficient architecture search. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=BJQRKzbA-.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. In
International Conference on Learning Representations, 2019b. URL https://openreview.
net/forum?id=S1eYHoC5FX.

I. Loshchilov and F. Hutter. Sgdr: Stochastic gradient descent with warm restarts. In Proceedings
of the International Conference on Learning Representations (ICLR’17) icl (2017). Published
online: iclr.cc.

Renato Negrinho, Darshan Patil, Nghia Le, Daniel Ferreira, Matthew Gormley, and Geoffrey Gor-
don. Towards modular and programmable architecture search. Neural Information Processing
Systems, 2019.

R. Olson, N. Bartley, R. Urbanowicz, and J. Moore. Evaluation of a Tree-based Pipeline Optimiza-
tion Tool for Automating Data Science. In T. Friedrich (ed.), Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO’16), pp. 485–492. ACM, 2016.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient neural architecture
search via parameter sharing. In Dy & Krause (2018), pp. 4092–4101.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In Proceedings of the aaai conference on artificial intelligence,
volume 33, pp. 4780–4789, 2019.

10

https://openreview.net/forum?id=BJQRKzbA-
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX
iclr.cc


Under review as a conference paper at ICLR 2021

T. Saikia, Y. Marrakchi, A. Zela, F. Hutter, and T. Brox. Autodispnet: Improving disparity estimation
with automl. In IEEE International Conference on Computer Vision (ICCV), 2019. URL http:
//lmb.informatik.uni-freiburg.de/Publications/2019/SMB19.

Julien Siems, Lucas Zimmer, Arber Zela, Jovita Lukasik, Margret Keuper, and Frank Hut-
ter. NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural Architecture Search.
arXiv:2008.09777 [cs.LG], August 2020.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In International Conference on Learning Representations, 2015.

David So, Quoc Le, and Chen Liang. The evolved transformer. In Kamalika Chaudhuri and Ruslan
Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pp. 5877–5886, Long Beach, Cali-
fornia, USA, 09–15 Jun 2019. PMLR. URL http://proceedings.mlr.press/v97/
so19a.html.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Computer Vision and Pattern Recognition (CVPR), 2015.

M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. V. Le. Mnasnet: Platform-
aware neural architecture search for mobile. In 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 2815–2823, 2019.

C. Thornton, F. Hutter, H. Hoos, and K. Leyton-Brown. Auto-WEKA: combined selection and hy-
perparameter optimization of classification algorithms. In I. Dhillon, Y. Koren, R. Ghani, T. Sena-
tor, P. Bradley, R. Parekh, J. He, R. Grossman, and R. Uthurusamy (eds.), The 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD’13), pp. 847–855,
2013.

Tao Wei, C. Wang, Y. Rui, and C. Chen. Network morphism. In ICML, 2016.

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. SNAS: stochastic neural architecture search.
In Proceedings of the International Conference on Learning Representations (ICLR’19), 2019.
Published online: iclr.cc.

Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong.
Pc-darts: Partial channel connections for memory-efficient architecture search. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=BJlS634tPr.

Antoine Yang, Pedro M. Esperança, and Fabio M. Carlucci. Nas evaluation is frustratingly hard. In
International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=HygrdpVKvr.

Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter. NAS-
bench-101: Towards reproducible neural architecture search. In Kamalika Chaudhuri and Ruslan
Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pp. 7105–7114, Long Beach, Cali-
fornia, USA, 09–15 Jun 2019. PMLR. URL http://proceedings.mlr.press/v97/
ying19a.html.

Kaicheng Yu, Christian Sciuto, Martin Jaggi, Claudiu Musat, and Mathieu Salzmann. Evaluating
the search phase of neural architecture search. In International Conference on Learning Repre-
sentations, 2020. URL https://openreview.net/forum?id=H1loF2NFwr.

Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Marrakchi, Thomas Brox, and Frank Hut-
ter. Understanding and robustifying differentiable architecture search. In International Confer-
ence on Learning Representations, 2020. URL https://openreview.net/forum?id=
H1gDNyrKDS.

L. Zimmer, M. Lindauer, and Frank Hutter. Auto-pytorch tabular: Multi-fidelity metalearning for
efficient and robust autodl. ArXiv, abs/2006.13799, 2020.

11

http://lmb.informatik.uni-freiburg.de/Publications/2019/SMB19
http://lmb.informatik.uni-freiburg.de/Publications/2019/SMB19
http://proceedings.mlr.press/v97/so19a.html
http://proceedings.mlr.press/v97/so19a.html
iclr.cc
https://openreview.net/forum?id=BJlS634tPr
https://openreview.net/forum?id=BJlS634tPr
https://openreview.net/forum?id=HygrdpVKvr
https://openreview.net/forum?id=HygrdpVKvr
http://proceedings.mlr.press/v97/ying19a.html
http://proceedings.mlr.press/v97/ying19a.html
https://openreview.net/forum?id=H1loF2NFwr
https://openreview.net/forum?id=H1gDNyrKDS
https://openreview.net/forum?id=H1gDNyrKDS


Under review as a conference paper at ICLR 2021

B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning. In Proceedings of the
International Conference on Learning Representations (ICLR’17) icl (2017). Published online:
iclr.cc.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8697–8710, 2018.

12

iclr.cc


Under review as a conference paper at ICLR 2021

A APPENDIX

A.1 EXPERIMENTAL SETUP

NAS-Bench-201. We ran the DARTS and GDAS search for 50 epochs on CIFAR-10 with batch
size 64, using NAS-Bench-201’s standard split of data points into 50% test and 50% training/valida-
tion for the search. Following Dong & Yang (2020), as weight optimizer we use SGD with momen-
tum 0.9, weight decay of 3× 10−4 and initial learning rate 0.025 with cosine annealing (Loshchilov
& Hutter, 2017) to 0.001. As optimizer for the architectural weights, we use Adam Kingma & Ba
(2014) with learning rate 3× 10−4 and weight decay of 0.001. For GDAS we set the initial τ = 10
and reduce linearly to 0.1 and trained it for 250 epochs. For regularized evolution (Real et al., 2019)
and Random Search, we set the number of function evaluations to 1000, population size to 100 and
sample size 10.

DARTS search space. We also run DARTS and GDAS on this search space using the same hy-
perparameters as for NAS-Bench-201 which are also the same as used in (Liu et al., 2019b). For
training the final model found by the optimizer we used the pipeline from Liu et al. (2019b) with
their hyperparameters (Cutout, drop path, auxiliary towers) using the full 50000 images training set.
The final architecture found by GDAS includes more parameters which is why we set the batch size
for this to 72 instead of 96. A single search took 7.5 hours, evaluation 12 to 51 hours on a single
GPU. Following (Liu et al., 2019b; Dong & Yang, 2019) we pick the best out of four searches after
low-fidelity evaluation on the validation set and train it from scratch for longer and with more initial
channels and stacked cells.

Hierarchical search space. We ran DARTS and GDAS for 10 epochs with batch size 10 on
CIFAR-10 using the search space as Liu et al. (2018). Apart from this we used the same hyper-
parameters as for DARTS. The resulting search took 66 and 7 hours on a single GPU for DARTS
and GDAS, respectively, in contrast to the dramatically longer runs for 1.5 days on 200 GPUs in
Liu et al. (2018). Different to Liu et al. (2018), we trained the found cells and motifs on 50000
images for 600 epochs using batch size of 32 and SGD with initial learning rate of 0.025 with cosine
annealing to 0.001. We use cutout and drop path with probability of 0.2. The evaluation took 23
hours on a single GPU.

A.2 NASLIB CODE SNIPPETS

Here we show more code snippets from NASLib.

13



Under review as a conference paper at ICLR 2021

1class HierarchicalSearchSpace(Graph):
2OPTIMIZER_SCOPE = [
3"stage_1",
4"stage_2",
5"stage_3"]
6
7def __init__(self):
8super().__init__()
9level2_motifs = [] # 6 level-2 motifs
10for j in range(6):
11motif = Graph()
12motif.name = "motif{}".format(j)
13motif.add_nodes_from([1, 2, 3, 4, 5])
14motif.add_edges_densly()
15level2_motifs.append(motif)
16
17cell = Graph() # 1 level-3 motif
18cell.name = "cell"
19cell.add_nodes_from([1, 2, 3, 4, 5, 6])
20cell.add_edges_densly()
21
22cells = []
23channels = [16, 32, 64]
24for c, s in zip(channels,
25self.OPTIMIZER_SCOPE):
26cell_i = cell.copy()
27# place level 2 motifs as op
28cell_i.update_edges(
29update_func=lambda current_edge_data:
30_set_motifs(current_edge_data,
31motifs=level2_motifs, c=c),
32private_edge_data=True
33)
34cell_i.set_scope(s, recursively=True)
35# place level 1 motifs, i.e. primitives
36cell_i.update_edges(
37update_func=lambda current_edge_data:
38_set_cell_ops(current_edge_data,
39c, stride=1),
40scope=s,
41private_edge_data=True
42)
43cells.append(cell_i)
44
45# Macro graph omitted for brevity

Snippet 5: The hierarchical search space written using the language in NASLib. The macro graph
definition is omitted for brevity. The search space is entirely defined as instances of graphs.

14



Under review as a conference paper at ICLR 2021

1import torch.nn as nn
2from naslib.search_spaces.core import primitives as ops
3from naslib.search_spaces.core.graph import Graph, EdgeData
4from naslib.search_spaces.core.primitives import AbstractPrimitive
5from .primitives import ResNetBasicblock
6
7class NasBench201SeachSpace(Graph):
8
9OPTIMIZER_SCOPE = [
10"stage_1",
11"stage_2",
12"stage_3",
13]
14
15QUERYABLE = True
16
17def __init__(self):
18super().__init__()
19
20# Cell definition
21cell = Graph()
22cell.name = "cell"
23cell.add_node(1) # Input node
24cell.add_node_from([2, 3]) # Intermediate nodes
25cell.add_node(4) # Output node
26cell.add_edges_densly() # Edges
27
28# Macro graph definition
29self.name = "makrograph"
30
31total_num_nodes = 20
32self.add_nodes_from(range(1, total_num_nodes+1))
33self.add_edges_from([(i, i+1) for i in range(1, total_num_nodes)])
34
35# operations at the edges
36channels = [16, 32, 64]
37
38self.edges[1, 2].set(’op’, ops.Stem(channels[0])) # preprocessing
39# stage 1
40for i in range(2, 7):
41self.edges[i, i+1].set(’op’, cell.copy().set_scope(’stage_1’))
42# stage 2
43self.edges[7, 8].set(’op’, ResNetBasicblock(channels[0], channels[1], stride=2))
44for i in range(8, 13):
45self.edges[i, i+1].set(’op’, cell.copy().set_scope(’stage_2’))
46# stage 3
47self.edges[13, 14].set(’op’, ResNetBasicblock(channels[1], channels[2], stride=2))
48for i in range(14, 19):
49self.edges[i, i+1].set(’op’, cell.copy().set_scope(’stage_3’))
50# post-processing
51self.edges[19, 20].set(’op’, ops.Sequential(
52nn.AdaptiveAvgPool2d(1),
53nn.Flatten(),
54nn.Linear(channels[-1], self.num_classes)
55))
56
57# set the ops at the cells (channel dependent)
58for c, scope in zip(channels, self.OPTIMIZER_SCOPE):
59self.update_edges(
60update_func=lambda current_edge_data: _set_cell_ops(current_edge_data, C=c),
61scope=scope,
62private_edge_data=True
63)
64
65
66def query(self, metric=None, dataset=None, path=None):
67# query logic here
68
69
70def _set_cell_ops(current_edge_data, C):
71current_edge_data.set(’op’, [
72ops.Identity(),
73ops.Zero(stride=1),
74ops.ReLUConvBN(C, C, kernel_size=3),
75ops.ReLUConvBN(C, C, kernel_size=1),
76ops.AvgPool1x1(kernel_size=3, stride=1),
77])

Snippet 6: The complete Nasbench 201 cell search space written using the language in NASLib. The
query implementation is omitted for brevity. The search space is entirely defined as graph object.

15



Under review as a conference paper at ICLR 2021

1class DARTSOptimizer(MetaOptimizer):
2
3@staticmethod
4def add_alphas(current_edge_data):
5len_primitives = len(current_edge_data.op)
6alpha = Parameter(1e-3 * torch.randn(size=[len_primitives], requires_grad=True))
7current_edge_data.set(’alpha’, alpha, shared=True)
8
9@staticmethod
10def update_ops(current_edge_data):
11primitives = current_edge_data.op
12current_edge_data.set(’op’, MixedOp(primitives))
13
14def adapt_search_space(self, search_space, scope=None):
15graph = search_space.clone() # We are going to modify the search space
16
17if not scope:
18scope = graph.OPTIMIZER_SCOPE # use the search space default one
19
20# 1. add alphas
21graph.update_edges(self.add_alphas, scope, private_edge_data=False)
22# 2. replace primitives with mixed_op
23graph.update_edges(self.update_ops, scope, private_edge_data=True)
24
25for alpha in graph.get_all_edge_data(’alpha’):
26self.architectural_weights.append(alpha)
27
28graph.parse()
29
30# Init optimizers
31self.arch_optimizer = self.arch_optimizer(self.architectural_weights.parameters(),
32lr=self.config.arch_learning_rate, betas=(0.5, 0.999),
33weight_decay=self.config.arch_weight_decay)
34self.op_optimizer = self.op_optimizer(graph.parameters(),
35lr=self.config.learning_rate, momentum=self.config.momentum,
36weight_decay=self.config.weight_decay)
37
38graph.train()
39self.graph = graph
40self.scope = scope
41
42def step(self, data_train, data_val):
43input_train, target_train = data_train
44input_val, target_val = data_val
45
46# Update architecture weights
47self.arch_optimizer.zero_grad()
48logits_val = self.graph(input_val)
49val_loss = self.loss(logits_val, target_val)
50val_loss.backward()
51clip_grad_norm_(self.architectural_weights.parameters(), self.grad_clip)
52self.arch_optimizer.step()
53
54# Update op weights
55self.op_optimizer.zero_grad()
56logits_train = self.graph(input_train)
57train_loss = self.loss(logits_train, target_train)
58train_loss.backward()
59clip_grad_norm_(self.graph.parameters(), self.grad_clip)
60self.op_optimizer.step()
61
62return logits_train, logits_val, train_loss, val_loss
63
64def get_final_architecture(self):
65graph = self.graph.clone().unparse()
66graph.prepare_discretization() # e.g. darts sspace: only 2 in-edges with max alpha
67
68def discretize_ops(current_edge_data):
69if current_edge_data.has(’alpha’):
70primitives = current_edge_data.op.get_embedded_ops()
71alpha = current_edge_data.alpha.detach().cpu()
72current_edge_data.set(’op’, primitives[np.argmax(alpha)])
73
74graph.update_edges(discretize_ops, self.scope, private_edge_data=True)
75graph.prepare_evaluation()
76graph.parse()
77return graph

Snippet 7: The DARTS optimizer as implemented in NASLib. Non-important aspects are ommited
for brevity.

16



Under review as a conference paper at ICLR 2021

sep_conv_3x3identity

identity

identity

sep_conv_3x3

sep_conv_3x3

dil_conv_5x5

identity
1

2

3
4

5

6 7

Normal cell

max_pool_3x3
max_pool_3x3
max_pool_3x3

max_pool_3x3

max_pool_3x3

identity

identity

identity

1

2

3

4

5

6 7

Reduction cell

Figure 5: Normal and reduction cell found by DARTS on CIFAR-10.

17


	Introduction
	Related Work
	NASLib: Architecture and Building Blocks
	NASLib Architecture Overview
	NASLib search spaces
	Case Study: the Nas-Bench-201 search space
	Case Study: a hierarchical search space

	NASLib optimizers
	Case Study: The DARTS optimizer

	Additional features

	Empirical Evaluation
	Conclusions
	Appendix
	Experimental setup
	NASLib code snippets


