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Abstract

We pose a fundamental question in computational learning theory: can we efficiently
test whether a training set satisfies the assumptions of a given noise model? This
question has remained unaddressed despite decades of research on learning in the
presence of noise. In this work, we show that this task is tractable and present the
first efficient algorithm to test various noise assumptions on the training data. To
model this question, we extend the recently proposed testable learning framework
of Rubinfeld and Vasilyan [RV23] and require a learner with an associated test
to satisfy the following two conditions: (1) whenever the test accepts, the learner
outputs a classifier along with a certificate of optimality, and (2) the test must
pass for any dataset drawn according to a specified modeling assumption on both
the marginal distribution and the noise model. We then consider the problem of
learning halfspaces over Gaussian marginals with Massart noise (where each label
can be flipped with probability less than 1/2 depending on the input features), and
give a fully-polynomial time testable learning algorithm. We also show a separation
between the classical setting of learning in the presence of structured noise and
testable learning. In fact, for the simple case of random classification noise (where
each label is flipped with fixed probability η = 1/2), we show that testable learning
requires super-polynomial time while classical learning is trivial.

1 Introduction

Developing efficient algorithms for learning in the presence of noise is one of the most fundamental
problems in machine learning with a long line of celebrated research. Assumptions on the noise model
itself vary greatly. For example, the well-studied random classification noise model (RCN) assumes
that the label corruption process is independent across examples, whereas malicious noise models
allow a fraction of the (joint) data-generating distribution to be changed adversarially. Understanding
the computational landscape of learning with respect to different noise models remains a challenging
open problem, serving as the central focus of numerous works in the theory of supervised learning
[BFKV98, ABHU15, ABHZ16, YZ17, ZLC17, MV19, DKTZ20a, DKTZ20a, DKK+22, DKS18,
BEK02, DDK+24] and unsupervised learning [DKK+24, CKMY22, CGR18, PMJS14, MPW16,
BB20, MS16, DDNS22, BKS23, KLL+23, CG18, BBKS24].

In this paper, we address for the first time whether it is possible to efficiently test if the assumptions
of a specific noise model hold for a given training set. There are two key reasons for developing
such a test. First, without verifying the assumptions of the noise model, we cannot guarantee that
our resulting hypothesis achieves the optimal error rate. Second, it is essential to select the learning
algorithm best suited to the noise properties of the training set. Specifically, highly structured noise
models often admit faster algorithms, and we should choose these algorithms whenever possible.
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We use the recently introduced testable learning [RV23] framework to model these questions. In
this framework, a learner first runs a test on the training set. Whenever the test accepts, the learner
outputs a classifier along with a proof that the classifier has near-optimal error. Furthermore, the test
must accept with high probability whenever the training set is drawn from a distribution satisfying
some specified set of modeling assumptions. If the test rejects, the learner recognizes that one of
the modeling assumptions has failed and will therefore refrain from outputting a classifier. Here,
our modeling assumptions will include both the structure of the noise model and the structure of the
marginal distribution from which the data is generated.

More concretely, we will consider the problem of learning halfspaces under Gaussian marginals
with respect to Massart noise, an extensively studied problem where an adversary flips binary labels
independently with probability at most 1/2 (the probability of flipping can vary across instances).
The goal is to find a halfspace sign(v · x) with near-optimal misclassification error rate opt + ϵ,
where opt is the best misclassification error rate achievable by a halfspace. For this problem, a long
line of work [ABHU15, ABHZ16, YZ17, ZLC17, MV19, DKTZ20a] resulted in the algorithm of
Diakonikolas et al. [DKTZ20a] that runs in time poly(d/ϵ) and achieves the optimal error rate. In
contrast, the worst-case-noise version of this problem (i.e. agnostic learning or, equivalently, learning
with adversarial label noise) is believed to require exponential time in the accuracy parameter, even
with respect to Gaussian marginals [KKMS08, DKK+21, GGK20].

In this work, we give a testable learning algorithm for halfspaces that runs in time poly(d/ϵ) and
certifies the optimality of its output hypothesis whenever it accepts. Additionally, the algorithm is
guaranteed to accept (with high probability) and output a classifier if the marginal distribution is
Gaussian and the noise satisfies the Massart condition.

1.1 Our Results

Noise Model. We focus on the class of i.i.d. oracles where the marginal distribution on Rd is the
standard Gaussian and the labels are generated by an origin-centered halfspace with Massart noise, as
defined below.
Definition 1.1 (Massart Noise Oracle). Let f : Rd → {±1} be a concept, let η : Rd → [0, 1/2] and
let D be a distribution over Rd. The oracle EXMassart

D,f,η receives m ∈ N and returns m i.i.d. examples
of the form (x, y) ∈ Rd × {±1}, where x ∼ D and y = ξ · f(x), with ξ = 1 w.p. 1 − η(x) and
ξ = −1 w.p. η(x). The quantity supx∈Rd η(x) ∈ [0, 1/2] is called the noise rate.

Formally, we consider the oracle class EXMassart
N ,Hhs,η0

= {EXMassart
N ,f,η : f ∈ Hhs, supx∈Rd η(x) ≤ η0},

whereN is the standard Gaussian distribution in d dimensions andHhs is the class of origin-centered
halfspaces over Rd, which is formally defined as follows.
Definition 1.2 (Origin-Centered Halfspaces). We denote with Hhs the class of origin-centered
halfspaces over Rd, i.e., the class of functions f : Rd → {±1} of the form f(x) = sign(v · x) for
some v ∈ Sd−1, where sign(t) = 1 if t ≥ 0 and otherwise sign(t) = −1.

Learning Setting. Our results work in the following extension of testable learning [RV23].
Definition 1.3 (Testable Learning, extension of Definition 4 in [RV23]). Let H ⊆ {Rd → {±1}}
be a concept class, O a class of (randomized) example oracles and m : (0, 1) × (0, 1) → N. The
tester-learner receives ϵ, δ ∈ (0, 1) and a dataset S̄ consisting of i.i.d. points from some distribution
Dx,y over Rd × {±1} and then either outputs Reject or (Accept, h) for some h : Rd → {±1},
satisfying the following.

1. (Soundness). If the algorithm accepts, then h satisfies the following with probability 1− δ.

P
(x,y)∼Dx,y

[y ̸= h(x)] ≤ opt+ ϵ , where opt = min
f∈H

P
(x,y)∼Dx,y

[y ̸= f(x)]

2. (Completeness). If S̄ is generated by EX(m′), for some i.i.d. oracle EX ∈ O and m′ ≥
m(ϵ, δ), then the algorithm accepts with probability at least 1− δ.

The difference between Definition 1.3 and the definition of [RV23] is that the completeness criterion
does not only concern the marginal distribution on Rd, but the joint distribution over Rd × {±1}.
The choice of the oracle class O encapsulates all of the modeling assumptions under which our
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algorithm should accept (both on the marginal distribution on Rd, as well as on the labels). Note that
the probability of success can be amplified through repetition (see [RV23]), so it suffices to solve the
problem for δ = 1/3. Our main results and their relation to prior work are summarized in Table 1.

Noise Model Classical Setting Testable Setting
Massart

(η0 = 1/2− c) poly(d, 1/ϵ) [DKTZ20a] poly(d, 1/ϵ) [Thm. B.1]

Strong Massart
(η0 = 1

2 )
(Upper)
(Lower)

dO(log 1
ϵ )2poly(

1
ϵ ) [DKK+22]

dΩ(log(1/ϵ)) [DKK+22]
dÕ(1/ϵ2) [RV23, GKK23]
dΩ(1/ϵ2) [Thm. C.6]

Adversarial (Upper)
(Lower)

dÕ(1/ϵ2) [KKMS08]
dΩ(1/ϵ2) [DKPZ21]

dÕ(1/ϵ2) [RV23, GKK23]
dΩ(1/ϵ2) (implied)

Table 1: Runtime upper and lower bounds (in the Statistical Query model) for learning the class of
origin-centered halfspacesHhs over the standard Gaussian distribution with respect to different noise
assumptions.

Upper Bound. In Theorem B.1, we show that there is a polynomial-time tester-learner for the class
Hhs with respect to EXMassart

N ,Hhs,η0
for any η0 ≤ 1/2− c, where c is any positive constant. Moreover,

whenever our algorithm accepts, it is guaranteed to output the optimal halfspace with respect to the
input dataset S̄, even if S̄ is not generated from i.i.d. examples and can, therefore, be completely
arbitrary. Given the upper bounds of Table 1 our algorithm can be used as a first step before applying
the more powerful (but also more expensive) tester-learner of [RV23, GKK23]. If our algorithm
accepts, then we do not need to run the more expensive algorithm. In other words, our results
highlight that testable learning can be used for algorithm selection for problems where different
assumptions motivate different algorithmic approaches.

Lower Bounds. Our upper bound holds when the noise rate is bounded away below 1/2. We show
that this is necessary: in the high-noise regime (η0 = 1/2), the best known lower bounds for learning
under adversarial label noise also hold in the testable setting, with respect to random classification
noise of rate 1/2 (Definition 2.1), which is a special case of Massart noise. We give both cryptographic
lower bounds (Theorem C.4) assuming subexponential hardness on the problem of learning with
errors (LWE), as well as statistical query lower bounds (Theorem C.6). Our lower bounds are inherited
from lower bounds from the literature of agnostic learning [DKPZ21, Tie23, DKR23] (combined
with Observation C.1). Our testable learning model highlights an underappreciated aspect of these
agnostic learning lower bounds, namely, that the hard instances are in fact indistinguishable from
completely random instances (i.e., random classification noise of rate 1/2).

Our results imply a separation between the classical and testable settings in the high-noise regime
(η0 = 1/2, see second row of Table 1), demonstrating that the complexity of testable learning displays
a sharper transition with respect to varying noise models compared to classical learning. For the of
RCN at noise rate 1/2 case, the separation is even stronger, since learning is trivial in the classical
setting.

1.2 Our Techniques

The techniques we employ in this work are significantly more sophisticated than recently developed
tools from testable learning. In fact, it is not even clear that techniques from testable learning should
apply, as assumptions on the marginal distribution are quite different from assumptions on the noise
model. Concretely, we depart from prior work in testable learning [GKSV24, GKSV23] where the
testers are designed to certify specific properties of a particular learning algorithm. Instead, here
we obtain a “black-box" result that can take any learner that is guaranteed to output a near-optimal
halfspace in the Massart setting and certify optimality properties of the learner’s output hypothesis.
To do this, we decompose the error of the candidate output in terms of quantities for which we can
provide certifiable bounds by developing appropriate testers (see Section 2 for more details on the
decomposition). In particular, we provide a disagreement tester with significantly sharper guarantees
compared to the one developed for standard testable learning [GKSV23], and a spectral tester that
combines and expands ideas from [GKSV23] as well as recent work on tolerant testable learning
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[GSSV24]. The main technical tool we develop to provide these improved guarantees is a notion of
families of sandwiching approximators with respect to partitions of Rd.

An outline of the proof of our main result (Theorem B.1) is provided in Appendix B. As a warm-up,
in Section 2, we consider the special case of random classification noise, whose analysis is simpler.
We complete the proof sketch of our main result in Appendix B. In the following, we give an overview
of the disagreement and the spectral testers.

Disagreement tester and sandwiching polynomials. Let v be a unit vector and S be a dataset of
size poly(d/ϵ). If S consists of Gaussian data-points, then for every unit vector v′ (w.h.p. over S)

P
x∈S

[sign(v · x) ̸= sign(v′ · x)] = ∡(v,v′)/π ± ϵ.

Suppose, given S and v, one would like to certify that this property approximately holds for every v′.
The method of exhaustive search - i.e. checking this property for different candidate vectors v′ - can
be shown to require at least 2Ω(d) time. Using a moment-based approach, we show how to improve
this run-time exponentially. In particular, in time poly(d, 1/ϵ), we can certify that for all v′ ∈ Sd−1

P
x∈S

[sign(v · x) ̸= sign(v′ · x)] = (1± 0.01)∡(v,v′)/π ± ϵ. (1.1)

Moreover, whenever S is Gaussian, our tests are guaranteed to pass (Theorem 2.4). Note that
[GKSV24, GKSV23, DKK+23] provided disagreement testers that certified one-sided bounds and
suffered constant multiplicative error factors1, while here our disagreement testers certify both upper
and lower bounds on the disagreement probability, with a small and controllable multiplicative error
factor.

As mentioned earlier, directly checking the disagreement for each candidate vector v′ in a Euclidean
cover of the sphere Sd−1 does not work, since their number is exponential to the dimension d. Instead,
our tester discretizes Rd into buckets corresponding to v · x ∈ [iϵ, (i+ 1)ϵ] for varying i (Figure 2)
and checks for any constant-degree monomial m that

E
x∼S

[m(x) · 1iϵ≤x·v≤(i+1)ϵ] ≈ E
x∼N (0,Id)

[m(x) · 1iϵ≤x·v≤(i+1)ϵ]. (1.2)

We show that passing this test for constant-degree m is sufficient for our purposes (Lemma 2.5).
The previous work [GKSV24, GKSV23, DKK+23] considered only tests involving monomials m of
degree at most 4, and (as explained earlier) achieved bounds far weaker than Equation (1.1). A key
ingredient to our improved testers is extending the notion of sandwiching polynomials of [GKK23]
to much more general piecewise-polynomial functions (see Appendix D).

Spectral tester and monotonicity under removal. The disagreement tester is only guaranteed to
accept when the input S is drawn i.i.d. from the standard Gaussian distribution. However, in our
analysis it is important to have a tester that will accept even if given a set S′ which is a subset of a
Gaussian sample. We call this property monotonicity under removal and its importance is related to
the fact that in the Massart noise model, the labels are not flipped independently of the corresponding
features, but the probability of receiving a flipped label can adversarially depend on x. Note that
tester in Equation (1.2) is not monotone under removal.

To obtain a tester for the disagreement region that is monotone under removal (Theorem B.3), we
augment our Disagreement Tester using ideas from the recent work by [GSSV24] on tolerant testable
learning (see Appendix E). In particular, instead of checking Equation (1.2), our Spectral Tester
checks that for every constant-degree polynomial p we have

E
x∼S

[p(x)2 · 1iϵ≤x·v≤(i+1)ϵ] ≲ E
x∼N (0,Id)

[p(x)2 · 1iϵ≤x·v≤(i+1)ϵ], (1.3)

which can be verified efficiently by computing the spectrum of an appropriate matrix. The main
difference between our spectral tester and the one in [GSSV24] is that ours partitions Rd into a
number of strips and performs a test for each of them, while the one by [GSSV24] runs the same
test on the whole Rd iteratively, each time removing a number of points from the input set. See
Algorithm 2 for the full algorithm description. As in the case of the Disagreement Tester, the analysis
again leverages the method of piecewise-polynomial sandwiching functions introduced in this work.

1i.e. certified that Px∈S [sign(v · x) ̸= sign(v′ · x)] ≤ O(∡(v,v′)) + ϵ.
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1.3 Related Work

Learning with label noise. Learning of halfspaces under label noise has been the topic of a large
number of works. Perhaps the most well-studied noise model is the framework of agnostic learning
which corresponds to adversarial (i.e. worst-case) labels. In case of halfspaces, the literature exhibits
a tradeoff between run-time and the classification error achievable:

• In time dÕ(1/ϵ2) one can find a hypothesis with accuracy opt + ϵ under Gaussian data
distribution [KKMS08, DGJ+10]. See also [DKK+21] for a proper learning algorithm. An
algorithm with a run-time dO(1/ϵ2−Ω(1)) (and let alone a polynomial run-time) is believed to
be impossible due to statistical query lower bounds [GGK20, DKZ20, DKZ20], as well as
recent cryptographic reductions from lattice problems [DKR23, Tie23]. This works utilize
reductions to the continuous LWE problem [BRST21], shown in [GVV22] to be harder
than the LWE problem widely used in lattice-based cryptography (a quantum reduction was
given in [BRST21]).

• A worse error bound of O(opt) + ϵ can be obtained in time poly(d/ϵ) [ABL17]. Despite
various refinements [Dan15, DKTZ20b, DKK+21], the improvement of the error bound to
opt+ ϵ is precluded by the aforementioned hardness results.

Overall, if one is not allowed to assume anything about data labels, one has to choose between a high
run-time of dÕ(1/ϵ2) and or a higher error of O(opt) + ϵ.

In order to obtain an error bound of opt + ϵ in time poly(d/ϵ) a large body of works focused
on moving beyond worst-case models of label noise. In the Random Classification Noise (RCN)
model [AL88] the labels are flipped independently with probability η. It was shown in [BFKV98]
that in the RCN model halfspaces can be learned up to error opt + ϵ in time poly(d/ϵ). See also
[Coh97, DKT21, DTK23, DDK+24].

The Massart noise model, introduced in [MN06], is more general than the RCN model and allows the
noise rate η(x) to differ across different points x in space Rd, as long as it is at most some rate η0. First
studied in [ABHU15], learning halfspaces up to error opt+ ϵ under Massart noise model has been the
focus of a long line of work [ABHZ16, MV19, YZ17, ZLC17, DKTZ20a, ZL21, ZSA20, DKK+22].

We would like to note that intermediate steps in the algorithm [DKK+22] work by finding what is
referred in [DKK+22] as sum-of-squares certificates of optimality for certain halfspaces. We would
like to emphasize that certificates in the sense of [DKK+22] have to be sound only assuming that the
labels satisfy the Massart property. In contrast with this, certificates developed in this work satisfy
soundness without making any assumptions on the label distribution (which is the central goal of this
work).

There has also been work on distribution-free learning under Massart noise [DGT19, CKMY20],
which achieves an error bound of η0 + ϵ, but as a result can lead to a much higher error than the
information-theoretically optimal bound of opt+ ϵ.

Testable learning. The framework of testable learning was introduced in [RV23] with a focus on
developing algorithms in the agnostic learning setting that provide certificates of (approximate)
optimality of the obtained hypotheses or detect that a distributional assumption does not hold.
Many of the existing agnostic learning results have since been shown to have testable learning
algorithms with matching run-times. This has been the case for agnostic learning algorithms with
opt + ϵ error guarantee [RV23, KSV24b, GSSV24, STW24], as well as O(opt) + ϵ error bounds
[GGKS24, GKSV23, DKK+23, DKLZ24].

We note that [GGKS24, GKSV23] also give testable learning algorithms in the setting where data
labels are assumed to be Massart (and the algorithm needs to either output a hypothesis with error
opt + ϵ or detect that data distribution is e.g. not Gaussian). We emphasize that the results of
[GGKS24, GKSV23] do not satisfy soundness when the user is not promised that data labels satisfy
the Massart noise condition (which is the central goal of this work).

Testable Learning with Distribution Shift (TDS learning). The recently introduced TDS framework
[KSV24b, KSV24a, CKK+24, GSSV24] considers a setting in which the learning algorithm is given
a labeled training dataset and an unlabeled test dataset and aims to either (i) produce accurate labeling
for the testing dataset (ii) detect that distribution shift has occurred and the test dataset is not produced
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from the same data distribution as the training dataset. Although conceptually similar, the work in
TDS learning addresses a different assumption made in learning theory. Nevertheless, the spectral
testing technique introduced in [GSSV24] is a crucial technical tool for our results in this work.

2 Polynomial-Time Tester-Learners

We first focus on the simpler RCN noise model, and the Disagreement Tester we design to test the
RCN noise model. We show how to obtain a tester-learner with respect to the challenging Massart
noise model, and describe the Spectral Tester in Appendix B.

Notation. We denote with R,N,Z the sets of real, natural and integer numbers correspondingly.
For simplicity, we denote the d-dimensional standard Gaussian distribution as Nd or N if d is clear
by context. For any set S, let Unif(S) denote the uniform distribution over S. We may also use
the notation x ∼ S in place of x ∼ Unif(S). For a set of points in Rd, we denote with S̄ the
corresponding labeled set over Rd × {±1} where the corresponding labels are those in the input of
the algorithm unless otherwise specified. For a vector x ∈ Rd, we denote with xi its i-th coordinate.

We formally define random classification noise as follows.

Definition 2.1 (Random Classification Noise (RCN) Oracle). Let f : Rd → {±1} be a concept, let
η0 ∈ [0, 1/2] and let D be a distribution over Rd. The oracle EXRCN

D,f,η0
receives m ∈ N and returns

m i.i.d. examples of the form (x, y) ∈ Rd × {±1}, where x ∼ D and y = ξ · f(x), where ξ = 1

w.p. 1− η0 and ξ = −1 w.p. η0. In other words, EXRCN
D,f,η0

= EXMassart
D,f,η where η(x) is the constant

function with value η0. In the special case η0 = 1/2, the function f does not influence the output
distribution and we denote the corresponding oracle with EXRCN

D,1/2.

Informally, for some ground-truth halfspace f , the RCN oracle EXRCN
D,f,η0

outputs an example x ∼ D
whose label is f(x) with probability 1− η0 and is flipped with probability η0. We consider the case
that D = Nd, and η0 ≤ 1/2− c for some constant c > 0 and f ∈ Hhs.

Theorem 2.2 (Warm-up: RCN). Let c ∈ (0, 1/2) be any constant and η0 = 1/2− c. Then, there is
an algorithm that testably learns the classHhs with respect to EXRCN

N ,Hhs,η0
= {EXRCN

N ,f,η0
: f ∈ Hhs}

with time and sample complexity poly(d, 1/ϵ) log(1/δ).

Testing whether the noise is indeed RCN directly is impossible, since it requires estimating E[y|x]
for all x ∈ Rd, but we never see any example twice. Instead, we will need to design more specialized
tests that only check the properties of the RCN model that are important for learning halfspaces.
Specifically, we show that some key properties of the RCN noise can be certified using what we
call the Disagreement Tester (Theorem 2.4). Suppose, first, that when the samples are generated by
an oracle EXRCN

N ,f∗,η0
, for some f∗(x) = sign(v∗ · x), then we can exactly recover the ground-truth

vector v∗ ∈ Sd−1 by running some algorithm A (in reality, v∗ can be recovered only approximately,
and we will address this later).

Relating the output error to optimum error. Let S̄ be the input set of labeled examples and let
v ∈ Sd−1 be the output ofA on input S̄. Note that, since S̄ is not necessarily generated by EXRCN

N ,f∗,η0
,

we do not have any a priori guarantees on v. We may relate the output error P(x,y)∼S̄ [y ̸= sign(v ·x)]
to the optimum error P(x,y)∼S̄ [y ̸= sign(v∗ · x)], by accounting for the set S̄g of points (x, y) ∈ S̄
that are labeled correctly by v but incorrectly by v∗, as well as the set S̄b of points in S̄ that are
labeled incorrectly by v but correctly by v∗. Overall, we have the following

P
(x,y)∼S̄

[y ̸= sign(v · x)] = P
(x,y)∼S̄

[y ̸= sign(v∗ · x)] + |S̄b|
|S̄|
− |S̄g|
|S̄|

(2.1)

Towards a testable bound. We have assumed that if the noise was indeed RCN, then v = v∗.
Therefore, in this case, |S̄b| = |S̄g| = 0. However, if the noise assumption is not guaranteed, given S̄,
we cannot directly compute the quantities |S̄b|, |S̄g|, as their definition involves the unknown vector
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Figure 1: The shaded region is {x ∈ Rd : sign(v · x) ̸= sign(v∗ · x)}. Left: red square points have
label +1, blue round points have label −1. Right: green square points are in S̄g and purple round
points are in S̄b.

v∗. Nevertheless, we show how to obtain a certificate that |S̄b|/|S̄| − |S̄g|/|S̄| is at most O(ϵ). We
first express the ratios above as

|S̄b|/|S̄| = P
(x,y)∼S̄

[y ̸= sign(v · x) and sign(v∗ · x) ̸= sign(v · x)], (2.2)

|S̄g|/|S̄| = P
(x,y)∼S̄

[sign(v∗ · x) ̸= sign(v · x)]− |S̄b|/|S̄|. (2.3)

Combining equations (2.1), (2.2) and (2.3), defining S̄False = {(x, y) ∈ S̄ : y ̸= sign(v · x)} we
obtain the following bound:

|S̄b|
|S̄|
− |S̄g|
|S̄|
≤ 2
|S̄False|
|S̄|

P
(x,y)∼S̄False

[sign(v∗ ·x) ̸= sign(v ·x)]− P
(x,y)∼S̄

[
sign(v∗ ·x) ̸= sign(v ·x)

]
(2.4)

The term |S̄False|/|S̄| can be explicitly computed, since we have v and S̄ and we can verify whether
its value is at most 1/2− c, as would be the case if the noise was RCN. Otherwise, we may safely
reject. Now, we want to obtain certificates that the first term in Equation 2.4 can’t be too large and
the second term can’t be too small.

The disagreement tester and how it is applied. Our goal is to certify that both probabilities in
Equation 2.4 are approximately equal to ∡(v,v∗)/π, which is what we would expect if the example
oracle were indeed in EXRCN

N ,Hhs,η0
. This is because of the following fact, as well as the fact that even

after conditioning on the event y ̸= sign(v∗ · x), x remains Gaussian.

Fact 2.3. Let x ∼ Nd and v,v∗ ∈ Sd−1. Then Px∼Nd
[sign(v∗ · x) ̸= sign(v · x)] = ∡(v,v∗)/π.

Recall, however, that we do not make any assumptions on the input examples. Therefore, we would
like to certify the guarantee of Fact 2.3. We show that this is possible by developing the following
tester.
Theorem 2.4 (Disagreement tester, see Theorem D.1). Let µ ∈ (0, 1) be any constant. Algorithm 1
receives ϵ, δ ∈ (0, 1), v ∈ Sd−1 and a set S of points in Rd, runs in time poly(d, 1/ϵ, |S|) and then
either outputs Reject or Accept, satisfying the following specifications.

1. (Soundness) If the algorithm accepts, then the following is true for any v′ ∈ Sd−1

(1− µ)∡(v,v′)/π − ϵ ≤ P
x∼S

[sign(v · x) ̸= sign(v′ · x)] ≤ (1 + µ)∡(v,v′)/π + ϵ

2. (Completeness) If S consists of at least (Cd
ϵδ )

C i.i.d. examples from Nd, where C ≥ 1 is
some sufficiently large constant depending on µ, then the algorithm accepts with probability
at least 1− δ.

We choose µ = c and run the tester above on the datapoints in S̄ and S̄False = {(x, y) ∈ S̄ : y ̸=
sign(v · x)}. If the tester accepts, then (using Equation 2.4) the excess error |S̄b|/|S̄| − |S̄g|/|S̄| is
at most ((1− 2c)(1 + c)− (1− c))∡(v,v∗)/π + 2ϵ which, in turn, is upper-bounded by 2ϵ, since
(1− 2c)(1 + c)− (1− c) = −2c2 < 0.

Designing the disagreement tester. Our disagreement tester builds on ideas from prior work on
testable agnostic learning by [GKSV24]. In particular, [GKSV24] show that when the angle between
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Figure 2: For vectors v,v′ ∈ Sd−1, the region {x ∈ Rd : sign(v · x) ̸= sign(v′ · x)} is contained in
the union of green regions and it contains the union of blue regions. In the diagram we highlight one
of the green regions (top left) and one of the blue regions (bottom right).

the input vector v and some unknown vector v′ is ϵ, then one can give a testable bound of O(ϵ) on
the quantity Px∼S [sign(v · x) ̸= sign(v′ · x)] by running some efficient tester (Proposition D.1 in
[GKSV24]). To achieve this, the region {x ∈ Rd : sign(v ·x) ̸= sign(v′ ·x)} is covered by a disjoint
union of simple regions whose masses can be testably upper bounded. In order to bound the mass of
the simple regions, it is crucial to use the fact that v is known.

Here, our approach needs to be more careful, since we (1) require both upper and lower bounds on the
quantity Px∼S [sign(v · x) ̸= sign(v′ · x)], (2) we do not have a specific target threshold for the angle
∡(v,v′), but we need to provide testable bounds that involve ∡(v,v′) as a free parameter and (3)
we can only tolerate a small constant multiplicative error factor (1± µ). To obtain this improvement,
we combine the approach of [GKSV24] with the notion of sandwiching polynomial approximators.
Sandwiching polynomial approximators are also used to design testable learning algorithms (see
[GKK23]), but we use them here in a more specialized way, by allowing the sandwiching function to
be piecewise-polynomial.

In particular, we first observe that the region {x ∈ Rd : sign(v · x) ̸= sign(v′ · x)} can be
approximated from above and from below by the disjoint union of a small number of simple regions
(Figure 2). More precisely, if we let v⊥ be the unit vector in the direction v′ − (v′ · v)v, then we
have

P
x∼S

[
v · x ≥ 0 > v′ · x

]
≤

∞∑
i=0

P
x∼S

[
v · x ∈ [iϵ, (i+ 1)ϵ],v⊥ · x ≤ −iϵ/tan(v,v′)

]
(2.5)

P
x∼S

[
v · x ≥ 0 > v′ · x

]
≥

∞∑
i=0

P
x∼S

[
v · x ∈ [iϵ, (i+ 1)ϵ],v⊥ · x ≤ −(i+ 1)ϵ/tan(v,v′)

]
(2.6)

In fact, the number of interesting terms in the summations can be bounded by O(ϵ log1/2(1/ϵ)),
because the remaining terms are testably negligible, due to Gaussian concentration and since we have
access to v.

Each term in the summations of (2.5), (2.6) is of the form Ex∼S [Ii(x) · fi(x)], where fi is some
unknown halfspace and Ii(x) = 1{v · x ∈ [iϵ, (i + 1)ϵ]}. Since we know v, Ii(x) is a known
quantity for all x in S. The quantities fi(x) are unknown, but we can effectively substitute them by
polynomials, because, under the Gaussian distribution they admit low-degree sandwiching approxi-
mators. This allows us to provide a testable bound by matching the low degree Chow parameters of
the functions Ii(x) under Unif(S) to the corresponding Chow parameters under Nd, due to the fact
that polynomials are linear combinations of monomials and the number of low-degree monomials is
small enough so that we can test them all.

Moment matching and Chow matching in particular are known to have applications in testable
learning (see, e.g., [GKK23, RV23, GKSV24, KSV24b, CKK+24]), but here we have to use this tool
in a careful way. We prove the following lemma (see Proposition D.6) based on a delicate argument
that uses the sandwiching approximators of [DGJ+10, GOWZ10] (see Appendix D.3).
Lemma 2.5 (Informal). Let C ≥ 1 be some sufficiently large constant. Suppose that for all α ∈ Nd

with ∥α∥1 ≤ C/µ4 and for all i:
∣∣∣Ex∼S

[
Ii(x) ·

∏
j∈[d] x

αj

j

]
− Ex∼N

[
Ii(x) ·

∏
j∈[d] x

αj

j

]∣∣∣ ≤
ϵ2 log(1/ϵ)

CdC2/µ4 . Then, for all v′, |Px∼S [v · x ≥ 0 > v′ · x]− Px∼N [v · x ≥ 0 > v′ · x]| ≤ µ∡(v,v′)
2π + ϵ.

8



Algorithm 1: Disagreement tester

Input: ϵ, δ, µ ∈ (0, 1), v ∈ Sd−1 and set S of points in Rd

Let C ≥ 1 be a sufficiently large constant
Set K = 2

ϵ

√
log(2/ϵ), k = C/µ4 and ∆ = ϵ

CKdCk

for α ∈ Nd with ∥α∥1 ≤ k do
for i = −K,−K + 1, . . . , 0, 1, . . . ,K − 1 do

Let Ii(x) = 1{iϵ ≤ v · x < (i+ 1)ϵ} for all x ∈ S
Let ∆i,α =

∣∣∣Ex∼S [
∏

j∈[d] x
αj

j Ii(x)]− Ex∼Nd
[
∏

j∈[d] x
αj

j Ii(x)]
∣∣∣

Let ∆∞,α =
∣∣∣Ex∼S [

∏
j∈[d] x

αj

j 1{v · x ≥ Kϵ}]− Ex∼Nd
[
∏

j∈[d] x
αj

j 1{v · x ≥ Kϵ}]
∣∣∣

Let
∆−∞,α =

∣∣∣Ex∼S [
∏

j∈[d] x
αj

j 1{v · x ≤ −Kϵ}]− Ex∼Nd
[
∏

j∈[d] x
αj

j 1{v · x ≤ −Kϵ}]
∣∣∣

if for some (i, α) we have ∆i,α > ∆ then output Reject else output Accept

Based on the above lemma (and a symmetric argument for the case v · x < 0 ≤ v′ · x), the
disagreement tester of Theorem 2.4 only needs to test quantities of the form E[Ii

∏
j x

αj

j ], which are
known as constant-degree Chow parameters [Cho61, OS08] of the functions Ii(x), as described in
Algorithm 1. Due to standard concentration arguments, if S was i.i.d. from the Gaussian distribution,
then the tests would pass.

Approximate recovery of ground truth. The final technical hurdle that remains unaddressed in
the above derivation of the testable learning result for RCN is the fact that even under the target
assumption, the ground-truth vector can be recovered only approximately. In particular, the following
is true.

Fact 2.6. For any ϵ′, δ ∈ (0, 1) and η0 = 1/2 − c, where c > 0 is any constant, there is an
algorithm with time and sample complexity poly(d, 1/ϵ′) log(1/δ) that has access to an example
oracle EXRCN

N ,f∗,η0
for some unknown f∗(x) = sign(v∗ · x), v∗ ∈ Sd−1 and outputs v ∈ Sd−1 such

that ∡(v∗,v) ≤ ϵ′, with probability at least 1− δ.

The place where we have to be more careful is when we argue that the distribution of x conditioned
on y ̸= sign(v · x) is Gaussian, under the target assumption. This is not true anymore, because v
is not necessarily equal to v∗ and, therefore, the event y ̸= sign(v · x) does not coincide with the
event y ̸= sign(v∗ · x), which, due to the definition of RCN noise, is independent from x. However,
the only case that these two events do not coincide is when ∡(x,v) ≤ O(ϵ′d), due to the guarantee
of Fact 2.6 that v and v∗ are geometrically close. Since we have access to both S and v, we may
directly test whether Px∼S [∡(x,v) ≤ O(ϵ′d)] is bounded by O(ϵ), as would be the case under the
target assumption, if ϵ′ is chosen to be poly(ϵ/d). Therefore, this event is certifiably negligible and
the initial argument goes through.
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A Preliminaries

A.1 Some standard notation.

When we say a = b± c we mean that a in in the interval [b− c, b+ c]. When we say a polynomial is
“degree-k” we mean that the degree polynomial is at most k. For a vector x in Rd, let x⊗k denote
the
(
d+1
k

)
-dimensional vector whose elements are of the form xα =

∏
j∈[d] x

αj

j for α ∈ Nd with
∥α∥1 =

∑
j αj ≤ k. In other words, x⊗k is the vector one gets by evaluating all multidimensional

monomials of degree at most k on input x. We also view degree-k polynomials as corresponding to
elements R(

d+1
k ), i.e. their coefficient vectors. Using this notation we have

p(x) = p · x⊗k.

Additionally, for a degree-k polynomial p over Rd, say p(x) =
∑

α:∥α∥1≤k pαx
α, we will use the

notation ∥p∥coeff to denote the 2-norm of the coefficients of p, specifically

∥p∥coef :=
( ∑

α∈Nd

p2α

)1/2
Note that if the largest in absolute value coefficient of polynomial p has absolute value B, then we
have

B ≤ ∥p∥coeff ≤ B (d+ 1)
k/2

. (A.1)

In this work we will use the convention that sign(0) = 1.

A.2 Standard lemmas.

We will also need the following lemma:

Lemma A.1. Let H be a collection of subsets of Rd of non-zero VC dimension ∆VC and let S be
a collection of N i.i.d. samples from N (0, Id). Then, with probability at least 1 − δ for every
polynomial p of degree at most k with coefficients bounded by B in absolute value and all sets A in
H we have∣∣∣∣ Ex∼S

[p(x)1x∈A]− E
x∼N (0,Id)

[p(x)1x∈A]

∣∣∣∣ ≤ 60(2k)k+2(d+ 1)k∆VC

δ

(
logN

N

)1/4

,

∣∣∣∣ Ex∼S

[
(p(x))

2
1x∈A

]
− E

x∼N (0,Id)

[
(p(x))

2
1x∈A

]∣∣∣∣ ≤ 60B2(4k)2k+2(d+ 1)6k∆VC

δ

(
logN

N

)1/4

.

Proof. Let R be a positive real number, to be set later. For any monomial m over Rd of degree at
most k, we can decompose

m(x)1x∈A = m(x)1x∈A∧|m(x)|≤R ± |m(x)|1|m(x)|>R

This allows us to bound the quantity in our lemma in the following way:∣∣∣∣ Ex∼S
[m(x)1x∈A]− E

x∼N (0,Id)
[m(x)1x∈A]

∣∣∣∣ =∣∣∣ E
x∼S

[
|m(x)|1x∈A∧|m(x)|≤R∧m(x)>0

]
− E

x∼S

[
|m(x)|1x∈A∧|m(x)|≤R∧m(x)<0

]∣∣∣
±
(

E
x∼S

[
|m(x)|1|m(x)|>R

]
+ E

x∼N (0,Id)

[
|m(x)|1|m(x)|>R

])
(A.2)
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We start by considering the first term above:∣∣∣∣ Ex∼S

[
m(x)1x∈A∧|m(x)|≤R∧m(x)>0

]
− E

x∼N (0,Id)

[
m(x)1x∈A∧|m(x)|≤R∧m(x)>0

]∣∣∣∣ =∣∣∣∣∣
∫ R

0

P
x∼S

[
m(x)1x∈A∧|m(x)|≤R ≥ z

]
dz −

∫ R

0

P
x∼N (0,Id)

[
m(x)1x∈A∧|m(x)|≤R ≥ z

]
dz

∣∣∣∣∣ ≤∫ R

0

∣∣∣∣ P
x∼S

[
m(x)1x∈A∧|m(x)|≤R ≥ z

]
− P

x∼N (0,Id)

[
m(x)1x∈A∧|m(x)|≤R ≥ z

]∣∣∣∣ dz ≤
R max

z∈[0,R]

∣∣∣∣ P
x∼S

[z ≤ m(x) ≤ R ∧ x ∈ A]− P
x∼N (0,Id)

[z ≤ m(x) ≤ R ∧ x ∈ A]
∣∣∣∣ (A.3)

To bound the right side of Equation A.3, consider the class G of {0, 1}-valued functions of the form
1z≤p(x) ≤R∧x∈A, where A is a set in H and p is a polynomial in d dimensions of degree at most
d. Recall that the VC dimension of degree-k polynomial threshold functions is at most (d + 1)k.
From the Sauer-Shelah lemma, it follows that the VC dimension of G is at most 10((d+ 1)k +∆VC).
Combining it with the standard VC bound, we see that with probability at least 1 − δ/4 for all
monomials m of degree at most k we have∣∣∣ P
x∼S

[z ≤ m(x) ≤ R ∧ x ∈ A]− P
x∼N

[z ≤ m(x) ≤ R ∧ x ∈ A]
∣∣∣ ≤(100((d+ 1)k +∆VC) logN

Nδ

) 1
2

Combining this with Equation A.3 we get:∣∣∣∣ Ex∼S

[
m(x)1x∈A∧|m(x)|≤R∧m(x)>0

]
− E

x∼N (0,Id)

[
m(x)1x∈A∧|m(x)|≤R∧m(x)>0

]∣∣∣∣ ≤
10R

√
((d+ 1)k +∆VC) logN

Nδ
(A.4)

We now proceed to bounding the second term and the third terms in Equation A.2. If we express
m(x) as

∏
j x

ij
j , we see that each ij is at most k and there are at most k values of j for which the

power ij is non-zero. This implies

E
x∼N (0,Id)

[
(m(x))

2
]
≤ 2k · (2k)!! ≤ (2k)k+2. (A.5)

Let δ′ be a real number between 0 and 1, value of which will be chosen later. The Markov’s inequality
implies that with probability at least 1− δ′ we have

E
x∼S

[
|m(x)|1|m(x)|>R

]
≤

Ex∼N (0,Id)

[
|m(x)|1|m(x)|>R

]
δ′

≤
Ex∼N (0,Id)

[
|m(x)|2

]
Rδ′

≤ (2k)k+2

Rδ′
(A.6)

We also note that

E
x∼N (0,Id)

[
|m(x)|1|m(x)|>R

]
≤

Ex∼N (0,Id)

[
|m(x)|2

]
R

≤ (2k)k+2

R
(A.7)

Overall, substituting Equations A.4, A.6 and A.7 into Equation A.2 we get∣∣∣∣ Ex∼S
[m(x)1x∈A]− E

x∼N (0,Id)
[m(x)1x∈A]

∣∣∣∣ ≤ 10R

√
((d+ 1)k +∆VC) logN

Nδ
+ 2

(2k)k+2

Rδ′
.

Choosing R to balance the two terms above, we get∣∣∣∣ Ex∼S
[m(x)1x∈A]− E

x∼N (0,Id)
[m(x)1x∈A]

∣∣∣∣ ≤
√

80
(2k)k+2

δ′

√
((d+ 1)k +∆VC) logN

Nδ
.

Taking δ′ = δ
4(d+1)k

and taking a union bound to insure that Equation A.6 holds for all monomials
m of degree at most k, we see that with probability at least 1− δ/2 it is the case that all monomials
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m of degree at most k and all A inH it is the case that

∣∣∣∣ Ex∼S
[m(x)1x∈A]− E

x∼N (0,Id)
[m(x)1x∈A]

∣∣∣∣ ≤
√

320
(2k)k+2(d+ 1)k

δ3/2

√
((d+ 1)k +∆VC) logN

N
≤

60(2k)k+2(d+ 1)k∆VC

δ

(
logN

N

)1/4

. (A.8)

Recall again that there are at most (d+ 1)
k degree-k monomials m. This allows us to combine

Equation A.8 with the triangle inequality to conclude that with probability at least 1− δ/2 for every
polynomial p of degree at most k with coefficients bounded by B in absolute value and for all A in
H we have∣∣∣∣ Ex∼S

[p(x)1x∈A]− E
x∼N (0,Id)

[p(x)1x∈A]

∣∣∣∣ ≤ 60B(2k)k+2(d+ 1)2k∆VC

δ

(
logN

N

)1/4

.

The polynomial p2 has a degree of at most 2k and each coefficient of p2 is bounded by B2 (d+ 1)
2k.

Therefore, with probability at least 1−δ/2 for every polynomial p of degree at most k with coefficients
bounded by B in absolute value and for all A inH we have∣∣∣∣ Ex∼S

[
(p(x))

2
1x∈A

]
− E

x∼N (0,Id)

[
(p(x))

2
1x∈A

]∣∣∣∣ ≤ 60B2(4k)2k+2(d+ 1)6k∆VC

δ

(
logN

N

)1/4

,

which completes the proof.

B Testable Learning with respect to Massart Noise Oracles

We now turn to the more challenging task of testable learning with respect to Gaussian Massart
oracles and state our main theorem which shows that there is a fully polynomial-time algorithm
even in this case. Observe that, informally, for some ground-truth halfspace f , the Massart oracle
EXMassart

N ,f,η0
can be equivalently viewed as follows: The oracle outputs a Gaussian example x, and

with probability η0 the adversary is given an option to make the accompanying label incorrect (i.e.
−f(x)), and otherwise the label is correct (i.e. f(x)). The Massart noise model is known to be
more challenging that the RCN model, because the label noise (in general) does not have symmetry
properties that can be harnessed to make error terms coming from different regions cancel each other
out.

Theorem B.1 (Main Result). Let c ∈ (0, 1/2) be any constant and η0 = 1/2 − c. Then, there
is an algorithm that testably learns the class Hhs with respect to EXMassart

N ,Hhs,η0
= {EXMassart

N ,f,η : f ∈
Hhs, supx∈Rd η(x) ≤ η0} with time and sample complexity poly(d, 1/ϵ) log(1/δ).

Moreover, even if the input set S̄ is arbitrary (not necessarily i.i.d.), whenever the algorithm accepts, it
outputs h ∈ Hhs such that P(x,y)∼S̄ [y ̸= h(x)] ≤ optS̄ + ϵ , where optS̄ = minf∈Hhs

P(x,y)∼S̄ [y ̸=
f(x)].

The final part of Theorem B.1 states that the guarantee we achieve is actually stronger than the one in
Definition 1.3, since the output is near-optimal whenever the algorithm accepts, without requiring
that the input S̄ consists of independent examples. For small c, the runtime of our algorithm scales
as (d/ϵ)poly(1/c). This gives a polynomial-time algorithm when c is constant, but we leave it as an
interesting open question whether the dependence on 1/c can be improved. We provide lower bounds
for the case c = 0 in Appendix C.

The proof of Theorem B.1 follows the same outline we provided for the case of random classification
noise. However, there are two differences. First, we need a version of Fact 2.6 that works under
Massart noise (and Gaussian marginal) and gives an algorithm that approximately recovers the
parameters of the ground truth. Second, the disagreement tester from before does not give a testable
bound for the quantity |S̄b|/|S̄| = P(x,y)∼S̄ [y ̸= sign(v ·x) and sign(v∗ ·x) ̸= sign(v ·x)] anymore.
Even if we assume once more that under the target assumption we have exact recovery (i.e., v = v∗),
the event y ̸= sign(v∗ · x) is not independent from x and, if we used the disagreement tester
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of Theorem 2.4, the completeness criterion would not necessarily be satisfied under the target
assumption.

Fortunately, the first difference is not an issue, since appropriate results are known from prior work
on classical learning under Massart noise and Gaussian marginal (see, e.g., [ABL17, DKTZ20a]).
Fact B.2 ([DKTZ20a]). For any ϵ′, δ ∈ (0, 1) and η0 = 1/2− c, where c > 0 is any constant, there
is an algorithm with time and sample complexity poly(d, 1/ϵ) log(1/δ) that has access to an example
oracle in EXMassart

N ,f∗,η0
for some unknown f∗(x) = sign(v∗ · x), v∗ ∈ Sd−1 and outputs v ∈ Sd−1 s.t.

∡(v∗,v) ≤ ϵ′, with probability at least 1− δ.

The spectral tester and how it is applied. In order to resolve the second complication and provide a
certificate bounding the quantity |S̄b|/|S̄|, we follow a different testing approach, based on ideas from
tolerant testable learning [GSSV24], where the testers must accept whenever the input distribution is
close to the target (and not necessarily equal). We provide the following tester which is guaranteed to
accept subsets of Gaussian samples, since it is monotone under datapoint removal.
Theorem B.3 (Spectral tester, see Theorem E.1). Let µ ∈ (0, 1) be any constant. There is an
algorithm (Algorithm 2) that receives ϵ, δ ∈ (0, 1), U ∈ N, v ∈ Sd−1 and a set S of points in Rd,
runs in time poly(d, 1/ϵ, |S|) and then either outputs Reject or Accept, satisfying the following
specifications.

1. (Soundness) If the algorithm accepts and |S| ≤ U , then the following is true for any
v′ ∈ Sd−1

1

U

∑
x∈S

1{sign(v · x) ̸= sign(v′ · x)} ≤ (1 + µ)∡(v,v′)/π + ϵ

2. (Completeness) If S consists of at least (Cd
ϵδ )

C i.i.d. examples from Nd, where C ≥ 1 is
some sufficiently large constant depending on µ, then the algorithm accepts with probability
at least 1− δ.

3. (Monotonicity under removal) If the algorithm accepts on input (ϵ, δ, U,v, S) and S′ is such
that S′ ⊆ S, then the algorithm also accepts on input (ϵ, δ, U,v, S′).

Given this tool, we are able to obtain a testable bound for |S̄b|/|S̄|. Recall that the set S̄b is
the set of points (x, y) in S̄ such that y ̸= sign(v · x) and sign(v∗ · x) ̸= sign(v · x). For
the soundness, observe that |S̄b|/|S̄| = U

|S̄| ·
1
U

∑
x∈SFalse

1{sign(v · x) ̸= sign(v∗ · x)}, where
S̄False = {(x, y) ∈ S̄ : y ̸= sign(v · x)}. The soundness condition of Theorem B.3 gives us
that |S̄b|/|S̄| ≤ U

|S̄| (1 + µ)∡(v,v∗) + ϵ, as long as |SFalse| ≤ U . The quantity SFalse can be
testably bounded by (1/2− c)|S̄|, since SFalse is defined with respect to v and we can therefore pick
U = (1/2− c)|S̄|. Overall, we obtain the same bound for |S̄b|/|S̄| as in the RCN case.

In order to show that our test will accept under the target assumption, the main observation is that
we can interpret the Massart noise oracle with noise rate η0 as follows: To form the input set S̄, the
oracle first calls the RCN oracle of rate η0 to form a set S̄RCN. Let S̄RCN

False be the subset of S̄RCN such
that y ̸= sign(v∗ · x). The Massart noise oracle then flips the labels of some elements S̄RCN

False back
to match the ground-truth label. In other words, we have that S̄False ⊆ S̄RCN

False (assuming v = v∗).
Observe that SRCN

False is drawn according to the distribution of x conditioned on y ̸= sign(v∗ · x) and
is, therefore, an i.i.d. Gaussian sample.

Designing the spectral tester. Theorem B.3 follows from a combination of ideas used to prove
Theorem 2.4 and the spectral testing approach of [GSSV24]. In particular, instead of matching
the Chow parameters Ex∼S [Ii(x)

∏
j∈[d] x

αi ] of the quantities Ii as in Algorithm 1, we bound
the maximum singular value of the Chow parameter matrices Ex∼S [(x

⊗k)(x⊗k)⊤Ii(x)], where
x⊗k denotes the vector of monomials of degree at most k. This can be done efficiently via the
SVD algorithm and, crucially, satisfies the monotonicity under removal property of Theorem B.3.
Moreover, once the Chow parameter matrix is bounded, we have a bound for all quantities of the
form Ex∼S [(p(x))

2Ii(x)], where p is of degree at most k. Combining this observation with an
analysis similar to the one for Lemma 2.5 (see Propositions E.4 and E.5) and a stronger version of
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Algorithm 2: Spectral tester

Input: ϵ, δ, µ ∈ (0, 1), v ∈ Sd−1 and set S of points in Rd

Let C ≥ 1 be a sufficiently large constant
Set K = 2

ϵ

√
log(2/ϵ), k = C/µ5 and ∆ = ϵ2

CKdCk

for i = −K,−K + 1, . . . , 0, 1, . . . ,K − 1 do
Let Ii(x) = 1{iϵ ≤ v · x < (i+ 1)ϵ} for all x ∈ S
if Ex∼S [(x

⊗k)(x⊗k)⊤Ii(x)] ⪯ Ex∼N [(x⊗k)(x⊗k)⊤Ii(x)] + ∆I then continue
else output Reject

if Ex∼S [(x
⊗k)(x⊗k)⊤ 1{v·x≥Kϵ}] ⪯ Ex∼N [(x⊗k)(x⊗k)⊤ 1{v·x≥Kϵ}] + ∆I then continue

else output Reject
if Ex∼S [(x

⊗k)(x⊗k)⊤ 1{v·x≤−Kϵ}] ⪯ Ex∼N [(x⊗k)(x⊗k)⊤ 1{v·x≤−Kϵ}] + ∆I then continue
else output Reject
Output Accept

the sandwiching polynomials of [DGJ+10, GOWZ10] by [KSV24b], we obtain that Algorithm 2
satisfies Theorem B.3.

Overall algorithm. The overall algorithm receives an input set of labeled examples S̄ and obtains a
candidate v ∈ Sd−1 by running the algorithm of [DKTZ20a] with parameter ϵ′ = ϵ3/2/(C

√
d) for

some large enough constant C (see Fact B.2). Then, it runs the disagreement tester of Theorem 2.4
with parameters (S,v, ϵ, δ, µ) (for some small constant µ depending on the noise rate η0 = 1/2− c).
Subsequently, the tester checks whether P(x,y)∼S̄ [y ̸= sign(v · x)] is at most 1/2− c/2.

Finally, it splits the set S̄False = {(x, y) ∈ S̄ : y ̸= sign(v · x)} in two parts as follows.

S̄far
False =

{
(x, y) ∈ S̄False : |∡(v,x)− π/2| > ϵ3/2/(d− 1)1/2

}
and S̄near

False = S̄False \ S̄far
False

For S̄near
False, it checks that it contains at most O(ϵ)|S̄| elements, while for S̄far

False, it runs the spectral
tester of Theorem B.3 with inputs (U = (1/2− c/2)|S̄|, S = Sfar

False,v, ϵ, δ, µ).

C Lower Bounds in the High-Noise Regime

Notation. The set Zq equals to {0, 1, 2, . . . , q − 1}. We denote with Nd(µ,Σ;S) the Gaussian
distribution in d dimensions with mean µ ∈ Rd and covariance matrix Σ ∈ Rd×d, truncated on the
set S ⊆ Rd.

We show that there is no efficient tester-learner that accepts whenever the input dataset is generated by
Gaussian examples with random classification noise (RCN) of rate 1/2. We give both cryptographic
lower bounds, as well as lower bounds in the statistical query (SQ) framework that match the best
known bounds for classical (non-testable) learning under adversarial label noise. Since RCN noise is
a special type of Massart noise, where all of the labels are flipped with the same rate (i.e., η(x) is
constant), the lower bounds we give also imply lower bounds for the case of Massart noise of rate
1/2 (which is also called strong Massart noise). Recall that random classification noise is defined in
Definition 2.1.

The hard distributions for learning under adversarial label noise proposed by [DKPZ21, Tie23,
DKR23] are all indistinguishable from the distribution generated by the oracle EXRCN

N ,1/2. Using this
fact, we obtain our lower bounds by the following simple observation that any tester-learner that
accepts EXRCN

N ,1/2 can distinguish between EXRCN
N ,1/2 and any distribution where the value of opt is

non-trivial.
Observation C.1. Let H ⊆ {Rd → {±1}} be a concept class, τ ∈ (0, 1/8) and suppose that
algorithmA testably learnsH with respect to EXRCN

N ,1/2 up to excess error ϵ ∈ (0, 1/4) and probability
of failure δ = 1/6. Let Dg be the class of distributions over Rd×{±1} such that the marginal on Rd is
Nd and minf∈H P[y ̸= f(x)] ≤ 1

2−ϵ−2τ . Then, there is an algorithmA′ that callsA once and uses
additional time poly(d, 1/τ) such that |P[A′(Nd ×Unif({±1})) = 1]− P[A′(Dx,y) = 1]| ≥ 1/3
for any Dx,y ∈ Dg .
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Proof. Let Dx,y be the input distribution. The algorithm A′(Dx,y) calls A(Dx,y) once and then:

• If A outputs Reject, then A′ outputs 0.

• If A outputs (Accept, h), then A′ estimates the quantity q = P(x,y)∼Dx,y
[y ̸= h(x)] up to

tolerance τ and probability of failure 1/6 and outputs 1 if the estimate q is at least 1/2− τ
and 0 otherwise.

We now consider the case thatDx,y = Nd×Unif({±1}). According to Definition 1.3, the probability
that A accepts is at least 5/6. Moreover, we have that regardless of the choice of h, P(x,y)∼Dx,y

[y ̸=
h(x)] = 1/2 and therefore A′ will overall output 1 with probability at least 2/3.

In the case that Dx,y ∈ Dg, A′ will output 0 unless the guarantee of the soundness does not hold
(which happens with probability at most 1/6) or the error of estimation of q is more than τ (which
happens with probability at most 1/6. Hence, overall, A′ will output 1 with probability at most
1/3.

C.1 Cryptographic Hardness

We provide cryptographic lower bounds based on the widely-believed hardness of the problem of
learning with errors (LWE), which was introduced by [Reg09] and is defined as follows.
Definition C.2 (Learning with Errors). Let d, q,m ∈ N and σ > 0. The LWE problem with
parameters d, q,m, σ and advantage α ∈ (0, 1) is defined as follows. Let s ∼ Unif(Zd

q) and consider
the following distributions over Zd

q × R.

• Dnull: x ∼ Unif(Zd
q) and y ∼ Unif(Zq).

• Dalt: x ∼ Unif(Zd
q), z ∼ N1(0, σ

2;Z), y = (x · s+ z) mod q

We receive m i.i.d. examples from some distribution Dx,y over Zd
q × R which is either equal to Dnull

or Dalt and we are asked to output v ∈ {±1} such that |P[v = 1|Dx,y = Dnull]− P[v = 1|Dx,y =
Dalt]| ≥ α.

There is strong evidence that the LWE problem cannot be solved in subexponential time, since there
are quantum reductions from worst-case lattice problems [Reg09, Pei09].

Assumption C.3 (Hardness of LWE). Let d, q,m ∈ N and σ > 0 such that q ≤ dk, σ = c
√
d

and m = 2O(dγ), where γ ∈ (0, 1), k ∈ N are arbitrary constants and c > 0 is a sufficiently large
constant. Then, any algorithm that solves LWE with parameters d, q,m, σ and advantage 2−O(dγ)

requires time 2Ω(dγ).

As an immediate corollary of results in [DKR23] (combined with Observation C.1), we obtain the
following lower bound under Assumption C.3.
Theorem C.4 (Cryptographic Hardness in High-Noise Regime, Theorem 3.1 in [DKR23]). Under
Assumption C.3, every algorithm with the guarantees of A′ in Observation C.1 for τ = ϵ ≤
1/ log1/2+β(d) andH = Hhs, requires time min{dΩ(1/(ϵ

√
log(d))α), 2d

0.99}, where α, β ∈ (0, 2) are
arbitrary constants.

Therefore, the same is true for any testable learning algorithm forHhs with respect to the RCN oracle
with noise rate η0 = 1/2 that has excess error ϵ ≤ 1/ log1/2+β(d) and failure probability δ ≤ 1/6.

C.2 SQ Lower Bounds

We also give lower bounds in the statistical query (SQ) model, which was originally defined by
[Kea98]. The SQ framework captures most of the usual algorithmic techniques like moment methods
and gradient descent ([FGR+17, FGV17]), and there is a long line of works in computational learning
theory giving SQ lower bounds for various learning tasks.
Definition C.5 (Statistical Query Model). Let Dx,y be a distribution over Rd × {±1} and τ > 0.
A statistical query (SQ) algorithm A with tolerance τ has access to Dx,y as follows: The algorithm
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(adaptively) makes bounded queries of the form q : Rd × [−1, 1]→ [−1, 1]. For each query q, the
algorithm receives a value v ∈ R with |v − Ex∼D[q(x, y)]| ≤ τ .

We obtain our lower bound as an immediate corollary of results in [DKR23], combined with Obser-
vation C.1, where note that the reduction of the hard distinguishing problem to testable learning also
works in the SQ framework, using one statistical query with tolerance τ .
Theorem C.6 (SQ Lower Bound in High-Noise Regime, Propositions 2.1, 2.8, Corollary B.1 in
[DKPZ21]). Every SQ algorithm with the guarantees of A′ in Observation C.1 for τ = ϵ ≥ d−c and
H = Hhs, where c > 0 is a sufficiently small constant, either requires queries of tolerance d−Ω(1/ϵ2)

or makes 2d
Ω(1)

queries.

Therefore, the same is true for any SQ testable learning algorithm forHhs with respect to the RCN
oracle with noise rate η0 = 1/2 that has excess error ϵ ≥ d−c and failure probability δ ≤ 1/6.

D Disagreement Tester

In this section we prove the following theorem.
Theorem D.1. For every positive absolute constant µ, there exists a deterministic algorithm
Tdisagreement and some absolute constant C that, given

• a dataset S of points in Rd of size N ≥
(
Cd
ϵδ

)C
.

• a unit vector v in Rd,

• parameters ϵ, δ and µ in (0, 1).

For any absolute constant µ, the algorithm runs in time poly
(
dN
ϵδ

)
and outputs Accept or outputs

Reject, subject to the following for all ϵ and δ in (0, 1):

• Completeness: if S consists of N ≥
(
Cd
ϵδ

)C
i.i.d. samples from the standard Gaussian

distribution, then with probability at least 1−O (δ) the set S is such that for all unit vectors
v the algorithm Tdisagreement accepts when given (S,v, ϵ, δ, µ) as the input.

• Soundness: For any dataset S and unit vector v, if the tester Tdisagreement accepts, then for
every unit vector v′ in Rd the following holds

P
x∼S

[sign(x · v) ̸= sign(x · v′)] = (1± µ)∡(v,v
′)

π
±O(ϵ).

We argue that the following algorithm (see also Algorithm 1) satisfies the specifications above:

• Given: parameter ϵ, δ in (0, 1), dataset S of points in Rd of size N ≥
(
Cd
ϵδ

)C
, a unit vector

v in Rd,

1. k1 ←
2
√

log 2/ϵ

ϵ

2. k2 ← C0.1

µ4

3. For all a and b in {−∞,−k1ϵ,−(k1 − 1)ϵ, · · · ,−ϵ, 0,+ϵ, · · · , (k1 − 1)ϵ, k1ϵ,+∞}
(a) For all monomials m of degree at most k2 over Rd:

i. Aa,b
m ← Ex∼N (0,Id)[m(x) · 1a≤x·v<b] ± 60(2k2(d+1))k2+2

δ

(
logN
N

)1/4
. (For how

to compute this approximation, see Claim 3).

ii. If
∣∣Ex∼S [m(x) · 1a≤x·v<b]−Aa,b

m

∣∣ > 200(2k2(d+1))k2+2

δ

(
logN
N

)1/4
, then output

Reject.
4. If did not reject in any previous step, output Accept.

It is immediate that the algorithm indeed runs in time poly
(
dN
ϵδ

)
.
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D.1 Completeness

Suppose the set dataset S consists of i.i.d. samples from N (0, Id). We observe that the collectionH
of sets of the form 1a≤v·x<b has VC dimension at most (d+ 1)2. This allows us to use Lemma A.1,
to conclude that with probability at least 1− δ for all pairs of a and b, for all unit vectors v and for
all monomials m of degree at most k2 we have∣∣∣∣ Ex∼S

[m(x) · 1a≤x·v<b]− E
x∼N (0.Id)

[m(x) · 1a≤x·v<b]

∣∣∣∣ ≤ 60(2k2)
k2+2(d+ 1)k2+2

δ

(
logN

N

)1/4

and Claim 3 implies that∣∣∣∣Aa,b
m − E

x∼N (0.Id)
[m(x) · 1a≤x·v<b]

∣∣∣∣ ≤ 60(2k2)
k2+2(d+ 1)k2+2

δ

(
logN

N

)1/4

The two inequalities above together imply the completeness condition.

D.2 Soundness

In order to deduce the soundness condition, we will need the following notions:

Definition D.2. Let C be a collection of disjoint subsets of Rd. We say that C is a partition of Rd if
Rd equals to the union

⋃
A∈C A.

Definition D.3. We say that a function f : Rd → {0, 1} is ϵ-sandwiched in L1 norm between a pair
of functions fup : Rd → R and fdown : Rd → R under N (0, Id) if:

• For all x in Rd we have fdown(x) ≤ f(x) ≤ fup(x)

• Ex∼N (0,Id) [fup(x)− fdown(x)] ≤ ϵ.

Definition D.4. We say that a function f : Rd → {0, 1} has (ϵ, B)-sandwiching degree of at most
k in L1 norm under N (0, Id) with respect to a partition C of Rd if the function f is ϵ-sandwiched
in L1 norm under N (0, Id) between

∑
A∈C

(
pAdown1A

)
and

∑
A∈C

(
pAup1A

)
, where pAup and pAdown are

degree−k polynomials over Rdwhose coefficients are bounded by B in absolute value.

Subsection D.3 is dedicated to proving the following bound on the sandwiching degree of a specific
family of functions with respect to a specific partition of Rd.

Proposition D.5. For all ϵ and k2, let k1 =
2
√

log 2/ϵ

ϵ , and let v be a unit vector in Rd. Then, there
exists a partition C of Rd consisting of sets of the form

{
x ∈ Rd : a ≤ v · x ≤ b

}
for a certain col-

lection of pairs a, b in {−∞,−k1ϵ,−(k1 − 1)ϵ, · · · ,−ϵ, 0,+ϵ, · · · , (k1 − 1)ϵ, k1ϵ,+∞}. Then, for

every unit vector v′, the function f(x) = 1sign(v·x)̸=sign(v′·x) has
(
O

(
∡(v,v′)

k
1/4
2

)
+ 10ϵ, O

(
d10k2

))
-

sandwiching degree of at most k2 in L1 norm under N (0, Id) with respect to the partition C of Rd.

A bound on the sandwiching degree of a class of functions leads to a guarantee for the tester
Tdisagreement:

Proposition D.6. Let C be a partition of Rd and suppose that a set S of points in Rd satisfies the
following condition for all A in C and degree-k2 monomials m over Rd:∣∣∣∣ Ex∼S

[m(x) · 1x∈A]− E
x∼N (0.Id)

[m(x) · 1x∈A]

∣∣∣∣ ≤ ϵ

(d+ 1)
k |C|B

(D.1)

Then, every {0, 1}-valued function f that has has (ν,B)-sandwiching degree of at most k in L1 norm
under N (0, Id) with respect to the partition C we have∣∣∣∣ P

x∼S
[f(x) = 1]− P

x∼N (0,Id)
[f(x) = 1]

⌉
≤ ν +O(ϵ)

22



Proof. Since f has (ν,B)-sandwiching degree of at most k in L1 norm under N (0, Id) with respect
to the partition C, we have a collection of polynomials

{
pAdown, p

A
up

}
for allA in C that have coefficients

bounded by B, satisfy for all x the condition

f(x) ∈

[∑
A∈C

(
pAdown(x)1x∈A

)
,
∑
A∈C

(
pAup(x)1x∈A

)]
, (D.2)

as well as

E
x∼N (0,Id)

[∑
A∈C

(
pAup(x)1x∈A

)
−
∑
A∈C

(
pAdown(x)1x∈A

)]
≤ ν. (D.3)

From the bound B on all coefficients of pAup and pAdownand Equation D.1 we see that:∣∣∣∣∣∑
A∈C

E
x∼N (0,Id)

[(
pAdown(x)1x∈A

)]
−
∑
A∈C

E
x∼D

[(
pAdown(x)1x∈A

)]∣∣∣∣∣ ≤ ϵ (d+ 1)
k |C|B

(d+ 1)
k |C|B

= ϵ, (D.4)∣∣∣∣∣∑
A∈C

E
x∼N (0,Id)

[(
pAup(x)1x∈A

)]
−
∑
A∈C

E
x∼D

[(
pAup(x)1x∈A

)]∣∣∣∣∣ ≤ ϵ (d+ 1)
k |C|B

(d+ 1)
k |C|B

= ϵ. (D.5)

Equation D.2 implies that

∑
A∈C

E
x∼N (0,Id)

[(
pAdown(x)1x∈A

)]
≤ E

x∼N (0,Id)
[f(x)] ≤

∑
A∈C

E
x∼N (0,Id)

[(
pAup(x)1x∈A

)]
, (D.6)

and Equation D.2 together with Equations D.4 and D.5 implies that:

∑
A∈C

E
x∼N (0,Id)

[(
pAdown(x)1x∈A

)]
− ϵ ≤

∑
A∈C

E
x∼D

[(
pAdown(x)1x∈A

)]
≤ E

x∼D
[f(x)] ≤

≤
∑
A∈C

E
x∼D

[(
pAup(x)1x∈A

)]
≤
∑
A∈C

E
x∼N (0,Id)

[(
pAup(x)1x∈A

)]
+ ϵ. (D.7)

Together Equations D.7 and D.6 constraint the values of both Ex∼D[f(x)] and Ex∼N (0,Id)[f(x)] to
the same interval that via Equation D.3 has a width of at most ν + 2ϵ. This allows us to conclude∣∣∣∣ P

x∼D
[f(x) = 1]− P

x∼N (0,Id)
[f(x) = 1]

∣∣∣∣ = ∣∣∣∣ E
x∼D

[f(x)]− E
x∼N (0,Id)

[f(x)]

∣∣∣∣ ≤ ν + 2ϵ,

completing the proof.

Claim 3 implies that all pairs of a and b in the set

{−∞,−k1ϵ,−(k1 − 1)ϵ, · · · ,−ϵ, 0,+ϵ, · · · , (k1 − 1)ϵ, k1ϵ,+∞} and for all monomials m of de-
gree at most k2 we have∣∣∣∣Aa,b

m − E
x∼N (0.Id)

[m(x) · 1a≤x·v<b]

∣∣∣∣ ≤ 60(2k2)
k2+2(d+ 1)k2+2

δ

(
logN

N

)1/4

.

If the algorithm accepts, then we have for all pairs of a and b in

{−∞,−k1ϵ,−(k1 − 1)ϵ, · · · ,−ϵ, 0,+ϵ, · · · , (k1 − 1)ϵ, k1ϵ,+∞} and for all monomials m of de-
gree at most k2 that∣∣∣ E

x∼S
[m(x) · 1a≤x·v<b]−Aa,b

m

∣∣∣ ≤ 200(2k2)
k2+2(d+ 1)k2+2

δ

(
logN

N

)1/4

.

The two inequalities above imply that∣∣∣∣ Ex∼S
[m(x) · 1a≤x·v<b]− E

x∼N (0.Id)
[m(x) · 1a≤x·v<b]

∣∣∣∣ ≤ 260(2k2)
k2+2(d+ 1)k2+2

δ

(
logN

N

)1/4
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Taking the equation above, together with Proposition D.6 and Proposition D.5 we conclude that

∣∣∣∣ P
x∼S

[sign(v · x) ̸= sign(v′ · x)]− P
x∼N (0,Id)

[sign(v · x) ̸= sign(v′ · x)]
⌉
≤ O

(
∡(v,v′)

k
1/4
2

)
+

+O

(
(2k2)

k2+2(d+ 1)k2+2

δ

(
logN

N

)1/4
)

Substituting k2 ← C0.1

µ4 , N ≥
(
Cd
ϵδ

)C
, taking C to be a sufficiently large absolute constant and

recalling that Px∼N (0,Id)[sign(v · x) ̸= sign(v′ · x)] equals to ∡(v,v′)/π we conclude that

P
x∼S

[sign(x · v) ̸= sign(x · v′)] = (1± µ)∡(v,v
′)

π
±O(ϵ).

D.3 Bounding sandwiching degree of the disagreement region

To prove Proposition D.5, we will need the following result by [DGJ+10], [GOWZ10].

Fact D.7. For every positive integer k and a real value t, the function f(z) = 1z≤t has
(O( log

3 k√
k

), O(210k))-sandwiching degree in L1 norm of at most k under N (0, 1).

The following corollary slightly strengthens the fact above:

Corollary D.8. Let t ∈ R. For every positive integer k ≥ 2, the function f : R → {0, 1} with
f(z) = 1z≤t is (O(min( log

3 k√
k
, 1
t2 )), 2

10k)-sandwiched in L1 norm under N (0, 1) between a pair of
polynomials Rt

down and Rt
up of degree k.

Proof. Indeed, if log3 k√
k
≤ 1

t2 then the corollary follows from Fact D.7. So all we need to do is
to consider the other case. We see that either t > 1 or t < −1 (since k ≥ 2). if t > 1 we take
pdown(x) = 0 and pup(x) =

(
x
t

)2
. If t < −1, we take take pup(x) = 1 and pdown(x) = 1 −

(
x
t

)2
.

In either case, we see that the polynomials pdown and pup form a pair of
(
O
(
min

(
log3 k√

k
, 1
t2

))
, 1
)

-
sandwiching polynomials of degree 2.

Let v⊥ be the unit vector equal up to scaling to the component of v′ perpendicular to v. Then, we
have

ψdown(x) ≤ 1v·x≥0∧v′·x<0 ≤ ψup(x) (D.8)
ψdown(x) ≤ 1v·x>0∧v′·x≤0 ≤ ψup(x) (D.9)

where

ψup(x) =


1 if v · x≥ k1ϵ or v · x = 0

1v⊥·x tan θ≤−jϵ if v · x ̸= 0 and v · x ∈ [jϵ, (j + 1)ϵ) for 0 ≤ j ≤ k1 − 1

0 if v · x< 0

ψdown(x) =


0 if v · x≥ k1ϵ or v · x = 0

1v⊥·x tan θ<−(j+1)ϵ if v · x ̸= 0 and v · x ∈ [jϵ, (j + 1)ϵ) for 0 ≤ j ≤ k1 − 1

0 if v · x< 0
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Recall that for every t ∈ R, Corollary D.8 gives us one-dimensional degree-k2 sandwiching polyno-
mials Rt

down(z) and Rt
up(z) for 1z≤t. Using this notation, we have for all x in Rd

Denote this φdown(x)︷ ︸︸ ︷
k1−1∑
j=0

1v·x·[jϵ,(j+1)ϵ)R
−(j+1)ϵ/ tan θ
down (v⊥ · x) ≤ ψdown(x) ≤ 1v·x≥0∧v′·x<0 ≤

≤ ψup(x) ≤ 1v·x≥k1ϵ +

k1−1∑
j=0

1v·x·[jϵ,(j+1)ϵ)R
−jϵ/ tan θ
up (v⊥ · x)︸ ︷︷ ︸

Denote this φup(x)

(D.10)

In order to conclude Proposition D.5. We show the following two claims:
Claim 1. We have

E
x∼N (0,Id)

[φup(x)− φdown(x)] ≤ O

(
log1.5 k2

k
1/4
2

· ∡(v,v′)

)
+ 10ϵ

Claim 2. For all integers j in [0, k1 − 1]], every coefficient of R−(j+1)ϵ/ tan θ
down (v⊥ · x) and

R
−jϵ/ tan θ
up (v⊥ · x) is at most O

(
d10k2

)
in absolute value.

Proposition D.5 follows from the two claims above for as follows. We first observe that Equations
D.9 and D.10 imply that

φdown(−x) ≤ 1v·x<0∧v′·x≥0 ≤ φup(−x).
Recalling our convention that sign(0) = 1, we see that

1sign(v·x)̸=sign(v′·x) = 1v·x≥0∧v′·x<0 + 1v·x<0∧v′·x≥0

this, together with D.10 allows us to bound

φdown(x) + φdown(−x) ≤ 1sign(v·x)̸=sign(v′·x) ≤ φup(x) + φup(−x), (D.11)
Claim D.10 allows us to conclude that

E
x∼N (0,Id)

[φup(x) + φup(−x)− φdown(x)− φdown(−x)] ≤ O

(
log1.5 k2

k
1/4
2

· ∡(v,v′)

)
+ 20ϵ.

(D.12)
Equations D.11 and D.12, together with comparing the definition of φup and φdown with Definition
D.4 and recalling Claim 2, allow us to conclude that there exists a partition C of Rd consisting of sets
of the form

{
x ∈ Rd : a ≤ v · x ≤ b

}
for a certain collection of pairs a, b in

{−∞,−k1ϵ,−(k1 − 1)ϵ, · · · ,−ϵ, 0,+ϵ, · · · , (k1 − 1)ϵ, k1ϵ,+∞}, such that for every unit vector

v′, the function f(x) = 1sign(v·x)̸=sign(v′·x) has
(
O

(
∡(v,v′)

k
1/4
2

)
+ 10ϵ, O

(
d10k2

))
-sandwiching

degree of at most k2 in L1 norm under N (0, Id) with respect to the partition C of Rd. This implies
Proposition D.5.

We now proceed to proving Claim 1

Proof of Claim 1. We have the following.

E
x∼N (0,Id)

[ψup(x)− ψdown(x)] ≤

P
x∼N (0,Id)

[v · x > k1ϵ]+

k1−1∑
j=0

P
x∼N (0,Id)

[{v · x ∈ [jϵ, (j + 1)ϵ)} ∧ {v⊥ · x tan θ ∈ [−(j + 1)ϵ,−jϵ)}] ≤

e−(k1ϵ)
2

+ ϵ

∞∑
j=0

P
x∼N (0,Id)

[v⊥ · x tan θ ∈ [−(j + 1)ϵ,−jϵ)]︸ ︷︷ ︸
≤1

≤ 2ϵ (D.13)
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Let θ denote the angle ∡(v,v′). Given the inequality above, in order to finish the proof of Claim
1, it remains to upper-bound Ex∼N (0,Id) [φup(x)− ψup(x)] and Ex∼N (0,Id) [φup(x)− ψup(x)] by
O(θ) + 4ϵ.

From Corollary D.8 we know that for any t we have:

E
z∼N (0,1)

[
Rt

up(z)−Rt
down(z)

]
≤ O

(
min

(
log3 k√

k
,
1

t2

))
, (D.14)

and for every z in R
Rt

down(z) ≤ 1z≤t ≤ Rt
up(z). (D.15)

Since v and v⊥ are orthogonal, the random variables v⊥x and v · x are independent standard
Gaussians. Using this, together with Equations D.14 and D.15 we obtain the following.

E
x∼N (0,Id)

[φup(x)− ψup(x)]

=

k1−1∑
j=0

P
x∼N (0,Id)

[v · x ∈ [jϵ, (j + 1)ϵ)] E
x∼N (0,Id)

[
R−jϵ/ tan θ

up (v⊥ · x)− 1v⊥·x≤−jϵ/ tan θ

]

≤
k1−1∑
j=0

P
z1∼N (0,1)

[z1 ∈ [jϵ, (j + 1)ϵ)] E
z2∼N (0,1)

[
R−jϵ/ tan θ

up (z2)−R−jϵ/ tan θ
down (z2)

]

≤
k1−1∑
j=0

P
z1∼N (0,1)

[z1 ∈ [jϵ, (j + 1)ϵ)]O
(
min

( log3 k2√
k2

,
( tan θ

jϵ

)2))
First, consider the case θ ≥ π/4. The above inequality implies

E
x∼N (0,Id)

[φup(x)− ψup(x)] ≤ O
(
log3 k√

k

) k1−1∑
j=−k1

P
z1∼N (0,1)

[z1 ∈ [jϵ, (j + 1)ϵ)]︸ ︷︷ ︸
=Pz1∼N(0,1)[−k1ϵ≤z1<(k1−1)ϵ]

= O

(
log3 k2√

k2

)
= O

(
θ log1.5 k2

k
1/4
2

)
On the other hand, if θ ≤ π/4 we have tan θ ≤ 2θ and therefore, recalling that for any j it is the case
that Pz1∼N (0,1) [z1 ∈ [jϵ, (j + 1)ϵ)] ≤ ϵ, we have

E
x∼N (0,Id)

[
φup(x)− ψup(x)

]
≤

k1−1∑
j=0

O
(
min

( log3 k2√
k2

,
( tan θ

jϵ

)2)
ϵ
)

=

∫ k1ϵ

0

O
(
min

( log3 k2√
k2

,
( tan θ

⌊z/ϵ⌋ϵ

)2))
dz

≤
∫ +∞

0

O
(
min

( log3 k2√
k2

,
( tan θ
z − ϵ

)2))
dz

= O
( log3 k2√

k2
ϵ
)
+

∫ +∞

0

O
(
min

( log3 k2√
k2

,
( tan θ

z

)2))
dz,

which together with a change of variables with a new variable z′ = z/ tan θ allows us to proceed as
follows:

E
x∼N (0,Id)

[
φup(x)− ψup(x)

]
= O

( log3 k2√
k2

ϵ
)
+ tan θ

∫ +∞

0

O
(
min

( log3 k2√
k2

,
( 1

z′

)2))
dz′ =

= O
( log3 k2√

k2
ϵ+ tan θ

( log3 k2√
k2

( √k2
log3 k2

)0.5
+
( log3 k2√

k2

)0.5))
= O

(θ log1.5 k2
k
1/4
2

)
(D.16)
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Overall, in either case we have Ex∼N (0,Id) [φup(x)− ψup(x)] = O

(
θ log1.5 k2

k
1/4
2

)
. We now go through

a fully analogous argument to show that also Ex∼N (0,Id) [ψdown(x)− φdown(x)] = O

(
θ log1.5 k2

k
1/4
2

)
.

Again, from the independence of v⊥x and v · x, together with Equations D.14 and D.15 we have:
E

x∼N (0,Id)
[ψdown(x)− φdown(x)]

=

k1−1∑
j=0

P
x∼N (0,Id)

[v · x ∈ [jϵ, (j + 1)ϵ)] E
x∼N (0,Id)

[
1v⊥·x≤−(j+1)ϵ/ tan θ −R

−(j+1)ϵ/ tan θ
down (v⊥ · x)

]

≤
k1−1∑
j=0

P
z1∼N (0,1)

[z1 ∈ [jϵ, (j + 1)ϵ)] E
z2∼N (0,1)

[
R−(j+1)ϵ/ tan θ

up (z2)−R−(j+1)ϵ/ tan θ
down (z2)

]

≤
k1−1∑
j=−k1

P
z1∼N (0,1)

[
z1 ∈

[
jϵ, (j + 1)ϵ

)]
O
(
min

( log3 k2√
k2

,
( tan θ

(j + 1)ϵ

)2))
Again, we first consider the case θ ≥ π/4. The above inequality implies

E
x∼N (0,Id)

[
ψdown(x)− φdown(x)

]
≤

O
( log3 k√

k

) k1−1∑
j=0

P
z1∼N (0,1)

[
z1 ∈

[
jϵ, (j + 1)ϵ

)]
︸ ︷︷ ︸

=Pz1∼N(0,1)

[
0≤z1<(k1−1)ϵ

]
= O

( log3 k2√
k2

)
= O

(θ log1.5 k2
k
1/4
2

)

On the other hand, if θ ≤ π/4 we have tan θ ≤ 2θ and therefore, recalling that for any j it is the case
that Pz1∼N (0,1) [z1 ∈ [jϵ, (j + 1)ϵ)] ≤ ϵ, we have

E
x∼N (0,Id)

[
ψdown(x)− φdown(x)

]
≤

k1−1∑
j=0

O
(
min

( log3 k2√
k2

,
( tan θ

(j + 1)ϵ

)2)
ϵ
)

≤
∫ +∞

∞
O
(
min

( log3 k2√
k2

,
( tan θ

z

)2))
dz = O

(θ log1.5 k2
k
1/4
2

)
,

where the last step follows via precisely the same chain of inequalities as in Equation D.16.

In total, combining our bounds on Ex∼N (0,Id) [ψdown(x)− φdown(x)], Ex∼N (0,Id) [φup(x)− ψup(x)]
and Ex∼N (0,Id) [ψup(x)− ψdown(x)] we conclude that the quantity Ex∼N (0,Id)[φup(x)− φdown(x)]

is at most O( log
1.5 k2

k
1/4
2

· ∡(v,v′)) + 10ϵ, as desired.

It only remains to prove Claim 2 to conclude the proof of the completeness condition.

Proof of Claim 2. Corrollary D.6 says that for any value of t, the degree-k2 one-dimensional poly-
nomials Rt

up(z) and Rt
down(z) have all their coefficients bounded by O

(
210k2

)
. If one substitutes

v · x in place of z into either of these polynomials and opens the parentheses, the fact that v is a unit
vector allows us to bound the size of the largest coefficients of Rt

down(v⊥ · x) and Rt
up(v⊥ · x) by

O((d+ 1)k2(k2 + 1)210k2) = O(d10k2), proving the claim.

D.4 Miscellaneous Claims

Claim 3. There is a deterministic algorithm that given a unit vector v in Rd, scalars a and b,
a monomial m over Rd of degree at most k2, an accuracy parameter β ∈ (0, 1], runs in time

poly
(
(k2d)

k2 /β
)

and computes an approximation of Ex∼N (0,Id) [m(x) · 1a≤x·v<b] up to an addi-
tive error β.
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Proof. Firstly, we compute an orthonormal basis {w1, · · · ,wd−1} for the (d − 1)-dimensional
subspace of Rd that is orthogonal to v. We express m(x) = p(w1 ·x, · · · ,wd−1 ·x,v ·x), and note
that the polynomial p has all its coefficients between 0 and (d+ 1)

k2 , and p is comprised of at most
(d+ 1)

k2 monomials. Thus, to have an additive β-approximation for Ex∼N (0,Id) [m(x) · 1a≤x·v<b],
it sufficies to compute for every monomial m′ of degree at most k2 an additive β

d2k2
-approximation

to the quantity
E

x∼N (0,Id)
[m′(w1 · x, · · · ,wd−1 · x,v · x) · 1a≤v·x<b] ,

which via the spherical symmetry of N (0, Id) equals to Ex∼N (0,Id) [m
′(x) · 1a≤x1<b].

Secondly, for every monomial m′ of degree at most k2, we compute an approximation of the
quantity Ex∼N (0,Id) [m

′(x) · 1a≤x1<b] up to an additive error of β
10dk2

. To this end, we write
m′(x) =

∏
i (xi)

αi where
∑

i αi ≤ k2 and see that

E
x∼N (0,Id)

[m′(x) · 1a≤x1<b] =

(∏
i>1

(αi − 1)!!1αi is even

)
︸ ︷︷ ︸

≤k
10k2
2

1√
2π

∫ b

a

e−z2/2zα1 dz.

Note that α1 is an integer between 0 and k2. Since we were seeking to compute a β
d2k2

-approximation
to Ex∼N (0,Id) [m

′(x) · 1a≤x1<b], we see that this approximation can be obtained from the equaiton
above together with an additive β

(d+1)2k2k10k2
-approximation to 1√

2π

∫ b

a
e−z2/2zα1 dz. We denote

ρ(z) = e−z2/2zα1 , and let β′ = β

(d+1)2k2k
10k2
2

. We see that the function ρ has the following key

properties:

1. For all z in Rd, the derivative ρ′(z) = α1e
−z2/2zα1−1

1α1≥1 − e−z2/2zα1+1 we have
|ρ′(z)| ≤ (k2 + 1)

k2+1

2. For all z0 in Rd satisfying z0 > 4k2 + 2 the value
∫
|z|>z0

∣∣∣e−z2/2zα1

∣∣∣ dz is at most∫
|z|>z0

e−z2/4 dz which in turn is at most e−z2
0/4.

The three properties above imply that one can approximate the value of
∫ b

a
ρ(z) dz up to an additive

error of β′ via discretization, i.e., by splitting the interval [a, b] ∩ [−
√
2 ln(β′),

√
2 ln (β′)] into

intervals of size at most ∆ and for each of these intervals [a′j , b
′
j ] use the inequality∫ b′j

a′
j

ρ(z) dz = ρ(a′j)(a
′
j − b′j)±

(
sup
z∈R
|ρ′(z)|

)
(a′j − b′j)2,

which implies that

∫
z∈[a,b]

ρ(z) dz =

by property (2) of ρ︷ ︸︸ ︷∫
z∈[a,b]∩

[
−
√

2 ln(β′),
√

2 ln(β′)
] ρ(z) dz ± β′

2

=
∑
j

(
ρ(a′j)(a

′
j − b′j)±

(
sup
z∈R
|ρ′(z)|

)
(a′j − b′j)2

)
± β′

2

=
∑
j

ρ(a′j)(a
′
j − b′j)±

((
sup
z∈R
|ρ′(z)|

)
︸ ︷︷ ︸
≤(k2+1)k2+1

by property (1) of ρ

√
8 ln (β′)∆ +

β′

2

)
,

which implies that if we take ∆ to be β′√
8 ln(β′)(k2+1)k2+1

, then∑
j

ρ(a′j)(a
′
j − b′j) =

∫
z∈[a,b]

ρ(z) dz ± β′.
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Overall, evaluating the sum above requires one to compute ρ(a′j) on poly((k2)
k2/β′) values of a′j .

Therefore, substituting β′ = β

(d+1)2k2k
10k2
2

so it can be computed in time poly((k2d)
k2/β).

E Spectral Tester

In this section we prove the following theorem.
Theorem E.1. There exists some absolute constant C and a deterministic algorithm Tspectral that,
given

• A positive integer U ≥
(
Cd
ϵδ

)C
.

• a dataset S of points in Rd of size M ≤ U .

• a unit vector v in Rd,

• parameters ϵ, δ and µ in (0, 1).

For every positive absolute constant µ, the algorithm Tspectral runs in time poly
(
dU
ϵδ

)
and outputs

Acceptor output Reject. For all ϵ, δ and U ≥
(
Cd
ϵδ

)C
the algorithm Tspectral satisfies the following:

• Completeness: If S consists of M ≤ U i.i.d. samples from the standard Gaussian distribu-
tion, then with probability at least 1−O (δ) the set S is such that for all unit vectors v the
algorithm Tspectral accepts when given (U, S,v, ϵ, δ, µ) as the input.

• Monotonicity under Datapoint Removal: If the algorithm Tspectral outputs Accept for some
specific input (U, S,v, ϵ, δ, µ), then for all subsets S′ ⊂ S the tester Tspectral will also accept
the input (U, S′,v, ϵ, δ, µ).

• Soundness: For any dataset S and unit vector v, if the tester Tspectral accepts the input
(U, S,v, ϵ, δ, µ) then for every unit vector v′ in Rd we have

1

U

∑
x∈S

[
1sign(x·v)̸=sign(x·v′)

]
≤ (1 + µ)

∡(v,v′)

π
+O(ϵ).

We argue that the following algorithm (which is essentially a restatement of Algorithm 2) satisfies the
specifications above:

• Given: parameter ϵ, δ, µ in (0, 1), dataset S of points in Rd of size M ≤ U , a unit vector v
in Rd,

1. k1 ←
2
√

log 2/ϵ

ϵ , k2 ← C0.1

µ5

2. ∆← 60(4k2)
2k2+2(d+1)6k2+2

δ ( logU
U )1/4

3. For all a and b in {−∞,−k1ϵ,−(k1 − 1)ϵ, · · · ,−ϵ, 0,+ϵ, · · · , (k1 − 1)ϵ, k1ϵ,+∞}
(a) Compute W a,b such that

W a,b−∆I(d+1
k2
)×(d+1

k2
) ⪯ E

x∼N

[(
x⊗k2

)(
x⊗k2

)⊤·1a≤x·v<b

]
⪯W a,b+∆I(d+1

k2
)×(d+1

k2
)

(E.1)

(For how to compute this approximation, see Claim 6).
(b) If the following does not hold:

1

U

∑
x∈S

(
x⊗k2

) (
x⊗k2

)⊤
1a≤x·v<b ⪯W a,b + 3∆I(d+1

k2
)×(d+1

k2
), (E.2)

then output Reject.
4. If did not reject in any previous step, output Accept.
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It is immediate that the algorithm indeed runs in time poly
(
dU
ϵδ

)
, because step (2b) can be performed

by computing the largest eigenvalue of a
(
d+1
k2

)
×
(
d+1
k2

)
-sized matrix. Monotonicity over datapoint

removal also follows immediately since if S′ ⊂ S then

1

U

∑
x∈S′

(
x⊗k2

) (
x⊗k2

)⊤ ⪯ 1

U

∑
x∈S

(
x⊗k2

) (
x⊗k2

)⊤
,

and therefore if the condition in step (4) holds for S then it will also hold for S′.

E.1 Completeness

Since we have already proven the property of monotonicity under datapoint removal, we can assume
without loss of generality that M = U . If not, the set S can be obtained by first taking U samples
from N (0, Id) and then removing the last U −M of them. If the Tspectral accepted the dataset before
removing these points, then it will also accept it after these datapoints are removed.

Suppose the set dataset S consists of U i.i.d. samples from N (0, Id). Similar to Section D.1, we
again note that the collection H of sets of the form 1a≤v·x<b has VC dimension at most (d+ 1)2.
Lemma A.1 then implies that with probability at least 1− δ for all pairs of a and b, for every unit
vector v and for every polynomial p of degree at most k2, if Bp denotes the largest coefficient of p
(in absolute value) then we have∣∣∣∣∣ 1U ∑

x∈S

[
(p(x))

2
1x∈A

]
− E

x∼N (0,Id)

[
(p(x))

2
1x∈A

]∣∣∣∣∣ ≤ 2B2
p (d+ 1)

5k2

√
(4k2)2k2+2

δU
,

∣∣∣∣∣ 1U ∑
x∈S

[
(p(x))

2
1x∈A

]
− E

x∼N (0,Id)

[
(p(x))

2
1x∈A

]∣∣∣∣∣ ≤ 60B2
p(4k2)

2k2+2(d+ 1)6k2+2

δ

(
logU

U

)1/4

,

Combining this with Equation A.1 we get

1

U

∑
x∈S

[
(p(x))

2
1x∈A

]
≤ E

x∼N (0,Id)

[
(p(x))

2
1x∈A

]
+(∥p∥coeff)

2 60(4k2)
2k2+2(d+ 1)6k2+2

δ

(
logU

U

)1/4

and Claim 6 implies that Equation E.17 holds which implies that

p⊤W a,bp ≥ E
x∼N (0,Id)

[
(p(x))

2
1x∈A

]
+ (∥p∥coeff)

2 60B2
p(4k2)

2k2+2(d+ 1)6k2+2

δ

(
logU

U

)1/4

.

Combining the last two equations above, we get:

1

U

∑
x∈S

[
(p(x))

2
1x∈A

]
≤ p⊤W a,bp+ (∥p∥coeff)

2 120B2
p(4k2)

2k2+2(d+ 1)6k2+2

δ

(
logU

U

)1/4

.

Recalling the notation in A.1, we see that the assertion that the inequality above holds for every p, is
equivalent to the following matrix inequality

1

U

∑
x∈S

[
x⊗k2

(
x⊗k2

)⊤
1x∈A

]
⪯W a,b+

120B2
p(4k2)

2k2+2(d+ 1)6k2+2

δ

(
logU

U

)1/4

I(d+1
k2
)×(d+1

k2
).

Finally, substituting k2 = C0.1

µ5 and U ≥
(
Cd
ϵδ

)C
, we see that for a sufficiently large absolute constant

C, the inequality above implies Equation A.1, and thus Tspectral accepts.

E.2 Soundness

In order to deduce the soundness condition, expand upon definitions introduced in D.2. We emphasize
that unlike the L1-sandwiching degree used to analyze the disagreement tester, here we use the notion
of L2-sandwiching polynomials.
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Definition E.2. We say that a function f : Rd → {0, 1} is ϵ-sandwiched in L2 norm between a pair
of functions fup : Rd → R and fdown : Rd → R under N (0, Id) if:

• For all x in Rd we have fdown(x) ≤ f(x) ≤ fup(x)

• Ex∼N (0,Id)

[
(fup(x)− fdown(x))

2
]
≤ ϵ.

Definition E.3. We say that a function f : Rd → {0, 1} has (ϵ, B)-sandwiching degree of at most
k in L2 norm under N (0, Id) with respect to a partition C of Rd if the function f is ϵ-sandwiched
in L2 norm under N (0, Id) between

∑
A∈C

(
pAdown1A

)
and

∑
A∈C

(
pAup1A

)
, where pAup and pAdown are

degree−k polynomials over Rdwhose coefficients are bounded by B in absolute value.

Subsection E.3 is dedicated to proving the following bound on the L
2
-sandwiching degree of a

specific family of functions with respect to a specific partition of Rd.

Proposition E.4. For all ϵ and k2, let k1 =
2
√

log 2/ϵ

ϵ , and let v be a unit vector in Rd. Then,
there exists a partition C of Rd consisting of sets of the form {x ∈ Rd : a ≤ v · x ≤ b} for a
certain collection of pairs a, b in {−∞,−k1ϵ,−(k1− 1)ϵ, · · · ,−ϵ, 0,+ϵ, · · · , (k1− 1)ϵ, k1ϵ,+∞}.
Then, for every unit vector v′, the function f(x) = 1sign(v·x)̸=sign(v′·x) has (O(∡(v,v′) log

5 k2

k
1/4
2

·) +

10ϵ, O(d10k2))-sandwiching degree of at most k2 in L2 norm under N (0, Id) with respect to the
partition C of Rd.

A bound on the sandwiching degree of a class of functions leads to a guarantee for the tester
Tdisagreement:

Proposition E.5. Let C be a partition of Rd and f a {0, 1}-valued function that has (ν,B)-
sandwiching degree of at most k2 in L2 norm under N (0, Id) with respect to the partition C. If a set
S of points in Rd satisfies the following condition for all A in C :

1

U

∑
x∈S

(x⊗k2)(x⊗k2)⊤1x∈A ⪯ E
x∼N (0,Id)

[(x⊗k2)(x⊗k2)⊤1x∈A] +
ϵ2

|C|B2(d+ 1)k2
I(d+1

k2
)×(d+1

k2
)

(E.3)
then we have √

1

U

∑
x∼S

[
1f(x)=1

]
≤
√

P
x∼N (0,Id)

[f(x) = 1] +
√
ν + ϵ.

Proof. Since f has (ν,B)-sandwiching degree of at most k2 in L2 norm underN (0, Id) with respect
to the partition C, we have a collection of polynomials

{
pAdown, p

A
up

}
for allA in C that have coefficients

bounded by B, satisfy for all x the condition

f(x) ∈
[∑
A∈C

(
pAdown(x)1x∈A

)
,
∑
A∈C

(
pAup(x)1x∈A

)]
, (E.4)

as well as
E

x∼N (0,Id)

[(∑
A∈C

(
pAup(x)1x∈A

)
−
∑
A∈C

(
pAdown(x)1x∈A

))2]
≤ ν. (E.5)

For all x in Rd we have f(x) ≤ (f(x))2 ≤ (
∑

A∈C(p
A
up(x)1x∈A))

2. Since all distinct pairs A1, A2

in C are disjoint, we have (
∑

A∈C(p
A
up(x)1x∈A))

2 =
∑

A∈C(p
A
up(x)1x∈A)

2. Therefore, we have

1

U

∑
x∼S

[f(x)] ≤
∑
A∈C

(
1

U

∑
x∼S

[(
pAup(x)1x∈A

)2])
(E.6)

Referring to definitions in Subsection A.1, we see that Equation E.3 is equivalent to the assertion that
for every A in C and every degree-k2 polynomial p we have

1

U

∑
x∈S

(p(x))
2
1x∈A ≤ E

x∼N (0,Id)

[
(p(x))

2
1x∈A

]
+

ϵ2

|C|B2 (d+ 1)
k2

(∥p∥coeff)
2
.
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Choosing p = pAup in the inequality above and combining with Equation E.6 we get:

1

U

∑
x∼S

[
f(x)

]
≤
∑
A∈C

(
E

x∼N (0,Id)
[(pAup(x)1x∈A)

2] +
ϵ2

|C|B2(d+ 1)k2
(
∥∥pAup

∥∥
coeff

)2
)
.

By Equation A.1, we have
∥∥pAup

∥∥
coeff
≤ B2dk2 . Substituting this and again recalling that all distinct

pairs A1, A2 in C are disjoint, we obtain

1

U

∑
x∼S

[f(x)] ≤ E
x∼N (0,Id)

[(∑
A∈C

pAup(x)1x∈A

)2]
+ ϵ2.

Taking square roots of both sides gives us√
1

U

∑
x∼S

[f(x)] ≤
√

E
x∼Nd

[(∑
A∈C

pAup(x)1x∈A

)2]
+ ϵ2

≤
√

E
x∼Nd

[(∑
A∈C

pAup(x)1x∈A

)2]
+ ϵ. (E.7)

Equation E.4, together with the triangle inequality and the fact that (f(x))2 = f(x), implies that√
E

x∼N (0,Id)

[(∑
A∈C

pAup(x)1x∈A

)2]
≤

≤
√

E
x∼N (0,Id)

[
f(x)

]
+

√
E

x∼N (0,Id)

[(∑
A∈C

pAup(x)1x∈A − f(x)
)2]

≤
√

E
x∼N (0,Id)

[
f(x)

]
+

√
E

x∼N (0,Id)

[(∑
A∈C

pAup(x)1x∈A −
∑
A∈C

pAdown(x)1x∈A

)2]
Substituting Equation E.5, we get√

E
x∼N (0,Id)

[(∑
A∈C

pAup(x)1x∈A

)2]
≤
√

E
x∼N (0,Id)

[f(x)] +
√
ν,

which combined with Equation E.7 finishes the proof.

Claim 6 implies that matrices W a,b satisfy Equation E.1, which implies that for all monomials p of
degree at most k2 we have

W a,b ⪯ E
x∼N (0.Id)

[ (
x⊗k2

) (
x⊗k2

)⊤
1a≤x·v<b

]
+∆I(d+1

k2
)×(d+1

k2
)

If the above is the case, and the algorithm accepts, then we have for all pairs of a and b in

{−∞,−k1ϵ,−(k1 − 1)ϵ, · · · ,−ϵ, 0,+ϵ, · · · , (k1 − 1)ϵ, k1ϵ,+∞} that

1

U

∑
x∈S

(
x⊗k2

) (
x⊗k2

)⊤
1a≤x·v<b ⪯

E
x∼N (0.Id)

[(
x⊗k2

) (
x⊗k2

)⊤
1a≤x·v<b

]
+
210(4k2)

2k2+2(d+ 1)6k2+2

δ

(
logU

U

)1/4

I(d+1
k2
)×(d+1

k2
).

Taking the equation above, together with Proposition E.5 and Proposition E.4 we conclude that for all
unit vectors v′:√

1

U

∑
x∼S

[
1sign(x·v)̸=sign(x·v′)

]
≤
√

P
x∼N (0,Id)

[sign(v · x) ̸= sign(v′ · x)]+

√√√√O

(
log5 k2

k
1/4
2

∡(v,v′)

)
+

+O

√(2k1 + 2)
(4k2)2k2+2(d+ 1)7k2+2

δ

(
logU

U

)1/4

d10k2


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Substituting k1 ←
2
√

log 2/ϵ

ϵ , k2 ← C0.1

µ5 , Y ← C
(

(kd)k2

δ

)C
, taking C to be a sufficiently large

absolute constant and recalling that Px∼N (0,Id)[sign(v · x) ̸= sign(v′ · x)] equals to ∡(v,v′)/π we
conclude that

1

U

∑
x∼S

[
1sign(x·v)̸=sign(x·v′)

]
≤ (1 + µ)

∡(v,v′)

π
+O(ϵ).

E.3 Bounding the L2 sandwiching degree of the disagreement region

To prove Proposition E.4, we follow an exactly analogous approach as the one for Proposition D.5.
We will need the following result from [KSV24b]:

Fact E.6 ([KSV24b]). For every positive integer k and a real value t, the function f(z) = 1z≤t has
(O( log

10 k√
k

), O(210k))-sandwiching degree in L2 norm of at most k under N (0, 1).

The following corollary slightly strengthens the fact above:

Corollary E.7. For every positive integer k ≥ 4 and a real value t, the function f(z) = 1z≤t is

(O(min( log
10 k√
k
, 1
t2 )), 2

10k)-sandwiched in L2 norm under N (0, 1) between a pair of polynomials
J t

up and J t
down of degree of at most k.

Proof. Indeed, if log10 k√
k
≤ 1024

t2 then the corollary follows from Fact E.6. So all we need to do is to
consider the other case. We see that either t > 1 or t < −1 (since k ≥ 4). if t > 1 we take pdown(x) =

0 and pup(x) =
(
x
t

)2
. If t < −1, we take take pup(x) = 1 and pdown(x) = 1 −

(
x
t

)2
. In either

case, the polynomials pdown, pup form a pair of (O(min( log
10 k√
k
, 1
t2 )), 1)-sandwiching polynomials of

degree 2.

Let v⊥ be the unit vector equal up to scaling to the component of v′ perpendicular to v. Then, we
can write

ψdown(x) ≤ ψup(x) ≤ 1v·x≥0∧v′·x<0 (E.8)
ψdown(x) ≤ ψup(x) ≤ 1v·x>0∧v′·x≤0 (E.9)

where

ψup(x) =


1 if v · x≥ k1ϵ or v · x = 0,

1v⊥·x tan θ≤−jϵ if v · x ̸= 0 and v · x ∈ [jϵ, (j + 1)ϵ) for 0 ≤ j ≤ k1 − 1,

0 if v · x< 0

ψdown(x) =


0 if v · x≥ k1ϵ or v · x = 0

1v⊥·x tan θ<−(j+1)ϵ if v · x ̸= 0 and v · x ∈ [jϵ, (j + 1)ϵ) for 0 ≤ j ≤ k1 − 1

0 if v · x< 0

Recall that for every t ∈ R, Corollary E.7 gives us one-dimensional degree-k2 sandwiching poly-
nomials J t

down(z) and J t
up(z) for 1z≤t under L2 norm. Using this notation, we have for all x in

33



Rd

Denote this φL2
down(x)︷ ︸︸ ︷

k1−1∑
j=0

1v·x·[jϵ,(j+1)ϵ)J
−(j+1)ϵ/ tan θ
down (v⊥ · x) ≤ ψdown(x) ≤ 1v·x≥0∧v′·x<0 ≤

≤ ψup(x) ≤ 1v·x≥k1ϵ +

k1−1∑
j=0

1v·x·[jϵ,(j+1)ϵ)J
−jϵ/ tan θ
up (v⊥ · x)︸ ︷︷ ︸

Denote this φL2
up (x)

(E.10)

In order to conclude Proposition E.4. We show the following two claims:

Claim 4. We have

E
x∼N (0,Id)

[(
φL2

up (x)− φ
L2

down(x)
)2]
≤ O

(
log5 k2

k
1/4
2

· ∡(v,v′)

)
+ 10ϵ

Claim 5. For all integers j in [0, k1 − 1], every coefficient of J−(j+1)ϵ/ tan θ
down (v⊥ · x) and

J
−jϵ/ tan θ
up (v⊥ · x) is at most O

(
d10k2

)
in absolute value.

Proposition E.4 follows from the two claims above for as follows. We first observe that Equations
E.9 and E.10 imply that

φL2

down(−x) ≤ 1v·x<0∧v′·x≥0 ≤ φL2
up (−x).

Recalling our convention that sign(0) = 1, we see that

1sign(v·x) ̸=sign(v′·x) = 1v·x≥0∧v′·x<0 + 1v·x<0∧v′·x≥0

this, together with E.10 allows us to bound

φL2

down(x) + φL2

down(−x) ≤ 1sign(v·x)̸=sign(v′·x) ≤ φL2
up (x) + φL2

up (−x), (E.11)

Claim E.10 allows us to conclude that

E
x∼N (0,Id)

[(
φL2

up (x) + φL2
up (−x)− φ

L2

down(x)− φ
L2

down(−x)
)2]
≤

2

(
E

x∼N (0,Id)

[(
φL2

up (x)− φ
L2

down(x)
)2]

+ E
x∼N (0,Id)

[(
φL2

up (−x)− φ
L2

down(−x)
)2])

≤

O

(
log1.5 k2

k
1/4
2

· ∡(v,v′)

)
+ 20ϵ. (E.12)

Equations E.11 and E.12, together with comparing the definition of φup and φdown with Definition
E.3 and recalling Claim 5, allow us to conclude that there exists a partition C of Rd consisting of sets
of the form

{
x ∈ Rd : a ≤ v · x ≤ b

}
for a certain collection of pairs a, b in

{−∞,−k1ϵ,−(k1 − 1)ϵ, · · · ,−ϵ, 0,+ϵ, · · · , (k1 − 1)ϵ, k1ϵ,+∞}, such that for every unit vector

v′, the function f(x) = 1sign(v·x)̸=sign(v′·x) has
(
O

(
∡(v,v′)

k
1/4
2

)
+ 10ϵ, O

(
d10k2

))
-sandwiching

degree of at most k2 in L1 norm under N (0, Id) with respect to the partition C of Rd. This implies
Proposition E.4.

We now proceed to proving Claim 4
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Proof of Claim 4. We have:

E
x∼N (0,Id)

[
(ψup(x)− ψdown(x))

2
]
= E

x∼N (0,Id)
[ψup(x)− ψdown(x)] ≤

P
x∼N (0,Id)

[v · x > k1ϵ]+

k1−1∑
j=0

P
x∼N (0,Id)

[{v · x ∈ [jϵ, (j + 1)ϵ)} ∧ {v⊥ · x tan θ ∈ [−(j + 1)ϵ,−jϵ)}] ≤

e−(k1ϵ)
2

+ ϵ

∞∑
j=0

P
x∼N (0,Id)

[v⊥ · x tan θ ∈ [−(j + 1)ϵ,−jϵ)]︸ ︷︷ ︸
≤1

≤ 2ϵ (E.13)

Let θ denote the angle ∡(v,v′). Given the inequality above, in order to finish the proof of Claim
4, it remains to upper-bound Ex∼N (0,Id) [φup(x)− ψup(x)] and Ex∼N (0,Id) [φup(x)− ψup(x)] by
O(θ) + 4ϵ.

From Corollary E.7 we know that for any t we have:

E
z∼N (0,1)

[(
J t

up(z)− J t
down(z)

)2] ≤ O(min

(
log10 k√

k
,
1

t2

))
, (E.14)

and for every z in R

J t
down(z) ≤ 1z≤t ≤ J t

up(z). (E.15)

Since v and v⊥ are orthogonal, the random variables v⊥x and v · x are independent standard
Gaussians. Using this, together with Equations E.14 and E.15 we get:

E
x∼N (0,Id)

[(
φL2

up (x)− ψup(x)
)2]

=

k1−1∑
j=0

E
x∼N (0,Id)

[
1v·x∈[jϵ,(j+1)ϵ)

(
φL2

up (x)− ψL2
up (x)

)2]

≤
k1−1∑
j=0

P
x∼N (0,Id)

[v · x ∈ [jϵ, (j + 1)ϵ)] E
x∼N (0,Id)

[(
J−jϵ/ tan θ

up (v⊥ · x)− 1v⊥·x≤−jϵ/ tan θ

)2]
=

k1−1∑
j=0

P
z1∼N (0,1)

[z1 ∈ [jϵ, (j + 1)ϵ)] E
z2∼N (0,1)

[(
J−jϵ/ tan θ

up (z2)− J−jϵ/ tan θ
down (z2)

)2]
≤

k1−1∑
j=0

P
z1∼N (0,1)

[z1 ∈ [jϵ, (j + 1)ϵ)]O

(
min

(
log10 k2√

k2
,

(
tan θ

jϵ

)2
))

First, consider the case θ ≥ π/4. The above inequality implies

E
x∼N (0,Id)

[(
φL2

up (x)− ψup(x)
)2] ≤ O( log10 k√

k

) k1−1∑
j=0

P
z1∼N (0,1)

[z1 ∈ [jϵ, (j + 1)ϵ)]︸ ︷︷ ︸
=Pz1∼N(0,1)[0≤z1<(k1)ϵ]

=

O

(
log10 k2√

k2

)
= O

(
θ log5 k2

k
1/4
2

)
.
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On the other hand, if θ ≤ π/4 we have tan θ ≤ 2θ and therefore, recalling that for any j it is the case
that Pz1∼N (0,1) [z1 ∈ [jϵ, (j + 1)ϵ)] ≤ ϵ, we have

E
x∼N (0,Id)

[(
φL2

up (x)− ψup(x)
)2]
≤

k1−1∑
j=0

O
(
min

( log10 k2√
k2

,
( tan θ

jϵ

)2)
ϵ
)

≤
∫ +∞

0

O
(
min

( log10 k2√
k2

,
( tan θ
z − ϵ

)2))
dz

≤ O
( log10 k2√

k2
ϵ
)
+

∫ +∞

0

O
(
min

( log10 k2√
k2

,
( tan θ

z

)2))
dz

= O
( log10 k2√

k2
ϵ
)
+ tan θ

∫ +∞

0

O
(
min

( log10 k2√
k2

,
(1
z

)2))
dz

= O
( log10 k2√

k2
ϵ+ tan θ

( log10 k2√
k2

( √
k2

log10 k2

)0.5
+
( log10 k2√

k2

)0.5))
= O

(θ log5 k2
k
1/4
2

)
(E.16)

Overall, in either case we have Ex∼N (0,Id)

[(
φL2

up (x)− ψup(x)
)2]

= O

(
θ log1.5 k2

k
1/4
2

)
. We now go

through a fully analogous argument to show that also Ex∼N (0,Id)

[(
ψdown(x)− φL2

down(x)
)2]

=

O

(
θ log1.5 k2

k
1/4
2

)
. Again, from the independence of v⊥x and v · x, together with Equations E.14 and

E.15 we have:

E
x∼N (0,Id)

[(
ψdown(x)− φL2

down(x)
)2]

=

=

k1−1∑
j=0

P
x∼N (0,Id)

[v · x ∈ [jϵ, (j + 1)ϵ)] E
x∼N (0,Id)

[(
1v⊥·x≤−(j+1)ϵ/ tan θ − J

−(j+1)ϵ/ tan θ
down (v⊥ · x)

)2]
≤

k1−1∑
j=0

P
z1∼N (0,1)

[z1 ∈ [jϵ, (j + 1)ϵ)] E
z2∼N (0,1)

[(
R−(j+1)ϵ/ tan θ

up (z2)−R−(j+1)ϵ/ tan θ
down (z2)

)2]
≤

k1−1∑
j=0

P
z1∼N (0,1)

[z1 ∈ [jϵ, (j + 1)ϵ)]O

(
min

(
log10 k2√

k2
,

(
tan θ

(j + 1)ϵ

)2
))
≤

k1−1∑
j=0

P
z1∼N (0,1)

[z1 ∈ [jϵ, (j + 1)ϵ)]O

(
min

(
log10 k2√

k2
,

(
tan θ

jϵ

)2
))

As it was shown previously, the expression above is at most O
(

θ log5 k2

k
1/4
2

)
.

In total, combining our bounds on Ex∼N (0,Id)[(ψdown(x) − φL2

down(x))
2], Ex∼N (0,Id)[(φ

L2
up (x) −

ψup(x))
2] and Ex∼N (0,Id)[(ψup(x)− ψdown(x))

2] we conclude that

E
x∼N (0,Id)

[(
φL2

up (x)− φ
L2

down(x)
)2]
≤ O

(
log5 k2

k
1/4
2

· ∡(v,v′)

)
+ 10ϵ.

It only remains to prove Claim 5.

Proof of Claim 5. Corrollary E.5 says that for any value of t, the degree-k2 one-dimensional polyno-
mials J t

up(z) and J t
down(z) have all their coefficients bounded by O

(
210k2

)
. If one substitutes v · x
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in place of z into either of these polynomials and opens the parentheses, the fact that v is a unit
vector allows us to bound the size of the larges coefficients of Rt

down(v⊥ · x) and Rt
up(v⊥ · x) by

O
(
dk2(k2 + 1)210k2

)
= O(d10k2), proving the claim.

E.4 Miscellaneous Claims

Claim 6. There is a deterministic algorithm that given a unit vector v in Rd, scalars a and b,
a monomial m over Rd of degree at most k2, an accuracy parameter β ∈ (0, 1], runs in time

poly
(
(k2d)

k2 /β
)

and computes a
(
d+1
k2

)
×
(
d+1
k2

)
-matrix W a,b such that

W a,b − βI(d+1
k2
)×(d+1

k2
) ⪯ E

x∼N (0,Id)

[(
x⊗k2

) (
x⊗k2

)⊤ · 1a≤x·v<b

]
⪯W a,b + βI(d+1

k2
)×(d+1

k2
)

(E.17)

Proof. From Section 3, we recall that x⊗k2 is the vector one gets by evaluating all multidimensional
monomials of degree at most k2 on input x, and therefore the

(
d+1
k2

)
×
(
d+1
k2

)
-matrix (x⊗k2)(x⊗k2)⊤,

viewed as a bilinear form, for degree-k polynomials p1 and p2 we have p⊤1 (x
⊗k2)(x⊗k2)⊤p2 =

p1(x)p2(x). Thus, the entries of (x⊗k2)(x⊗k2)⊤ are indexed by pairs of monomials m1 and m2

over Rd of degree at most k, and we have m⊤
1 (x

⊗k2)(x⊗k2)⊤m2 = m1(x)m2(x). And the entries
of Ex∼N [(x⊗k2)(x⊗k2)⊤ · 1a≤x·v<b] are also indexed by pairs of monomials m1 and m2 over Rd

of degree at most k and equal to
Ex∼N [m1(x)m2(x) · 1a≤x·v<b]. Since the product m1m2 is a monomial of degree at most 2k2,
Claim 3 tells us that this value can be approximated up to error β′ in time poly((k2d)k2/β′) (we will
set the value of β′ later).

Thus, we take the
(
d+1
k2

)
×
(
d+1
k2

)
-matrix W a,b to have entries pairs of monomials m1 and m2 over

Rd of degree at most k and equal to additive β′-approximations to Ex∼N [m1(x)m2(x) · 1a≤x·v<b].

Thus, the difference between Ex∼N [(x⊗k2)(x⊗k2)⊤ ·1a≤x·v<b] andW a,b is a
(
d+1
k2

)
×
(
d+1
k2

)
-matrix

whose entries are bounded by β′ in absolute value. Thus, the Frobenius norm of this difference
matrix is at most (d + 1)k2/2β′, and therefore all eigenvalues of the matrix Ex∼N [m1(x)m2(x) ·
1a≤x·v<b] −W a,b are in [−(d + 1)k2/2β′, (d + 1)k2/2β′]. Taking β′ = β(d + 1)−k2/2, we can
conclude that Equation E.17 holds.

Overall, the run-time is poly((k2d)k2/β′), which we see equals to poly((k2d)
k2/β) since we have

β′ = β(d+ 1)−k2/2. This completes the proof.

F Testing Massart Noise

We give here the full proof of our main theorem (Theorem B.1), which we restate for convenience.

Theorem F.1. There exists a deterministic algorithm AMassart that runs in time poly
(
Nd
ϵδ

)
and for a

sufficiently large absolute constant C satisfies the following. Given parameters ϵ, δ in (0, 1) and a
dataset S̄ of size N ≥

(
Cd
ϵδ

)C
consisting of elements in Rd × {±1}, the algorithm AMassart outputs

either (Accept,v) for some unit vector v in Rd, or outputs Reject (in the former case we say A
accepts, while in the latter case we say A rejects). The algorithm AMassart satisfies the following
conditions:

1. Completeness: The algorithm AMassart accepts with probability at least 1 − O(δ) if S̄ is
generated by EXMassart

N ,f,η0
where f is an origin-centered halfspace and η0 ≤ 1/3.

2. Soundness: For any dataset S̄ of size N ≥
(
Cd
ϵδ

)C
, if AMassart accepts then the vector v

given by AMassart satisfies

P
(x,y)∼S̄

[sign(x · v) ̸= y] ≤ opt+O(ϵ), (F.1)

where opt is defined to be minv′∈Rd

(
P(x,y)∼S̄ [sign(x · v′) ̸= y]

)
.
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The rest of this section proves the above theorem. The algorithm AMassart does the following (where
C is a sufficiently large absolute constant):

• Given: parameters ϵ, δ in (0, 1) and a dataset S̄ of size N ≥
(
Cd
ϵδ

)C
consisting of elements

in Rd × {±1}.
1. Let v be the output of the algorithm of Fact B.2 run on the dataset S̄ with accuracy

parameter ϵ′ = ϵ3/2

100
√
d−1

and failure probability δ. Without loss of generality we can
assume that the algorithm is deterministic, because we can use some of the points in S̄
for random seeds.

2. S ←
{
x : (x, y) ∈ S̄

}
and N ←

∣∣S̄∣∣.
3. Run the tester Tdisagreement from Theorem D.1, on input (S,v, ϵ, δ, 0.1).
4. If Tdisagreement rejects in the previous step, output output Reject.
5. If |SFalse| > 2

5N , then output Reject.

6. Sfar
False ← SFalse ∩

{
x ∈ Rd :

∣∣∡(x,v)− π
2

∣∣ > ϵ3/2√
d−1

}
; Snear

False ← SFalse \ Sfar
False.

7. If Snear
False > 4ϵN , then output Reject.

8. Take U = 2
5N and then run the spectral tester Tspectral from Theorem E.1 with the input

parameters (U, Sfar
False,v, ϵ, δ, 0.1).

9. If Tspectral rejects in the previous step, output output Reject.
10. Otherwise, output (Accept,v).

From the run-time guarantees given in Theorem D.1 and Theorem E.1, we see immideately that the
run-time of the algorithm AMassart is poly

(
d
ϵ log

1
δ

)
.

F.1 Soundness

We first show the soundness condition. For any dataset S̄ of size N ≥
(
Cd
ϵδ

)C
, we need to show that

if AMassart accepts then the vector v given by AMassart satisfies Equation F.1. Theorems D.1 and E.1
imply that if the algorithm AMassartaccepts then

P
(x,y)∼S̄

[sign(x · v) ̸= sign(x · v′)] = (1± 0.1)
∡(v,v′)

π
±O(ϵ). (F.2)

1

U

∑
x∈Sfar

False

[
1sign(x·v) ̸=sign(x·v′)

]
≤ 1.1

∡(v,v′)

π
+O(ϵ). (F.3)

Rearranging, we get

P
(x,y)∼S̄

[sign(x · v′) ̸= y]− P
(x,y)∼S̄

[y ̸= sign(v · x)] =

P
(x,y)∼S̄

[sign(x · v) ̸= sign(x · v′) ∧ y = sign(v · x)]−

− P
(x,y)∼S̄

[sign(x · v) ̸= sign(x · v′) ∧ y ̸= sign(v · x)] =

P
(x,y)∼S̄

[sign(x · v) ̸= sign(x · v′)]− 2 P
(x,y)∼S̄

[sign(x · v) ̸= sign(x · v′) ∧ y ̸= sign(v · x)] =

P
x∼S

[sign(x · v) ̸= sign(x · v′)]− 2

N

∑
x∈SFalse

[
1sign(x·v)̸=sign(x·v′)

]
By Equation F.2, the first term above is lower-bounded by 0.9∡(v,v′)

π −O(ϵ). The second term can bro-
ken into two components: 2

N

∑
x∈Snear

False

[
1sign(x·v)̸=sign(x·v′)

]
and 2

N

∑
x∈Sfar

False

[
1sign(x·v)̸=sign(x·v′)

]
.

If the algorithm does not reject in step (8), the former term is upper-bounded by O(ϵ), while Equation
F.2 tells us that the latter term is upper-bounded by 2U

N

(
1.1∡(v,v′)

π +O(ϵ)
)

. Overall, substituting
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these bounds and recalling that U/N = 2/5, we get

P
(x,y)∼S̄

[sign(x · v′) ̸= y]− P
(x,y)∼S̄

[y ̸= sign(v · x)] ≥

0.9
∡(v,v′)

π
−O(ϵ)− 2U

N

(
1.1

∡(v,v′)

π
+O(ϵ)

)
=

0.9
∡(v,v′)

π
− 4

5

(
1.1

∡(v,v′)

π

)
−O(ϵ) = 0.02

∡(v,v′)

π
−O(ϵ) ≥ −O(ϵ).

Thus, choosing v′ to be argminu
(
P(x,y)∼Dpairs [sign(x · u) ̸= y]

)
, we get

P
(x,y)∼S̄

[sign(x · v) ̸= y] ≤ opt+O(ϵ),

finishing the proof of soundess.

F.2 Completeness

We now argue that for a sufficiently large absolute constant C, the algorithm AMassart satisfies the
completeness condition. In this subsection we assume that S̄ is generated by EXMassart

N ,f,η0
where

f(x) = sign(v∗ · x) is an origin-centered halfspace and η0 ≤ 1/3. We remind the reader that,
for some function η : Rd → [0, η0], every time EXMassart

N ,f,η0
is invoked it generates an i.i.d. pair

(x, y) ∈ Rd×{±1} where x is drawn fromN (0, Id) and y = f(x) with probability η(x) and−f(x)
with probability 1 − η(x). We would like to show that AMassart accepts with probability at least
1−O(δ).

For the purposes of completeness analysis, we define the set Saugmented to be a set of points in Rd

generated through the following random process:

• If a datapoint x in S has label y = −f(x), then x in included into Saugmented.

• If a datapoint x in S has label y = f(x), then x in included into Saugmented with probability
η0−η(x)
1−η(x) (and this choice is made independently for different x in S).

With the definition above in hand, we claim the following:

Claim 7. If the absolute constant C is large enough, then with probability at least 1 − δ it is the
case that |Saugmented| ≤ 2

5N . Furthermore, conditioned on any particular value of the size |Saugmented|
of this set, the individual elements of Saugmented are distributed i.i.d. from the standard Gaussian
distribution N (0, Id).

Proof. Overall, we know that y = −f(x) with probability η(x), so overall each x in S gets included
into Saugmented independently with probability η(x) + (1 − η(x))η0−η(x)

1−η(x) = η0. Overall every
element S is included into Saugmentedwith independently probability η0. Since η0 is at most 1/3 and

N ≥
(
Cd
ϵδ

)C
, we see that the standard Hoeffding bound tells us that for a sufficiently large absolute

constant C with probability at least 1− δ it is the case that |Saugmented| ≤ 2
5 |S| =

2
5N . This proves

the first part of the claim.

Additionally, recall that in this subsection we are assuming that S̄ is generated by EXMassart
N ,f,η0

. This
implies that the elements of S are generated i.i.d. from N (0, Id). Since the decision wheather each
datapoint x in Sis included into Saugmented is made with probability η0 independently from the actual
value of x, this implies the element of Saugmented are distributed i.i.d. as N (0, Id) even conditioned
on any specific value of |Saugmented|. This finishes the proof of the claim.

The following claim lists a number of desirable events for algorithm AMassart and shows that they are
likely to hold.

Claim 8. If C is a sufficiently large absolute constant, the following events take place with probability
at least 1−O(δ):
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1. The set S is such that for all unit vectors v′ the algorithm Tdisagreement accepts when given
the input (S,v′, ϵ, δ, 0.1).

2. For all vectors u in Rd, we have∣∣∣∣∣ P
(x,y)∼S̄

[sign(x · u) ̸= y]− P
(x,y)∼EXMassart

N ,f,η0

[sign(x · v) ̸= y]

∣∣∣∣∣ ≤ 2d

√
logN

N
log

1

δ
.

3. For all vectors u in Rd and scalars θ, we have∣∣∣∣ P
x∼S

[∡(x,u) ≤ θ]− P
x∼N (0,Id)

[∡(x,u) ≤ θ]
∣∣∣∣ ≤ 2d

√
logN

N
log

1

δ
.

4. It is the case that ∡(v,v∗) ≤ ϵ3/2

10
√
d−1

.

5. It is the case that |SFalse| ≤ 2
5N and |Saugmented| ≤ 2

5N .

6. Saugmented is such that for all unit vectors v′ the algorithm Tspectral accepts when given as
input on the input (U, Saugmented,v

′, ϵ, δ, 0.1) (we remind the reader that U = 2
5N ).

Proof. Event 1 holds with probability at least 1−O(δ) by Theorem D.1. The Event (2) holds with
probability at least 1−O(δ) by the standard VC bound, together with the fact that the VC dimension
of the class of halfspaces in Rd is at most d+ 1. Analogously, Event (2) holds with probability at
least 1−O(δ) by the standard VC bound, together with the fact that the VC dimension of the class
of origin-centric cones in Rd is most O(d).

Recall that in step (1) of AMassart we used the algorithm of [DKTZ20a] (see Fact B.2) which implies
that with probability at least 1− δ we have ∡(v,v∗) ≤ ϵ3/2

10
√
d−1

.

If Event (2) holds, we have

P
(x,y)∼S̄

[sign(x · v) ̸= y] ≤ P
(x,y)∼EXMassart

N ,f,η0

[sign(x · v) ̸= y] + 2d

√
logN

N
log

1

δ
,

and if Equation D.1 also holds we have

|SFalse|
N

= P
(x,y)∼S̄

[sign(x · v) ̸= y] ≤

P
(x,y)∼EXMassart

N ,f,η0

[sign(x · v∗) ̸= y] +
ϵ3/2

100
√
d− 1

+ 2d

√
logN

N
log

1

δ
≤

η0 +
1

100
+ 2d

√
logN

N
log

1

δ
≤ 1

3
+

1

100
+ 2d

√
logN

N
log

1

δ
.

Substituting N ≥
(
Cd
ϵδ

)C
, we see that the above is at most 2

5 if C is a sufficiently large absolute
constant. Thus, with probability at least 1−O(δ) we have |SFalse| ≤ 2N

5 . At the same time, Claim
D.1 tells us that with probability at least 1− δ we have |Saugmented| ≤ U = 2N

5 . Overall, we see that
Event (5) holds with probability at least 1−O(δ).

Finally, Claim E.1 tells us that with probability at least 1−O(δ) it is the case that |Saugmented| ≤ 2
5N .

Furthermore, Claim E.1 also tells us that, even conditioned on this event, the set Saugmented consists of
i.i.d. samples from N (0, Id). Then, the Completeness condition in Theorem E.1 tells us that with
probability at least 1−O(δ) it is the case that Tspectral accepts if and is given µ = 0.1, U = 2

5N and
input dataset Saugmented.

Now, we first note that if Event 1 takes place, then Tdisagreement accepts in step (3) of the algorithm
AMassart.
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If Event 3 in Claim 8 takes place, then from the triangle inequality it follows that∣∣∣∣ P
x∼S

[∣∣∣∡(x,v)− π

2

∣∣∣ ≤ ϵ3/2√
d− 1

]
− P

x∼N (0,Id)

[∣∣∣∡(x,v)− π

2

∣∣∣ ≤ ϵ3/2√
d− 1

]∣∣∣∣ ≤ 4d

√
logN

N
log

1

δ
.

(F.4)
It is also the case that

P
x∼N (0,Id)

[∣∣∣∡(x,v)− π

2

∣∣∣ ≤ ϵ3/2√
d− 1

]
≤ P

x∼N (0,Id)
[|x · v| ≤ ϵ] + P

x∼N (0,Id)

[
∥x− v (x · v)∥ tan

(
ϵ3/2√
d− 1

)
≤ ϵ
]

≤ P
x∼N (0,Id)

[|x · v| ≤ ϵ] + P
x∼N (0,Id)

[
∥x− v (x · v)∥ ≤

√
d− 1

ϵ

]

= P
x∼N (0,1)

[|x| ≤ ϵ] + P
x∼N (0,Id−1)

[
∥x∥ ≤

√
d− 1

ϵ

]
≤ 3ϵ (F.5)

Combining Equations F.4 and F.5 we get

P
x∼S

[∣∣∣∡(x,v)− π

2

∣∣∣ ≤ ϵ3/2√
d− 1

]
≤ 3ϵ+ 4d

√
logN

N
log

1

δ
≤ 4ϵ,

where the last inequality holds if C is a sufficiently large absolute constant. Since every element x in
Snear
False is in S and also satisfies

∣∣∡(x,v)− π
2

∣∣ ≤ ϵ3/2

10
√
d

, we see that Snear
False has a size of at most 4ϵN

and therefore the algorithm AMassart does not reject in step 8.

If Event 4 in Claim 8 takes place, then it is the case that ∡(v,v∗) ≤ ϵ3/2

2
√
d−1

. If this is the case, the

halfspaces sign(v ·x) and sign(v∗ ·x) will agree for all vectors x satisfying
∣∣∡(x,v)− π

2

∣∣ > ϵ3/2√
d−1

,
which holds for all x in Sfar

False. Overall, for every x in Sfar
False the corresponding label y satisfies y ̸=

sign(v ·x) = sign(v∗ ·x). Recalling the definition of the set Saugmented, we see that Sfar
False ⊆ Saugmented.

If Event 6 in Claim 8 holds then the set Saugmented is such that if the algorithm Tspectral accepts when
given as input (U, Saugmented,v, ϵ, δ, 0.1). But Theorem E.1 shows that Tspectral satisfies Monotonicity
under Datapoint Removal, which together with the inclusion Sfar

False ⊆ Saugmented implies that Tspectral

accepts if it is given
(
U, Sfar

False,v, ϵ, δ, 0.1
)
. Thus, the tester Tspectral does not reject in step 10.

We conclude that with probability at least 1−O(δ) the algorithm AMassart will not reject in any of the
four steps in which it could potentially reject. If this is the case, the algorithm AMassart will accept.
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