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Abstract

We pose a fundamental question in computational learning theory: can we efficiently1

test whether a training set satisfies the assumptions of a given noise model? This2

question has remained unaddressed despite decades of research on learning in the3

presence of noise. In this work, we show that this task is tractable and present the4

first efficient algorithm to test various noise assumptions on the training data. To5

model this question, we extend the recently proposed testable learning framework6

of Rubinfeld and Vasilyan [RV23] and require a learner with an associated test7

to satisfy the following two conditions: (1) whenever the test accepts, the learner8

outputs a classifier along with a certificate of optimality, and (2) the test must9

pass for any dataset drawn according to a specified modeling assumption on both10

the marginal distribution and the noise model. We then consider the problem of11

learning halfspaces over Gaussian marginals with Massart noise (where each label12

can be flipped with probability less than 1/2 depending on the input features), and13

give a fully-polynomial time testable learning algorithm. We also show a separation14

between the classical setting of learning in the presence of structured noise and15

testable learning. In fact, for the simple case of random classification noise (where16

each label is flipped with fixed probability η = 1/2), we show that testable learning17

requires super-polynomial time while classical learning is trivial.18

1 Introduction19

Developing efficient algorithms for learning in the presence of noise is one of the most fundamental20

problems in machine learning with a long line of celebrated research. Assumptions on the noise model21

itself vary greatly. For example, the well-studied random classification noise model (RCN) assumes22

that the label corruption process is independent across examples, whereas malicious noise models23

allow a fraction of the (joint) data-generating distribution to be changed adversarially. Understanding24

the computational landscape of learning with respect to different noise models remains a challenging25

open problem, serving as the central focus of numerous works in the theory of supervised learning26

[BFKV98, ABHU15, ABHZ16, YZ17, ZLC17, MV19, DKTZ20a, DKTZ20a, DKK+22, DKS18,27

BEK02, DDK+24] and unsupervised learning [DKK+24, CKMY22, CGR18, PMJS14, MPW16,28

BB20, MS16, DDNS22, BKS23, KLL+23, CG18, BBKS24].29

In this paper, we address for the first time whether it is possible to efficiently test if the assumptions30

of a specific noise model hold for a given training set. There are two key reasons for developing31

such a test. First, without verifying the assumptions of the noise model, we cannot guarantee that32

our resulting hypothesis achieves the optimal error rate. Second, it is essential to select the learning33

algorithm best suited to the noise properties of the training set. Specifically, highly structured noise34

models often admit faster algorithms, and we should choose these algorithms whenever possible.35

We use the recently introduced testable learning [RV23] framework to model these questions. In36

this framework, a learner first runs a test on the training set. Whenever the test accepts, the learner37

outputs a classifier along with a proof that the classifier has near-optimal error. Furthermore, the test38
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must accept with high probability whenever the training set is drawn from a distribution satisfying39

some specified set of modeling assumptions. If the test rejects, the learner recognizes that one of40

the modeling assumptions has failed and will therefore refrain from outputting a classifier. Here,41

our modeling assumptions will include both the structure of the noise model and the structure of the42

marginal distribution from which the data is generated.43

More concretely, we will consider the problem of learning halfspaces under Gaussian marginals44

with respect to Massart noise, an extensively studied problem where an adversary flips binary labels45

independently with probability at most 1/2 (the probability of flipping can vary across instances).46

The goal is to find a halfspace sign(v · x) with near-optimal misclassification error rate opt + ϵ,47

where opt is the best misclassification error rate achievable by a halfspace. For this problem, a long48

line of work [ABHU15, ABHZ16, YZ17, ZLC17, MV19, DKTZ20a] resulted in the algorithm of49

Diakonikolas et al. [DKTZ20a] that runs in time poly(d/ϵ) and achieves the optimal error rate. In50

contrast, the worst-case-noise version of this problem (i.e. agnostic learning or, equivalently, learning51

with adversarial label noise) is believed to require exponential time in the accuracy parameter, even52

with respect to Gaussian marginals [KKMS08, DKK+21, GGK20].53

In this work, we give a testable learning algorithm for halfspaces that runs in time poly(d/ϵ) and54

certifies the optimality of its output hypothesis whenever it accepts. Additionally, the algorithm is55

guaranteed to accept (with high probability) and output a classifier if the marginal distribution is56

Gaussian and the noise satisfies the Massart condition.57

1.1 Our Results58

Noise Model. We focus on the class of i.i.d. oracles where the marginal distribution on Rd is the59

standard Gaussian and the labels are generated by an origin-centered halfspace with Massart noise, as60

defined below.61

Definition 1.1 (Massart Noise Oracle). Let f : Rd → {±1} be a concept, let η : Rd → [0, 1/2] and62

let D be a distribution over Rd. The oracle EXMassart
D,f,η receives m ∈ N and returns m i.i.d. examples63

of the form (x, y) ∈ Rd × {±1}, where x ∼ D and y = ξ · f(x), with ξ = 1 w.p. 1 − η(x) and64

ξ = −1 w.p. η(x). The quantity supx∈Rd η(x) ∈ [0, 1/2] is called the noise rate.65

Formally, we consider the oracle class EXMassart
N ,Hhs,η0

= {EXMassart
N ,f,η : f ∈ Hhs, supx∈Rd η(x) ≤ η0},66

whereN is the standard Gaussian distribution in d dimensions andHhs is the class of origin-centered67

halfspaces over Rd, which is formally defined as follows.68

Definition 1.2 (Origin-Centered Halfspaces). We denote with Hhs the class of origin-centered69

halfspaces over Rd, i.e., the class of functions f : Rd → {±1} of the form f(x) = sign(v · x) for70

some v ∈ Sd−1, where sign(t) = 1 if t ≥ 0 and otherwise sign(t) = −1.71

Learning Setting. Our results work in the following extension of testable learning [RV23].72

Definition 1.3 (Testable Learning, extension of Definition 4 in [RV23]). Let H ⊆ {Rd → {±1}}73

be a concept class, O a class of (randomized) example oracles and m : (0, 1) × (0, 1) → N. The74

tester-learner receives ϵ, δ ∈ (0, 1) and a dataset S̄ consisting of i.i.d. points from some distribution75

Dx,y over Rd × {±1} and then either outputs Reject or (Accept, h) for some h : Rd → {±1},76

satisfying the following.77

1. (Soundness). If the algorithm accepts, then h satisfies the following with probability 1− δ.78

P
(x,y)∼Dx,y

[y ̸= h(x)] ≤ opt+ ϵ , where opt = min
f∈H

P
(x,y)∼Dx,y

[y ̸= f(x)]

2. (Completeness). If S̄ is generated by EX(m′), for some i.i.d. oracle EX ∈ O and m′ ≥79

m(ϵ, δ), then the algorithm accepts with probability at least 1− δ.80

The difference between Definition 1.3 and the definition of [RV23] is that the completeness criterion81

does not only concern the marginal distribution on Rd, but the joint distribution over Rd × {±1}.82

The choice of the oracle class O encapsulates all of the modeling assumptions under which our83

algorithm should accept (both on the marginal distribution on Rd, as well as on the labels). Note that84

the probability of success can be amplified through repetition (see [RV23]), so it suffices to solve the85

problem for δ = 1/3. Our main results and their relation to prior work are summarized in Table 1.86
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Noise Model Classical Setting Testable Setting
Massart

(η0 = 1/2− c) poly(d, 1/ϵ) [DKTZ20a] poly(d, 1/ϵ) [Thm. B.1]

Strong Massart
(η0 = 1

2 )
(Upper)
(Lower)

dO(log 1
ϵ )2poly(

1
ϵ ) [DKK+22]

dΩ(log(1/ϵ)) [DKK+22]
dÕ(1/ϵ2) [RV23, GKK23]
dΩ(1/ϵ2) [Thm. C.6]

Adversarial (Upper)
(Lower)

dÕ(1/ϵ2) [KKMS08]
dΩ(1/ϵ2) [DKPZ21]

dÕ(1/ϵ2) [RV23, GKK23]
dΩ(1/ϵ2) (implied)

Table 1: Runtime upper and lower bounds (in the Statistical Query model) for learning the class of
origin-centered halfspacesHhs over the standard Gaussian distribution with respect to different noise
assumptions.

Upper Bound. In Theorem B.1, we show that there is a polynomial-time tester-learner for the class87

Hhs with respect to EXMassart
N ,Hhs,η0

for any η0 ≤ 1/2− c, where c is any positive constant. Moreover,88

whenever our algorithm accepts, it is guaranteed to output the optimal halfspace with respect to the89

input dataset S̄, even if S̄ is not generated from i.i.d. examples and can, therefore, be completely90

arbitrary. Given the upper bounds of Table 1 our algorithm can be used as a first step before applying91

the more powerful (but also more expensive) tester-learner of [RV23, GKK23]. If our algorithm92

accepts, then we do not need to run the more expensive algorithm. In other words, our results93

highlight that testable learning can be used for algorithm selection for problems where different94

assumptions motivate different algorithmic approaches.95

Lower Bounds. Our upper bound holds when the noise rate is bounded away below 1/2. We show96

that this is necessary: in the high-noise regime (η0 = 1/2), the best known lower bounds for learning97

under adversarial label noise also hold in the testable setting, with respect to random classification98

noise of rate 1/2 (Definition 2.1), which is a special case of Massart noise. We give both cryptographic99

lower bounds (Theorem C.4) assuming subexponential hardness on the problem of learning with100

errors (LWE), as well as statistical query lower bounds (Theorem C.6). Our lower bounds are inherited101

from lower bounds from the literature of agnostic learning [DKPZ21, Tie23, DKR23] (combined102

with Observation C.1). Our testable learning model highlights an underappreciated aspect of these103

agnostic learning lower bounds, namely, that the hard instances are in fact indistinguishable from104

completely random instances (i.e., random classification noise of rate 1/2).105

Our results imply a separation between the classical and testable settings in the high-noise regime106

(η0 = 1/2, see second row of Table 1), demonstrating that the complexity of testable learning displays107

a sharper transition with respect to varying noise models compared to classical learning. For the of108

RCN at noise rate 1/2 case, the separation is even stronger, since learning is trivial in the classical109

setting.110

1.2 Our Techniques111

The techniques we employ in this work are significantly more sophisticated than recently developed112

tools from testable learning. In fact, it is not even clear that techniques from testable learning should113

apply, as assumptions on the marginal distribution are quite different from assumptions on the noise114

model. Concretely, we depart from prior work in testable learning [GKSV24, GKSV23] where the115

testers are designed to certify specific properties of a particular learning algorithm. Instead, here116

we obtain a “black-box" result that can take any learner that is guaranteed to output a near-optimal117

halfspace in the Massart setting and certify optimality properties of the learner’s output hypothesis.118

To do this, we decompose the error of the candidate output in terms of quantities for which we can119

provide certifiable bounds by developing appropriate testers (see Section 2 for more details on the120

decomposition). In particular, we provide a disagreement tester with significantly sharper guarantees121

compared to the one developed for standard testable learning [GKSV23], and a spectral tester that122

combines and expands ideas from [GKSV23] as well as recent work on tolerant testable learning123

[GSSV24]. The main technical tool we develop to provide these improved guarantees is a notion of124

families of sandwiching approximators with respect to partitions of Rd.125
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An outline of the proof of our main result (Theorem B.1) is provided in Appendix B. As a warm-up,126

in Section 2, we consider the special case of random classification noise, whose analysis is simpler.127

We complete the proof sketch of our main result in Appendix B. In the following, we give an overview128

of the disagreement and the spectral testers.129

Disagreement tester and sandwiching polynomials. Let v be a unit vector and S be a dataset of130

size poly(d/ϵ). If S consists of Gaussian data-points, then for every unit vector v′ (w.h.p. over S)131

P
x∈S

[sign(v · x) ̸= sign(v′ · x)] = ∡(v,v′)/π ± ϵ.

Suppose, given S and v, one would like to certify that this property approximately holds for every v′.132

The method of exhaustive search - i.e. checking this property for different candidate vectors v′ - can133

be shown to require at least 2Ω(d) time. Using a moment-based approach, we show how to improve134

this run-time exponentially. In particular, in time poly(d, 1/ϵ), we can certify that for all v′ ∈ Sd−1135

P
x∈S

[sign(v · x) ̸= sign(v′ · x)] = (1± 0.01)∡(v,v′)/π ± ϵ. (1.1)

Moreover, whenever S is Gaussian, our tests are guaranteed to pass (Theorem 2.4). Note that136

[GKSV24, GKSV23, DKK+23] provided disagreement testers that certified one-sided bounds and137

suffered constant multiplicative error factors1, while here our disagreement testers certify both upper138

and lower bounds on the disagreement probability, with a small and controllable multiplicative error139

factor.140

As mentioned earlier, directly checking the disagreement for each candidate vector v′ in a Euclidean141

cover of the sphere Sd−1 does not work, since their number is exponential to the dimension d. Instead,142

our tester discretizes Rd into buckets corresponding to v · x ∈ [iϵ, (i+ 1)ϵ] for varying i (Figure 2)143

and checks for any constant-degree monomial m that144

E
x∼S

[m(x) · 1iϵ≤x·v≤(i+1)ϵ] ≈ E
x∼N (0,Id)

[m(x) · 1iϵ≤x·v≤(i+1)ϵ]. (1.2)

We show that passing this test for constant-degree m is sufficient for our purposes (Lemma 2.5).145

The previous work [GKSV24, GKSV23, DKK+23] considered only tests involving monomials m of146

degree at most 4, and (as explained earlier) achieved bounds far weaker than Equation (1.1). A key147

ingredient to our improved testers is extending the notion of sandwiching polynomials of [GKK23]148

to much more general piecewise-polynomial functions (see Appendix D).149

Spectral tester and monotonicity under removal. The disagreement tester is only guaranteed to150

accept when the input S is drawn i.i.d. from the standard Gaussian distribution. However, in our151

analysis it is important to have a tester that will accept even if given a set S′ which is a subset of a152

Gaussian sample. We call this property monotonicity under removal and its importance is related to153

the fact that in the Massart noise model, the labels are not flipped independently of the corresponding154

features, but the probability of receiving a flipped label can adversarially depend on x. Note that155

tester in Equation (1.2) is not monotone under removal.156

To obtain a tester for the disagreement region that is monotone under removal (Theorem B.3), we157

augment our Disagreement Tester using ideas from the recent work by [GSSV24] on tolerant testable158

learning (see Appendix E). In particular, instead of checking Equation (1.2), our Spectral Tester159

checks that for every constant-degree polynomial p we have160

E
x∼S

[p(x)2 · 1iϵ≤x·v≤(i+1)ϵ] ≲ E
x∼N (0,Id)

[p(x)2 · 1iϵ≤x·v≤(i+1)ϵ], (1.3)

which can be verified efficiently by computing the spectrum of an appropriate matrix. The main161

difference between our spectral tester and the one in [GSSV24] is that ours partitions Rd into a162

number of strips and performs a test for each of them, while the one by [GSSV24] runs the same163

test on the whole Rd iteratively, each time removing a number of points from the input set. See164

Algorithm 2 for the full algorithm description. As in the case of the Disagreement Tester, the analysis165

again leverages the method of piecewise-polynomial sandwiching functions introduced in this work.166

1i.e. certified that Px∈S [sign(v · x) ̸= sign(v′ · x)] ≤ O(∡(v,v′)) + ϵ.
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1.3 Related Work167

Learning with label noise. Learning of halfspaces under label noise has been the topic of a large168

number of works. Perhaps the most well-studied noise model is the framework of agnostic learning169

which corresponds to adversarial (i.e. worst-case) labels. In case of halfspaces, the literature exhibits170

a tradeoff between run-time and the classification error achievable:171

• In time dÕ(1/ϵ2) one can find a hypothesis with accuracy opt + ϵ under Gaussian data172

distribution [KKMS08, DGJ+10]. See also [DKK+21] for a proper learning algorithm. An173

algorithm with a run-time dO(1/ϵ2−Ω(1)) (and let alone a polynomial run-time) is believed to174

be impossible due to statistical query lower bounds [GGK20, DKZ20, DKZ20], as well as175

recent cryptographic reductions from lattice problems [DKR23, Tie23]. This works utilize176

reductions to the continuous LWE problem [BRST21], shown in [GVV22] to be harder177

than the LWE problem widely used in lattice-based cryptography (a quantum reduction was178

given in [BRST21]).179

• A worse error bound of O(opt) + ϵ can be obtained in time poly(d/ϵ) [ABL17]. Despite180

various refinements [Dan15, DKTZ20b, DKK+21], the improvement of the error bound to181

opt+ ϵ is precluded by the aforementioned hardness results.182

Overall, if one is not allowed to assume anything about data labels, one has to choose between a high183

run-time of dÕ(1/ϵ2) and or a higher error of O(opt) + ϵ.184

In order to obtain an error bound of opt + ϵ in time poly(d/ϵ) a large body of works focused185

on moving beyond worst-case models of label noise. In the Random Classification Noise (RCN)186

model [AL88] the labels are flipped independently with probability η. It was shown in [BFKV98]187

that in the RCN model halfspaces can be learned up to error opt + ϵ in time poly(d/ϵ). See also188

[Coh97, DKT21, DTK23, DDK+24].189

The Massart noise model, introduced in [MN06], is more general than the RCN model and allows the190

noise rate η(x) to differ across different points x in space Rd, as long as it is at most some rate η0. First191

studied in [ABHU15], learning halfspaces up to error opt+ ϵ under Massart noise model has been the192

focus of a long line of work [ABHZ16, MV19, YZ17, ZLC17, DKTZ20a, ZL21, ZSA20, DKK+22].193

We would like to note that intermediate steps in the algorithm [DKK+22] work by finding what is194

referred in [DKK+22] as sum-of-squares certificates of optimality for certain halfspaces. We would195

like to emphasize that certificates in the sense of [DKK+22] have to be sound only assuming that the196

labels satisfy the Massart property. In contrast with this, certificates developed in this work satisfy197

soundness without making any assumptions on the label distribution (which is the central goal of this198

work).199

There has also been work on distribution-free learning under Massart noise [DGT19, CKMY20],200

which achieves an error bound of η0 + ϵ, but as a result can lead to a much higher error than the201

information-theoretically optimal bound of opt+ ϵ.202

Testable learning. The framework of testable learning was introduced in [RV23] with a focus on203

developing algorithms in the agnostic learning setting that provide certificates of (approximate)204

optimality of the obtained hypotheses or detect that a distributional assumption does not hold.205

Many of the existing agnostic learning results have since been shown to have testable learning206

algorithms with matching run-times. This has been the case for agnostic learning algorithms with207

opt + ϵ error guarantee [RV23, KSV24b, GSSV24, STW24], as well as O(opt) + ϵ error bounds208

[GGKS24, GKSV23, DKK+23, DKLZ24].209

We note that [GGKS24, GKSV23] also give testable learning algorithms in the setting where data210

labels are assumed to be Massart (and the algorithm needs to either output a hypothesis with error211

opt + ϵ or detect that data distribution is e.g. not Gaussian). We emphasize that the results of212

[GGKS24, GKSV23] do not satisfy soundness when the user is not promised that data labels satisfy213

the Massart noise condition (which is the central goal of this work).214

Testable Learning with Distribution Shift (TDS learning). The recently introduced TDS framework215

[KSV24b, KSV24a, CKK+24, GSSV24] considers a setting in which the learning algorithm is given216

a labeled training dataset and an unlabeled test dataset and aims to either (i) produce accurate labeling217

for the testing dataset (ii) detect that distribution shift has occurred and the test dataset is not produced218
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from the same data distribution as the training dataset. Although conceptually similar, the work in219

TDS learning addresses a different assumption made in learning theory. Nevertheless, as we note, the220

spectral testing technique introduced in [GSSV24] is a crucial technical tool for our results in this221

work.222

2 Polynomial-Time Tester-Learners223

We first focus on the simpler RCN noise model, and the Disagreement Tester we design to test the224

RCN noise model. We show how to obtain a tester-learner with respect to the challenging Massart225

noise model, and describe the Spectral Tester in Appendix B.226

Notation. We denote with R,N,Z the sets of real, natural and integer numbers correspondingly.227

For simplicity, we denote the d-dimensional standard Gaussian distribution as Nd or N if d is clear228

by context. For any set S, let Unif(S) denote the uniform distribution over S. We may also use229

the notation x ∼ S in place of x ∼ Unif(S). For a set of points in Rd, we denote with S̄ the230

corresponding labeled set over Rd × {±1} where the corresponding labels are those in the input of231

the algorithm unless otherwise specified. For a vector x ∈ Rd, we denote with xi its i-th coordinate,232

i.e., xi = x · ei.233

We formally define random classification noise as follows.234

Definition 2.1 (Random Classification Noise (RCN) Oracle). Let f : Rd → {±1} be a concept, let235

η0 ∈ [0, 1/2] and let D be a distribution over Rd. The oracle EXRCN
D,f,η0

receives m ∈ N and returns236

m i.i.d. examples of the form (x, y) ∈ Rd × {±1}, where x ∼ D and y = ξ · f(x), where ξ = 1237

w.p. 1− η0 and ξ = −1 w.p. η0. In other words, EXRCN
D,f,η0

= EXMassart
D,f,η where η(x) is the constant238

function with value η0. In the special case η0 = 1/2, the function f does not influence the output239

distribution and we denote the corresponding oracle with EXRCN
D,1/2.240

Informally, for some ground-truth halfspace f , the RCN oracle EXRCN
D,f,η0

outputs an example x ∼ D241

whose label is f(x) with probability 1− η0 and is flipped with probability η0. We consider the case242

that D = Nd, and η0 ≤ 1/2− c for some constant c > 0 and f ∈ Hhs.243

Theorem 2.2 (Warm-up: RCN). Let c ∈ (0, 1/2) be any constant and η0 = 1/2− c. Then, there is244

an algorithm that testably learns the classHhs with respect to EXRCN
N ,Hhs,η0

= {EXRCN
N ,f,η0

: f ∈ Hhs}245

with time and sample complexity poly(d, 1/ϵ) log(1/δ).246

Testing whether the noise is indeed RCN directly is impossible, since it requires estimating E[y|x]247

for all x ∈ Rd, but we never see any example twice. Instead, we will need to design more specialized248

tests that only check the properties of the RCN model that are important for learning halfspaces.249

Specifically, we show that some key properties of the RCN noise can be certified using what we250

call the Disagreement Tester (Theorem 2.4). Suppose, first, that when the samples are generated by251

an oracle EXRCN
N ,f∗,η0

, for some f∗(x) = sign(v∗ · x), then we can exactly recover the ground-truth252

vector v∗ ∈ Sd−1 by running some algorithm A (in reality, v∗ can be recovered only approximately,253

and we will address this later).254

Relating the output error to optimum error. Let S̄ be the input set of labeled examples and let255

v ∈ Sd−1 be the output ofA on input S̄. Note that, since S̄ is not necessarily generated by EXRCN
N ,f∗,η0

,256

we do not have any a priori guarantees on v. We may relate the output error P(x,y)∼S̄ [y ̸= sign(v ·x)]257

to the optimum error P(x,y)∼S̄ [y ̸= sign(v∗ · x)], by accounting for the set S̄g of points (x, y) ∈ S̄258

that are labeled correctly by v but incorrectly by v∗, as well as the set S̄b of points in S̄ that are259

labeled incorrectly by v but correctly by v∗. Overall, we have the following260

P
(x,y)∼S̄

[y ̸= sign(v · x)] = P
(x,y)∼S̄

[y ̸= sign(v∗ · x)] + |S̄b|
|S̄|
− |S̄g|
|S̄|

(2.1)

261

Towards a testable bound. We have assumed that if the noise was indeed RCN, then v = v∗.262

Therefore, in this case, |S̄b| = |S̄g| = 0. However, if the noise assumption is not guaranteed, given S̄,263

6



Figure 1: The shaded region is {x ∈ Rd : sign(v · x) ̸= sign(v∗ · x)}. Left: red square points have
label +1, blue round points have label −1. Right: green square points are in S̄g and purple round
points are in S̄b.

we cannot directly compute the quantities |S̄b|, |S̄g|, as their definition involves the unknown vector264

v∗. Nevertheless, we show how to obtain a certificate that |S̄b|/|S̄| − |S̄g|/|S̄| is at most O(ϵ). We265

first express the ratios above as266

|S̄b|/|S̄| = P
(x,y)∼S̄

[y ̸= sign(v · x) and sign(v∗ · x) ̸= sign(v · x)], (2.2)

|S̄g|/|S̄| = P
(x,y)∼S̄

[sign(v∗ · x) ̸= sign(v · x)]− |S̄b|/|S̄|. (2.3)

Combining equations (2.1), (2.2) and (2.3), defining S̄False = {(x, y) ∈ S̄ : y ̸= sign(v · x)} we267

obtain the following bound:268

|S̄b|
|S̄|
− |S̄g|
|S̄|
≤ 2
|S̄False|
|S̄|

P
(x,y)∼S̄False

[sign(v∗ ·x) ̸= sign(v ·x)]− P
(x,y)∼S̄

[
sign(v∗ ·x) ̸= sign(v ·x)

]
(2.4)

The term |S̄False|/|S̄| can be explicitly computed, since we have v and S̄ and we can verify whether269

its value is at most 1/2− c, as would be the case if the noise was RCN. Otherwise, we may safely270

reject. Now, we want to obtain certificates that the first term in Equation 2.4 can’t be too large and271

the second term can’t be too small.272

The disagreement tester and how it is applied. Our goal is to certify that both probabilities in273

Equation 2.4 are approximately equal to ∡(v,v∗)/π, which is what we would expect if the example274

oracle were indeed in EXRCN
N ,Hhs,η0

. This is because of the following fact, as well as the fact that even275

after conditioning on the event y ̸= sign(v∗ · x), x remains Gaussian.276

Fact 2.3. Let x ∼ Nd and v,v∗ ∈ Sd−1. Then Px∼Nd
[sign(v∗ · x) ̸= sign(v · x)] = ∡(v,v∗)/π.277

Recall, however, that we do not make any assumptions on the input examples. Therefore, we would278

like to certify the guarantee of Fact 2.3. We show that this is possible by developing the following279

tester.280

Theorem 2.4 (Disagreement tester, see Theorem D.1). Let µ ∈ (0, 1) be any constant. Algorithm 1281

receives ϵ, δ ∈ (0, 1), v ∈ Sd−1 and a set S of points in Rd, runs in time poly(d, 1/ϵ, |S|) and then282

either outputs Reject or Accept, satisfying the following specifications.283

1. (Soundness) If the algorithm accepts, then the following is true for any v′ ∈ Sd−1284

(1− µ)∡(v,v′)/π − ϵ ≤ P
x∼S

[sign(v · x) ̸= sign(v′ · x)] ≤ (1 + µ)∡(v,v′)/π + ϵ

2. (Completeness) If S consists of at least (Cd
ϵδ )

C i.i.d. examples from Nd, where C ≥ 1 is285

some sufficiently large constant depending on µ, then the algorithm accepts with probability286

at least 1− δ.287

We choose µ = c and run the tester above on the datapoints in S̄ and S̄False = {(x, y) ∈ S̄ : y ̸=288

sign(v · x)}. If the tester accepts, then (using Equation 2.4) the excess error |S̄b|/|S̄| − |S̄g|/|S̄| is289

at most ((1− 2c)(1 + c)− (1− c))∡(v,v∗)/π + 2ϵ which, in turn, is upper-bounded by 2ϵ, since290

(1− 2c)(1 + c)− (1− c) = −2c2 < 0.291

Designing the disagreement tester. Our disagreement tester builds on ideas from prior work on292

testable agnostic learning by [GKSV24]. In particular, [GKSV24] show that when the angle between293
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Figure 2: For vectors v,v′ ∈ Sd−1, the region {x ∈ Rd : sign(v · x) ̸= sign(v′ · x)} is contained in
the union of green regions and it contains the union of blue regions. In the diagram we highlight one
of the green regions (top left) and one of the blue regions (bottom right).

the input vector v and some unknown vector v′ is ϵ, then one can give a testable bound of O(ϵ) on294

the quantity Px∼S [sign(v · x) ̸= sign(v′ · x)] by running some efficient tester (Proposition D.1 in295

[GKSV24]). To achieve this, the region {x ∈ Rd : sign(v ·x) ̸= sign(v′ ·x)} is covered by a disjoint296

union of simple regions whose masses can be testably upper bounded. In order to bound the mass of297

the simple regions, it is crucial to use the fact that v is known.298

Here, our approach needs to be more careful, since we (1) require both upper and lower bounds on the299

quantity Px∼S [sign(v · x) ̸= sign(v′ · x)], (2) we do not have a specific target threshold for the angle300

∡(v,v′), but we need to provide testable bounds that involve ∡(v,v′) as a free parameter and (3)301

we can only tolerate a small constant multiplicative error factor (1± µ). To obtain this improvement,302

we combine the approach of [GKSV24] with the notion of sandwiching polynomial approximators.303

Sandwiching polynomial approximators are also used to design testable learning algorithms (see304

[GKK23]), but we use them here in a more specialized way, by allowing the sandwiching function to305

be piecewise-polynomial.306

In particular, we first observe that the region {x ∈ Rd : sign(v · x) ̸= sign(v′ · x)} can be307

approximated from above and from below by the disjoint union of a small number of simple regions308

(Figure 2). More precisely, if we let v⊥ be the unit vector in the direction v′ − (v′ · v)v, then we309

have310

P
x∼S

[
v · x ≥ 0 > v′ · x

]
≤

∞∑
i=0

P
x∼S

[
v · x ∈ [iϵ, (i+ 1)ϵ],v⊥ · x ≤ −iϵ/tan(v,v′)

]
(2.5)

P
x∼S

[
v · x ≥ 0 > v′ · x

]
≥

∞∑
i=0

P
x∼S

[
v · x ∈ [iϵ, (i+ 1)ϵ],v⊥ · x ≤ −(i+ 1)ϵ/tan(v,v′)

]
(2.6)

In fact, the number of interesting terms in the summations can be bounded by O(ϵ log1/2(1/ϵ)),311

because the remaining terms are testably negligible, due to Gaussian concentration and since we have312

access to v.313

Each term in the summations of (2.5), (2.6) is of the form Ex∼S [Ii(x) · fi(x)], where fi is some314

unknown halfspace and Ii(x) = 1{v · x ∈ [iϵ, (i + 1)ϵ]}. Since we know v, Ii(x) is a known315

quantity for all x in S. The quantities fi(x) are unknown, but we can effectively substitute them by316

polynomials, because, under the Gaussian distribution they admit low-degree sandwiching approxi-317

mators. This allows us to provide a testable bound by matching the low degree Chow parameters of318

the functions Ii(x) under Unif(S) to the corresponding Chow parameters under Nd, due to the fact319

that polynomials are linear combinations of monomials and the number of low-degree monomials is320

small enough so that we can test them all.321

Moment matching and Chow matching in particular are known to have applications in testable322

learning (see, e.g., [GKK23, RV23, GKSV24, KSV24b, CKK+24]), but here we have to use this323

tool in a careful way. More specifically, we prove the following lemma (see Proposition D.6)324

based on a delicate argument that uses the sandwiching approximators of [DGJ+10, GOWZ10] (see325

Appendix D.3).326

Lemma 2.5 (Informal). Let C ≥ 1 be some sufficiently large constant. Suppose that for all α ∈ Nd327

with ∥α∥1 ≤ C/µ4 and for all i:
∣∣∣Ex∼S

[
Ii(x) ·

∏
j∈[d] x

αj

j

]
− Ex∼N

[
Ii(x) ·

∏
j∈[d] x

αj

j

]∣∣∣ ≤328
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Algorithm 1: Disagreement tester

Input: ϵ, δ, µ ∈ (0, 1), v ∈ Sd−1 and set S of points in Rd

Let C ≥ 1 be a sufficiently large constant
Set K = 2

ϵ

√
log(2/ϵ), k = C/µ4 and ∆ = ϵ

CKdCk

for α ∈ Nd with ∥α∥1 ≤ k do
for i = −K,−K + 1, . . . , 0, 1, . . . ,K − 1 do

Let Ii(x) = 1{iϵ ≤ v · x < (i+ 1)ϵ} for all x ∈ S
Let ∆i,α =

∣∣∣Ex∼S [
∏

j∈[d] x
αj

j Ii(x)]− Ex∼Nd
[
∏

j∈[d] x
αj

j Ii(x)]
∣∣∣

Let ∆∞,α =
∣∣∣Ex∼S [

∏
j∈[d] x

αj

j 1{v · x ≥ Kϵ}]− Ex∼Nd
[
∏

j∈[d] x
αj

j 1{v · x ≥ Kϵ}]
∣∣∣

Let
∆−∞,α =

∣∣∣Ex∼S [
∏

j∈[d] x
αj

j 1{v · x ≤ −Kϵ}]− Ex∼Nd
[
∏

j∈[d] x
αj

j 1{v · x ≤ −Kϵ}]
∣∣∣

if for some (i, α) we have ∆i,α > ∆ then output Reject else output Accept

ϵ2 log(1/ϵ)

CdC2/µ4 . Then, we have that |Px∼S [v · x ≥ 0 > v′ · x]− Px∼N [v · x ≥ 0 > v′ · x]| ≤ µ∡(v,v′)
2π +329

ϵ, for all v′.330

Based on the above lemma (and a symmetric argument for the case v · x < 0 ≤ v′ · x), the331

disagreement tester of Theorem 2.4 only needs to test quantities of the form E[Ii
∏

j x
αj

j ], which are332

known as constant-degree Chow parameters [Cho61, OS08] of the functions Ii(x), as described in333

Algorithm 1. Due to standard concentration arguments, if S was i.i.d. from the Gaussian distribution,334

then the tests would pass.335

Approximate recovery of ground truth. The final technical hurdle that remains unaddressed in336

the above derivation of the testable learning result for RCN is the fact that even under the target337

assumption, the ground-truth vector can be recovered only approximately. In particular, the following338

is true.339

Fact 2.6. For any ϵ′, δ ∈ (0, 1) and η0 = 1/2 − c, where c > 0 is any constant, there is an340

algorithm with time and sample complexity poly(d, 1/ϵ′) log(1/δ) that has access to an example341

oracle EXRCN
N ,f∗,η0

for some unknown f∗(x) = sign(v∗ · x), v∗ ∈ Sd−1 and outputs v ∈ Sd−1 such342

that ∡(v∗,v) ≤ ϵ′, with probability at least 1− δ.343

The place where we have to be more careful is when we argue that the distribution of x conditioned344

on y ̸= sign(v · x) is Gaussian, under the target assumption. This is not true anymore, because v345

is not necessarily equal to v∗ and, therefore, the event y ̸= sign(v · x) does not coincide with the346

event y ̸= sign(v∗ · x), which, due to the definition of RCN noise, is independent from x. However,347

the only case that these two events do not coincide is when ∡(x,v) ≤ O(ϵ′d), due to the guarantee348

of Fact 2.6 that v and v∗ are geometrically close. Since we have access to both S and v, we may349

directly test whether Px∼S [∡(x,v) ≤ O(ϵ′d)] is bounded by O(ϵ), as would be the case under the350

target assumption, if ϵ′ is chosen to be poly(ϵ/d). Therefore, this event is certifiably negligible and351

the initial argument goes through.352
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A Preliminaries555

A.1 Some standard notation.556

When we say a = b± c we mean that a in in the interval [b− c, b+ c]. When we say a polynomial is557

“degree-k” we mean that the degree polynomial is at most k. For a vector x in Rd, let x⊗k denote558

the
(
d+1
k

)
-dimensional vector whose elements are of the form xα =

∏
j∈[d] x

αj

j for α ∈ Nd with559

∥α∥1 =
∑

j αj ≤ k. In other words, x⊗k is the vector one gets by evaluating all multidimensional560

monomials of degree at most k on input x. We also view degree-k polynomials as corresponding to561

elements R(
d+1
k ), i.e. their coefficient vectors. Using this notation we have562

p(x) = p · x⊗k.

Additionally, for a degree-k polynomial p over Rd, say p(x) =
∑

α:∥α∥1≤k pαx
α, we will use the563

notation ∥p∥coeff to denote the 2-norm of the coefficients of p, specifically564

∥p∥coef :=
( ∑

α∈Nd

p2α

)1/2
Note that if the largest in absolute value coefficient of polynomial p has absolute value B, then we565

have566

B ≤ ∥p∥coeff ≤ B (d+ 1)
k/2

. (A.1)

In this work we will use the convention that sign(0) = 1.567

A.2 Standard lemmas.568

We will also need the following lemma:569

Lemma A.1. Let H be a collection of subsets of Rd of non-zero VC dimension ∆VC and let S be570

a collection of N i.i.d. samples from N (0, Id). Then, with probability at least 1 − δ for every571

polynomial p of degree at most k with coefficients bounded by B in absolute value and all sets A in572

H we have573 ∣∣∣∣ Ex∼S
[p(x)1x∈A]− E

x∼N (0,Id)
[p(x)1x∈A]

∣∣∣∣ ≤ 60(2k)k+2(d+ 1)k∆VC

δ

(
logN

N

)1/4

,

∣∣∣∣ Ex∼S

[
(p(x))

2
1x∈A

]
− E

x∼N (0,Id)

[
(p(x))

2
1x∈A

]∣∣∣∣ ≤ 60B2(4k)2k+2(d+ 1)6k∆VC

δ

(
logN

N

)1/4

.

Proof. Let R be a positive real number, to be set later. For any monomial m over Rd of degree at574

most k, we can decompose575

m(x)1x∈A = m(x)1x∈A∧|m(x)|≤R ± |m(x)|1|m(x)|>R

This allows us to bound the quantity in our lemma in the following way:576 ∣∣∣∣ Ex∼S
[m(x)1x∈A]− E

x∼N (0,Id)
[m(x)1x∈A]

∣∣∣∣ =∣∣∣ E
x∼S

[
|m(x)|1x∈A∧|m(x)|≤R∧m(x)>0

]
− E

x∼S

[
|m(x)|1x∈A∧|m(x)|≤R∧m(x)<0

]∣∣∣
±
(

E
x∼S

[
|m(x)|1|m(x)|>R

]
+ E

x∼N (0,Id)

[
|m(x)|1|m(x)|>R

])
(A.2)
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We start by considering the first term above:577 ∣∣∣∣ Ex∼S

[
m(x)1x∈A∧|m(x)|≤R∧m(x)>0

]
− E

x∼N (0,Id)

[
m(x)1x∈A∧|m(x)|≤R∧m(x)>0

]∣∣∣∣ =∣∣∣∣∣
∫ R

0

P
x∼S

[
m(x)1x∈A∧|m(x)|≤R ≥ z

]
dz −

∫ R

0

P
x∼N (0,Id)

[
m(x)1x∈A∧|m(x)|≤R ≥ z

]
dz

∣∣∣∣∣ ≤∫ R

0

∣∣∣∣ P
x∼S

[
m(x)1x∈A∧|m(x)|≤R ≥ z

]
− P

x∼N (0,Id)

[
m(x)1x∈A∧|m(x)|≤R ≥ z

]∣∣∣∣ dz ≤
R max

z∈[0,R]

∣∣∣∣ P
x∼S

[z ≤ m(x) ≤ R ∧ x ∈ A]− P
x∼N (0,Id)

[z ≤ m(x) ≤ R ∧ x ∈ A]
∣∣∣∣ (A.3)

To bound the right side of Equation A.3, consider the class G of {0, 1}-valued functions of the form578

1z≤p(x) ≤R∧x∈A, where A is a set in H and p is a polynomial in d dimensions of degree at most579

d. Recall that the VC dimension of degree-k polynomial threshold functions is at most (d + 1)k.580

From the Sauer-Shelah lemma, it follows that the VC dimension of G is at most 10((d+ 1)k +∆VC).581

Combining it with the standard VC bound, we see that with probability at least 1 − δ/4 for all582

monomials m of degree at most k we have583 ∣∣∣ P
x∼S

[z ≤ m(x) ≤ R ∧ x ∈ A]− P
x∼N

[z ≤ m(x) ≤ R ∧ x ∈ A]
∣∣∣ ≤(100((d+ 1)k +∆VC) logN

Nδ

) 1
2

Combining this with Equation A.3 we get:584 ∣∣∣∣ Ex∼S

[
m(x)1x∈A∧|m(x)|≤R∧m(x)>0

]
− E

x∼N (0,Id)

[
m(x)1x∈A∧|m(x)|≤R∧m(x)>0

]∣∣∣∣ ≤
10R

√
((d+ 1)k +∆VC) logN

Nδ
(A.4)

We now proceed to bounding the second term and the third terms in Equation A.2. If we express585

m(x) as
∏

j x
ij
j , we see that each ij is at most k and there are at most k values of j for which the586

power ij is non-zero. This implies587

E
x∼N (0,Id)

[
(m(x))

2
]
≤ 2k · (2k)!! ≤ (2k)k+2. (A.5)

Let δ′ be a real number between 0 and 1, value of which will be chosen later. The Markov’s inequality588

implies that with probability at least 1− δ′ we have589

E
x∼S

[
|m(x)|1|m(x)|>R

]
≤

Ex∼N (0,Id)

[
|m(x)|1|m(x)|>R

]
δ′

≤
Ex∼N (0,Id)

[
|m(x)|2

]
Rδ′

≤ (2k)k+2

Rδ′
(A.6)

We also note that590

E
x∼N (0,Id)

[
|m(x)|1|m(x)|>R

]
≤

Ex∼N (0,Id)

[
|m(x)|2

]
R

≤ (2k)k+2

R
(A.7)

Overall, substituting Equations A.4, A.6 and A.7 into Equation A.2 we get591 ∣∣∣∣ Ex∼S
[m(x)1x∈A]− E

x∼N (0,Id)
[m(x)1x∈A]

∣∣∣∣ ≤ 10R

√
((d+ 1)k +∆VC) logN

Nδ
+ 2

(2k)k+2

Rδ′
.

Choosing R to balance the two terms above, we get592 ∣∣∣∣ Ex∼S
[m(x)1x∈A]− E

x∼N (0,Id)
[m(x)1x∈A]

∣∣∣∣ ≤
√

80
(2k)k+2

δ′

√
((d+ 1)k +∆VC) logN

Nδ
.

Taking δ′ = δ
4(d+1)k

and taking a union bound to insure that Equation A.6 holds for all monomials593

m of degree at most k, we see that with probability at least 1− δ/2 it is the case that all monomials594
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m of degree at most k and all A inH it is the case that595

∣∣∣∣ Ex∼S
[m(x)1x∈A]− E

x∼N (0,Id)
[m(x)1x∈A]

∣∣∣∣ ≤
√

320
(2k)k+2(d+ 1)k

δ3/2

√
((d+ 1)k +∆VC) logN

N
≤

60(2k)k+2(d+ 1)k∆VC

δ

(
logN

N

)1/4

. (A.8)

Recall again that there are at most (d+ 1)
k degree-k monomials m. This allows us to combine596

Equation A.8 with the triangle inequality to conclude that with probability at least 1− δ/2 for every597

polynomial p of degree at most k with coefficients bounded by B in absolute value and for all A in598

H we have599 ∣∣∣∣ Ex∼S
[p(x)1x∈A]− E

x∼N (0,Id)
[p(x)1x∈A]

∣∣∣∣ ≤ 60B(2k)k+2(d+ 1)2k∆VC

δ

(
logN

N

)1/4

.

The polynomial p2 has a degree of at most 2k and each coefficient of p2 is bounded by B2 (d+ 1)
2k.600

Therefore, with probability at least 1−δ/2 for every polynomial p of degree at most k with coefficients601

bounded by B in absolute value and for all A inH we have602 ∣∣∣∣ Ex∼S

[
(p(x))

2
1x∈A

]
− E

x∼N (0,Id)

[
(p(x))

2
1x∈A

]∣∣∣∣ ≤ 60B2(4k)2k+2(d+ 1)6k∆VC

δ

(
logN

N

)1/4

,

which completes the proof.603

B Testable Learning with respect to Massart Noise Oracles604

We now turn to the more challenging task of testable learning with respect to Gaussian Massart605

oracles and state our main theorem which shows that there is a fully polynomial-time algorithm606

even in this case. Observe that, informally, for some ground-truth halfspace f , the Massart oracle607

EXMassart
N ,f,η0

can be equivalently viewed as follows: The oracle outputs a Gaussian example x, and608

with probability η0 the adversary is given an option to make the accompanying label incorrect (i.e.609

−f(x)), and otherwise the label is correct (i.e. f(x)). The Massart noise model is known to be610

more challenging that the RCN model, because the label noise (in general) does not have symmetry611

properties that can be harnessed to make error terms coming from different regions cancel each other612

out.613

Theorem B.1 (Main Result). Let c ∈ (0, 1/2) be any constant and η0 = 1/2 − c. Then, there614

is an algorithm that testably learns the class Hhs with respect to EXMassart
N ,Hhs,η0

= {EXMassart
N ,f,η : f ∈615

Hhs, supx∈Rd η(x) ≤ η0} with time and sample complexity poly(d, 1/ϵ) log(1/δ).616

Moreover, even if the input set S̄ is arbitrary (not necessarily i.i.d.), whenever the algorithm accepts, it617

outputs h ∈ Hhs such that P(x,y)∼S̄ [y ̸= h(x)] ≤ optS̄ + ϵ , where optS̄ = minf∈Hhs
P(x,y)∼S̄ [y ̸=618

f(x)].619

The final part of Theorem B.1 states that the guarantee we achieve is actually stronger than the one in620

Definition 1.3, since the output is near-optimal whenever the algorithm accepts, without requiring621

that the input S̄ consists of independent examples. For small c, the runtime of our algorithm scales622

as (d/ϵ)poly(1/c). This gives a polynomial-time algorithm when c is constant, but we leave it as an623

interesting open question whether the dependence on 1/c can be improved. We provide lower bounds624

for the case c = 0 in Appendix C.625

The proof of Theorem B.1 follows the same outline we provided for the case of random classification626

noise. However, there are two differences. First, we need a version of Fact 2.6 that works under627

Massart noise (and Gaussian marginal) and gives an algorithm that approximately recovers the628

parameters of the ground truth. Second, the disagreement tester from before does not give a testable629

bound for the quantity |S̄b|/|S̄| = P(x,y)∼S̄ [y ̸= sign(v ·x) and sign(v∗ ·x) ̸= sign(v ·x)] anymore.630

Even if we assume once more that under the target assumption we have exact recovery (i.e., v = v∗),631

the event y ̸= sign(v∗ · x) is not independent from x and, if we used the disagreement tester632
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of Theorem 2.4, the completeness criterion would not necessarily be satisfied under the target633

assumption.634

Fortunately, the first difference is not an issue, since appropriate results are known from prior work635

on classical learning under Massart noise and Gaussian marginal (see, e.g., [ABL17, DKTZ20a]).636

Fact B.2 ([DKTZ20a]). For any ϵ′, δ ∈ (0, 1) and η0 = 1/2− c, where c > 0 is any constant, there637

is an algorithm with time and sample complexity poly(d, 1/ϵ) log(1/δ) that has access to an example638

oracle in EXMassart
N ,f∗,η0

for some unknown f∗(x) = sign(v∗ · x), v∗ ∈ Sd−1 and outputs v ∈ Sd−1 s.t.639

∡(v∗,v) ≤ ϵ′, with probability at least 1− δ.640

The spectral tester and how it is applied. In order to resolve the second complication and provide a641

certificate bounding the quantity |S̄b|/|S̄|, we follow a different testing approach, based on ideas from642

tolerant testable learning [GSSV24], where the testers must accept whenever the input distribution is643

close to the target (and not necessarily equal). We provide the following tester which is guaranteed to644

accept subsets of Gaussian samples, since it is monotone under datapoint removal.645

Theorem B.3 (Spectral tester, see Theorem E.1). Let µ ∈ (0, 1) be any constant. There is an646

algorithm (Algorithm 2) that receives ϵ, δ ∈ (0, 1), U ∈ N, v ∈ Sd−1 and a set S of points in Rd,647

runs in time poly(d, 1/ϵ, |S|) and then either outputs Reject or Accept, satisfying the following648

specifications.649

1. (Soundness) If the algorithm accepts and |S| ≤ U , then the following is true for any650

v′ ∈ Sd−1651

1

U

∑
x∈S

1{sign(v · x) ̸= sign(v′ · x)} ≤ (1 + µ)∡(v,v′)/π + ϵ

2. (Completeness) If S consists of at least (Cd
ϵδ )

C i.i.d. examples from Nd, where C ≥ 1 is652

some sufficiently large constant depending on µ, then the algorithm accepts with probability653

at least 1− δ.654

3. (Monotonicity under removal) If the algorithm accepts on input (ϵ, δ, U,v, S) and S′ is such655

that S′ ⊆ S, then the algorithm also accepts on input (ϵ, δ, U,v, S′).656

Given this tool, we are able to obtain a testable bound for |S̄b|/|S̄|. Recall that the set S̄b is657

the set of points (x, y) in S̄ such that y ̸= sign(v · x) and sign(v∗ · x) ̸= sign(v · x). For658

the soundness, observe that |S̄b|/|S̄| = U
|S̄| ·

1
U

∑
x∈SFalse

1{sign(v · x) ̸= sign(v∗ · x)}, where659

S̄False = {(x, y) ∈ S̄ : y ̸= sign(v · x)}. The soundness condition of Theorem B.3 gives us660

that |S̄b|/|S̄| ≤ U
|S̄| (1 + µ)∡(v,v∗) + ϵ, as long as |SFalse| ≤ U . The quantity SFalse can be661

testably bounded by (1/2− c)|S̄|, since SFalse is defined with respect to v and we can therefore pick662

U = (1/2− c)|S̄|. Overall, we obtain the same bound for |S̄b|/|S̄| as in the RCN case.663

In order to show that our test will accept under the target assumption, the main observation is that664

we can interpret the Massart noise oracle with noise rate η0 as follows: To form the input set S̄, the665

oracle first calls the RCN oracle of rate η0 to form a set S̄RCN. Let S̄RCN
False be the subset of S̄RCN such666

that y ̸= sign(v∗ · x). The Massart noise oracle then flips the labels of some elements S̄RCN
False back667

to match the ground-truth label. In other words, we have that S̄False ⊆ S̄RCN
False (assuming v = v∗).668

Observe that SRCN
False is drawn according to the distribution of x conditioned on y ̸= sign(v∗ · x) and669

is, therefore, an i.i.d. Gaussian sample.670

Designing the spectral tester. Theorem B.3 follows from a combination of ideas used to prove671

Theorem 2.4 and the spectral testing approach of [GSSV24]. In particular, instead of matching672

the Chow parameters Ex∼S [Ii(x)
∏

j∈[d] x
αi ] of the quantities Ii as in Algorithm 1, we bound673

the maximum singular value of the Chow parameter matrices Ex∼S [(x
⊗k)(x⊗k)⊤Ii(x)], where674

x⊗k denotes the vector of monomials of degree at most k. This can be done efficiently via the675

SVD algorithm and, crucially, satisfies the monotonicity under removal property of Theorem B.3.676

Moreover, once the Chow parameter matrix is bounded, we have a bound for all quantities of the677

form Ex∼S [(p(x))
2Ii(x)], where p is of degree at most k. Combining this observation with an678

analysis similar to the one for Lemma 2.5 (see Propositions E.4 and E.5) and a stronger version of679
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Algorithm 2: Spectral tester

Input: ϵ, δ, µ ∈ (0, 1), v ∈ Sd−1 and set S of points in Rd

Let C ≥ 1 be a sufficiently large constant
Set K = 2

ϵ

√
log(2/ϵ), k = C/µ5 and ∆ = ϵ2

CKdCk

for i = −K,−K + 1, . . . , 0, 1, . . . ,K − 1 do
Let Ii(x) = 1{iϵ ≤ v · x < (i+ 1)ϵ} for all x ∈ S
if Ex∼S [(x

⊗k)(x⊗k)⊤Ii(x)] ⪯ Ex∼N [(x⊗k)(x⊗k)⊤Ii(x)] + ∆I then continue
else output Reject

if Ex∼S [(x
⊗k)(x⊗k)⊤ 1{v·x≥Kϵ}] ⪯ Ex∼N [(x⊗k)(x⊗k)⊤ 1{v·x≥Kϵ}] + ∆I then continue

else output Reject
if Ex∼S [(x

⊗k)(x⊗k)⊤ 1{v·x≤−Kϵ}] ⪯ Ex∼N [(x⊗k)(x⊗k)⊤ 1{v·x≤−Kϵ}] + ∆I then continue
else output Reject
Output Accept

the sandwiching polynomials of [DGJ+10, GOWZ10] by [KSV24b], we obtain that Algorithm 2680

satisfies Theorem B.3.681

Overall algorithm. The overall algorithm receives an input set of labeled examples S̄ and obtains a682

candidate v ∈ Sd−1 by running the algorithm of [DKTZ20a] with parameter ϵ′ = ϵ3/2/(C
√
d) for683

some large enough constant C (see Fact B.2). Then, it runs the disagreement tester of Theorem 2.4684

with parameters (S,v, ϵ, δ, µ) (for some small constant µ depending on the noise rate η0 = 1/2− c).685

Subsequently, the tester checks whether P(x,y)∼S̄ [y ̸= sign(v · x)] is at most 1/2− c/2.686

Finally, it splits the set S̄False = {(x, y) ∈ S̄ : y ̸= sign(v · x)} in two parts as follows.687

S̄far
False =

{
(x, y) ∈ S̄False : |∡(v,x)− π/2| > ϵ3/2/(d− 1)1/2

}
and S̄near

False = S̄False \ S̄far
False

For S̄near
False, it checks that it contains at most O(ϵ)|S̄| elements, while for S̄far

False, it runs the spectral688

tester of Theorem B.3 with inputs (U = (1/2− c/2)|S̄|, S = Sfar
False,v, ϵ, δ, µ).689

C Lower Bounds in the High-Noise Regime690

Notation. The set Zq equals to {0, 1, 2, . . . , q − 1}. We denote with Nd(µ,Σ;S) the Gaussian691

distribution in d dimensions with mean µ ∈ Rd and covariance matrix Σ ∈ Rd×d, truncated on the692

set S ⊆ Rd.693

We show that there is no efficient tester-learner that accepts whenever the input dataset is generated by694

Gaussian examples with random classification noise (RCN) of rate 1/2. We give both cryptographic695

lower bounds, as well as lower bounds in the statistical query (SQ) framework that match the best696

known bounds for classical (non-testable) learning under adversarial label noise. Since RCN noise is697

a special type of Massart noise, where all of the labels are flipped with the same rate (i.e., η(x) is698

constant), the lower bounds we give also imply lower bounds for the case of Massart noise of rate699

1/2 (which is also called strong Massart noise). Recall that random classification noise is defined in700

Definition 2.1.701

The hard distributions for learning under adversarial label noise proposed by [DKPZ21, Tie23,702

DKR23] are all indistinguishable from the distribution generated by the oracle EXRCN
N ,1/2. Using this703

fact, we obtain our lower bounds by the following simple observation that any tester-learner that704

accepts EXRCN
N ,1/2 can distinguish between EXRCN

N ,1/2 and any distribution where the value of opt is705

non-trivial.706

Observation C.1. Let H ⊆ {Rd → {±1}} be a concept class, τ ∈ (0, 1/8) and suppose that707

algorithmA testably learnsH with respect to EXRCN
N ,1/2 up to excess error ϵ ∈ (0, 1/4) and probability708

of failure δ = 1/6. Let Dg be the class of distributions over Rd×{±1} such that the marginal on Rd is709

Nd and minf∈H P[y ̸= f(x)] ≤ 1
2−ϵ−2τ . Then, there is an algorithmA′ that callsA once and uses710

additional time poly(d, 1/τ) such that |P[A′(Nd ×Unif({±1})) = 1]− P[A′(Dx,y) = 1]| ≥ 1/3711

for any Dx,y ∈ Dg .712
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Proof. Let Dx,y be the input distribution. The algorithm A′(Dx,y) calls A(Dx,y) once and then:713

• If A outputs Reject, then A′ outputs 0.714

• If A outputs (Accept, h), then A′ estimates the quantity q = P(x,y)∼Dx,y
[y ̸= h(x)] up to715

tolerance τ and probability of failure 1/6 and outputs 1 if the estimate q is at least 1/2− τ716

and 0 otherwise.717

We now consider the case thatDx,y = Nd×Unif({±1}). According to Definition 1.3, the probability718

that A accepts is at least 5/6. Moreover, we have that regardless of the choice of h, P(x,y)∼Dx,y
[y ̸=719

h(x)] = 1/2 and therefore A′ will overall output 1 with probability at least 2/3.720

In the case that Dx,y ∈ Dg, A′ will output 0 unless the guarantee of the soundness does not hold721

(which happens with probability at most 1/6) or the error of estimation of q is more than τ (which722

happens with probability at most 1/6. Hence, overall, A′ will output 1 with probability at most723

1/3.724

C.1 Cryptographic Hardness725

We provide cryptographic lower bounds based on the widely-believed hardness of the problem of726

learning with errors (LWE), which was introduced by [Reg09] and is defined as follows.727

Definition C.2 (Learning with Errors). Let d, q,m ∈ N and σ > 0. The LWE problem with728

parameters d, q,m, σ and advantage α ∈ (0, 1) is defined as follows. Let s ∼ Unif(Zd
q) and consider729

the following distributions over Zd
q × R.730

• Dnull: x ∼ Unif(Zd
q) and y ∼ Unif(Zq).731

• Dalt: x ∼ Unif(Zd
q), z ∼ N1(0, σ

2;Z), y = (x · s+ z) mod q732

We receive m i.i.d. examples from some distribution Dx,y over Zd
q × R which is either equal to Dnull733

or Dalt and we are asked to output v ∈ {±1} such that |P[v = 1|Dx,y = Dnull]− P[v = 1|Dx,y =734

Dalt]| ≥ α.735

There is strong evidence that the LWE problem cannot be solved in subexponential time, since there736

are quantum reductions from worst-case lattice problems [Reg09, Pei09].737

Assumption C.3 (Hardness of LWE). Let d, q,m ∈ N and σ > 0 such that q ≤ dk, σ = c
√
d738

and m = 2O(dγ), where γ ∈ (0, 1), k ∈ N are arbitrary constants and c > 0 is a sufficiently large739

constant. Then, any algorithm that solves LWE with parameters d, q,m, σ and advantage 2−O(dγ)740

requires time 2Ω(dγ).741

As an immediate corollary of results in [DKR23] (combined with Observation C.1), we obtain the742

following lower bound under Assumption C.3.743

Theorem C.4 (Cryptographic Hardness in High-Noise Regime, Theorem 3.1 in [DKR23]). Under744

Assumption C.3, every algorithm with the guarantees of A′ in Observation C.1 for τ = ϵ ≤745

1/ log1/2+β(d) andH = Hhs, requires time min{dΩ(1/(ϵ
√

log(d))α), 2d
0.99}, where α, β ∈ (0, 2) are746

arbitrary constants.747

Therefore, the same is true for any testable learning algorithm forHhs with respect to the RCN oracle748

with noise rate η0 = 1/2 that has excess error ϵ ≤ 1/ log1/2+β(d) and failure probability δ ≤ 1/6.749

C.2 SQ Lower Bounds750

We also give lower bounds in the statistical query (SQ) model, which was originally defined by751

[Kea98]. The SQ framework captures most of the usual algorithmic techniques like moment methods752

and gradient descent ([FGR+17, FGV17]), and there is a long line of works in computational learning753

theory giving SQ lower bounds for various learning tasks.754

Definition C.5 (Statistical Query Model). Let Dx,y be a distribution over Rd × {±1} and τ > 0.755

A statistical query (SQ) algorithm A with tolerance τ has access to Dx,y as follows: The algorithm756
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(adaptively) makes bounded queries of the form q : Rd × [−1, 1]→ [−1, 1]. For each query q, the757

algorithm receives a value v ∈ R with |v − Ex∼D[q(x, y)]| ≤ τ .758

We obtain our lower bound as an immediate corollary of results in [DKR23], combined with Obser-759

vation C.1, where note that the reduction of the hard distinguishing problem to testable learning also760

works in the SQ framework, using one statistical query with tolerance τ .761

Theorem C.6 (SQ Lower Bound in High-Noise Regime, Propositions 2.1, 2.8, Corollary B.1 in762

[DKPZ21]). Every SQ algorithm with the guarantees of A′ in Observation C.1 for τ = ϵ ≥ d−c and763

H = Hhs, where c > 0 is a sufficiently small constant, either requires queries of tolerance d−Ω(1/ϵ2)764

or makes 2d
Ω(1)

queries.765

Therefore, the same is true for any SQ testable learning algorithm forHhs with respect to the RCN766

oracle with noise rate η0 = 1/2 that has excess error ϵ ≥ d−c and failure probability δ ≤ 1/6.767

D Disagreement Tester768

In this section we prove the following theorem.769

Theorem D.1. For every positive absolute constant µ, there exists a deterministic algorithm770

Tdisagreement and some absolute constant C that, given771

• a dataset S of points in Rd of size N ≥
(
Cd
ϵδ

)C
.772

• a unit vector v in Rd,773

• parameters ϵ, δ and µ in (0, 1).774

For any absolute constant µ, the algorithm runs in time poly
(
dN
ϵδ

)
and outputs Accept or outputs775

Reject, subject to the following for all ϵ and δ in (0, 1):776

• Completeness: if S consists of N ≥
(
Cd
ϵδ

)C
i.i.d. samples from the standard Gaussian777

distribution, then with probability at least 1−O (δ) the set S is such that for all unit vectors778

v the algorithm Tdisagreement accepts when given (S,v, ϵ, δ, µ) as the input.779

• Soundness: For any dataset S and unit vector v, if the tester Tdisagreement accepts, then for780

every unit vector v′ in Rd the following holds781

P
x∼S

[sign(x · v) ̸= sign(x · v′)] = (1± µ)∡(v,v
′)

π
±O(ϵ).

We argue that the following algorithm (see also Algorithm 1) satisfies the specifications above:782

• Given: parameter ϵ, δ in (0, 1), dataset S of points in Rd of size N ≥
(
Cd
ϵδ

)C
, a unit vector783

v in Rd,784

1. k1 ←
2
√

log 2/ϵ

ϵ785

2. k2 ← C0.1

µ4786

3. For all a and b in {−∞,−k1ϵ,−(k1 − 1)ϵ, · · · ,−ϵ, 0,+ϵ, · · · , (k1 − 1)ϵ, k1ϵ,+∞}787

(a) For all monomials m of degree at most k2 over Rd:788

i. Aa,b
m ← Ex∼N (0,Id)[m(x) · 1a≤x·v<b] ± 60(2k2(d+1))k2+2

δ

(
logN
N

)1/4
. (For how789

to compute this approximation, see Claim 3).790

ii. If
∣∣Ex∼S [m(x) · 1a≤x·v<b]−Aa,b

m

∣∣ > 200(2k2(d+1))k2+2

δ

(
logN
N

)1/4
, then output791

Reject.792

4. If did not reject in any previous step, output Accept.793

It is immediate that the algorithm indeed runs in time poly
(
dN
ϵδ

)
.794
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D.1 Completeness795

Suppose the set dataset S consists of i.i.d. samples from N (0, Id). We observe that the collectionH796

of sets of the form 1a≤v·x<b has VC dimension at most (d+ 1)2. This allows us to use Lemma A.1,797

to conclude that with probability at least 1− δ for all pairs of a and b, for all unit vectors v and for798

all monomials m of degree at most k2 we have799 ∣∣∣∣ Ex∼S
[m(x) · 1a≤x·v<b]− E

x∼N (0.Id)
[m(x) · 1a≤x·v<b]

∣∣∣∣ ≤ 60(2k2)
k2+2(d+ 1)k2+2

δ

(
logN

N

)1/4

and Claim 3 implies that800 ∣∣∣∣Aa,b
m − E

x∼N (0.Id)
[m(x) · 1a≤x·v<b]

∣∣∣∣ ≤ 60(2k2)
k2+2(d+ 1)k2+2

δ

(
logN

N

)1/4

The two inequalities above together imply the completeness condition.801

D.2 Soundness802

In order to deduce the soundness condition, we will need the following notions:803

Definition D.2. Let C be a collection of disjoint subsets of Rd. We say that C is a partition of Rd if804

Rd equals to the union
⋃

A∈C A.805

Definition D.3. We say that a function f : Rd → {0, 1} is ϵ-sandwiched in L1 norm between a pair806

of functions fup : Rd → R and fdown : Rd → R under N (0, Id) if:807

• For all x in Rd we have fdown(x) ≤ f(x) ≤ fup(x)808

• Ex∼N (0,Id) [fup(x)− fdown(x)] ≤ ϵ.809

Definition D.4. We say that a function f : Rd → {0, 1} has (ϵ, B)-sandwiching degree of at most810

k in L1 norm under N (0, Id) with respect to a partition C of Rd if the function f is ϵ-sandwiched811

in L1 norm under N (0, Id) between
∑

A∈C
(
pAdown1A

)
and

∑
A∈C

(
pAup1A

)
, where pAup and pAdown are812

degree−k polynomials over Rdwhose coefficients are bounded by B in absolute value.813

Subsection D.3 is dedicated to proving the following bound on the sandwiching degree of a specific814

family of functions with respect to a specific partition of Rd.815

Proposition D.5. For all ϵ and k2, let k1 =
2
√

log 2/ϵ

ϵ , and let v be a unit vector in Rd. Then, there816

exists a partition C of Rd consisting of sets of the form
{
x ∈ Rd : a ≤ v · x ≤ b

}
for a certain col-817

lection of pairs a, b in {−∞,−k1ϵ,−(k1 − 1)ϵ, · · · ,−ϵ, 0,+ϵ, · · · , (k1 − 1)ϵ, k1ϵ,+∞}. Then, for818

every unit vector v′, the function f(x) = 1sign(v·x)̸=sign(v′·x) has
(
O

(
∡(v,v′)

k
1/4
2

)
+ 10ϵ, O

(
d10k2

))
-819

sandwiching degree of at most k2 in L1 norm under N (0, Id) with respect to the partition C of Rd.820

A bound on the sandwiching degree of a class of functions leads to a guarantee for the tester821

Tdisagreement:822

Proposition D.6. Let C be a partition of Rd and suppose that a set S of points in Rd satisfies the823

following condition for all A in C and degree-k2 monomials m over Rd:824 ∣∣∣∣ Ex∼S
[m(x) · 1x∈A]− E

x∼N (0.Id)
[m(x) · 1x∈A]

∣∣∣∣ ≤ ϵ

(d+ 1)
k |C|B

(D.1)

Then, every {0, 1}-valued function f that has has (ν,B)-sandwiching degree of at most k in L1 norm825

under N (0, Id) with respect to the partition C we have826 ∣∣∣∣ P
x∼S

[f(x) = 1]− P
x∼N (0,Id)

[f(x) = 1]

⌉
≤ ν +O(ϵ)
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Proof. Since f has (ν,B)-sandwiching degree of at most k in L1 norm under N (0, Id) with respect827

to the partition C, we have a collection of polynomials
{
pAdown, p

A
up

}
for allA in C that have coefficients828

bounded by B, satisfy for all x the condition829

f(x) ∈

[∑
A∈C

(
pAdown(x)1x∈A

)
,
∑
A∈C

(
pAup(x)1x∈A

)]
, (D.2)

as well as830

E
x∼N (0,Id)

[∑
A∈C

(
pAup(x)1x∈A

)
−
∑
A∈C

(
pAdown(x)1x∈A

)]
≤ ν. (D.3)

From the bound B on all coefficients of pAup and pAdownand Equation D.1 we see that:831 ∣∣∣∣∣∑
A∈C

E
x∼N (0,Id)

[(
pAdown(x)1x∈A

)]
−
∑
A∈C

E
x∼D

[(
pAdown(x)1x∈A

)]∣∣∣∣∣ ≤ ϵ (d+ 1)
k |C|B

(d+ 1)
k |C|B

= ϵ, (D.4)∣∣∣∣∣∑
A∈C

E
x∼N (0,Id)

[(
pAup(x)1x∈A

)]
−
∑
A∈C

E
x∼D

[(
pAup(x)1x∈A

)]∣∣∣∣∣ ≤ ϵ (d+ 1)
k |C|B

(d+ 1)
k |C|B

= ϵ. (D.5)

Equation D.2 implies that832

∑
A∈C

E
x∼N (0,Id)

[(
pAdown(x)1x∈A

)]
≤ E

x∼N (0,Id)
[f(x)] ≤

∑
A∈C

E
x∼N (0,Id)

[(
pAup(x)1x∈A

)]
, (D.6)

and Equation D.2 together with Equations D.4 and D.5 implies that:833

∑
A∈C

E
x∼N (0,Id)

[(
pAdown(x)1x∈A

)]
− ϵ ≤

∑
A∈C

E
x∼D

[(
pAdown(x)1x∈A

)]
≤ E

x∼D
[f(x)] ≤

≤
∑
A∈C

E
x∼D

[(
pAup(x)1x∈A

)]
≤
∑
A∈C

E
x∼N (0,Id)

[(
pAup(x)1x∈A

)]
+ ϵ. (D.7)

Together Equations D.7 and D.6 constraint the values of both Ex∼D[f(x)] and Ex∼N (0,Id)[f(x)] to834

the same interval that via Equation D.3 has a width of at most ν + 2ϵ. This allows us to conclude835 ∣∣∣∣ P
x∼D

[f(x) = 1]− P
x∼N (0,Id)

[f(x) = 1]

∣∣∣∣ = ∣∣∣∣ E
x∼D

[f(x)]− E
x∼N (0,Id)

[f(x)]

∣∣∣∣ ≤ ν + 2ϵ,

completing the proof.836

Claim 3 implies that all pairs of a and b in the set837

{−∞,−k1ϵ,−(k1 − 1)ϵ, · · · ,−ϵ, 0,+ϵ, · · · , (k1 − 1)ϵ, k1ϵ,+∞} and for all monomials m of de-838

gree at most k2 we have839 ∣∣∣∣Aa,b
m − E

x∼N (0.Id)
[m(x) · 1a≤x·v<b]

∣∣∣∣ ≤ 60(2k2)
k2+2(d+ 1)k2+2

δ

(
logN

N

)1/4

.

If the algorithm accepts, then we have for all pairs of a and b in840

{−∞,−k1ϵ,−(k1 − 1)ϵ, · · · ,−ϵ, 0,+ϵ, · · · , (k1 − 1)ϵ, k1ϵ,+∞} and for all monomials m of de-841

gree at most k2 that842 ∣∣∣ E
x∼S

[m(x) · 1a≤x·v<b]−Aa,b
m

∣∣∣ ≤ 200(2k2)
k2+2(d+ 1)k2+2

δ

(
logN

N

)1/4

.

The two inequalities above imply that843 ∣∣∣∣ Ex∼S
[m(x) · 1a≤x·v<b]− E

x∼N (0.Id)
[m(x) · 1a≤x·v<b]

∣∣∣∣ ≤ 260(2k2)
k2+2(d+ 1)k2+2

δ

(
logN

N

)1/4
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Taking the equation above, together with Proposition D.6 and Proposition D.5 we conclude that844

∣∣∣∣ P
x∼S

[sign(v · x) ̸= sign(v′ · x)]− P
x∼N (0,Id)

[sign(v · x) ̸= sign(v′ · x)]
⌉
≤ O

(
∡(v,v′)

k
1/4
2

)
+

+O

(
(2k2)

k2+2(d+ 1)k2+2

δ

(
logN

N

)1/4
)

Substituting k2 ← C0.1

µ4 , N ≥
(
Cd
ϵδ

)C
, taking C to be a sufficiently large absolute constant and845

recalling that Px∼N (0,Id)[sign(v · x) ̸= sign(v′ · x)] equals to ∡(v,v′)/π we conclude that846

P
x∼S

[sign(x · v) ̸= sign(x · v′)] = (1± µ)∡(v,v
′)

π
±O(ϵ).

D.3 Bounding sandwiching degree of the disagreement region847

To prove Proposition D.5, we will need the following result by [DGJ+10], [GOWZ10].848

Fact D.7. For every positive integer k and a real value t, the function f(z) = 1z≤t has849

(O( log
3 k√
k

), O(210k))-sandwiching degree in L1 norm of at most k under N (0, 1).850

The following corollary slightly strengthens the fact above:851

Corollary D.8. Let t ∈ R. For every positive integer k ≥ 2, the function f : R → {0, 1} with852

f(z) = 1z≤t is (O(min( log
3 k√
k
, 1
t2 )), 2

10k)-sandwiched in L1 norm under N (0, 1) between a pair of853

polynomials Rt
down and Rt

up of degree k.854

Proof. Indeed, if log3 k√
k
≤ 1

t2 then the corollary follows from Fact D.7. So all we need to do is855

to consider the other case. We see that either t > 1 or t < −1 (since k ≥ 2). if t > 1 we take856

pdown(x) = 0 and pup(x) =
(
x
t

)2
. If t < −1, we take take pup(x) = 1 and pdown(x) = 1 −

(
x
t

)2
.857

In either case, we see that the polynomials pdown and pup form a pair of
(
O
(
min

(
log3 k√

k
, 1
t2

))
, 1
)

-858

sandwiching polynomials of degree 2.859

Let v⊥ be the unit vector equal up to scaling to the component of v′ perpendicular to v. Then, we860

have861

ψdown(x) ≤ 1v·x≥0∧v′·x<0 ≤ ψup(x) (D.8)
ψdown(x) ≤ 1v·x>0∧v′·x≤0 ≤ ψup(x) (D.9)

where862

ψup(x) =


1 if v · x≥ k1ϵ or v · x = 0

1v⊥·x tan θ≤−jϵ if v · x ̸= 0 and v · x ∈ [jϵ, (j + 1)ϵ) for 0 ≤ j ≤ k1 − 1

0 if v · x< 0

ψdown(x) =


0 if v · x≥ k1ϵ or v · x = 0

1v⊥·x tan θ<−(j+1)ϵ if v · x ̸= 0 and v · x ∈ [jϵ, (j + 1)ϵ) for 0 ≤ j ≤ k1 − 1

0 if v · x< 0
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Recall that for every t ∈ R, Corollary D.8 gives us one-dimensional degree-k2 sandwiching polyno-863

mials Rt
down(z) and Rt

up(z) for 1z≤t. Using this notation, we have for all x in Rd864

Denote this φdown(x)︷ ︸︸ ︷
k1−1∑
j=0

1v·x·[jϵ,(j+1)ϵ)R
−(j+1)ϵ/ tan θ
down (v⊥ · x) ≤ ψdown(x) ≤ 1v·x≥0∧v′·x<0 ≤

≤ ψup(x) ≤ 1v·x≥k1ϵ +

k1−1∑
j=0

1v·x·[jϵ,(j+1)ϵ)R
−jϵ/ tan θ
up (v⊥ · x)︸ ︷︷ ︸

Denote this φup(x)

(D.10)

In order to conclude Proposition D.5. We show the following two claims:865

Claim 1. We have866

E
x∼N (0,Id)

[φup(x)− φdown(x)] ≤ O

(
log1.5 k2

k
1/4
2

· ∡(v,v′)

)
+ 10ϵ

Claim 2. For all integers j in [0, k1 − 1]], every coefficient of R−(j+1)ϵ/ tan θ
down (v⊥ · x) and867

R
−jϵ/ tan θ
up (v⊥ · x) is at most O

(
d10k2

)
in absolute value.868

Proposition D.5 follows from the two claims above for as follows. We first observe that Equations869

D.9 and D.10 imply that870

φdown(−x) ≤ 1v·x<0∧v′·x≥0 ≤ φup(−x).
Recalling our convention that sign(0) = 1, we see that871

1sign(v·x)̸=sign(v′·x) = 1v·x≥0∧v′·x<0 + 1v·x<0∧v′·x≥0

this, together with D.10 allows us to bound872

φdown(x) + φdown(−x) ≤ 1sign(v·x)̸=sign(v′·x) ≤ φup(x) + φup(−x), (D.11)
Claim D.10 allows us to conclude that873

E
x∼N (0,Id)

[φup(x) + φup(−x)− φdown(x)− φdown(−x)] ≤ O

(
log1.5 k2

k
1/4
2

· ∡(v,v′)

)
+ 20ϵ.

(D.12)
Equations D.11 and D.12, together with comparing the definition of φup and φdown with Definition874

D.4 and recalling Claim 2, allow us to conclude that there exists a partition C of Rd consisting of sets875

of the form
{
x ∈ Rd : a ≤ v · x ≤ b

}
for a certain collection of pairs a, b in876

{−∞,−k1ϵ,−(k1 − 1)ϵ, · · · ,−ϵ, 0,+ϵ, · · · , (k1 − 1)ϵ, k1ϵ,+∞}, such that for every unit vector877

v′, the function f(x) = 1sign(v·x)̸=sign(v′·x) has
(
O

(
∡(v,v′)

k
1/4
2

)
+ 10ϵ, O

(
d10k2

))
-sandwiching878

degree of at most k2 in L1 norm under N (0, Id) with respect to the partition C of Rd. This implies879

Proposition D.5.880

We now proceed to proving Claim 1881

Proof of Claim 1. We have the following.882

E
x∼N (0,Id)

[ψup(x)− ψdown(x)] ≤

P
x∼N (0,Id)

[v · x > k1ϵ]+

k1−1∑
j=0

P
x∼N (0,Id)

[{v · x ∈ [jϵ, (j + 1)ϵ)} ∧ {v⊥ · x tan θ ∈ [−(j + 1)ϵ,−jϵ)}] ≤

e−(k1ϵ)
2

+ ϵ

∞∑
j=0

P
x∼N (0,Id)

[v⊥ · x tan θ ∈ [−(j + 1)ϵ,−jϵ)]︸ ︷︷ ︸
≤1

≤ 2ϵ (D.13)
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Let θ denote the angle ∡(v,v′). Given the inequality above, in order to finish the proof of Claim883

1, it remains to upper-bound Ex∼N (0,Id) [φup(x)− ψup(x)] and Ex∼N (0,Id) [φup(x)− ψup(x)] by884

O(θ) + 4ϵ.885

From Corollary D.8 we know that for any t we have:886

E
z∼N (0,1)

[
Rt

up(z)−Rt
down(z)

]
≤ O

(
min

(
log3 k√

k
,
1

t2

))
, (D.14)

and for every z in R887

Rt
down(z) ≤ 1z≤t ≤ Rt

up(z). (D.15)

Since v and v⊥ are orthogonal, the random variables v⊥x and v · x are independent standard888

Gaussians. Using this, together with Equations D.14 and D.15 we obtain the following.889

E
x∼N (0,Id)

[φup(x)− ψup(x)]

=

k1−1∑
j=0

P
x∼N (0,Id)

[v · x ∈ [jϵ, (j + 1)ϵ)] E
x∼N (0,Id)

[
R−jϵ/ tan θ

up (v⊥ · x)− 1v⊥·x≤−jϵ/ tan θ

]

≤
k1−1∑
j=0

P
z1∼N (0,1)

[z1 ∈ [jϵ, (j + 1)ϵ)] E
z2∼N (0,1)

[
R−jϵ/ tan θ

up (z2)−R−jϵ/ tan θ
down (z2)

]

≤
k1−1∑
j=0

P
z1∼N (0,1)

[z1 ∈ [jϵ, (j + 1)ϵ)]O
(
min

( log3 k2√
k2

,
( tan θ

jϵ

)2))
First, consider the case θ ≥ π/4. The above inequality implies890

E
x∼N (0,Id)

[φup(x)− ψup(x)] ≤ O
(
log3 k√

k

) k1−1∑
j=−k1

P
z1∼N (0,1)

[z1 ∈ [jϵ, (j + 1)ϵ)]︸ ︷︷ ︸
=Pz1∼N(0,1)[−k1ϵ≤z1<(k1−1)ϵ]

= O

(
log3 k2√

k2

)
= O

(
θ log1.5 k2

k
1/4
2

)
On the other hand, if θ ≤ π/4 we have tan θ ≤ 2θ and therefore, recalling that for any j it is the case891

that Pz1∼N (0,1) [z1 ∈ [jϵ, (j + 1)ϵ)] ≤ ϵ, we have892

E
x∼N (0,Id)

[
φup(x)− ψup(x)

]
≤

k1−1∑
j=0

O
(
min

( log3 k2√
k2

,
( tan θ

jϵ

)2)
ϵ
)

=

∫ k1ϵ

0

O
(
min

( log3 k2√
k2

,
( tan θ

⌊z/ϵ⌋ϵ

)2))
dz

≤
∫ +∞

0

O
(
min

( log3 k2√
k2

,
( tan θ
z − ϵ

)2))
dz

= O
( log3 k2√

k2
ϵ
)
+

∫ +∞

0

O
(
min

( log3 k2√
k2

,
( tan θ

z

)2))
dz,

which together with a change of variables with a new variable z′ = z/ tan θ allows us to proceed as893

follows:894

E
x∼N (0,Id)

[
φup(x)− ψup(x)

]
= O

( log3 k2√
k2

ϵ
)
+ tan θ

∫ +∞

0

O
(
min

( log3 k2√
k2

,
( 1

z′

)2))
dz′ =

= O
( log3 k2√

k2
ϵ+ tan θ

( log3 k2√
k2

( √k2
log3 k2

)0.5
+
( log3 k2√

k2

)0.5))
= O

(θ log1.5 k2
k
1/4
2

)
(D.16)
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Overall, in either case we have Ex∼N (0,Id) [φup(x)− ψup(x)] = O

(
θ log1.5 k2

k
1/4
2

)
. We now go through895

a fully analogous argument to show that also Ex∼N (0,Id) [ψdown(x)− φdown(x)] = O

(
θ log1.5 k2

k
1/4
2

)
.896

Again, from the independence of v⊥x and v · x, together with Equations D.14 and D.15 we have:897

E
x∼N (0,Id)

[ψdown(x)− φdown(x)]

=

k1−1∑
j=0

P
x∼N (0,Id)

[v · x ∈ [jϵ, (j + 1)ϵ)] E
x∼N (0,Id)

[
1v⊥·x≤−(j+1)ϵ/ tan θ −R

−(j+1)ϵ/ tan θ
down (v⊥ · x)

]

≤
k1−1∑
j=0

P
z1∼N (0,1)

[z1 ∈ [jϵ, (j + 1)ϵ)] E
z2∼N (0,1)

[
R−(j+1)ϵ/ tan θ

up (z2)−R−(j+1)ϵ/ tan θ
down (z2)

]

≤
k1−1∑
j=−k1

P
z1∼N (0,1)

[
z1 ∈

[
jϵ, (j + 1)ϵ

)]
O
(
min

( log3 k2√
k2

,
( tan θ

(j + 1)ϵ

)2))
Again, we first consider the case θ ≥ π/4. The above inequality implies898

E
x∼N (0,Id)

[
ψdown(x)− φdown(x)

]
≤

O
( log3 k√

k

) k1−1∑
j=0

P
z1∼N (0,1)

[
z1 ∈

[
jϵ, (j + 1)ϵ

)]
︸ ︷︷ ︸

=Pz1∼N(0,1)

[
0≤z1<(k1−1)ϵ

]
= O

( log3 k2√
k2

)
= O

(θ log1.5 k2
k
1/4
2

)

On the other hand, if θ ≤ π/4 we have tan θ ≤ 2θ and therefore, recalling that for any j it is the case899

that Pz1∼N (0,1) [z1 ∈ [jϵ, (j + 1)ϵ)] ≤ ϵ, we have900

E
x∼N (0,Id)

[
ψdown(x)− φdown(x)

]
≤

k1−1∑
j=0

O
(
min

( log3 k2√
k2

,
( tan θ

(j + 1)ϵ

)2)
ϵ
)

≤
∫ +∞

∞
O
(
min

( log3 k2√
k2

,
( tan θ

z

)2))
dz = O

(θ log1.5 k2
k
1/4
2

)
,

where the last step follows via precisely the same chain of inequalities as in Equation D.16.901

In total, combining our bounds on Ex∼N (0,Id) [ψdown(x)− φdown(x)], Ex∼N (0,Id) [φup(x)− ψup(x)]902

and Ex∼N (0,Id) [ψup(x)− ψdown(x)] we conclude that the quantity Ex∼N (0,Id)[φup(x)− φdown(x)]903

is at most O( log
1.5 k2

k
1/4
2

· ∡(v,v′)) + 10ϵ, as desired.904

It only remains to prove Claim 2 to conclude the proof of the completeness condition.905

Proof of Claim 2. Corrollary D.6 says that for any value of t, the degree-k2 one-dimensional poly-906

nomials Rt
up(z) and Rt

down(z) have all their coefficients bounded by O
(
210k2

)
. If one substitutes907

v · x in place of z into either of these polynomials and opens the parentheses, the fact that v is a unit908

vector allows us to bound the size of the largest coefficients of Rt
down(v⊥ · x) and Rt

up(v⊥ · x) by909

O((d+ 1)k2(k2 + 1)210k2) = O(d10k2), proving the claim.910

D.4 Miscellaneous Claims911

Claim 3. There is a deterministic algorithm that given a unit vector v in Rd, scalars a and b,912

a monomial m over Rd of degree at most k2, an accuracy parameter β ∈ (0, 1], runs in time913

poly
(
(k2d)

k2 /β
)

and computes an approximation of Ex∼N (0,Id) [m(x) · 1a≤x·v<b] up to an addi-914

tive error β.915
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Proof. Firstly, we compute an orthonormal basis {w1, · · · ,wd−1} for the (d − 1)-dimensional916

subspace of Rd that is orthogonal to v. We express m(x) = p(w1 ·x, · · · ,wd−1 ·x,v ·x), and note917

that the polynomial p has all its coefficients between 0 and (d+ 1)
k2 , and p is comprised of at most918

(d+ 1)
k2 monomials. Thus, to have an additive β-approximation for Ex∼N (0,Id) [m(x) · 1a≤x·v<b],919

it sufficies to compute for every monomial m′ of degree at most k2 an additive β
d2k2

-approximation920

to the quantity921

E
x∼N (0,Id)

[m′(w1 · x, · · · ,wd−1 · x,v · x) · 1a≤v·x<b] ,

which via the spherical symmetry of N (0, Id) equals to Ex∼N (0,Id) [m
′(x) · 1a≤x1<b].922

Secondly, for every monomial m′ of degree at most k2, we compute an approximation of the923

quantity Ex∼N (0,Id) [m
′(x) · 1a≤x1<b] up to an additive error of β

10dk2
. To this end, we write924

m′(x) =
∏

i (xi)
αi where

∑
i αi ≤ k2 and see that925

E
x∼N (0,Id)

[m′(x) · 1a≤x1<b] =

(∏
i>1

(αi − 1)!!1αi is even

)
︸ ︷︷ ︸

≤k
10k2
2

1√
2π

∫ b

a

e−z2/2zα1 dz.

Note that α1 is an integer between 0 and k2. Since we were seeking to compute a β
d2k2

-approximation926

to Ex∼N (0,Id) [m
′(x) · 1a≤x1<b], we see that this approximation can be obtained from the equaiton927

above together with an additive β

(d+1)2k2k10k2
-approximation to 1√

2π

∫ b

a
e−z2/2zα1 dz. We denote928

ρ(z) = e−z2/2zα1 , and let β′ = β

(d+1)2k2k
10k2
2

. We see that the function ρ has the following key929

properties:930

1. For all z in Rd, the derivative ρ′(z) = α1e
−z2/2zα1−1

1α1≥1 − e−z2/2zα1+1 we have931

|ρ′(z)| ≤ (k2 + 1)
k2+1

932

2. For all z0 in Rd satisfying z0 > 4k2 + 2 the value
∫
|z|>z0

∣∣∣e−z2/2zα1

∣∣∣ dz is at most933 ∫
|z|>z0

e−z2/4 dz which in turn is at most e−z2
0/4.934

The three properties above imply that one can approximate the value of
∫ b

a
ρ(z) dz up to an additive935

error of β′ via discretization, i.e., by splitting the interval [a, b] ∩ [−
√
2 ln(β′),

√
2 ln (β′)] into936

intervals of size at most ∆ and for each of these intervals [a′j , b
′
j ] use the inequality937 ∫ b′j

a′
j

ρ(z) dz = ρ(a′j)(a
′
j − b′j)±

(
sup
z∈R
|ρ′(z)|

)
(a′j − b′j)2,

which implies that938

∫
z∈[a,b]

ρ(z) dz =

by property (2) of ρ︷ ︸︸ ︷∫
z∈[a,b]∩

[
−
√

2 ln(β′),
√

2 ln(β′)
] ρ(z) dz ± β′

2

=
∑
j

(
ρ(a′j)(a

′
j − b′j)±

(
sup
z∈R
|ρ′(z)|

)
(a′j − b′j)2

)
± β′

2

=
∑
j

ρ(a′j)(a
′
j − b′j)±

((
sup
z∈R
|ρ′(z)|

)
︸ ︷︷ ︸
≤(k2+1)k2+1

by property (1) of ρ

√
8 ln (β′)∆ +

β′

2

)
,

which implies that if we take ∆ to be β′√
8 ln(β′)(k2+1)k2+1

, then939 ∑
j

ρ(a′j)(a
′
j − b′j) =

∫
z∈[a,b]

ρ(z) dz ± β′.
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Overall, evaluating the sum above requires one to compute ρ(a′j) on poly((k2)
k2/β′) values of a′j .940

Therefore, substituting β′ = β

(d+1)2k2k
10k2
2

so it can be computed in time poly((k2d)
k2/β).941

E Spectral Tester942

In this section we prove the following theorem.943

Theorem E.1. There exists some absolute constant C and a deterministic algorithm Tspectral that,944

given945

• A positive integer U ≥
(
Cd
ϵδ

)C
.946

• a dataset S of points in Rd of size M ≤ U .947

• a unit vector v in Rd,948

• parameters ϵ, δ and µ in (0, 1).949

For every positive absolute constant µ, the algorithm Tspectral runs in time poly
(
dU
ϵδ

)
and outputs950

Acceptor output Reject. For all ϵ, δ and U ≥
(
Cd
ϵδ

)C
the algorithm Tspectral satisfies the following:951

• Completeness: If S consists of M ≤ U i.i.d. samples from the standard Gaussian distribu-952

tion, then with probability at least 1−O (δ) the set S is such that for all unit vectors v the953

algorithm Tspectral accepts when given (U, S,v, ϵ, δ, µ) as the input.954

• Monotonicity under Datapoint Removal: If the algorithm Tspectral outputs Accept for some955

specific input (U, S,v, ϵ, δ, µ), then for all subsets S′ ⊂ S the tester Tspectral will also accept956

the input (U, S′,v, ϵ, δ, µ).957

• Soundness: For any dataset S and unit vector v, if the tester Tspectral accepts the input958

(U, S,v, ϵ, δ, µ) then for every unit vector v′ in Rd we have959

1

U

∑
x∈S

[
1sign(x·v)̸=sign(x·v′)

]
≤ (1 + µ)

∡(v,v′)

π
+O(ϵ).

We argue that the following algorithm (which is essentially a restatement of Algorithm 2) satisfies the960

specifications above:961

• Given: parameter ϵ, δ, µ in (0, 1), dataset S of points in Rd of size M ≤ U , a unit vector v962

in Rd,963

1. k1 ←
2
√

log 2/ϵ

ϵ , k2 ← C0.1

µ5964

2. ∆← 60(4k2)
2k2+2(d+1)6k2+2

δ ( logU
U )1/4965

3. For all a and b in {−∞,−k1ϵ,−(k1 − 1)ϵ, · · · ,−ϵ, 0,+ϵ, · · · , (k1 − 1)ϵ, k1ϵ,+∞}966

(a) Compute W a,b such that967

W a,b−∆I(d+1
k2
)×(d+1

k2
) ⪯ E

x∼N

[(
x⊗k2

)(
x⊗k2

)⊤·1a≤x·v<b

]
⪯W a,b+∆I(d+1

k2
)×(d+1

k2
)

(E.1)

(For how to compute this approximation, see Claim 6).968

(b) If the following does not hold:969

1

U

∑
x∈S

(
x⊗k2

) (
x⊗k2

)⊤
1a≤x·v<b ⪯W a,b + 3∆I(d+1

k2
)×(d+1

k2
), (E.2)

then output Reject.970

4. If did not reject in any previous step, output Accept.971
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It is immediate that the algorithm indeed runs in time poly
(
dU
ϵδ

)
, because step (2b) can be performed972

by computing the largest eigenvalue of a
(
d+1
k2

)
×
(
d+1
k2

)
-sized matrix. Monotonicity over datapoint973

removal also follows immediately since if S′ ⊂ S then974

1

U

∑
x∈S′

(
x⊗k2

) (
x⊗k2

)⊤ ⪯ 1

U

∑
x∈S

(
x⊗k2

) (
x⊗k2

)⊤
,

and therefore if the condition in step (4) holds for S then it will also hold for S′.975

E.1 Completeness976

Since we have already proven the property of monotonicity under datapoint removal, we can assume977

without loss of generality that M = U . If not, the set S can be obtained by first taking U samples978

from N (0, Id) and then removing the last U −M of them. If the Tspectral accepted the dataset before979

removing these points, then it will also accept it after these datapoints are removed.980

Suppose the set dataset S consists of U i.i.d. samples from N (0, Id). Similar to Section D.1, we981

again note that the collection H of sets of the form 1a≤v·x<b has VC dimension at most (d+ 1)2.982

Lemma A.1 then implies that with probability at least 1− δ for all pairs of a and b, for every unit983

vector v and for every polynomial p of degree at most k2, if Bp denotes the largest coefficient of p984

(in absolute value) then we have985 ∣∣∣∣∣ 1U ∑
x∈S

[
(p(x))

2
1x∈A

]
− E

x∼N (0,Id)

[
(p(x))

2
1x∈A

]∣∣∣∣∣ ≤ 2B2
p (d+ 1)

5k2

√
(4k2)2k2+2

δU
,

986 ∣∣∣∣∣ 1U ∑
x∈S

[
(p(x))

2
1x∈A

]
− E

x∼N (0,Id)

[
(p(x))

2
1x∈A

]∣∣∣∣∣ ≤ 60B2
p(4k2)

2k2+2(d+ 1)6k2+2

δ

(
logU

U

)1/4

,

Combining this with Equation A.1 we get987

1

U

∑
x∈S

[
(p(x))

2
1x∈A

]
≤ E

x∼N (0,Id)

[
(p(x))

2
1x∈A

]
+(∥p∥coeff)

2 60(4k2)
2k2+2(d+ 1)6k2+2

δ

(
logU

U

)1/4

and Claim 6 implies that Equation E.17 holds which implies that988

p⊤W a,bp ≥ E
x∼N (0,Id)

[
(p(x))

2
1x∈A

]
+ (∥p∥coeff)

2 60B2
p(4k2)

2k2+2(d+ 1)6k2+2

δ

(
logU

U

)1/4

.

Combining the last two equations above, we get:989

1

U

∑
x∈S

[
(p(x))

2
1x∈A

]
≤ p⊤W a,bp+ (∥p∥coeff)

2 120B2
p(4k2)

2k2+2(d+ 1)6k2+2

δ

(
logU

U

)1/4

.

Recalling the notation in A.1, we see that the assertion that the inequality above holds for every p, is990

equivalent to the following matrix inequality991

1

U

∑
x∈S

[
x⊗k2

(
x⊗k2

)⊤
1x∈A

]
⪯W a,b+

120B2
p(4k2)

2k2+2(d+ 1)6k2+2

δ

(
logU

U

)1/4

I(d+1
k2
)×(d+1

k2
).

Finally, substituting k2 = C0.1

µ5 and U ≥
(
Cd
ϵδ

)C
, we see that for a sufficiently large absolute constant992

C, the inequality above implies Equation A.1, and thus Tspectral accepts.993

E.2 Soundness994

In order to deduce the soundness condition, expand upon definitions introduced in D.2. We emphasize995

that unlike the L1-sandwiching degree used to analyze the disagreement tester, here we use the notion996

of L2-sandwiching polynomials.997
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Definition E.2. We say that a function f : Rd → {0, 1} is ϵ-sandwiched in L2 norm between a pair998

of functions fup : Rd → R and fdown : Rd → R under N (0, Id) if:999

• For all x in Rd we have fdown(x) ≤ f(x) ≤ fup(x)1000

• Ex∼N (0,Id)

[
(fup(x)− fdown(x))

2
]
≤ ϵ.1001

Definition E.3. We say that a function f : Rd → {0, 1} has (ϵ, B)-sandwiching degree of at most1002

k in L2 norm under N (0, Id) with respect to a partition C of Rd if the function f is ϵ-sandwiched1003

in L2 norm under N (0, Id) between
∑

A∈C
(
pAdown1A

)
and

∑
A∈C

(
pAup1A

)
, where pAup and pAdown are1004

degree−k polynomials over Rdwhose coefficients are bounded by B in absolute value.1005

Subsection E.3 is dedicated to proving the following bound on the L
2
-sandwiching degree of a1006

specific family of functions with respect to a specific partition of Rd.1007

Proposition E.4. For all ϵ and k2, let k1 =
2
√

log 2/ϵ

ϵ , and let v be a unit vector in Rd. Then,1008

there exists a partition C of Rd consisting of sets of the form {x ∈ Rd : a ≤ v · x ≤ b} for a1009

certain collection of pairs a, b in {−∞,−k1ϵ,−(k1− 1)ϵ, · · · ,−ϵ, 0,+ϵ, · · · , (k1− 1)ϵ, k1ϵ,+∞}.1010

Then, for every unit vector v′, the function f(x) = 1sign(v·x)̸=sign(v′·x) has (O(∡(v,v′) log
5 k2

k
1/4
2

·) +1011

10ϵ, O(d10k2))-sandwiching degree of at most k2 in L2 norm under N (0, Id) with respect to the1012

partition C of Rd.1013

A bound on the sandwiching degree of a class of functions leads to a guarantee for the tester1014

Tdisagreement:1015

Proposition E.5. Let C be a partition of Rd and f a {0, 1}-valued function that has (ν,B)-1016

sandwiching degree of at most k2 in L2 norm under N (0, Id) with respect to the partition C. If a set1017

S of points in Rd satisfies the following condition for all A in C :1018

1

U

∑
x∈S

(x⊗k2)(x⊗k2)⊤1x∈A ⪯ E
x∼N (0,Id)

[(x⊗k2)(x⊗k2)⊤1x∈A] +
ϵ2

|C|B2(d+ 1)k2
I(d+1

k2
)×(d+1

k2
)

(E.3)
then we have1019 √

1

U

∑
x∼S

[
1f(x)=1

]
≤
√

P
x∼N (0,Id)

[f(x) = 1] +
√
ν + ϵ.

Proof. Since f has (ν,B)-sandwiching degree of at most k2 in L2 norm underN (0, Id) with respect1020

to the partition C, we have a collection of polynomials
{
pAdown, p

A
up

}
for allA in C that have coefficients1021

bounded by B, satisfy for all x the condition1022

f(x) ∈
[∑
A∈C

(
pAdown(x)1x∈A

)
,
∑
A∈C

(
pAup(x)1x∈A

)]
, (E.4)

as well as1023

E
x∼N (0,Id)

[(∑
A∈C

(
pAup(x)1x∈A

)
−
∑
A∈C

(
pAdown(x)1x∈A

))2]
≤ ν. (E.5)

For all x in Rd we have f(x) ≤ (f(x))2 ≤ (
∑

A∈C(p
A
up(x)1x∈A))

2. Since all distinct pairs A1, A21024

in C are disjoint, we have (
∑

A∈C(p
A
up(x)1x∈A))

2 =
∑

A∈C(p
A
up(x)1x∈A)

2. Therefore, we have1025

1

U

∑
x∼S

[f(x)] ≤
∑
A∈C

(
1

U

∑
x∼S

[(
pAup(x)1x∈A

)2])
(E.6)

Referring to definitions in Subsection A.1, we see that Equation E.3 is equivalent to the assertion that1026

for every A in C and every degree-k2 polynomial p we have1027

1

U

∑
x∈S

(p(x))
2
1x∈A ≤ E

x∼N (0,Id)

[
(p(x))

2
1x∈A

]
+

ϵ2

|C|B2 (d+ 1)
k2

(∥p∥coeff)
2
.
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Choosing p = pAup in the inequality above and combining with Equation E.6 we get:1028

1

U

∑
x∼S

[
f(x)

]
≤
∑
A∈C

(
E

x∼N (0,Id)
[(pAup(x)1x∈A)

2] +
ϵ2

|C|B2(d+ 1)k2
(
∥∥pAup

∥∥
coeff

)2
)
.

By Equation A.1, we have
∥∥pAup

∥∥
coeff
≤ B2dk2 . Substituting this and again recalling that all distinct1029

pairs A1, A2 in C are disjoint, we obtain1030

1

U

∑
x∼S

[f(x)] ≤ E
x∼N (0,Id)

[(∑
A∈C

pAup(x)1x∈A

)2]
+ ϵ2.

Taking square roots of both sides gives us1031 √
1

U

∑
x∼S

[f(x)] ≤
√

E
x∼Nd

[(∑
A∈C

pAup(x)1x∈A

)2]
+ ϵ2

≤
√

E
x∼Nd

[(∑
A∈C

pAup(x)1x∈A

)2]
+ ϵ. (E.7)

Equation E.4, together with the triangle inequality and the fact that (f(x))2 = f(x), implies that1032 √
E

x∼N (0,Id)

[(∑
A∈C

pAup(x)1x∈A

)2]
≤

≤
√

E
x∼N (0,Id)

[
f(x)

]
+

√
E

x∼N (0,Id)

[(∑
A∈C

pAup(x)1x∈A − f(x)
)2]

≤
√

E
x∼N (0,Id)

[
f(x)

]
+

√
E

x∼N (0,Id)

[(∑
A∈C

pAup(x)1x∈A −
∑
A∈C

pAdown(x)1x∈A

)2]
Substituting Equation E.5, we get1033 √

E
x∼N (0,Id)

[(∑
A∈C

pAup(x)1x∈A

)2]
≤
√

E
x∼N (0,Id)

[f(x)] +
√
ν,

which combined with Equation E.7 finishes the proof.1034

Claim 6 implies that matrices W a,b satisfy Equation E.1, which implies that for all monomials p of1035

degree at most k2 we have1036

W a,b ⪯ E
x∼N (0.Id)

[ (
x⊗k2

) (
x⊗k2

)⊤
1a≤x·v<b

]
+∆I(d+1

k2
)×(d+1

k2
)

If the above is the case, and the algorithm accepts, then we have for all pairs of a and b in1037

{−∞,−k1ϵ,−(k1 − 1)ϵ, · · · ,−ϵ, 0,+ϵ, · · · , (k1 − 1)ϵ, k1ϵ,+∞} that1038

1

U

∑
x∈S

(
x⊗k2

) (
x⊗k2

)⊤
1a≤x·v<b ⪯

E
x∼N (0.Id)

[(
x⊗k2

) (
x⊗k2

)⊤
1a≤x·v<b

]
+
210(4k2)

2k2+2(d+ 1)6k2+2

δ

(
logU

U

)1/4

I(d+1
k2
)×(d+1

k2
).

Taking the equation above, together with Proposition E.5 and Proposition E.4 we conclude that for all1039

unit vectors v′:1040 √
1

U

∑
x∼S

[
1sign(x·v)̸=sign(x·v′)

]
≤
√

P
x∼N (0,Id)

[sign(v · x) ̸= sign(v′ · x)]+

√√√√O

(
log5 k2

k
1/4
2

∡(v,v′)

)
+

+O

√(2k1 + 2)
(4k2)2k2+2(d+ 1)7k2+2

δ

(
logU

U

)1/4

d10k2


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Substituting k1 ←
2
√

log 2/ϵ

ϵ , k2 ← C0.1

µ5 , Y ← C
(

(kd)k2

δ

)C
, taking C to be a sufficiently large1041

absolute constant and recalling that Px∼N (0,Id)[sign(v · x) ̸= sign(v′ · x)] equals to ∡(v,v′)/π we1042

conclude that1043

1

U

∑
x∼S

[
1sign(x·v)̸=sign(x·v′)

]
≤ (1 + µ)

∡(v,v′)

π
+O(ϵ).

E.3 Bounding the L2 sandwiching degree of the disagreement region1044

To prove Proposition E.4, we follow an exactly analogous approach as the one for Proposition D.5.1045

We will need the following result from [KSV24b]:1046

Fact E.6 ([KSV24b]). For every positive integer k and a real value t, the function f(z) = 1z≤t has1047

(O( log
10 k√
k

), O(210k))-sandwiching degree in L2 norm of at most k under N (0, 1).1048

The following corollary slightly strengthens the fact above:1049

Corollary E.7. For every positive integer k ≥ 4 and a real value t, the function f(z) = 1z≤t is1050

(O(min( log
10 k√
k
, 1
t2 )), 2

10k)-sandwiched in L2 norm under N (0, 1) between a pair of polynomials1051

J t
up and J t

down of degree of at most k.1052

Proof. Indeed, if log10 k√
k
≤ 1024

t2 then the corollary follows from Fact E.6. So all we need to do is to1053

consider the other case. We see that either t > 1 or t < −1 (since k ≥ 4). if t > 1 we take pdown(x) =1054

0 and pup(x) =
(
x
t

)2
. If t < −1, we take take pup(x) = 1 and pdown(x) = 1 −

(
x
t

)2
. In either1055

case, the polynomials pdown, pup form a pair of (O(min( log
10 k√
k
, 1
t2 )), 1)-sandwiching polynomials of1056

degree 2.1057

Let v⊥ be the unit vector equal up to scaling to the component of v′ perpendicular to v. Then, we1058

can write1059

ψdown(x) ≤ ψup(x) ≤ 1v·x≥0∧v′·x<0 (E.8)
ψdown(x) ≤ ψup(x) ≤ 1v·x>0∧v′·x≤0 (E.9)

where1060

ψup(x) =


1 if v · x≥ k1ϵ or v · x = 0,

1v⊥·x tan θ≤−jϵ if v · x ̸= 0 and v · x ∈ [jϵ, (j + 1)ϵ) for 0 ≤ j ≤ k1 − 1,

0 if v · x< 0

ψdown(x) =


0 if v · x≥ k1ϵ or v · x = 0

1v⊥·x tan θ<−(j+1)ϵ if v · x ̸= 0 and v · x ∈ [jϵ, (j + 1)ϵ) for 0 ≤ j ≤ k1 − 1

0 if v · x< 0

Recall that for every t ∈ R, Corollary E.7 gives us one-dimensional degree-k2 sandwiching poly-1061

nomials J t
down(z) and J t

up(z) for 1z≤t under L2 norm. Using this notation, we have for all x in1062
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Rd1063

Denote this φL2
down(x)︷ ︸︸ ︷

k1−1∑
j=0

1v·x·[jϵ,(j+1)ϵ)J
−(j+1)ϵ/ tan θ
down (v⊥ · x) ≤ ψdown(x) ≤ 1v·x≥0∧v′·x<0 ≤

≤ ψup(x) ≤ 1v·x≥k1ϵ +

k1−1∑
j=0

1v·x·[jϵ,(j+1)ϵ)J
−jϵ/ tan θ
up (v⊥ · x)︸ ︷︷ ︸

Denote this φL2
up (x)

(E.10)

In order to conclude Proposition E.4. We show the following two claims:1064

Claim 4. We have1065

E
x∼N (0,Id)

[(
φL2

up (x)− φ
L2

down(x)
)2]
≤ O

(
log5 k2

k
1/4
2

· ∡(v,v′)

)
+ 10ϵ

Claim 5. For all integers j in [0, k1 − 1], every coefficient of J−(j+1)ϵ/ tan θ
down (v⊥ · x) and1066

J
−jϵ/ tan θ
up (v⊥ · x) is at most O

(
d10k2

)
in absolute value.1067

Proposition E.4 follows from the two claims above for as follows. We first observe that Equations1068

E.9 and E.10 imply that1069

φL2

down(−x) ≤ 1v·x<0∧v′·x≥0 ≤ φL2
up (−x).

Recalling our convention that sign(0) = 1, we see that1070

1sign(v·x) ̸=sign(v′·x) = 1v·x≥0∧v′·x<0 + 1v·x<0∧v′·x≥0

this, together with E.10 allows us to bound1071

φL2

down(x) + φL2

down(−x) ≤ 1sign(v·x)̸=sign(v′·x) ≤ φL2
up (x) + φL2

up (−x), (E.11)

Claim E.10 allows us to conclude that1072

E
x∼N (0,Id)

[(
φL2

up (x) + φL2
up (−x)− φ

L2

down(x)− φ
L2

down(−x)
)2]
≤

2

(
E

x∼N (0,Id)

[(
φL2

up (x)− φ
L2

down(x)
)2]

+ E
x∼N (0,Id)

[(
φL2

up (−x)− φ
L2

down(−x)
)2])

≤

O

(
log1.5 k2

k
1/4
2

· ∡(v,v′)

)
+ 20ϵ. (E.12)

Equations E.11 and E.12, together with comparing the definition of φup and φdown with Definition1073

E.3 and recalling Claim 5, allow us to conclude that there exists a partition C of Rd consisting of sets1074

of the form
{
x ∈ Rd : a ≤ v · x ≤ b

}
for a certain collection of pairs a, b in1075

{−∞,−k1ϵ,−(k1 − 1)ϵ, · · · ,−ϵ, 0,+ϵ, · · · , (k1 − 1)ϵ, k1ϵ,+∞}, such that for every unit vector1076

v′, the function f(x) = 1sign(v·x)̸=sign(v′·x) has
(
O

(
∡(v,v′)

k
1/4
2

)
+ 10ϵ, O

(
d10k2

))
-sandwiching1077

degree of at most k2 in L1 norm under N (0, Id) with respect to the partition C of Rd. This implies1078

Proposition E.4.1079

We now proceed to proving Claim 41080
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Proof of Claim 4. We have:1081

E
x∼N (0,Id)

[
(ψup(x)− ψdown(x))

2
]
= E

x∼N (0,Id)
[ψup(x)− ψdown(x)] ≤

P
x∼N (0,Id)

[v · x > k1ϵ]+

k1−1∑
j=0

P
x∼N (0,Id)

[{v · x ∈ [jϵ, (j + 1)ϵ)} ∧ {v⊥ · x tan θ ∈ [−(j + 1)ϵ,−jϵ)}] ≤

e−(k1ϵ)
2

+ ϵ

∞∑
j=0

P
x∼N (0,Id)

[v⊥ · x tan θ ∈ [−(j + 1)ϵ,−jϵ)]︸ ︷︷ ︸
≤1

≤ 2ϵ (E.13)

Let θ denote the angle ∡(v,v′). Given the inequality above, in order to finish the proof of Claim1082

4, it remains to upper-bound Ex∼N (0,Id) [φup(x)− ψup(x)] and Ex∼N (0,Id) [φup(x)− ψup(x)] by1083

O(θ) + 4ϵ.1084

From Corollary E.7 we know that for any t we have:1085

E
z∼N (0,1)

[(
J t

up(z)− J t
down(z)

)2] ≤ O(min

(
log10 k√

k
,
1

t2

))
, (E.14)

and for every z in R1086

J t
down(z) ≤ 1z≤t ≤ J t

up(z). (E.15)

Since v and v⊥ are orthogonal, the random variables v⊥x and v · x are independent standard1087

Gaussians. Using this, together with Equations E.14 and E.15 we get:1088

E
x∼N (0,Id)

[(
φL2

up (x)− ψup(x)
)2]

=

k1−1∑
j=0

E
x∼N (0,Id)

[
1v·x∈[jϵ,(j+1)ϵ)

(
φL2

up (x)− ψL2
up (x)

)2]

≤
k1−1∑
j=0

P
x∼N (0,Id)

[v · x ∈ [jϵ, (j + 1)ϵ)] E
x∼N (0,Id)

[(
J−jϵ/ tan θ

up (v⊥ · x)− 1v⊥·x≤−jϵ/ tan θ

)2]
=

k1−1∑
j=0

P
z1∼N (0,1)

[z1 ∈ [jϵ, (j + 1)ϵ)] E
z2∼N (0,1)

[(
J−jϵ/ tan θ

up (z2)− J−jϵ/ tan θ
down (z2)

)2]
≤

k1−1∑
j=0

P
z1∼N (0,1)

[z1 ∈ [jϵ, (j + 1)ϵ)]O

(
min

(
log10 k2√

k2
,

(
tan θ

jϵ

)2
))

First, consider the case θ ≥ π/4. The above inequality implies1089

E
x∼N (0,Id)

[(
φL2

up (x)− ψup(x)
)2] ≤ O( log10 k√

k

) k1−1∑
j=0

P
z1∼N (0,1)

[z1 ∈ [jϵ, (j + 1)ϵ)]︸ ︷︷ ︸
=Pz1∼N(0,1)[0≤z1<(k1)ϵ]

=

O

(
log10 k2√

k2

)
= O

(
θ log5 k2

k
1/4
2

)
.

34



On the other hand, if θ ≤ π/4 we have tan θ ≤ 2θ and therefore, recalling that for any j it is the case1090

that Pz1∼N (0,1) [z1 ∈ [jϵ, (j + 1)ϵ)] ≤ ϵ, we have1091

E
x∼N (0,Id)

[(
φL2

up (x)− ψup(x)
)2]
≤

k1−1∑
j=0

O
(
min

( log10 k2√
k2

,
( tan θ

jϵ

)2)
ϵ
)

≤
∫ +∞

0

O
(
min

( log10 k2√
k2

,
( tan θ
z − ϵ

)2))
dz

≤ O
( log10 k2√

k2
ϵ
)
+

∫ +∞

0

O
(
min

( log10 k2√
k2

,
( tan θ

z

)2))
dz

= O
( log10 k2√

k2
ϵ
)
+ tan θ

∫ +∞

0

O
(
min

( log10 k2√
k2

,
(1
z

)2))
dz

= O
( log10 k2√

k2
ϵ+ tan θ

( log10 k2√
k2

( √
k2

log10 k2

)0.5
+
( log10 k2√

k2

)0.5))
= O

(θ log5 k2
k
1/4
2

)
(E.16)

Overall, in either case we have Ex∼N (0,Id)

[(
φL2

up (x)− ψup(x)
)2]

= O

(
θ log1.5 k2

k
1/4
2

)
. We now go1092

through a fully analogous argument to show that also Ex∼N (0,Id)

[(
ψdown(x)− φL2

down(x)
)2]

=1093

O

(
θ log1.5 k2

k
1/4
2

)
. Again, from the independence of v⊥x and v · x, together with Equations E.14 and1094

E.15 we have:1095

E
x∼N (0,Id)

[(
ψdown(x)− φL2

down(x)
)2]

=

=

k1−1∑
j=0

P
x∼N (0,Id)

[v · x ∈ [jϵ, (j + 1)ϵ)] E
x∼N (0,Id)

[(
1v⊥·x≤−(j+1)ϵ/ tan θ − J

−(j+1)ϵ/ tan θ
down (v⊥ · x)

)2]
≤

k1−1∑
j=0

P
z1∼N (0,1)

[z1 ∈ [jϵ, (j + 1)ϵ)] E
z2∼N (0,1)

[(
R−(j+1)ϵ/ tan θ

up (z2)−R−(j+1)ϵ/ tan θ
down (z2)

)2]
≤

k1−1∑
j=0

P
z1∼N (0,1)

[z1 ∈ [jϵ, (j + 1)ϵ)]O

(
min

(
log10 k2√

k2
,

(
tan θ

(j + 1)ϵ

)2
))
≤

k1−1∑
j=0

P
z1∼N (0,1)

[z1 ∈ [jϵ, (j + 1)ϵ)]O

(
min

(
log10 k2√

k2
,

(
tan θ

jϵ

)2
))

As it was shown previously, the expression above is at most O
(

θ log5 k2

k
1/4
2

)
.1096

In total, combining our bounds on Ex∼N (0,Id)[(ψdown(x) − φL2

down(x))
2], Ex∼N (0,Id)[(φ

L2
up (x) −1097

ψup(x))
2] and Ex∼N (0,Id)[(ψup(x)− ψdown(x))

2] we conclude that1098

E
x∼N (0,Id)

[(
φL2

up (x)− φ
L2

down(x)
)2]
≤ O

(
log5 k2

k
1/4
2

· ∡(v,v′)

)
+ 10ϵ.

1099

It only remains to prove Claim 5.1100

Proof of Claim 5. Corrollary E.5 says that for any value of t, the degree-k2 one-dimensional polyno-1101

mials J t
up(z) and J t

down(z) have all their coefficients bounded by O
(
210k2

)
. If one substitutes v · x1102
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in place of z into either of these polynomials and opens the parentheses, the fact that v is a unit1103

vector allows us to bound the size of the larges coefficients of Rt
down(v⊥ · x) and Rt

up(v⊥ · x) by1104

O
(
dk2(k2 + 1)210k2

)
= O(d10k2), proving the claim.1105

E.4 Miscellaneous Claims1106

Claim 6. There is a deterministic algorithm that given a unit vector v in Rd, scalars a and b,1107

a monomial m over Rd of degree at most k2, an accuracy parameter β ∈ (0, 1], runs in time1108

poly
(
(k2d)

k2 /β
)

and computes a
(
d+1
k2

)
×
(
d+1
k2

)
-matrix W a,b such that1109

W a,b − βI(d+1
k2
)×(d+1

k2
) ⪯ E

x∼N (0,Id)

[(
x⊗k2

) (
x⊗k2

)⊤ · 1a≤x·v<b

]
⪯W a,b + βI(d+1

k2
)×(d+1

k2
)

(E.17)

Proof. From Section 3, we recall that x⊗k2 is the vector one gets by evaluating all multidimensional1110

monomials of degree at most k2 on input x, and therefore the
(
d+1
k2

)
×
(
d+1
k2

)
-matrix (x⊗k2)(x⊗k2)⊤,1111

viewed as a bilinear form, for degree-k polynomials p1 and p2 we have p⊤1 (x
⊗k2)(x⊗k2)⊤p2 =1112

p1(x)p2(x). Thus, the entries of (x⊗k2)(x⊗k2)⊤ are indexed by pairs of monomials m1 and m21113

over Rd of degree at most k, and we have m⊤
1 (x

⊗k2)(x⊗k2)⊤m2 = m1(x)m2(x). And the entries1114

of Ex∼N [(x⊗k2)(x⊗k2)⊤ · 1a≤x·v<b] are also indexed by pairs of monomials m1 and m2 over Rd1115

of degree at most k and equal to1116

Ex∼N [m1(x)m2(x) · 1a≤x·v<b]. Since the product m1m2 is a monomial of degree at most 2k2,1117

Claim 3 tells us that this value can be approximated up to error β′ in time poly((k2d)k2/β′) (we will1118

set the value of β′ later).1119

Thus, we take the
(
d+1
k2

)
×
(
d+1
k2

)
-matrix W a,b to have entries pairs of monomials m1 and m2 over1120

Rd of degree at most k and equal to additive β′-approximations to Ex∼N [m1(x)m2(x) · 1a≤x·v<b].1121

Thus, the difference between Ex∼N [(x⊗k2)(x⊗k2)⊤ ·1a≤x·v<b] andW a,b is a
(
d+1
k2

)
×
(
d+1
k2

)
-matrix1122

whose entries are bounded by β′ in absolute value. Thus, the Frobenius norm of this difference1123

matrix is at most (d + 1)k2/2β′, and therefore all eigenvalues of the matrix Ex∼N [m1(x)m2(x) ·1124

1a≤x·v<b] −W a,b are in [−(d + 1)k2/2β′, (d + 1)k2/2β′]. Taking β′ = β(d + 1)−k2/2, we can1125

conclude that Equation E.17 holds.1126

Overall, the run-time is poly((k2d)k2/β′), which we see equals to poly((k2d)
k2/β) since we have1127

β′ = β(d+ 1)−k2/2. This completes the proof.1128

F Testing Massart Noise1129

We give here the full proof of our main theorem (Theorem B.1), which we restate for convenience.1130

Theorem F.1. There exists a deterministic algorithm AMassart that runs in time poly
(
Nd
ϵδ

)
and for a1131

sufficiently large absolute constant C satisfies the following. Given parameters ϵ, δ in (0, 1) and a1132

dataset S̄ of size N ≥
(
Cd
ϵδ

)C
consisting of elements in Rd × {±1}, the algorithm AMassart outputs1133

either (Accept,v) for some unit vector v in Rd, or outputs Reject (in the former case we say A1134

accepts, while in the latter case we say A rejects). The algorithm AMassart satisfies the following1135

conditions:1136

1. Completeness: The algorithm AMassart accepts with probability at least 1 − O(δ) if S̄ is1137

generated by EXMassart
N ,f,η0

where f is an origin-centered halfspace and η0 ≤ 1/3.1138

2. Soundness: For any dataset S̄ of size N ≥
(
Cd
ϵδ

)C
, if AMassart accepts then the vector v1139

given by AMassart satisfies1140

P
(x,y)∼S̄

[sign(x · v) ̸= y] ≤ opt+O(ϵ), (F.1)

where opt is defined to be minv′∈Rd

(
P(x,y)∼S̄ [sign(x · v′) ̸= y]

)
.1141
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The rest of this section proves the above theorem. The algorithm AMassart does the following (where1142

C is a sufficiently large absolute constant):1143

• Given: parameters ϵ, δ in (0, 1) and a dataset S̄ of size N ≥
(
Cd
ϵδ

)C
consisting of elements1144

in Rd × {±1}.1145

1. Let v be the output of the algorithm of Fact B.2 run on the dataset S̄ with accuracy1146

parameter ϵ′ = ϵ3/2

100
√
d−1

and failure probability δ. Without loss of generality we can1147

assume that the algorithm is deterministic, because we can use some of the points in S̄1148

for random seeds.1149

2. S ←
{
x : (x, y) ∈ S̄

}
and N ←

∣∣S̄∣∣.1150

3. Run the tester Tdisagreement from Theorem D.1, on input (S,v, ϵ, δ, 0.1).1151

4. If Tdisagreement rejects in the previous step, output output Reject.1152

5. If |SFalse| > 2
5N , then output Reject.1153

6. Sfar
False ← SFalse ∩

{
x ∈ Rd :

∣∣∡(x,v)− π
2

∣∣ > ϵ3/2√
d−1

}
; Snear

False ← SFalse \ Sfar
False.1154

7. If Snear
False > 4ϵN , then output Reject.1155

8. Take U = 2
5N and then run the spectral tester Tspectral from Theorem E.1 with the input1156

parameters (U, Sfar
False,v, ϵ, δ, 0.1).1157

9. If Tspectral rejects in the previous step, output output Reject.1158

10. Otherwise, output (Accept,v).1159

From the run-time guarantees given in Theorem D.1 and Theorem E.1, we see immideately that the1160

run-time of the algorithm AMassart is poly
(
d
ϵ log

1
δ

)
.1161

F.1 Soundness1162

We first show the soundness condition. For any dataset S̄ of size N ≥
(
Cd
ϵδ

)C
, we need to show that1163

if AMassart accepts then the vector v given by AMassart satisfies Equation F.1. Theorems D.1 and E.11164

imply that if the algorithm AMassartaccepts then1165

P
(x,y)∼S̄

[sign(x · v) ̸= sign(x · v′)] = (1± 0.1)
∡(v,v′)

π
±O(ϵ). (F.2)

1166

1

U

∑
x∈Sfar

False

[
1sign(x·v) ̸=sign(x·v′)

]
≤ 1.1

∡(v,v′)

π
+O(ϵ). (F.3)

Rearranging, we get1167

P
(x,y)∼S̄

[sign(x · v′) ̸= y]− P
(x,y)∼S̄

[y ̸= sign(v · x)] =

P
(x,y)∼S̄

[sign(x · v) ̸= sign(x · v′) ∧ y = sign(v · x)]−

− P
(x,y)∼S̄

[sign(x · v) ̸= sign(x · v′) ∧ y ̸= sign(v · x)] =

P
(x,y)∼S̄

[sign(x · v) ̸= sign(x · v′)]− 2 P
(x,y)∼S̄

[sign(x · v) ̸= sign(x · v′) ∧ y ̸= sign(v · x)] =

P
x∼S

[sign(x · v) ̸= sign(x · v′)]− 2

N

∑
x∈SFalse

[
1sign(x·v)̸=sign(x·v′)

]
By Equation F.2, the first term above is lower-bounded by 0.9∡(v,v′)

π −O(ϵ). The second term can bro-1168

ken into two components: 2
N

∑
x∈Snear

False

[
1sign(x·v)̸=sign(x·v′)

]
and 2

N

∑
x∈Sfar

False

[
1sign(x·v)̸=sign(x·v′)

]
.1169

If the algorithm does not reject in step (8), the former term is upper-bounded by O(ϵ), while Equation1170

F.2 tells us that the latter term is upper-bounded by 2U
N

(
1.1∡(v,v′)

π +O(ϵ)
)

. Overall, substituting1171
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these bounds and recalling that U/N = 2/5, we get1172

P
(x,y)∼S̄

[sign(x · v′) ̸= y]− P
(x,y)∼S̄

[y ̸= sign(v · x)] ≥

0.9
∡(v,v′)

π
−O(ϵ)− 2U

N

(
1.1

∡(v,v′)

π
+O(ϵ)

)
=

0.9
∡(v,v′)

π
− 4

5

(
1.1

∡(v,v′)

π

)
−O(ϵ) = 0.02

∡(v,v′)

π
−O(ϵ) ≥ −O(ϵ).

Thus, choosing v′ to be argminu
(
P(x,y)∼Dpairs [sign(x · u) ̸= y]

)
, we get1173

P
(x,y)∼S̄

[sign(x · v) ̸= y] ≤ opt+O(ϵ),

finishing the proof of soundess.1174

F.2 Completeness1175

We now argue that for a sufficiently large absolute constant C, the algorithm AMassart satisfies the1176

completeness condition. In this subsection we assume that S̄ is generated by EXMassart
N ,f,η0

where1177

f(x) = sign(v∗ · x) is an origin-centered halfspace and η0 ≤ 1/3. We remind the reader that,1178

for some function η : Rd → [0, η0], every time EXMassart
N ,f,η0

is invoked it generates an i.i.d. pair1179

(x, y) ∈ Rd×{±1} where x is drawn fromN (0, Id) and y = f(x) with probability η(x) and−f(x)1180

with probability 1 − η(x). We would like to show that AMassart accepts with probability at least1181

1−O(δ).1182

For the purposes of completeness analysis, we define the set Saugmented to be a set of points in Rd1183

generated through the following random process:1184

• If a datapoint x in S has label y = −f(x), then x in included into Saugmented.1185

• If a datapoint x in S has label y = f(x), then x in included into Saugmented with probability1186
η0−η(x)
1−η(x) (and this choice is made independently for different x in S).1187

With the definition above in hand, we claim the following:1188

Claim 7. If the absolute constant C is large enough, then with probability at least 1 − δ it is the1189

case that |Saugmented| ≤ 2
5N . Furthermore, conditioned on any particular value of the size |Saugmented|1190

of this set, the individual elements of Saugmented are distributed i.i.d. from the standard Gaussian1191

distribution N (0, Id).1192

Proof. Overall, we know that y = −f(x) with probability η(x), so overall each x in S gets included1193

into Saugmented independently with probability η(x) + (1 − η(x))η0−η(x)
1−η(x) = η0. Overall every1194

element S is included into Saugmentedwith independently probability η0. Since η0 is at most 1/3 and1195

N ≥
(
Cd
ϵδ

)C
, we see that the standard Hoeffding bound tells us that for a sufficiently large absolute1196

constant C with probability at least 1− δ it is the case that |Saugmented| ≤ 2
5 |S| =

2
5N . This proves1197

the first part of the claim.1198

Additionally, recall that in this subsection we are assuming that S̄ is generated by EXMassart
N ,f,η0

. This1199

implies that the elements of S are generated i.i.d. from N (0, Id). Since the decision wheather each1200

datapoint x in Sis included into Saugmented is made with probability η0 independently from the actual1201

value of x, this implies the element of Saugmented are distributed i.i.d. as N (0, Id) even conditioned1202

on any specific value of |Saugmented|. This finishes the proof of the claim.1203

The following claim lists a number of desirable events for algorithm AMassart and shows that they are1204

likely to hold.1205

Claim 8. If C is a sufficiently large absolute constant, the following events take place with probability1206

at least 1−O(δ):1207
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1. The set S is such that for all unit vectors v′ the algorithm Tdisagreement accepts when given1208

the input (S,v′, ϵ, δ, 0.1).1209

2. For all vectors u in Rd, we have1210 ∣∣∣∣∣ P
(x,y)∼S̄

[sign(x · u) ̸= y]− P
(x,y)∼EXMassart

N ,f,η0

[sign(x · v) ̸= y]

∣∣∣∣∣ ≤ 2d

√
logN

N
log

1

δ
.

3. For all vectors u in Rd and scalars θ, we have1211 ∣∣∣∣ P
x∼S

[∡(x,u) ≤ θ]− P
x∼N (0,Id)

[∡(x,u) ≤ θ]
∣∣∣∣ ≤ 2d

√
logN

N
log

1

δ
.

4. It is the case that ∡(v,v∗) ≤ ϵ3/2

10
√
d−1

.1212

5. It is the case that |SFalse| ≤ 2
5N and |Saugmented| ≤ 2

5N .1213

6. Saugmented is such that for all unit vectors v′ the algorithm Tspectral accepts when given as1214

input on the input (U, Saugmented,v
′, ϵ, δ, 0.1) (we remind the reader that U = 2

5N ).1215

Proof. Event 1 holds with probability at least 1−O(δ) by Theorem D.1. The Event (2) holds with1216

probability at least 1−O(δ) by the standard VC bound, together with the fact that the VC dimension1217

of the class of halfspaces in Rd is at most d+ 1. Analogously, Event (2) holds with probability at1218

least 1−O(δ) by the standard VC bound, together with the fact that the VC dimension of the class1219

of origin-centric cones in Rd is most O(d).1220

Recall that in step (1) of AMassart we used the algorithm of [DKTZ20a] (see Fact B.2) which implies1221

that with probability at least 1− δ we have ∡(v,v∗) ≤ ϵ3/2

10
√
d−1

.1222

If Event (2) holds, we have1223

P
(x,y)∼S̄

[sign(x · v) ̸= y] ≤ P
(x,y)∼EXMassart

N ,f,η0

[sign(x · v) ̸= y] + 2d

√
logN

N
log

1

δ
,

and if Equation D.1 also holds we have1224

|SFalse|
N

= P
(x,y)∼S̄

[sign(x · v) ̸= y] ≤

P
(x,y)∼EXMassart

N ,f,η0

[sign(x · v∗) ̸= y] +
ϵ3/2

100
√
d− 1

+ 2d

√
logN

N
log

1

δ
≤

η0 +
1

100
+ 2d

√
logN

N
log

1

δ
≤ 1

3
+

1

100
+ 2d

√
logN

N
log

1

δ
.

Substituting N ≥
(
Cd
ϵδ

)C
, we see that the above is at most 2

5 if C is a sufficiently large absolute1225

constant. Thus, with probability at least 1−O(δ) we have |SFalse| ≤ 2N
5 . At the same time, Claim1226

D.1 tells us that with probability at least 1− δ we have |Saugmented| ≤ U = 2N
5 . Overall, we see that1227

Event (5) holds with probability at least 1−O(δ).1228

Finally, Claim E.1 tells us that with probability at least 1−O(δ) it is the case that |Saugmented| ≤ 2
5N .1229

Furthermore, Claim E.1 also tells us that, even conditioned on this event, the set Saugmented consists of1230

i.i.d. samples from N (0, Id). Then, the Completeness condition in Theorem E.1 tells us that with1231

probability at least 1−O(δ) it is the case that Tspectral accepts if and is given µ = 0.1, U = 2
5N and1232

input dataset Saugmented.1233

Now, we first note that if Event 1 takes place, then Tdisagreement accepts in step (3) of the algorithm1234

AMassart.1235
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If Event 3 in Claim 8 takes place, then from the triangle inequality it follows that1236 ∣∣∣∣ P
x∼S

[∣∣∣∡(x,v)− π

2

∣∣∣ ≤ ϵ3/2√
d− 1

]
− P

x∼N (0,Id)

[∣∣∣∡(x,v)− π

2

∣∣∣ ≤ ϵ3/2√
d− 1

]∣∣∣∣ ≤ 4d

√
logN

N
log

1

δ
.

(F.4)
It is also the case that1237

P
x∼N (0,Id)

[∣∣∣∡(x,v)− π

2

∣∣∣ ≤ ϵ3/2√
d− 1

]
≤ P

x∼N (0,Id)
[|x · v| ≤ ϵ] + P

x∼N (0,Id)

[
∥x− v (x · v)∥ tan

(
ϵ3/2√
d− 1

)
≤ ϵ
]

≤ P
x∼N (0,Id)

[|x · v| ≤ ϵ] + P
x∼N (0,Id)

[
∥x− v (x · v)∥ ≤

√
d− 1

ϵ

]

= P
x∼N (0,1)

[|x| ≤ ϵ] + P
x∼N (0,Id−1)

[
∥x∥ ≤

√
d− 1

ϵ

]
≤ 3ϵ (F.5)

Combining Equations F.4 and F.5 we get1238

P
x∼S

[∣∣∣∡(x,v)− π

2

∣∣∣ ≤ ϵ3/2√
d− 1

]
≤ 3ϵ+ 4d

√
logN

N
log

1

δ
≤ 4ϵ,

where the last inequality holds if C is a sufficiently large absolute constant. Since every element x in1239

Snear
False is in S and also satisfies

∣∣∡(x,v)− π
2

∣∣ ≤ ϵ3/2

10
√
d

, we see that Snear
False has a size of at most 4ϵN1240

and therefore the algorithm AMassart does not reject in step 8.1241

If Event 4 in Claim 8 takes place, then it is the case that ∡(v,v∗) ≤ ϵ3/2

2
√
d−1

. If this is the case, the1242

halfspaces sign(v ·x) and sign(v∗ ·x) will agree for all vectors x satisfying
∣∣∡(x,v)− π

2

∣∣ > ϵ3/2√
d−1

,1243

which holds for all x in Sfar
False. Overall, for every x in Sfar

False the corresponding label y satisfies y ̸=1244

sign(v ·x) = sign(v∗ ·x). Recalling the definition of the set Saugmented, we see that Sfar
False ⊆ Saugmented.1245

If Event 6 in Claim 8 holds then the set Saugmented is such that if the algorithm Tspectral accepts when1246

given as input (U, Saugmented,v, ϵ, δ, 0.1). But Theorem E.1 shows that Tspectral satisfies Monotonicity1247

under Datapoint Removal, which together with the inclusion Sfar
False ⊆ Saugmented implies that Tspectral1248

accepts if it is given
(
U, Sfar

False,v, ϵ, δ, 0.1
)
. Thus, the tester Tspectral does not reject in step 10.1249

We conclude that with probability at least 1−O(δ) the algorithm AMassart will not reject in any of the1250

four steps in which it could potentially reject. If this is the case, the algorithm AMassart will accept.1251
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