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Abstract

Chinese geographic re-ranking task aims to find001
the most relevant addresses among retrieved002
candidates, which is crucial for location-related003
services such as navigation maps. Unlike the004
general sentences, Chinese geographic contexts005
are closely intertwined with geographical con-006
cepts, from general spans (e.g., province) to007
specific spans (e.g., road). Given this feature,008
we propose an innovative framework, namely009
Geo-Encoder, to more effectively integrate Chi-010
nese geographical semantics into re-ranking011
pipelines. Our methodology begins by employ-012
ing off-the-shelf tools to associate text with013
geographical spans, treating them as chunking014
units. Then, we present a multi-task learning015
module to simultaneously acquire an effective016
attention matrix that determines chunk con-017
tributions to geographic representations. Fur-018
thermore, we put forth an asynchronous up-019
date mechanism for the proposed task, aim-020
ing to guide the model to focus on specific021
chunks. Experiments on two Chinese bench-022
mark datasets, show that the Geo-Encoder023
achieves significant improvements when com-024
pared to state-of-the-art baselines. Notably, it025
leads to a substantial improvement in the Hit@1026
score of MGEO-BERT, increasing it by 6.22%027
from 62.76 to 68.98 on the GeoTES dataset.028

1 Introduction029

Chinese geographic re-ranking (CGR) is a sub-task030

of semantic matching, aiming to identify the most031

relevant geographic context towards given queries032

and retrieved candidates (Zhao et al., 2019; MacA-033

vaney et al., 2020; Yates et al., 2021). It is a cru-034

cial task that serves many downstream applications035

such as navigation maps (e.g., Gaode Maps), au-036

tonomous driving (e.g., Tesla), E-commerce system037

(e.g., Taobao), etc. (Jia et al., 2017; Avvenuti et al.,038

2018). Unlike general query text, Chinese geo-039

graphic sentences exhibit a distinct attribute in their040

linear-chain structural semantics (Li et al., 2019).041
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Figure 1: Overview of the Chinese Geographic re-
ranking task. The process begins with the user query
being subjected to word chunking, segmenting it into
meaningful units. Lastly, Geo-Encoder is employed to
enhance semantic representation and re-ranking.

This peculiarity arises from the fact that Chinese ad- 042

dresses often comprise distinct meaningful address 043

segments, termed as geographic chunks in linguis- 044

tic terms (Abney, 1991). These chunks adhere to a 045

specific format, organizing from the general (e.g., 046

province) to the more specific (e.g., road). For ex- 047

ample, as is shown in Figure 1, given a Chinese 048

address “采荷路2号高级中学北门 (North Gate 049

of Caihe Road No.2 Senior High School)”, we can 050

deconstruct it into several such chunks: “采荷路 051

(Caihe Road)”, “2号 (No.2)”, “高级中学 (Senior 052

High School)”, “北门 (North Gate)”. 053

Conventional approaches (Reimers and 054

Gurevych, 2019; Humeau et al., 2019; Khattab 055

and Zaharia, 2020) addressing the CGR task often 056

directly employ pre-trained language models 057

(PLMs) to encode given geographic texts into 058

embeddings, which are subsequently subjected 059

to re-ranking through similarity calculation 060

techniques like cosine or euclidean distance 061

measures. Recent works (Yuan et al., 2020; Huang 062

et al., 2022; Ding et al., 2023) in this field extend 063
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beyond mere geographic context utilization and064

encompass an expansive range of data sources,065

including point-of-interest (POI) information,066

multi-modal data, and user behavioral attributes067

(Liu et al., 2021; Hofmann et al., 2022; Huang068

et al., 2022) with a larger neural model. The069

outcome of this integration is characterized by070

notable enhancements, achieved through the fusion071

of external geographic knowledge. Furthermore,072

cutting-edge domain-adaptation frameworks have073

been introduced to facilitate effective fusion of074

multi-domain data, such as PALM (Zhao et al.,075

2019), STDGAT (Yuan et al., 2020), etc.076

However, despite the effectiveness of existing at-077

tempts in leveraging geographic knowledge, these078

methods failed to fully harness the intrinsic po-079

tential of the geographic context itself. Therefore,080

in this paper, we aim to shift our focus towards081

the geographic context by exploiting its distinctive082

linear-chain attributes. To achieve this, we employ083

off-the-shelf tools (e.g. MGEO tagging and part-084

of-speech (POS) for the approximate annotation085

of each geographic text with pertinent geographic086

chunks. For example, as illustrated in Figure 1, we087

annotate the text “采荷路 (Caihe Road)” with the088

label Road, “2号 (No.2)” with Num, etc.089

Firstly, building upon this foundation, we intro-090

duce an additional task that revolves learning the091

similarity between different components of these092

annotated chunks. This involves the formulation093

of an attention matrix, which governs the contribu-094

tions of these chunks to the semantic representa-095

tions. Our motivation is that general chunks tend096

to be less diverse across queries and candidates,097

and specific chunks possess a higher degree of dis-098

tinctiveness. Secondly, we put forth a novel asyn-099

chronous update speed mechanism for the attention100

matrix. This mechanism is designed to empower101

the model to effectively focus its attention on the102

more specific chunks, thereby enhancing its dis-103

cernment capabilities. Lastly, we advocate for the104

integration of the pure bi-encoder approach during105

the inference period. This strategy ensures a har-106

monious balance between performance and compu-107

tational efficiency, safeguarding the efficacy of the108

model in both academic and industrial scenarios.109

In summary, our key contributions can be sum-110

marized as follows: 1) We introduce a multi-task111

learning framework, denoted as Geo-Encoder, to112

integrate component similarity; 2) We present an113

asynchronous update mechanism, to distinguish114

specific chunks effectively; 3) Except evaluation on115

benchmark dataset, we collect and publish a nation- 116

wide geographic dataset in China, named GeoIND. 117

Experimental results demonstrate the superiority 118

of our Geo-Encoder over competitive methods. 119

2 Related Work 120

Semantic Matching and Re-Ranking. Seman- 121

tic matching is a widely-concerned task in natu- 122

ral language processing, including retrieval and 123

re-ranking process (Zhao et al., 2019; Yates et al., 124

2021). Within re-ranking domain, researchers em- 125

ploy bi-encoders to encode given queries and can- 126

didates separately by using the shared parameters, 127

such as ESIM (Chen et al., 2017), SBERT (Reimers 128

and Gurevych, 2019), ColBERT (Khattab and Za- 129

haria, 2020), etc. Within the emergence of pre- 130

trained models, such as RoBERTa (Liu et al., 2019), 131

ERNIE (Sun et al., 2021), cross-encoders were pro- 132

posed to jointly encode text and promote the in- 133

formation interaction (Humeau et al., 2019; Nie 134

et al., 2020; Ye et al., 2022). Besides, to better rep- 135

resent sentences, external knowledge and late in- 136

teractions were widely explored. For example, Xia 137

et al. (2021) utilized a word similarity matrix and 138

Peng et al. (2022) introduced predicate-argument 139

spans to enhance representation. 140

Chinese Geographic Text Representation. 141

Most existing approaches focused on encoding 142

geographic text by external knowledge in two 143

aspects: (1) position data, such as PALM (Zhao 144

et al., 2019), encoding positional relationship of 145

query and candidates, STDGAT (Yuan et al., 2020), 146

considering Spatio-temporal features, etc.; (2) 147

geographic knowledge, such as GeoL (Huang et al., 148

2022), using knowledge related to user behaviors, 149

and MGeo (Ding et al., 2023), proposing using 150

multi-modal dataset. However, the geographic text 151

encoding method among the above approaches 152

is not well-explored. Besides, parsing Chinese 153

geographic text into chunks is also a key technical 154

issue (Li et al., 2019). Generally, address parsing 155

is quite similar to Chinese word segmentation. 156

Existing attempts includes conditional random 157

fields models (Zhao et al., 2006), latent-variable 158

variants (Sun et al., 2009), neural transition-based 159

segmentation method (Zhang et al., 2016), and 160

chart-based models (Stern et al., 2017; Kitaev 161

and Klein, 2018), etc. However, while these 162

models benefit from external geographic knowl- 163

edge, exploring geographic rather than semantic 164

representation is still crucial. 165
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3 Our Approach166

3.1 Task Definition and Overview167

In Chinese Geographic Re-ranking (CGR) task168

setting, the available dataset {X} is formed as169

query-candidate pairs. Let Q denotes queries and170

C as retrieved candidates. Both Q and C are171

composed of l-th separated tokens, where {X} =172

{X ∈ (Q,C)|X = x1, x2, ..., xl}. The objective173

of CGR is to model the highest possibility of C.174

Thus, the bi-encoder framework, depicted in Fig-175

ure 2(a), can be formalized as:176

c = arg max
C

rθ (fθ(Q), fθ(C)) (1)177

where fθ denotes encoding function (we adopt178

PLMs here), to encode given text into vectors, c179

(∈ C) is the model output and rθ denotes similar-180

ity evaluation function, such as dot multiple and181

cosine similarity, to assign a similarity score for182

each candidate. Also, the cross-encoder framework,183

depicted in Figure 2(b) can be formalized as:184

c = arg max
C

rθ (fθ(Q,C)) (2)185

In our approach, we strive to enhance the encod-186

ing process through a two-step strategy. Firstly, we187

segment the provided geographic text into chunks188

and introduce a novel approach to learn both the189

attention matrix governing chunk contributions and190

component semantic representation as an additional191

task. Secondly, we introduce an asynchronous up-192

date mechanism for the attention matrix and model193

parameters. This mechanism is aimed at enabling194

the model to efficiently acquire the skill of focusing195

on specific chunks. Finally, we present our training196

and inference details. Our proposed framework,197

called Geo-Encoder, is illustrated in Figure 2(c).198

3.2 Geographic Chunking199

Chinese addresses typically consist of multiple200

meaningful address segments, often referred to as201

"geographic chunks" (Abney, 1991). These ad-202

dresses follow a structured pattern, progressing hi-203

erarchically from the general (e.g., province) to spe-204

cific ones (e.g., road) (Li et al., 2019). In contrast205

to conventional Chinese segmentation methods, ge-206

ographic chunking demands tools of heightened207

sensitivity tailored to geographical units. These208

tools necessitate fine-tuning using dedicated Chi-209

nese address corpora. Consequently, we adopt the210

MGEO tagging tool to facilitate the acquisition of211

precise geographic annotations for our benchmark 212

datasets (Wu et al., 2022a,b; Ding et al., 2023). 213

MGEO stands as a pre-trained model with multi- 214

modal datasets, encompassing both geographic con- 215

text and points of interest. It is designed to cater to 216

various downstream tasks, including geographic en- 217

tity alignment and address element tagging, among 218

others. In our current framework, however, we ex- 219

clusively leverage MGEO to provide chunk anno- 220

tations, without employing it for the purpose of en- 221

coding contextual information. Then, dataset {X} 222

is extended as {Xu} = {x ∈ (Q,C,Qu, Cu)|X = 223

x1, x2, ..., xn}, where Qu and Cu denotes query 224

and candidates chunking units. For example, given 225

a Chinese address “南京市新城科技园3栋5单 226

元(Unit #5, Building #3, Sci-Tech Park, Nanjing 227

City.)”, we can parse them by MGEO into: “南京 228

市(Nanjing City)” – city, “新城科技园(Sci-Tech 229

Park)” – devzone, “3栋(Building #3)” – houseno, 230

“5单元(Unit #5)” – cellno. 231

3.3 Chunking Contribution Learning 232

Utilizing the chunked dataset denoted as {Xu}, we 233

proceed to employ a pre-trained language model 234

for the encoding process. This yields the represen- 235

tations of [CLS] embedding eqcls and token embed- 236

ding eq1:l from geographic text: 237

eqcls, e
q
1:l = Encoder(q), q ∈ Q (3) 238

where Encoder denotes PTMs. And correspond- 239

ingly we can get candidates features eccls and 240

ec1:l. Given chunking annotations, we initialize 241

a zeros query component embeddings {UQ|uqi ∈ 242

UQ}, i = {1, 2, · · · ,M} and we can further update 243

query component embeddings uqi by: 244

uqi = mean(Γ(eq1:l, I
q
i )) (4) 245

where Γ(·) is the Index function to obtain com- 246

ponent token embeddings, M is the total amount 247

of chunk categories, and Iqi is the index number 248

acquired by the tokenizer of the Encoder from 249

the chunk’s location to the corresponding query. 250

Similarly, component embeddings {UC |uci ∈ UC} 251

can also be obtained. We can also get candidates’ 252

component embeddings uci similar with Eq. 4. 253

To incorporate token-level embeddings, the Col- 254

BERT model (Khattab and Zaharia, 2020) intro- 255

duced a multi-attention mechanism, which facili- 256

tates subsequent interactions between queries and 257

candidates. This technique has demonstrated im- 258

proved efficacy in re-ranking tasks. Nonetheless, 259
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Figure 2: Architecture of re-ranking models and our proposed Geo-Encoder. The left shows the bi-encoder and
cross-encoder models, and the right shows our proposed Geo-Encoder, which parsing geographic text into chunking
units and jointly encoding with global features and unit attention mechanism. ⊗ denotes similarity calculation.

it is essential to acknowledge that the ColBERT260

method entails significant additional computational261

resources. In light of this, our work introduces262

an innovative multi-task learning module that in-263

corporates only geographic chunking component264

embeddings and utilizes an attention matrix to fuse265

results. This approach is designed to address the266

need for efficient resource utilization while main-267

taining or potentially improving performance.268

Specifically, we define an attention matrix that269

can be learned along the training process, denoted270

as WU . Then, we can get the predictions from271

component embeddings:272

Scoreu = (UQ ∗WU ) ∗ (UC ∗WU ) (5)273

We use dot multiplication to obtain the similarity274

scores of given queries and candidates. Thus, for275

components embeddings, we can obtain the com-276

ponent similarity loss Lu as:277

Lu = Φ(Scoreu, Y ) (6)278

where Y represents the ground truth ranking results,279

and Φ(·) signifies the cross-entropy loss function.280

As for the primary task, we use [CLS] represen-281

tation as sentence encoded features, and we can282

obtain the semantic similarity loss Lcls as:283

Lcls = Φ(EQcls ∗ E
C
cls, Y ) (7)284

where eqcls ∈ E
Q
cls and eccls ∈ ECcls.285

3.4 Asynchronous Update Mechanism286

For multi-task learning, a common concern is the287

disparate challenges faced by models when learn-288

ing multiple tasks simultaneously, often leading to289

variations in convergence rates (Lu et al., 2017; He 290

et al., 2017). In our pursuit to tackle this quandary 291

within our designated task, we deviate from estab- 292

lished methodologies seen in prior literature (Ison- 293

uma et al., 2017; Hashimoto et al., 2017; Nishino 294

et al., 2019; Pfeiffer et al., 2020). Instead, we pro- 295

pose an innovative approach involving the integra- 296

tion of an asynchronous update mechanism, which 297

allocates enhanced focus on training steps pertain- 298

ing to distinct tasks. To formalize our proposition, 299

the update of parameter wu(wu ∈WU ) is as: 300

w′u = wu + λ · ∇wu · γ (8) 301

where γ is a hyper-parameter to adjust training 302

speed, which can set by grid search or empirically. 303

3.5 Training and Inference 304

During the training process of CGR, we deploy 305

our proposed framework Geo-Encoder of Figure 306

2(c). The model can be optimized by jointly mini- 307

mizing the semantic similarity loss and component 308

similarity loss: 309

L = Lcls + Lu (9) 310

During the inference phase, a notable concern 311

arises from the time-intensive nature of indexing 312

and calculating component embeddings, particu- 313

larly when extrapolated to scenarios involving an 314

extensive pool of candidates. To circumvent this 315

challenge, we directly adopt a bi-encoder frame- 316

work for conducting inference process, as visually 317

depicted in Figure 2(a). 318
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4 Experiment319

4.1 Datasets320

Geographic Textual Similarity Benchmark321

(GeoTES): This large-scale dataset comprises322

queries meticulously crafted by human annotators323

and was amassed within the location of Hangzhou,324

China.1 The dataset’s meticulous annotation was325

executed by a panel of 20 participants and four326

domain experts. Encompassing a total of 90,000327

queries, each complemented by 20/40 retrieved328

candidates, this dataset extends its scope beyond329

geographical text, using additional POI data.330

Industry Geographic dataset (GeoIND): For a331

broader validation, we re-organize and format an332

additional real-world dataset named GeoIndustry,333

sourced from a geographic search engine. This334

dataset underwent rigorous cleaning and filtration335

procedures, effectively eliminating noise and erro-336

neous queries. In contrast to GeoTES, this dataset337

exhibits an intermediary scale, yet it boasts a sub-338

stantial geographical coverage. We will make it339

publicly available upon the publication of our work.340

4.2 Baselines341

To validate the effectiveness of our Geo-Encoder,342

we undertake a comprehensive analysis via rep-343

resentative bi-encoder methods. It’s pertinent to344

mention that our assessment confines itself exclu-345

sively to geographic text data, with the exclusion of346

Points of Interest (POIs) or other modal data. Our347

selected baselines include: Word2Vec (Mikolov348

et al., 2013), a traditional method captured seman-349

tic relationships between words and encoded words350

as dense vector embeddings.2 Glove (Pennington351

et al. 2014), which encapsulated both global and lo-352

cal semantic information and served for contextual353

understanding. SBERT (Reimers and Gurevych,354

2019), a popular bi-encoder model that can effec-355

tively and efficiently serve for re-ranking task.3356

Argument-Encoder (Peng et al., 2022), which357

proposed that concatenate predicate-argument em-358

bedding as extra representations can enhance re-359

ranking task.4 MGEO (Ding et al., 2023), which360

1The dataset can be downloaded here: https:
//modelscope.cn/datasets/damo/GeoGLUE/
summary.

2Reproduced by text2vec package(Xu, 2023): https:
//github.com/shibing624/text2vec.

3https://github.com/UKPLab/sentence-transformers.
4We reproduce this method by replacing the predicate-

argument with specific geographic-argument.

Benchmark Sets Query Tokens ASL Cands

GeoTES
Train 50,000 3,599 18.8 20
Dev 20,000 3,322 17.2 40
Test 20,000 3,351 17.1 40

GeoIND
Train 7,359 3,768 15.1 20
Dev 2,453 3,376 15.1 20
Test 2,469 2,900 15.0 20

Table 1: The statistics of two datasets. Tokens denotes
vocabularies counts, ASL denotes the average sentence
length, and Cands represents candidates numbers.

achieves state-of-the-art results in current task.5 361

4.3 Experimental Setting 362

Evaluation Metrics. Following previous re- 363

ranking tasks (Qu et al., 2021; Ding et al., 2023), 364

we use Hit@K(K=1,3), NDCG@1 (Järvelin and 365

Kekäläinen, 2002) and MRR@3 to evaluate the per- 366

formance across all models. Specifically, Hit@K 367

quantifies the proportion of retrieved candidates 368

that include at least one correct item within the top 369

K ranks. NDCG@1 is a graded relevance measure 370

that takes into account the positions of relevant 371

items in the ranked list. MRR@3 calculates the 372

average of the reciprocal ranks of the top-3 correct 373

answers in the ranked list. 374

Hyper-parameters. For finetuing, we set the 375

learning rate is set as 1e-5 for RoBERTa and 5e-5 376

for BERT and ERNIE. We finetune models for 50 377

epochs with early stopping after 3 epochs of no 378

improvement in Hit@1 on the validation set. We 379

conduct our experiment on a single A100 GPU 380

and optimize all the models with Adam optimizer, 381

where the batch size is set to 32. And followed 382

by Ding et al. (2023), we decrease the embedding 383

dimension from 768 to 256. 384

4.4 Main Results 385

We have conducted a rigorous comparison between 386

our method with the aforementioned baselines and 387

the results are presented in Table 2. 388

Firstly, it is evident that our proposed approach 389

achieves a remarkable state-of-the-art performance 390

across all evaluated metrics, surpassing the perfor- 391

mance exhibited by all alternative methods. Par- 392

ticularly, our method improves the Hit@1 score of 393

BERT by 6.62% from 62.76 to 68.98 on GeoTES 394

and by 2.59% from 64.12 to 66.71 on GeoIND. 395

5We compare three backbone models with MGEO in
text-only modal data, including BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), and ERNIE 3.0 (Sun et al., 2021).

5
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Model
GeoTES GeoIND

Hit@1 Hit@3 NDCG@1 MRR@3 Hit@1 Hit@3 NDCG@1 MRR@3

Word2vec (Mikolov et al., 2013) 19.26 30.60 28.79 24.15 47.79 71.69 66.15 58.27
Glove (Pennington et al. 2014) 48.02 67.33 63.32 59.35 52.38 74.87 71.95 69.35
SBERT (Reimers and Gurevych, 2019) 24.22 51.22 46.65 35.80 42.20 71.24 64.56 54.92
Argument-Encoder (Peng et al., 2022) 56.54 80.01 73.47 67.08 59.58 85.54 78.61 71.19
MGEO-BERT (Ding et al., 2023) 62.76 80.89 75.95 70.87 64.12 88.66 81.35 75.04
Geo-Encoder 68.98 85.82 81.11 76.56 66.71 89.35 82.78 76.99

MGEO-ERNIE (Ding et al., 2023) 67.50 84.54 79.60 75.15 63.95 87.89 81.06 74.60
Geo-Encoder 68.66 85.64 80.75 76.30 65.33 89.06 82.10 75.98

MGEO-RoBERTa (Ding et al., 2023) 68.74 85.16 80.63 76.15 63.63 88.70 81.62 74.81
Geo-Encoder 70.39 86.69 81.97 77.72 67.27 90.28 83.61 77.56

Table 2: Main results on GeoTES and GeoIND, where bold values indicate the best performance within each
column. Our proposed method consistently outperforms all three baselines across all metrics on both datasets.

Secondly, RoBERTa performs emerges as the396

superior candidate, surpassing both BERT and397

ERNIE. This advantage can be attributed to398

RoBERTa’s augmented network depth and its expo-399

sure to a comprehensive training corpus, endowing400

it with a heightened capacity for contextual com-401

prehension and modeling than other models.402

Thirdly, a notable trend is that the GeoTES403

dataset is marginally more amenable to learning404

compared to the GeoIND dataset, a phenomenon405

primarily attributed to its significantly larger scale,406

which is 6.76 times greater. This distinction is cor-407

roborated by the highest attained Hit@1 score of408

70.39 on the GeoTES dataset, as opposed to the409

score of 67.27 observed on the GeoIND dataset.410

Furthermore, we can also conclude that conven-411

tional encoding methodologies such as word2vec,412

GloVe, and SBERT exhibit subpar performance413

in CGR tasks. And cosine similarity tends to414

exhibit suboptimal performance compared to dot415

multiplication for CGR task, which is evident416

from the fact that SBERT yields lower perfor-417

mance scores across both datasets. Similarly, the418

argument-enhancement techniques and the MGEO419

bi-encoder manifest a consistently underwhelming420

performance across both datasets.421

5 Analysis and Discussion422

5.1 Fix Contribution vs. Learning Weight423

We constructed an experimental framework424

wherein the dynamic interplay of chunk contribu-425

tions is examined. This is realized by configuring426

the attention matrices within the Geo-Encoder ar-427

chitecture as constant values, effectively preclud-428

ing gradient updates. Initialization is undertaken by429

the values of 0.1, 0.5, and 1.0 respectively, thereby430

Method Hit@1 Hit@3 NDCG@1 MRR@3

GeoTES

baseline 62.76 80.89 75.95 70.87
w Fixed_1.0 68.08 85.35 80.48 75.84
w Fixed_0.5 66.02 83.91 78.97 74.03
w Fixed_0.1 68.19 84.95 80.31 75.70
w POS (Ours) 68.25 85.55 80.65 76.02
w Geo (Ours) 68.98 85.82 81.11 76.56

GeoIND

baseline 64.12 88.66 81.35 75.04
w Fixed_1.0 65.61 89.59 82.47 76.39
w Fixed_0.5 65.69 89.06 82.28 76.23
w Fixed_0.1 64.20 87.85 81.14 74.77
w POS (Ours) 65.21 89.59 82.24 76.06
w Geo (Ours) 66.71 89.35 82.78 76.99

Table 3: Ablation study including exclude automatic
attention update mechanism and geographic chunking.

probing the impact of different attention allocation 431

strategies on the learning process. 432

As is shown in Table 3, we can find that the im- 433

position of fixed attention matrices contributes to a 434

reduction in the performance of the Geo-Encoder 435

across both datasets. Besides, the diverse initializa- 436

tion schemes for these attention matrices yield dis- 437

tinct effects among datasets. Within the GeoTES 438

dataset, an initialization ratio of 0.1 yields opti- 439

mal results, indicating a higher reliance on the 440

sentence-level [CLS] representation. Conversely, 441

the GeoIND dataset attains peak performance when 442

the ratio is set to 1.0, implying a contrasting atten- 443

tion distribution trend. Lastly, we find that even 444

exclude the automatic update of attention matrices, 445

the resultant performance still surpasses that of 446

the baseline models. This outcome underscores the 447

benefits derived from the incorporation of chunking 448

information, substantiating its constructive impact 449

on enhancing the overall model performance. 450
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Figure 3: Comparing performance with varying learn-
ing rate multiplier ratios on the GeoIND dataset. The
learning rate multiplier signifies the ratio of attention
matrix learning rate to model parameter learning rate.

5.2 Geo Chunking vs. General Chunking451

Subsequently, our investigation delves deeper into452

the influence of geographic chunks (Geo) by con-453

ducting a substitution experiment wherein these454

chunks are replaced with Part-of-Speech (POS) tag-455

ging results. To achieve this, we employ the jieba456

POS tagging tool to restructure the two datasets6. It457

is essential to note that the core distinction between458

POS and Geo lies in the target of segmentation:459

while GEO is geared towards geographic ontology,460

POS is more focused on semantic components.461

The results, as depicted in Table 3, yield an in-462

teresting observation that employing POS tagging463

can benefit both datasets, signified by the obvious464

superior performance of POS when compared to465

the baseline. This favorable outcome can be at-466

tributed to the additional representation and multi-467

task learning introduced by our approach. Nev-468

ertheless, it is noteworthy that despite the advan-469

tageous performance of POS, it lags behind Geo470

in terms of performance. This discrepancy fur-471

ther underscores the pivotal role played by geo-472

graphic chunks in the context of the CGR task.473

Irrespective of the approach used for segmenta-474

tion, our framework consistently exhibits better475

performance, thereby reinforcing Geo-Encoder’s476

adaptability and efficacy. Therefore, our proposed477

framework transcends the confines of the Chinese478

task, and holds relevance and applicability to other479

languages or tasks characterized by sentence struc-480

tures that align with linear-chain attributes.481

6To ensure a fair comparison, we manually select relevant
POS labels (e.g., quantity, noun, position, etc.), while exclud-
ing irrelevant ones (e.g., tone, punctuation, preposition, etc.).
Further details can be found in the Appendix.

Method
GeoTES GeoIND

Training
(hour)

Inference
(ms/case)

Training
(hour)

Inference
(ms/case)

Word2vec – 5.9 – 3.5
Augment-Encoder 6.24 32.7 1.52 15.8
MEGO-BERT 4.50 33.8 0.92 18.9

Geo-Encoder (Ours) 5.94 35.6 1.25 19.5

Table 4: The statistics of training and inference time
across different bi-encoder baseline models and our pro-
posed Geo-Encoder on GeoTES and GeoIND datasets.

5.3 Parameter Sensitivity and Efficiency 482

Considering the pivotal impact of the dynamic at- 483

tention matrix on model performance, we have 484

conducted an additional experiment involving dif- 485

ferent update speed for model parameters and the 486

attention matrix, which we called asynchronous 487

learning rate updates. The outcomes, as is shown 488

in Figure 3, underline the sub-optimal nature of 489

synchronously updating metrics with model param- 490

eters (i.e. ratio=1). Contrarily, we have identified 491

that employing a more extended update step for 492

the attention matrix yields improved results; for in- 493

stance, setting learning rate ratio at 10 and 2000 for 494

the GeoIND dataset. This trend suggests that the at- 495

tention matrix carries a weightier importance than 496

general model parameters. Our finding is consis- 497

tent with similar endeavors focused on adaptively 498

weighted learning (He et al., 2017). Specifically, 499

within our CGR task, a swifter acquisition of focus 500

by the model on specific geographic chunks reveals 501

to enhanced performance. 502

Furthermore, in line with our commitment to 503

addressing real-world challenges, it becomes im- 504

perative to substantiate the efficacy of the proposed 505

Geo-Encoder. To this end, we present an empirical 506

analysis of training and inference times, as detailed 507

in Table 4. Evidently, when comparing the results 508

with MGEO-BERT, our training process exhibits 509

a marginal increase in duration due to the incorpo- 510

ration of chunking attention matrix learning and 511

supplementary representation fusion. However, it’s 512

noteworthy that our inference times remain remark- 513

ably similar, underscoring the effectiveness of our 514

algorithm without causing substantial disparities 515

in computational efficiency. The inference time of 516

all models are acceptable for various industry ap- 517

plication scenarios. Moreover, our training time is 518

actually shorter than that of the Augment-Encoder 519

approach (Peng et al., 2022), demonstrating the 520

effectiveness of multi-task learning rather than ge- 521

ographic component feature concatenation. 522
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(a) BERT chunk attention weights on GeoIND dataset

(b) Statistical distribution of attention matrix

Figure 4: Attention matrix weights visualization. We
mark specific chunks as red and general chunks as grey.
Weights of specific chunks are higher than general ones.

5.4 Chunking Weight Distribution523

The attention matrix stands as a pivotal element524

warranting meticulous examination. Thus, this sec-525

tion delves into an in-depth analysis to discern526

whether the model demonstrates the capacity to527

effectively focus on specific chunks as opposed528

to the more general ones. Using the MGEO tag-529

ging tool, we manually labeled the subsequent cate-530

gories as specific chunks: bus stations, house num-531

bers, etc., encompassing a total of 14 distinct kinds.532

Conversely, the remaining chunks are classified533

as general (comprising 15 kinds), such as country,534

province, city, town, prefix, conjunction, etc.535

For enhanced clarity, we manually categorize536

all chunk types into general and specific classifi-537

cations, and present the BERT attention matrices538

in Figure 4(a) on GeoIND dataset. Notably, the539

trend discernible in this figure reveals that specific540

chunks (red) garner higher weights than general541

ones (grey). Further, we investigate the tendency542

across all models and datasets, as depicted in Fig-543

ure 4(b). The congruence of these outcomes is evi-544

dent, except for the case of ERNIE on the GeoTES545

datasets. This discrepancy aligns with the con-546

sistent low correlation scores observed between547

ERNIE and other models, as presented in Table 5.548

Moreover, to probe the consistency across di-549

verse learning processes, we compute spearman550

correlation coefficients (Spearman, 1961) across551

Model IndBERT IndRoBERTa IndERNIE

IndBERT – 0.796* 0.785*
IndRoBERTa 0.796* – 0.932*
IndERNIE 0.785* 0.932* –

Model TesBERT TesBERTa TesERNIE

TesBERT – 0.819* 0.604*
TesRoBERTa 0.819* – 0.374
TesERNIE 0.604* 0.374 –

Model IndBERT IndRoBERTa IndERNIE

TesBERT 0.614* 0.409* 0.501*
TesRoBERTa 0.713* 0.634* 0.672*
TesERNIE 0.253 0.035 0.175

Table 5: Spearman correlation scores on GeoTES (Tes)
and GeoIND (Ind) datasets. Statistically significant
results are marked with *, where p-value < 0.05.

different datasets. Illustrated in Table 5, all of these 552

correlation coefficients exhibit positive correlations 553

and most of the results are statistically significant, 554

underscoring uniform learning outcomes in compo- 555

nent weights. It is worth noting that, except for the 556

ERNIE model on the GeoTES dataset, the majority 557

of models and datasets exhibit robust correlations, 558

which is obviously evidenced by the high correla- 559

tion scores. This result aligns with the observation 560

that the ERNIE backbone model attains marginal 561

enhancement, as shown in Table 2. Lastly, mod- 562

els trained on the same datasets yield notably high 563

correlation scores among themselves. For instance, 564

the scores between indBERT and indRoBERTa, 565

and similarly between tesBERT and tesRoBERTa, 566

surpass the 0.78 threshold. 567

6 Conclusion 568

In this paper, we proposed a novel framework 569

called Geo-Encoder for Chinese geographic re- 570

ranking task by deploying multi-task learning mod- 571

ule and synchronous update mechanism. The key 572

idea is to encode geographic text using an addi- 573

tional component learning representations from 574

address chunks. This approach allows the Geo- 575

Encoder to effectively leverage linear-chain charac- 576

teristic of geographic text, which guides the model 577

to capture subtle distinctions among different can- 578

didates. Extensive experiments demonstrate that 579

our proposed method leads to significant improve- 580

ments over several competitive baselines. Future 581

work could be incorporating our approach in multi- 582

modal and multi-lingual tasks. 583
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7 Limitation584

While our work has achieved good performance585

and shown promising results in enhancing Chinese586

geographic re-ranking task through incorporation587

of geographic representations, there are still limi-588

tations in our work. Specifically, the Geo-Encoder589

we have developed exhibits a specificity towards590

textual data possessing linear-chain or structural591

characteristics, thereby constraining the method’s592

applicability primarily to within-domain scenarios.593

However, we believe that this study is still useful594

in highlighting the challenges of geographic encod-595

ing. Moreover, our approach demonstrates notable596

effectiveness and efficiency when employed in in-597

dustrial applications, owing to its minimal augmen-598

tation of parameters.599

In the future, we plan to explore the feasibility600

of collecting multi-modal datasets, which can be601

potential to provide further insights into incorpo-602

rating geographic understanding with our proposed603

framework into CGR task.604
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A Appendix844

A.1 Dataset Details845

As previously mentioned, we utilize the MGEO846

geographic tagging tool7 to thoroughly annotate847

the provided geographical text. To elaborate fur-848

ther, we present a demonstrative instance in Table849

11. This example highlights the effectiveness and850

comprehensive nature of the MGEO in annotating851

geographical information within the text.852

7https://modelscope.cn/models/damo/
mgeo_geographic_elements_tagging_
chinese_base.

A.2 POS Implement 853

We utilize the Jieba tagging tools8 , which enable 854

the segmentation of all geographical text into mean- 855

ingful segments. Following this initial breakdown, 856

a rigorous selection process is undertaken, wherein 857

28 specific parts-of-speech categories are identified 858

as pertinent and aligned with our Geo tagging sys- 859

tem. These categories are chosen based on their 860

close relevance to geographical references, thereby 861

ensuring the precision of the tagging process. A 862

comprehensive list of these valid part-of-speech 863

tags is provided in Table 9. 864

In this context, it’s important to emphasize that 865

even though manual selection involves a degree 866

of subjectivity, we have maintained consistent tag 867

categories with geographical references to ensure 868

a fair comparison. Additionally, although certain 869

POS tags may not directly pertain to geographic 870

terminology, we have arranged them based on their 871

relative correlations across all POS tags. We have 872

also provided a list of POS tags that are deemed 873

invalid in Table 10, consisting of 24 specific parts- 874

of-speech categories. 875

Moreover, we compute the fuzzy similarity9 be- 876

tween the results of POS tagging and Geo chunking, 877

as shown statistically in Table 6. 878

Set Avg. Geo Avg. POS Similarity

GeoTES

Train 5.11 10.71 80.56 ± 7.39

Dev 4.69 9.47 80.46 ± 7.35

Test 4.66 9.41 80.60 ± 7.41

GeoIND

Train 4.38 8.59 78.50 ± 6.46

Dev 4.38 8.60 79.71 ± 6.65

Test 4.37 8.57 79.77 ± 6.68

Table 6: Valid POS categories and their respective
definitions, comprising a total of 28 categories.

As depicted in Table 6, it becomes evident that 879

the average count of Geo chunking units is less than 880

that of POS. Concurrently, a noteworthy inference 881

can be drawn that the chunking outcomes exhibit 882

resemblance. This is supported by the substantial 883

similarity scores (exceeding 78.00) between the 884

results on both datasets. 885

8POS tagging is based on jieba: https://github.
com/fxsjy/jieba.

9https://pypi.org/project/fuzzywuzzy/
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Parameter GeoTES GeoIND

Learning rate(BERT) 5e−5 5e−5

Learning rate(RoBERTa) 1e−5 1e−5

Learning rate(ERNIE) 5e−5 5e−5

Batch size 32 32
Test Batch size 16 16
Early Stop 3 3
Embed_dim 256 256
Optimizer AdamW AdamW
Attn_init 1.0 1.0
Weight_decay 0.02 0.02

Table 7: The hyper-parameters of the best results on
GeoTES and GeoIND dataset.

Figure 5: The information entropy of Li et al. (2019),
indicate that specific chunks (e.g., road) exhibit greater
diversity compared to general ones (e.g., country).

A.3 Geo Chunks886

We have compiled a comprehensive table (Table887

8), that outlines various chunking categories along888

with their corresponding definitions of Geo chunks.889

Drawing from our accumulated expertise, we have890

classified all chunk categories into two distinct891

groupings: "general" and "specific."892

This categorization is guided by a systematic893

process that sorts these categories based on their894

relative degrees of correlation. To elaborate on this895

process, we strategically designate the first 50% of896

the selection as general chunks, while the subse-897

quent 50% are categorized as specific chunks. By898

employing this division strategy, we achieve a bal-899

anced representation of both general and specific900

chunk types.901

A.4 Entropy of Geo Chunks902

Most current attempts directly deploy PTMs to903

encode geographic texts into embeddings (Yuan904

et al., 2020; Huang et al., 2022; Ding et al., 2023),905

ignoring the linear-chain structure characteristic of906

geographic text. To quantify this distinction, we907

calculate the entropy score of geographic chunking908

datasets from (Li et al., 2019) as shown in Figure909

5. Obviously, the specific chunks (e.g. road, town,910

etc.) hold a higher entropy score among all sets,911

Chunks Definition

General

PA Country
PB Province
PC City
PD District
PE Township
PF Street
PG Village
PH Administrative Term / Business District
PS Other Administrative Term
UA Door Address: Road xx, No.xx / Lane xx
UB Door Address: Building xx / Area xx
UC Door Address: Building No. xx
UD Door Address: Additional Description

Specific

BS Bus Station
BL Bus and Subway Route
RD Road, Highway, Furuin Street, Tunnel, Bridge, Overpass
Entity General Name for Point of Interest (POI)
Brand Well-known Brand
CategorySuffix Category Suffix Word
Ent Point of Interest (POI)
Br Brand
No. Number
UE Door Address: East Entrance, South Gate
SA Direction Modifier
PH Administrative Term / Business District
Ye Semantic Connector
Des Descriptor
ZZ Unknown

Table 8: Translation of Chunking Terms.

revealing more diversity than the general chunks 912

(e.g. country, province, etc.). Therefore, it can 913

be further inferred that specific chunk components 914

contribute unequally to the semantic representation 915

of sentences, indicating that specific chunks play a 916

more substantial role than general ones. 917

A.5 Hyper-parameter Setting 918

In an effort to support the reproducibility of the 919

Geo-Encoder and its demonstrated reasoning per- 920

formance, we are providing a compilation of the 921

optimal hyperparameters that yielded the best out- 922

comes on two benchmark datasets, as illustrated in 923

Table 7. 924

In the process of establishing the baseline, it’s 925

important to note that all scores presented in Ta- 926

ble 2 have undergone training and validation on a 927

consistent hardware platform. Additionally, we are 928

committed to making our baseline code publicly 929

available for reference, which will coincide with 930

the release of our paper. 931

A.6 More Discussion 932

Chunking Contribution Learning Due to the 933

components of each geographic text being quite dif- 934

ferent, introducing feature concatenation strategy 935

in CGR task is not reasonable. Therefore, we pro- 936
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Valid POS tag Definition
nz Other Proper Noun
a Adjective
m Numeral
q Measure Word
t Time Word

mg Measure Word for Quantity
ns Place Name
ng Noun as Morpheme
ag Adjective as Morpheme
f Locative
z Status Word
nt Organization Name

eng English Word
an Noun
mq Measure Word for Quantity
ad Adverb as Adjective
b Differentiation Word
j Abbreviation
n Noun
c Conjunction

uv Auxiliary Word
k Following Part
h Preceding Part
v Verb
uz Status Word
ug Tense Word
df Differentiation Word
yg Modal Particle

Table 9: Valid POS categories and their respective
definitions, comprising a total of 28 categories.

posed to use an universal component embeddings937

for queries UQ and candidates UC , and initialize938

them as zero matrices. It follows that empty com-939

ponents would yield no contributions to the final940

representations. Similarly, components that do not941

align appropriately between the queries and candi-942

dates would also have no impact.943

Asynchronous Update Mechanism Our in-944

sights is that the fast distinction of specific ge-945

ographic chunks should conceivably be more946

amenable and expedited for the model’s learning947

process. Consequently, the matrix WU could feasi-948

bly adapt to more substantial increments in learn-949

ing steps compared to those attributed to language950

model parameters.951

Training and Inference The rationale for intro-952

ducing components stems from a deliberate consid-953

eration of the trade-off between training and infer-954

ence aspects. The underlying objective is to facili-955

tate the model in exhibiting a heightened sensitivity956

towards specific chunks as opposed to general ones.957

Invalid POS tag Definition
e Interjection
i Idiom
d Adverb
l Idiomatic Expression
p Preposition
u Particle
y Modal Particle
g Morpheme
x Non-Morpheme Character
vg Verbal Morpheme
vn Nominal Verb
zg State Morpheme
r Pronoun

dg Adverbial Morpheme
tg Tense Morpheme
o Onomatopoeia
uj Particle
ud Particle
nr Personal Name
rg Modal Particle
ul Tense Particle
s Locative Noun

nrt Personal Name
nrfg Personal Name

Table 10: Invalid POS categories and their respective
definitions, consisting of a total of 24 categories.

This endeavor has yielded demonstrably effective 958

outcomes in our experimental evaluations. Con- 959

versely, during the inference phase, we eliminate 960

the necessity for component predictions, thereby 961

leading to a marked improvement in computational 962

efficiency. This assertion will be substantiated in 963

the subsequent section. 964
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Field Content

Query

浙江省杭州市人民检察北东院侧广播电视台东门南
South of the East Gate of People’s Procuratorate North
East Radio and Television Station, Hangzhou City,
Zhejiang Province.

Query_Geo_Chunks

浙江省-prov /杭州市-city /人民检察-poi/东院-subpoi
/侧-assist /广播电视台-subpoi /东门-subpoi /南-assist
Zhejiang Province / Hangzhou City / People’s Procuratorate
/ East Door / of / Radio and Television Station / East Gate /
South Procuratorate of Hangzhou City, Zhejiang Province.

Query_POS_Chunks

浙江省-ns /杭州市-ns /人民-n /检察-vn /北东-ns /院侧-n
/广播-vn /电视台-n /东门-ns /南-ns
Zhejiang Province / Hangzhou City / People / Procuratorate /
North East / of / Radio Television Station / East Gate / South
Procuratorate of Hangzhou City, Zhejiang Province.

Candidates

浙江省人民北路路旁播州区人民检察院
People’s Procuratorate of Bozhou District, beside Renmin
North Road, Zhejiang Province.
浙江省人民检察院
Zhejiang Provincial People’s Procuratorate.
浙江省浙江北路136号山东广播电视台
Shandong Radio and Television Station, No. 136 Zhejiang
North Road, Zhejiang Province.
台州路1号杭州市拱墅区人民检察院
People’s Procuratorate of Gongshu District, Hangzhou City,
No. 1 Taizhou Road.

Candidates_Geo_Chunks

浙江省-prov /人民北路-road /路旁-assist /
播州区人民检察院-poi
Zhejiang Province / Renmin North Road / beside /
People’s Procuratorate of Bozhou District.
浙江省-prov /人民检察院-poi
Zhejiang Province / Provincial People’s Procuratorate.
浙江省-prov /浙江北路-road / 136号-roadno /
山东广播电视台-poi
Zhejiang Province / Zhejiang North Road / No. 136
/ Shandong Radio and Television Station
台州路-road / 1号-roadno /杭州市-city /
拱墅区-district /人民检察院-poi
Taizhou Road / No. 1 / Hangzhou City /
Gongshu District / People’s Procuratorate

Candidates_POS_Chunks

浙江省-ns /人民-n /北路-ns /路旁-s /播州-ns /
区-n /人民检察院-nt
Zhejiang Province / Renmin / North Road / beside /
Bozhou / District / People’s Procuratorate.
浙江省-ns /人民检察院-nt
Zhejiang Province / Provincial People’s Procuratorate.
浙江省-ns /浙江-ns /北路-ns / 136-m /号-m /
山东-ns /广播-vn /电视台-n
Zhejiang Province / Zhejiang / North Road / 136 / No.
/ Shandong / Radio / Television Station
台州-ns /路-n / 1-m /号-m /杭州市-ns /拱墅区-ns /
人民检察院-nt
Taizhou / Road / 1 / No. / Hangzhou City /
Gongshu District / People’s Procuratorate

Table 11: A representative illustration sourced from the GeoTES dataset is provided. We are showcasing a subset
of potential options in this context. The English was meticulously translated, as this information isn’t inherently
present in our initial dataset.

14


	Introduction
	Related Work
	Our Approach
	Task Definition and Overview
	Geographic Chunking
	Chunking Contribution Learning
	Asynchronous Update Mechanism
	Training and Inference

	Experiment
	Datasets
	Baselines
	Experimental Setting
	Main Results

	Analysis and Discussion
	Fix Contribution vs. Learning Weight
	Geo Chunking vs. General Chunking
	Parameter Sensitivity and Efficiency
	Chunking Weight Distribution

	Conclusion
	Limitation
	Appendix
	Dataset Details
	POS Implement
	Geo Chunks
	Entropy of Geo Chunks
	Hyper-parameter Setting
	More Discussion


