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Abstract

Chinese geographic re-ranking task aims to find
the most relevant addresses among retrieved
candidates, which is crucial for location-related
services such as navigation maps. Unlike the
general sentences, Chinese geographic contexts
are closely intertwined with geographical con-
cepts, from general spans (e.g., province) to
specific spans (e.g., road). Given this feature,
we propose an innovative framework, namely
Geo-Encoder, to more effectively integrate Chi-
nese geographical semantics into re-ranking
pipelines. Our methodology begins by employ-
ing off-the-shelf tools to associate text with
geographical spans, treating them as chunking
units. Then, we present a multi-task learning
module to simultaneously acquire an effective
attention matrix that determines chunk con-
tributions to geographic representations. Fur-
thermore, we put forth an asynchronous up-
date mechanism for the proposed task, aim-
ing to guide the model to focus on specific
chunks. Experiments on two Chinese bench-
mark datasets, show that the Geo-Encoder
achieves significant improvements when com-
pared to state-of-the-art baselines. Notably, it
leads to a substantial improvement in the Hit@ 1
score of MGEO-BERT, increasing it by 6.22%
from 62.76 to 68.98 on the GeoTES dataset.

1 Introduction

Chinese geographic re-ranking (CGR) is a sub-task
of semantic matching, aiming to identify the most
relevant geographic context towards given queries
and retrieved candidates (Zhao et al., 2019; MacA-
vaney et al., 2020; Yates et al., 2021). It is a cru-
cial task that serves many downstream applications
such as navigation maps (e.g., Gaode Maps), au-
tonomous driving (e.g., Tesla), E-commerce system
(e.g., Taobao), etc. (Jia et al., 2017; Avvenuti et al.,
2018). Unlike general query text, Chinese geo-
graphic sentences exhibit a distinct attribute in their
linear-chain structural semantics (Li et al., 2019).
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Figure 1: Overview of the Chinese Geographic re-
ranking task. The process begins with the user query
being subjected to word chunking, segmenting it into
meaningful units. Lastly, Geo-Encoder is employed to
enhance semantic representation and re-ranking.

This peculiarity arises from the fact that Chinese ad-
dresses often comprise distinct meaningful address
segments, termed as geographic chunks in linguis-
tic terms (Abney, 1991). These chunks adhere to a
specific format, organizing from the general (e.g.,
province) to the more specific (e.g., road). For ex-
ample, as is shown in Figure 1, given a Chinese
address “>Kfif B 25 = % 22 3L 1] (North Gate
of Caihe Road No.2 Senior High School)”, we can
deconstruct it into several such chunks: “>%faf %
(Caihe Road)”, “25 (No.2)”, “Tm R+ 2 (Senior
High School)”, “JtI"] (North Gate)”.
Conventional approaches (Reimers and
Gurevych, 2019; Humeau et al., 2019; Khattab
and Zaharia, 2020) addressing the CGR task often
directly employ pre-trained language models
(PLMs) to encode given geographic texts into
embeddings, which are subsequently subjected
to re-ranking through similarity calculation
techniques like cosine or euclidean distance
measures. Recent works (Yuan et al., 2020; Huang
et al., 2022; Ding et al., 2023) in this field extend



beyond mere geographic context utilization and
encompass an expansive range of data sources,
including point-of-interest (POI) information,
multi-modal data, and user behavioral attributes
(Liu et al., 2021; Hofmann et al., 2022; Huang
et al.,, 2022) with a larger neural model. The
outcome of this integration is characterized by
notable enhancements, achieved through the fusion
of external geographic knowledge. Furthermore,
cutting-edge domain-adaptation frameworks have
been introduced to facilitate effective fusion of
multi-domain data, such as PALM (Zhao et al.,
2019), STDGAT (Yuan et al., 2020), etc.

However, despite the effectiveness of existing at-
tempts in leveraging geographic knowledge, these
methods failed to fully harness the intrinsic po-
tential of the geographic context itself. Therefore,
in this paper, we aim to shift our focus towards
the geographic context by exploiting its distinctive
linear-chain attributes. To achieve this, we employ
off-the-shelf tools (e.g. MGEO tagging and part-
of-speech (POS) for the approximate annotation
of each geographic text with pertinent geographic
chunks. For example, as illustrated in Figure 1, we
annotate the text ‘> fa] % (Caihe Road)” with the
label Road, “25 (No.2)” with Num, etc.

Firstly, building upon this foundation, we intro-
duce an additional task that revolves learning the
similarity between different components of these
annotated chunks. This involves the formulation
of an attention matrix, which governs the contribu-
tions of these chunks to the semantic representa-
tions. Our motivation is that general chunks tend
to be less diverse across queries and candidates,
and specific chunks possess a higher degree of dis-
tinctiveness. Secondly, we put forth a novel asyn-
chronous update speed mechanism for the attention
matrix. This mechanism is designed to empower
the model to effectively focus its attention on the
more specific chunks, thereby enhancing its dis-
cernment capabilities. Lastly, we advocate for the
integration of the pure bi-encoder approach during
the inference period. This strategy ensures a har-
monious balance between performance and compu-
tational efficiency, safeguarding the efficacy of the
model in both academic and industrial scenarios.

In summary, our key contributions can be sum-
marized as follows: 1) We introduce a multi-task
learning framework, denoted as Geo-Encoder, to
integrate component similarity; 2) We present an
asynchronous update mechanism, to distinguish
specific chunks effectively; 3) Except evaluation on

benchmark dataset, we collect and publish a nation-
wide geographic dataset in China, named GeoIND.
Experimental results demonstrate the superiority
of our Geo-Encoder over competitive methods.

2 Related Work

Semantic Matching and Re-Ranking. Seman-
tic matching is a widely-concerned task in natu-
ral language processing, including retrieval and
re-ranking process (Zhao et al., 2019; Yates et al.,
2021). Within re-ranking domain, researchers em-
ploy bi-encoders to encode given queries and can-
didates separately by using the shared parameters,
such as ESIM (Chen et al., 2017), SBERT (Reimers
and Gurevych, 2019), ColBERT (Khattab and Za-
haria, 2020), etc. Within the emergence of pre-
trained models, such as ROBERTa (Liu et al., 2019),
ERNIE (Sun et al., 2021), cross-encoders were pro-
posed to jointly encode text and promote the in-
formation interaction (Humeau et al., 2019; Nie
et al., 2020; Ye et al., 2022). Besides, to better rep-
resent sentences, external knowledge and late in-
teractions were widely explored. For example, Xia
et al. (2021) utilized a word similarity matrix and
Peng et al. (2022) introduced predicate-argument
spans to enhance representation.

Chinese Geographic Text Representation.
Most existing approaches focused on encoding
geographic text by external knowledge in two
aspects: (1) position data, such as PALM (Zhao
et al., 2019), encoding positional relationship of
query and candidates, STDGAT (Yuan et al., 2020),
considering Spatio-temporal features, etc.; (2)
geographic knowledge, such as GeoL (Huang et al.,
2022), using knowledge related to user behaviors,
and MGeo (Ding et al., 2023), proposing using
multi-modal dataset. However, the geographic text
encoding method among the above approaches
is not well-explored. Besides, parsing Chinese
geographic text into chunks is also a key technical
issue (Li et al., 2019). Generally, address parsing
is quite similar to Chinese word segmentation.
Existing attempts includes conditional random
fields models (Zhao et al., 2006), latent-variable
variants (Sun et al., 2009), neural transition-based
segmentation method (Zhang et al., 2016), and
chart-based models (Stern et al., 2017; Kitaev
and Klein, 2018), etc. However, while these
models benefit from external geographic knowl-
edge, exploring geographic rather than semantic
representation is still crucial.



3 Our Approach

3.1 Task Definition and Overview

In Chinese Geographic Re-ranking (CGR) task
setting, the available dataset {X} is formed as
query-candidate pairs. Let Q denotes queries and
C as retrieved candidates. Both Q and C are
composed of /-th separated tokens, where {X} =
{X € (Q,0)|X = z1,x9,...,2;}. The objective
of CGR is to model the highest possibility of C.
Thus, the bi-encoder framework, depicted in Fig-
ure 2(a), can be formalized as:

¢ = argmaxry (fo(Q), fo(C)) )]

where fy denotes encoding function (we adopt
PLMs here), to encode given text into vectors, ¢
(€ C) is the model output and 7y denotes similar-
ity evaluation function, such as dot multiple and
cosine similarity, to assign a similarity score for
each candidate. Also, the cross-encoder framework,
depicted in Figure 2(b) can be formalized as:

¢ = argmaxry (f5(Q, C)) 2

In our approach, we strive to enhance the encod-
ing process through a two-step strategy. Firstly, we
segment the provided geographic text into chunks
and introduce a novel approach to learn both the
attention matrix governing chunk contributions and
component semantic representation as an additional
task. Secondly, we introduce an asynchronous up-
date mechanism for the attention matrix and model
parameters. This mechanism is aimed at enabling
the model to efficiently acquire the skill of focusing
on specific chunks. Finally, we present our training
and inference details. Our proposed framework,
called Geo-Encoder, is illustrated in Figure 2(c).

3.2 Geographic Chunking

Chinese addresses typically consist of multiple
meaningful address segments, often referred to as
"geographic chunks" (Abney, 1991). These ad-
dresses follow a structured pattern, progressing hi-
erarchically from the general (e.g., province) to spe-
cific ones (e.g., road) (Li et al., 2019). In contrast
to conventional Chinese segmentation methods, ge-
ographic chunking demands tools of heightened
sensitivity tailored to geographical units. These
tools necessitate fine-tuning using dedicated Chi-
nese address corpora. Consequently, we adopt the
MGEO tagging tool to facilitate the acquisition of

precise geographic annotations for our benchmark
datasets (Wu et al., 2022a,b; Ding et al., 2023).

MGEO stands as a pre-trained model with multi-
modal datasets, encompassing both geographic con-
text and points of interest. It is designed to cater to
various downstream tasks, including geographic en-
tity alignment and address element tagging, among
others. In our current framework, however, we ex-
clusively leverage MGEO to provide chunk anno-
tations, without employing it for the purpose of en-
coding contextual information. Then, dataset { X }
isextended as { X, } = {z € (Q,C,Qu,Cy)|X =
x1,x2,...,Tn}, Where @, and C, denotes query
and candidates chunking units. For example, given
a Chinese address “Fg J{ 7 37 3 B} B FEl 3155 5
JC(Unit #5, Building #3, Sci-Tech Park, Nanjing
City.)”, we can parse them by MGEO into: “F§ it
i (Nanjing City)” — city, “Hr 3R 5H(Sci-Tech
Park)” — devzone, “3t%(Building #3)” — houseno,
“SEIL(Unit #5)” — cellno.

3.3 Chunking Contribution Learning

Utilizing the chunked dataset denoted as { X, }, we
proceed to employ a pre-trained language model
for the encoding process. This yields the represen-
tations of /CLS] embedding egl . and token embed-
ding e, from geographic text:

egls, e({:l = Encoder(q),q € Q 3)

where Encoder denotes PTMs. And correspond-
ingly we can get candidates features ef;,, and
ef.,;- Given chunking annotations, we initialize
a zeros query component embeddings {U Q|u? €
U®},i={1,2,---, M} and we can further update

query component embeddings u by:

uf = mean(D(el,, 17)) @)

where I'(+) is the Index function to obtain com-
ponent token embeddings, M is the total amount
of chunk categories, and I is the index number
acquired by the tokenizer of the Encoder from
the chunk’s location to the corresponding query.
Similarly, component embeddings {U¢ |u¢ € U}
can also be obtained. We can also get candidates’
component embeddings u similar with Eq. 4.

To incorporate token-level embeddings, the Col-
BERT model (Khattab and Zaharia, 2020) intro-
duced a multi-attention mechanism, which facili-
tates subsequent interactions between queries and
candidates. This technique has demonstrated im-
proved efficacy in re-ranking tasks. Nonetheless,
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Figure 2: Architecture of re-ranking models and our proposed Geo-Encoder. The left shows the bi-encoder and
cross-encoder models, and the right shows our proposed Geo-Encoder, which parsing geographic text into chunking
units and jointly encoding with global features and unit attention mechanism. ® denotes similarity calculation.

it is essential to acknowledge that the ColBERT
method entails significant additional computational
resources. In light of this, our work introduces
an innovative multi-task learning module that in-
corporates only geographic chunking component
embeddings and utilizes an attention matrix to fuse
results. This approach is designed to address the
need for efficient resource utilization while main-
taining or potentially improving performance.

Specifically, we define an attention matrix that
can be learned along the training process, denoted
as Wy. Then, we can get the predictions from
component embeddings:

Score, = (U2 « W)« (U« WY)  (5)

We use dot multiplication to obtain the similarity
scores of given queries and candidates. Thus, for
components embeddings, we can obtain the com-
ponent similarity loss £,, as:

Ly, = P(Score,,Y) 6)

where Y represents the ground truth ranking results,
and ®(-) signifies the cross-entropy loss function.

As for the primary task, we use [CLS] represen-
tation as sentence encoded features, and we can
obtain the semantic similarity loss £ as:

Los = ®(EY « ES,)Y) (7)

cls cls»

q Q C
where e € Ej ande;, € I

cls cls®
3.4 Asynchronous Update Mechanism

For multi-task learning, a common concern is the
disparate challenges faced by models when learn-
ing multiple tasks simultaneously, often leading to

variations in convergence rates (Lu et al., 2017; He
et al., 2017). In our pursuit to tackle this quandary
within our designated task, we deviate from estab-
lished methodologies seen in prior literature (Ison-
uma et al., 2017; Hashimoto et al., 2017; Nishino
et al., 2019; Pfeiffer et al., 2020). Instead, we pro-
pose an innovative approach involving the integra-
tion of an asynchronous update mechanism, which
allocates enhanced focus on training steps pertain-
ing to distinct tasks. To formalize our proposition,
the update of parameter w, (w,, € Wy) is as:

wh, = wy + X Vwy -y (8)

where v is a hyper-parameter to adjust training
speed, which can set by grid search or empirically.

3.5 Training and Inference

During the training process of CGR, we deploy
our proposed framework Geo-Encoder of Figure
2(c). The model can be optimized by jointly mini-
mizing the semantic similarity loss and component
similarity loss:

£ == £d$ + Eu (9)

During the inference phase, a notable concern
arises from the time-intensive nature of indexing
and calculating component embeddings, particu-
larly when extrapolated to scenarios involving an
extensive pool of candidates. To circumvent this
challenge, we directly adopt a bi-encoder frame-
work for conducting inference process, as visually
depicted in Figure 2(a).



4 Experiment
4.1 Datasets

Geographic Textual Similarity Benchmark
(GeoTES): This large-scale dataset comprises
queries meticulously crafted by human annotators
and was amassed within the location of Hangzhou,
China.! The dataset’s meticulous annotation was
executed by a panel of 20 participants and four
domain experts. Encompassing a total of 90,000
queries, each complemented by 20/40 retrieved
candidates, this dataset extends its scope beyond
geographical text, using additional POI data.

Industry Geographic dataset (GeoIND): For a
broader validation, we re-organize and format an
additional real-world dataset named Geolndustry,
sourced from a geographic search engine. This
dataset underwent rigorous cleaning and filtration
procedures, effectively eliminating noise and erro-
neous queries. In contrast to GeoTES, this dataset
exhibits an intermediary scale, yet it boasts a sub-
stantial geographical coverage. We will make it
publicly available upon the publication of our work.

4.2 Baselines

To validate the effectiveness of our Geo-Encoder,
we undertake a comprehensive analysis via rep-
resentative bi-encoder methods. It’s pertinent to
mention that our assessment confines itself exclu-
sively to geographic text data, with the exclusion of
Points of Interest (POIs) or other modal data. Our
selected baselines include: Word2Vec (Mikolov
et al., 2013), a traditional method captured seman-
tic relationships between words and encoded words
as dense vector embeddings.” Glove (Pennington
et al. 2014), which encapsulated both global and lo-
cal semantic information and served for contextual
understanding. SBERT (Reimers and Gurevych,
2019), a popular bi-encoder model that can effec-
tively and efficiently serve for re-ranking task.’
Argument-Encoder (Peng et al., 2022), which
proposed that concatenate predicate-argument em-
bedding as extra representations can enhance re-
ranking task.* MGEO (Ding et al., 2023), which

"The dataset can be downloaded here: https:
//modelscope.cn/datasets/damo/GeoGLUE/
summary.

*Reproduced by text2vec package(Xu, 2023): https:
//github.com/shibing624/text2vec.

3https://github.com/UKPLab/sentence-transformers.

*We reproduce this method by replacing the predicate-
argument with specific geographic-argument.

Benchmark | Sets Query Tokens ASL Cands
Train 50,000 3,599 18.8 20
GeoTES Dev 20,000 3,322 172 40
Test 20,000 3,351 17.1 40
Train 7,359 3,768 15.1 20
GeoIND Dev 2453 3376 15.1 20
Test 2,469 2900 15.0 20

Table 1: The statistics of two datasets. Tokens denotes
vocabularies counts, ASL denotes the average sentence
length, and Cands represents candidates numbers.

achieves state-of-the-art results in current task.’

4.3 Experimental Setting

Evaluation Metrics. Following previous re-
ranking tasks (Qu et al., 2021; Ding et al., 2023),
we use Hit@K(K=1,3), NDCG@1 (Jarvelin and
Kekildinen, 2002) and MRR @3 to evaluate the per-
formance across all models. Specifically, Hit@K
quantifies the proportion of retrieved candidates
that include at least one correct item within the top
K ranks. NDCG@1 is a graded relevance measure
that takes into account the positions of relevant
items in the ranked list. MRR@3 calculates the
average of the reciprocal ranks of the top-3 correct
answers in the ranked list.

Hyper-parameters. For finetuing, we set the
learning rate is set as le-5 for RoBERTa and 5e-5
for BERT and ERNIE. We finetune models for 50
epochs with early stopping after 3 epochs of no
improvement in Hit@1 on the validation set. We
conduct our experiment on a single A100 GPU
and optimize all the models with Adam optimizer,
where the batch size is set to 32. And followed
by Ding et al. (2023), we decrease the embedding
dimension from 768 to 256.

4.4 Main Results

We have conducted a rigorous comparison between
our method with the aforementioned baselines and
the results are presented in Table 2.

Firstly, it is evident that our proposed approach
achieves a remarkable state-of-the-art performance
across all evaluated metrics, surpassing the perfor-
mance exhibited by all alternative methods. Par-
ticularly, our method improves the Hit@1 score of
BERT by 6.62% from 62.76 to 68.98 on GeoTES
and by 2.59% from 64.12 to 66.71 on GeolND.

SWe compare three backbone models with MGEO in

text-only modal data, including BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), and ERNIE 3.0 (Sun et al., 2021).
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Model GeoTES GeoIND
ode Hit@l Hit@3 NDCG@lI MRR@3 | Hit@l Hit@3 NDCG@1 MRR@3

Word2vec (Mikolov et al., 2013) 1926 3060  28.79 2415 | 4779 7169  66.15 58.27
Glove (Pennington et al. 2014) 4802 6733 63.32 5935 | 5238 74.87 7195 69.35
SBERT (Reimers and Gurevych, 2019) | 2422 5122  46.65 3580 | 4220 7124 6456 54.92
Argument-Encoder (Peng et al., 2022) | 56.54  80.01 73.47 67.08 59.58  85.54 78.61 71.19
MGEO-BERT (Ding et al., 2023) 6276 8089  75.95 7087 | 6412 88.66  81.35 75.04
Geo-Encoder 6898 8582  SLI1 7656 | 66.71 8935 8278 76.99
MGEO-ERNIE (Ding et al., 2023) 6750 84.54  79.60 7515 | 6395 87.89  81.06 74.60
Geo-Encoder 68.66 85.64  80.75 7630 | 6533 89.06  82.10 75.98
MGEO-RoBERTa (Ding etal., 2023) | 6874 85.16  80.63 76.15 | 63.63 8870  81.62 74.81
Geo-Encoder 7039  86.69  81.97 7772 | 6727 9028  83.61 77.56

Table 2: Main results on GeoTES and GeoIND, where bold values indicate the best performance within each
column. Our proposed method consistently outperforms all three baselines across all metrics on both datasets.

Secondly, RoBERTa performs emerges as the
superior candidate, surpassing both BERT and
ERNIE. This advantage can be attributed to
RoBERTa’s augmented network depth and its expo-
sure to a comprehensive training corpus, endowing
it with a heightened capacity for contextual com-
prehension and modeling than other models.

Thirdly, a notable trend is that the GeoTES
dataset is marginally more amenable to learning
compared to the GeoIND dataset, a phenomenon
primarily attributed to its significantly larger scale,
which is 6.76 times greater. This distinction is cor-
roborated by the highest attained Hit@1 score of
70.39 on the GeoTES dataset, as opposed to the
score of 67.27 observed on the GeoIND dataset.

Furthermore, we can also conclude that conven-
tional encoding methodologies such as word2vec,
GloVe, and SBERT exhibit subpar performance
in CGR tasks. And cosine similarity tends to
exhibit suboptimal performance compared to dot
multiplication for CGR task, which is evident
from the fact that SBERT yields lower perfor-
mance scores across both datasets. Similarly, the
argument-enhancement techniques and the MGEO
bi-encoder manifest a consistently underwhelming
performance across both datasets.

5 Analysis and Discussion

5.1 Fix Contribution vs. Learning Weight

We constructed an experimental framework
wherein the dynamic interplay of chunk contribu-
tions is examined. This is realized by configuring
the attention matrices within the Geo-Encoder ar-
chitecture as constant values, effectively preclud-
ing gradient updates. Initialization is undertaken by
the values of 0.1, 0.5, and 1.0 respectively, thereby

Method ‘ Hit@l Hit@3 NDCG@1 MRR@3
GeoTES
baseline 62.76  80.89 75.95 70.87
w Fixed_1.0 68.08 85.35 80.48 75.84
w Fixed_0.5 66.02  83.91 78.97 74.03
w Fixed_0.1 68.19  84.95 80.31 75.70
w POS (Ours) | 6825 85.55 80.65 76.02
w Geo (Ours) | 6898  85.82 81.11 76.56
GeoIND
baseline 64.12  88.66 81.35 75.04
w Fixed_1.0 65.61  89.59 82.47 76.39
w Fixed_0.5 65.69  89.06 82.28 76.23
w Fixed_0.1 64.20 87.85 81.14 74.77
w POS (Ours) | 6521  89.59 82.24 76.06
w Geo (Ours) | 66.71  89.35 82.78 76.99

Table 3: Ablation study including exclude automatic
attention update mechanism and geographic chunking.

probing the impact of different attention allocation
strategies on the learning process.

As is shown in Table 3, we can find that the im-
position of fixed attention matrices contributes to a
reduction in the performance of the Geo-Encoder
across both datasets. Besides, the diverse initializa-
tion schemes for these attention matrices yield dis-
tinct effects among datasets. Within the GeoTES
dataset, an initialization ratio of 0.1 yields opti-
mal results, indicating a higher reliance on the
sentence-level [CLS] representation. Conversely,
the GeoIND dataset attains peak performance when
the ratio is set to 1.0, implying a contrasting atten-
tion distribution trend. Lastly, we find that even
exclude the automatic update of attention matrices,
the resultant performance still surpasses that of
the baseline models. This outcome underscores the
benefits derived from the incorporation of chunking
information, substantiating its constructive impact
on enhancing the overall model performance.
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Figure 3: Comparing performance with varying learn-
ing rate multiplier ratios on the GeoIND dataset. The
learning rate multiplier signifies the ratio of attention
matrix learning rate to model parameter learning rate.

5.2 Geo Chunking vs. General Chunking

Subsequently, our investigation delves deeper into
the influence of geographic chunks (Geo) by con-
ducting a substitution experiment wherein these
chunks are replaced with Part-of-Speech (POS) tag-
ging results. To achieve this, we employ the jieba
POS tagging tool to restructure the two datasets®. It
is essential to note that the core distinction between
POS and Geo lies in the target of segmentation:
while GEO is geared towards geographic ontology,
POS is more focused on semantic components.

The results, as depicted in Table 3, yield an in-
teresting observation that employing POS tagging
can benefit both datasets, signified by the obvious
superior performance of POS when compared to
the baseline. This favorable outcome can be at-
tributed to the additional representation and multi-
task learning introduced by our approach. Nev-
ertheless, it is noteworthy that despite the advan-
tageous performance of POS, it lags behind Geo
in terms of performance. This discrepancy fur-
ther underscores the pivotal role played by geo-
graphic chunks in the context of the CGR task.
Irrespective of the approach used for segmenta-
tion, our framework consistently exhibits better
performance, thereby reinforcing Geo-Encoder’s
adaptability and efficacy. Therefore, our proposed
framework transcends the confines of the Chinese
task, and holds relevance and applicability to other
languages or tasks characterized by sentence struc-
tures that align with linear-chain attributes.

%To ensure a fair comparison, we manually select relevant
POS labels (e.g., quantity, noun, position, etc.), while exclud-
ing irrelevant ones (e.g., tone, punctuation, preposition, etc.).
Further details can be found in the Appendix.

Method GeoTES GeoIND
Training Inference | Training Inference
(hour) (ms/case) | (hour) (ms/case)
Word2vec - 59 - 35
Augment-Encoder 6.24 32.7 1.52 15.8
MEGO-BERT 4.50 33.8 0.92 18.9
Geo-Encoder (Ours) | 5.94 356 | 125 19.5

Table 4: The statistics of training and inference time
across different bi-encoder baseline models and our pro-
posed Geo-Encoder on GeoTES and GeoIND datasets.

5.3 Parameter Sensitivity and Efficiency

Considering the pivotal impact of the dynamic at-
tention matrix on model performance, we have
conducted an additional experiment involving dif-
ferent update speed for model parameters and the
attention matrix, which we called asynchronous
learning rate updates. The outcomes, as is shown
in Figure 3, underline the sub-optimal nature of
synchronously updating metrics with model param-
eters (i.e. ratio=1). Contrarily, we have identified
that employing a more extended update step for
the attention matrix yields improved results; for in-
stance, setting learning rate ratio at 10 and 2000 for
the GeoIND dataset. This trend suggests that the at-
tention matrix carries a weightier importance than
general model parameters. Our finding is consis-
tent with similar endeavors focused on adaptively
weighted learning (He et al., 2017). Specifically,
within our CGR task, a swifter acquisition of focus
by the model on specific geographic chunks reveals
to enhanced performance.

Furthermore, in line with our commitment to
addressing real-world challenges, it becomes im-
perative to substantiate the efficacy of the proposed
Geo-Encoder. To this end, we present an empirical
analysis of training and inference times, as detailed
in Table 4. Evidently, when comparing the results
with MGEO-BERT, our training process exhibits
a marginal increase in duration due to the incorpo-
ration of chunking attention matrix learning and
supplementary representation fusion. However, it’s
noteworthy that our inference times remain remark-
ably similar, underscoring the effectiveness of our
algorithm without causing substantial disparities
in computational efficiency. The inference time of
all models are acceptable for various industry ap-
plication scenarios. Moreover, our training time is
actually shorter than that of the Augment-Encoder
approach (Peng et al., 2022), demonstrating the
effectiveness of multi-task learning rather than ge-
ographic component feature concatenation.
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Figure 4: Attention matrix weights visualization. We
mark specific chunks as red and general chunks as grey.
Weights of specific chunks are higher than general ones.

5.4 Chunking Weight Distribution

The attention matrix stands as a pivotal element
warranting meticulous examination. Thus, this sec-
tion delves into an in-depth analysis to discern
whether the model demonstrates the capacity to
effectively focus on specific chunks as opposed
to the more general ones. Using the MGEO tag-
ging tool, we manually labeled the subsequent cate-
gories as specific chunks: bus stations, house num-
bers, etc., encompassing a total of 14 distinct kinds.
Conversely, the remaining chunks are classified
as general (comprising 15 kinds), such as country,
province, city, town, prefix, conjunction, etc.

For enhanced clarity, we manually categorize
all chunk types into general and specific classifi-
cations, and present the BERT attention matrices
in Figure 4(a) on GeoIND dataset. Notably, the
trend discernible in this figure reveals that specific
chunks (red) garner higher weights than general
ones (grey). Further, we investigate the tendency
across all models and datasets, as depicted in Fig-
ure 4(b). The congruence of these outcomes is evi-
dent, except for the case of ERNIE on the GeoTES
datasets. This discrepancy aligns with the con-
sistent low correlation scores observed between
ERNIE and other models, as presented in Table 5.

Moreover, to probe the consistency across di-
verse learning processes, we compute spearman
correlation coefficients (Spearman, 1961) across

Model IndBERT IndRoBERTa IndERNIE
IndBERT - 0.796* 0.785%*
IndRoBERTa 0.796* - 0.932%*
IndERNIE 0.785%* 0.932%* -
Model TesBERT TesBERTa TesERNIE
TesBERT - 0.819* 0.604*
TesRoBERTa 0.819* - 0.374
TesERNIE 0.604* 0.374 -
Model IndBERT IndRoBERTa IndERNIE
TesBERT 0.614* 0.409* 0.501*
TesRoBERTa 0.713* 0.634* 0.672%*
TesERNIE 0.253 0.035 0.175

Table 5: Spearman correlation scores on GeoTES (Tes)
and GeoIND (Ind) datasets. Statistically significant
results are marked with *, where p-value < 0.05.

different datasets. Illustrated in Table 5, all of these
correlation coefficients exhibit positive correlations
and most of the results are statistically significant,
underscoring uniform learning outcomes in compo-
nent weights. It is worth noting that, except for the
ERNIE model on the GeoTES dataset, the majority
of models and datasets exhibit robust correlations,
which is obviously evidenced by the high correla-
tion scores. This result aligns with the observation
that the ERNIE backbone model attains marginal
enhancement, as shown in Table 2. Lastly, mod-
els trained on the same datasets yield notably high
correlation scores among themselves. For instance,
the scores between indBERT and indRoBERTa,
and similarly between tesBERT and tesRoBERTa,
surpass the 0.78 threshold.

6 Conclusion

In this paper, we proposed a novel framework
called Geo-Encoder for Chinese geographic re-
ranking task by deploying multi-task learning mod-
ule and synchronous update mechanism. The key
idea is to encode geographic text using an addi-
tional component learning representations from
address chunks. This approach allows the Geo-
Encoder to effectively leverage linear-chain charac-
teristic of geographic text, which guides the model
to capture subtle distinctions among different can-
didates. Extensive experiments demonstrate that
our proposed method leads to significant improve-
ments over several competitive baselines. Future
work could be incorporating our approach in multi-
modal and multi-lingual tasks.



7 Limitation

While our work has achieved good performance
and shown promising results in enhancing Chinese
geographic re-ranking task through incorporation
of geographic representations, there are still limi-
tations in our work. Specifically, the Geo-Encoder
we have developed exhibits a specificity towards
textual data possessing linear-chain or structural
characteristics, thereby constraining the method’s
applicability primarily to within-domain scenarios.
However, we believe that this study is still useful
in highlighting the challenges of geographic encod-
ing. Moreover, our approach demonstrates notable
effectiveness and efficiency when employed in in-
dustrial applications, owing to its minimal augmen-
tation of parameters.

In the future, we plan to explore the feasibility
of collecting multi-modal datasets, which can be
potential to provide further insights into incorpo-
rating geographic understanding with our proposed
framework into CGR task.
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A Appendix

A.1 Dataset Details

As previously mentioned, we utilize the MGEO
geographic tagging tool’ to thoroughly annotate
the provided geographical text. To elaborate fur-
ther, we present a demonstrative instance in Table
11. This example highlights the effectiveness and
comprehensive nature of the MGEO in annotating
geographical information within the text.
"https://modelscope.cn/models/damo/

mgeo_geographic_elements_tagging_
chinese_base.
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A.2 POS Implement

We utilize the Jieba tagging tools® , which enable
the segmentation of all geographical text into mean-
ingful segments. Following this initial breakdown,
a rigorous selection process is undertaken, wherein
28 specific parts-of-speech categories are identified
as pertinent and aligned with our Geo tagging sys-
tem. These categories are chosen based on their
close relevance to geographical references, thereby
ensuring the precision of the tagging process. A
comprehensive list of these valid part-of-speech
tags is provided in Table 9.

In this context, it’s important to emphasize that
even though manual selection involves a degree
of subjectivity, we have maintained consistent tag
categories with geographical references to ensure
a fair comparison. Additionally, although certain
POS tags may not directly pertain to geographic
terminology, we have arranged them based on their
relative correlations across all POS tags. We have
also provided a list of POS tags that are deemed
invalid in Table 10, consisting of 24 specific parts-
of-speech categories.

Moreover, we compute the fuzzy similarity® be-
tween the results of POS tagging and Geo chunking,
as shown statistically in Table 6.

Set | Avg. Geo Avg. POS  Similarity
GeoTES

Train | 5.11 1071 80.56 +7.39

Dev 4.69 9.47 80.46 +7.35

Test 4.66 9.41 80.60 + 7.41
GeoIND

Train | 4.38 8.59 78.50 + 6.46

Dev 438 8.60 79.71 + 6.65

Test 437 8.57 79.77 + 6.68

Table 6: Valid POS categories and their respective
definitions, comprising a total of 28 categories.

As depicted in Table 6, it becomes evident that
the average count of Geo chunking units is less than
that of POS. Concurrently, a noteworthy inference
can be drawn that the chunking outcomes exhibit
resemblance. This is supported by the substantial
similarity scores (exceeding 78.00) between the
results on both datasets.

8POS tagging is based on jieba: https://github.
com/fxsjy/jieba.
‘https://pypi.org/project/fuzzywuzzy/
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Parameter ‘ GeoTES | GeoIND
Learning rate(BERT) 5e7° 5e7°
Learning rate(RoBERTa) | 1e™® le~®
Learning rate(ERNIE) 5e° 5e°
Batch size 32 32

Test Batch size 16 16
Early Stop 3 3
Embed_dim 256 256
Optimizer AdamW | AdamW
Attn_init 1.0 1.0
Weight_decay 0.02 0.02

Table 7: The hyper-parameters of the best results on
GeoTES and GeoIND dataset.

0.6 .
Train
05 mmm D
cV
04w Test
0.3
0.2
0.1
0.0 -l m Hu - " -
: <) <) <} k] 2 > 5 s =
£ § £ § 2 32§ 2 §F £ §
g 2 S K I £ 4 © = <] ) &
J<i S I & Rz <
S £ & ¢ i 5 3
S S = &
3

Figure 5: The information entropy of Li et al. (2019),
indicate that specific chunks (e.g., road) exhibit greater
diversity compared to general ones (e.g., country).

A.3 Geo Chunks

We have compiled a comprehensive table (Table
8), that outlines various chunking categories along
with their corresponding definitions of Geo chunks.
Drawing from our accumulated expertise, we have
classified all chunk categories into two distinct
groupings: "general" and "specific.”

This categorization is guided by a systematic
process that sorts these categories based on their
relative degrees of correlation. To elaborate on this
process, we strategically designate the first 50% of
the selection as general chunks, while the subse-
quent 50% are categorized as specific chunks. By
employing this division strategy, we achieve a bal-
anced representation of both general and specific
chunk types.

A.4 Entropy of Geo Chunks

Most current attempts directly deploy PTMs to
encode geographic texts into embeddings (Yuan
et al., 2020; Huang et al., 2022; Ding et al., 2023),
ignoring the linear-chain structure characteristic of
geographic text. To quantify this distinction, we
calculate the entropy score of geographic chunking
datasets from (Li et al., 2019) as shown in Figure
5. Obviously, the specific chunks (e.g. road, town,
etc.) hold a higher entropy score among all sets,
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Chunks Definition
General
PA Country
PB Province
PC City
PD District
PE Township
PF Street
PG Village
PH Administrative Term / Business District
PS Other Administrative Term
UA Door Address: Road xx, No.xx / Lane xx
UB Door Address: Building xx / Area xx
ucC Door Address: Building No. xx
Uub Door Address: Additional Description
Specific
BS Bus Station
BL Bus and Subway Route
RD Road, Highway, Furuin Street, Tunnel, Bridge, Overpass
Entity General Name for Point of Interest (POI)
Brand Well-known Brand
CategorySuffix | Category Suffix Word
Ent Point of Interest (POI)
Br Brand
No. Number
UE Door Address: East Entrance, South Gate
SA Direction Modifier
PH Administrative Term / Business District
Ye Semantic Connector
Des Descriptor
77 Unknown

Table 8: Translation of Chunking Terms.

revealing more diversity than the general chunks
(e.g. country, province, etc.). Therefore, it can
be further inferred that specific chunk components
contribute unequally to the semantic representation
of sentences, indicating that specific chunks play a
more substantial role than general ones.

A.5 Hyper-parameter Setting

In an effort to support the reproducibility of the
Geo-Encoder and its demonstrated reasoning per-
formance, we are providing a compilation of the
optimal hyperparameters that yielded the best out-
comes on two benchmark datasets, as illustrated in
Table 7.

In the process of establishing the baseline, it’s
important to note that all scores presented in Ta-
ble 2 have undergone training and validation on a
consistent hardware platform. Additionally, we are
committed to making our baseline code publicly
available for reference, which will coincide with
the release of our paper.

A.6

Chunking Contribution Learning Due to the
components of each geographic text being quite dif-
ferent, introducing feature concatenation strategy
in CGR task is not reasonable. Therefore, we pro-

More Discussion



Valid POS tag | Definition
nz Other Proper Noun
a Adjective
m Numeral
q Measure Word
t Time Word
mg Measure Word for Quantity
ns Place Name
ng Noun as Morpheme
ag Adjective as Morpheme
f Locative
z Status Word
nt Organization Name
eng English Word
an Noun
mq Measure Word for Quantity
ad Adverb as Adjective
b Differentiation Word
j Abbreviation
n Noun
c Conjunction
uv Auxiliary Word
k Following Part
h Preceding Part
v Verb
uz Status Word
ug Tense Word
df Differentiation Word
yg Modal Particle

Table 9: Valid POS categories and their respective
definitions, comprising a total of 28 categories.

posed to use an universal component embeddings
for queries U® and candidates U¢, and initialize
them as zero matrices. It follows that empty com-
ponents would yield no contributions to the final
representations. Similarly, components that do not
align appropriately between the queries and candi-
dates would also have no impact.

Asynchronous Update Mechanism Our in-
sights is that the fast distinction of specific ge-
ographic chunks should conceivably be more
amenable and expedited for the model’s learning
process. Consequently, the matrix Wy could feasi-
bly adapt to more substantial increments in learn-
ing steps compared to those attributed to language
model parameters.

Training and Inference The rationale for intro-
ducing components stems from a deliberate consid-
eration of the trade-off between training and infer-
ence aspects. The underlying objective is to facili-
tate the model in exhibiting a heightened sensitivity
towards specific chunks as opposed to general ones.
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Invalid POS tag | Definition

e Interjection

i Idiom

d Adverb

1 Idiomatic Expression
p Preposition

u Particle

y Modal Particle

g Morpheme

X Non-Morpheme Character
vg Verbal Morpheme
vn Nominal Verb

zg State Morpheme

r Pronoun
dg Adverbial Morpheme
tg Tense Morpheme

o Onomatopoeia

uj Particle
ud Particle

nr Personal Name

rg Modal Particle

ul Tense Particle

S Locative Noun
nrt Personal Name

nrfg Personal Name

Table 10: Invalid POS categories and their respective
definitions, consisting of a total of 24 categories.

This endeavor has yielded demonstrably effective
outcomes in our experimental evaluations. Con-
versely, during the inference phase, we eliminate
the necessity for component predictions, thereby
leading to a marked improvement in computational
efficiency. This assertion will be substantiated in
the subsequent section.



Field ‘ Content
PRI NGB o =l o 5 e 2= R = S N I

South of the East Gate of People’s Procuratorate North
Query East Radio and Television Station, Hangzhou City,
Zhejiang Province.

WL -prov / BLIH T -city / A FHEZR-poi/ 7R FE-subpoi

/ M-assist / |~ #&FEAIL & -subpoi / 7| J-subpoi / FF-assist
Query_Geo_Chunks Zhejiang Province / Hangzhou City / People’s Procuratorate
/ East Door / of / Radio and Television Station / East Gate /
South Procuratorate of Hangzhou City, Zhejiang Province.

BT -ns / HLM T -ns / ARe-n/ #082-vn / At %R -ns 7 BEfll-n
/T #&-vn / BB E -n/ 7R T-ns / Fd-ns

Query_POS_Chunks Zhejiang Province / Hangzhou City / People / Procuratorate /
North East / of / Radio Television Station / East Gate / South
Procuratorate of Hangzhou City, Zhejiang Province.

AL N RALRE B 55381 XA RRRER

People’s Procuratorate of Bozhou District, beside Renmin
North Road, Zhejiang Province.

LA N R

Zhejiang Provincial People’s Procuratorate.

Candidates BHLAWNTIL 1365 LR FHREAE

Shandong Radio and Television Station, No. 136 Zhejiang
North Road, Zhejiang Province.

B MBS T AT E X AR R B

People’s Procuratorate of Gongshu District, Hangzhou City,
No. 1 Taizhou Road.

B4 -prov / AR ALEE-road / % 55-assist /

NI N RARZRBE-poi

Zhejiang Province / Renmin North Road / beside /
People’s Procuratorate of Bozhou District.

WL -prov / NRALZZ E-poi

Zhejiang Province / Provincial People’s Procuratorate.
B4 -prov / #i{LAL#&-road / 1365 -roadno /
7R #E AL & -poi

Zhejiang Province / Zhejiang North Road / No. 136
/ Shandong Radio and Television Station

B M B&-road / 15 -roadno / FLH Hi-city /
HELET X -district / A\ RAEZZ BE-poi

Taizhou Road / No. 1/ Hangzhou City /

Gongshu District / People’s Procuratorate

BT -ns / AR-n/ b BE-ns / B555-s / $E M -ns /
X-n/ NRFZEBE-nt

Zhejiang Province / Renmin / North Road / beside /
Bozhou / District / People’s Procuratorate.

T4 -ns / NRAZBi-nt

Zhejiang Province / Provincial People’s Procuratorate.
Candidates_POS_Chunks ﬁ%ﬁg?ﬁg%ﬁgﬁﬁgf [136-m/%5-m/
Zhejiang Province / Zhejiang / North Road / 136 / No.
/ Shandong / Radio / Television Station

B M-ns / #-n/ 1-m / F-m/ HL T -ns / BEEE[X -ns /
INEN 5% B

Taizhou / Road / 1 / No. / Hangzhou City /

Gongshu District / People’s Procuratorate

Candidates_Geo_Chunks

Table 11: A representative illustration sourced from the GeoTES dataset is provided. We are showcasing a subset
of potential options in this context. The English was meticulously translated, as this information isn’t inherently
present in our initial dataset.
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