
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REGRET-GUIDED SEARCH CONTROL FOR EFFICIENT
LEARNING IN ALPHAZERO

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning (RL) agents achieve remarkable performance but remain
far less learning-efficient than humans. While RL agents require extensive self-
play games to extract useful signals, humans often need only a few games, im-
proving rapidly by repeatedly revisiting states where mistakes occurred. This idea,
known as search control, aims to restart from valuable states rather than always
from the initial state. In AlphaZero, prior work Go-Exploit applies this idea by
sampling past states from self-play or search trees, but it treats all states equally,
regardless of their learning potential. We propose Regret-Guided Search Con-
trol (RGSC), which extends AlphaZero with a regret network that learns to iden-
tify high-regret states, where the agent’s evaluation diverges most from the actual
outcome. These states are collected from both self-play trajectories and MCTS
nodes, stored in a prioritized regret buffer, and reused as new starting positions.
Across 9×9 Go, 10×10 Othello, and 11×11 Hex, RGSC outperforms AlphaZero
and Go-Exploit by an average of 77 and 89 Elo, respectively. When training on a
well-trained 9×9 Go model, RGSC further improves the win rate against KataGo
from 69.3% to 78.2%, while both baselines show no improvement. These results
demonstrate that RGSC provides an effective mechanism for search control, im-
proving both efficiency and robustness of AlphaZero training.

1 INTRODUCTION

Reinforcement learning (RL) is the process of training an agent through interaction with the en-
vironment and optimizing its behavior based on rewards. The foundations of RL were originally
inspired by human learning, where humans acquire new knowledge through trial-and-error experi-
ences. However, despite this conceptual similarity, current RL approaches remain far less efficient
than human learning (Tsividis et al., 2021; Iii & Sadigh, 2023). Consider the case of mastering the
game of Go. An RL agent such as AlphaZero (Silver et al., 2017; 2018) requires millions of self-
play games to reach superhuman performance. In contrast, professional human players can achieve
comparable strength after far fewer games.

(a) Human learning. (b) RL Agent (AlphaZero) learning.

Figure 1: Humans focus on correcting mistakes, whereas RL always starts from the initial state.

One key difference lies in how learning progresses. As illustrated in Figure 1, humans do not rely
on playing massive numbers of games from the beginning. Instead, they repeatedly review the
critical positions where mistakes occurred and refine their understanding until those weaknesses are
corrected. AlphaZero, in contrast, always restarts from the empty board and updates all positions
uniformly based on the obtained outcome, which substantially increases the number of episodes
required to master a game.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To bridge this gap, recent studies have investigated restarting strategies to improve the efficiency
of RL. This idea, originating from Sutton & Barto (2018), was formalized as the concept of search
control, which refers to selecting critical starting states for the simulated experiences. Building on
this principle, several works have been proposed for constructing restart distributions in RL, such as
sampling from the past trajectories (Tavakoli et al., 2020), starting from states closer to the goal (Flo-
rensa et al., 2017), or leveraging expert demonstrations (Uchendu et al., 2023). Go-Exploit (Trudeau
& Bowling, 2023) further extends this idea to the AlphaZero framework by maintaining a buffer of
states from self-play trajectories or search nodes and uniformly sampling them as new starting po-
sitions. Collectively, these approaches demonstrate that choosing starting states, rather than always
restarting from the initial state, can significantly accelerate RL learning. However, a key limitation
of Go-Exploit is that it considers all states equally. In practice, not all states contribute equally to
learning progress. Many states are already mastered, while only a small subset of states are actually
critical for improvement. This phenomenon becomes exacerbated in the later stages of training,
as the agent’s understanding of the game improves and mistakes become increasingly rare. This
motivates the need to identify and prioritize the most informative states for search control.

To address this challenge, we propose Regret-Guided Search Control (RGSC), a framework that
extends AlphaZero by identifying and revisiting high-regret states. Specifically, RGSC leverages
a regret network to detect states where the agent’s evaluation diverges most from the game out-
come. Since most states have near-zero regret, making direct learning of regret values challenging,
we design a ranking-based objective that guides the network to distinguish the most informative
states. These states are then stored in a prioritized regret buffer. By repeatedly restarting from
these states, the agent can focus on correcting its most critical mistakes, thereby mimicking human
learning and achieving more efficient training. Experimental results show that RGSC outperforms
both AlphaZero and Go-Exploit across three board games, including 9x9 Go, 10x10 Othello, and
11x11 Hex, achieving an average improvement of 77 Elo over AlphaZero and 89 Elo over Go-
Exploit. Furthermore, when continuing training from a strong, nearly converged model in 9x9 Go
for 40 iterations, RGSC still improves the win rate from 69.3% to 78.2%, whereas both AlphaZero
and Go-Exploit show no improvement. Moreover, additional analysis demonstrates that RGSC suc-
cessfully identifies high-regret states and systematically reduces their regret during training. In sum-
mary, RGSC provides an effective mechanism for search control in AlphaZero. Our results highlight
regret-guided search control as a promising direction for improving the efficiency and robustness of
reinforcement learning.

2 BACKGROUND

2.1 SEARCH CONTROL IN REINFORCEMENT LEARNING

The concept of search control (Sutton & Barto, 2018) was first introduced in the Dyna general
framework (Sutton, 1991), which integrates real experience with model-generated simulated experi-
ence. In this setting, simulated experience is generated through search control, which determines the
starting states and actions for rollouts, rather than always beginning from a fixed initial state. This
allows planning to focus computation on states that provide more information to accelerate learning.

Several subsequent works have adopted the principle of search control by choosing different starting
states during training. For example, Go-Explore (Ecoffet et al., 2021) addresses hard-exploration
problems by maintaining a database of promising states, and periodically selecting from these states
to discover high-reward trajectories. This approach allows systematic exploration of rarely visited
regions and achieved state-of-the-art results in an extremely difficult environment, Montezuma’s Re-
venge. (Florensa et al., 2017) propose another approach by selecting starting states near the goal and
gradually moving them backward, thereby constructing a curriculum in reverse to facilitate learning
in sparse reward environments. Jump-Start Reinforcement Learning (JSRL) (Uchendu et al., 2023)
samples initial states from expert demonstration trajectories, allowing the agent to focus on mean-
ingful states early in training, thereby improving sample efficiency. Tavakoli et al. (2020) provides
a formal definition for exploring restart distributions by introducing a restart distribution ρ(s) over
states. By altering the distribution of the restart states, the learning objective is modified to

L(w)
.
=
∑
s∈S

ρ(s)
∑
a∈A

π(a | s) (qπ(s, a)− q̂π(s, a))
2
, (1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

where S and A denote the state and action spaces, π(a | s) is the policy, qπ(s, a) is the true action-
value function under π, and q̂π(s, a) is its learned approximation. The restart distribution ρ(s)
specifies the probability of selecting state s ∈ S as a restart point. Two restart strategies are pro-
posed: (a) uniform restart, which samples from recent experiences, and (b) prioritized restart, which
ranks states according to their state-value temporal-difference (TD) error.

Moreover, search control is also widely applied at the level of task selection under curriculum-based
environments. For example, several studies (Jiang et al., 2021; Dennis et al., 2020; Parker-Holder
et al., 2023) adaptively sample training levels based on estimated regret, encouraging the agent to
focus on levels with higher learning potential. While these methods operate at the level of task
selection, our goal is to identify the most challenging states within the same game level.

2.2 SEARCH CONTROL IN ALPHAZERO

AlphaZero (Silver et al., 2018) is a reinforcement learning algorithm that can master board games
such as Chess, Shogi, and Go without requiring human knowledge. The training process alternates
between two phases: a self-play phase and an optimization phase. During the self-play phase, the
agent generates games against itself by combining Monte Carlo tree search (MCTS) Browne et al.
(2012); Coulom (2007) with a two-head neural network, including a policy network that outputs a
probability distribution over all possible actions and a value head that predicts the win rate of a given
state. In the optimization phase, trajectories collected from self-play are stored in a replay buffer and
sampled to update the neural network, training the policy head to predict the MCTS search distribu-
tion and the value head to predict the final game outcome. Although AlphaZero has demonstrated
superhuman performance in board games, it requires extensive computation, especially in games
with long trajectories, because every self-play game must start from the empty board. This issue
is exacerbated in 19x19 Go, where a single game often exceeds 250 moves, making it necessary
to spend enormous computational resources to generate self-play games (e.g., roughly 1.5 million
TPU-hours as reported in (Silver et al., 2018)).

To alleviate this issue, several studies have incorporated search control into AlphaZero by adjusting
self-play games to begin from particular intermediate states. For example, KataGo (Wu, 2020),
one of the current strongest open-source Go programs, proposes selecting starting states either by
randomly playing several moves with the policy network or by sampling and slightly modifying
states from past self-play trajectories. Similar to Florensa et al. (2017), Björnsson (2023) proposes
starting self-play from later stages of the game and gradually shifting the starting state toward the
initial position. This approach accelerates the training process, particularly in the early phases.
Recently, Trudeau & Bowling (2023) proposes Go-Exploit, which systematically investigates restart
state methods within the AlphaZero algorithm. Go-Exploit maintains a buffer of states collected
either from self-play trajectories (Go-Exploit Visited states Circular archive; GEVC) or from nodes
within the MCTS (Go-Exploit Search states Circular archive; GESC). For each self-play game, the
agent starts from the initial state with probability λ; otherwise, it uniformly samples a state from the
buffer as the starting state. Go-Exploit achieves higher sample efficiency and stronger performance
than AlphaZero in both Connect Four and 9x9 Go, with GEVC and GESC showing similar results.
However, a key limitation of Go-Exploit is its uniform sampling. By treating all states equally,
the method fails to align with the principle of restart distribution mentioned in Equation 1, which
emphasizes prioritizing important states that provide better learning.

3 REGRET-GUIDED SEARCH CONTROL

3.1 REGRET DEFINITION IN BOARD GAMES

We propose Regret-Guided Search Control (RGSC), a framework that extends AlphaZero by iden-
tifying and prioritizing high-regret states as search control openings for self-play in board games,
as shown in Figure 2. Unlike the original AlphaZero, as shown in Figure 1b, where self-play al-
ways starts from the empty board, RGSC guides self-play to begin from states with higher regret,
where regret reflects positions that the current agent has not yet mastered. These states can appear
either along the self-play trajectory or within the MCTS search tree. This allows the agent to fo-
cus on learning and exploring unfamiliar states with greater potential for improvement. Note that

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Go-Exploit adopts a similar idea of restarting from previously collected states, but it samples them
uniformly, which fails to capture the most informative states.

Figure 2: Overview of RGSC. The regret network selects high-regret states (red circles) from both
self-play (A) or MTCS search node (B), which serve as restart points for further self-play. The newly
generated trajectories can further branch out, e.g., state D originates from a restart at state C.

To formalize this idea, we define regret as a measure of the discrepancy between the agent’s eval-
uation and the game outcome. Given a self-play trajectory with state s0, s1, . . ., sT and a game
outcome z, the regret of state st is

R(st) =
1

T − t

T∑
i=t

(
Vselected(si)− z

)2
, (2)

where Vselected(si) represents the MCTS value of the selected action at state si. Intuitively, R(st)
measures the average discrepancy accumulated from st to the terminal state sT , capturing states
whose mis-evaluation has long-term impact on the outcome.

Note that R(st) is calculated only after the game is finished. Moreover, the same state s may
have different regret values across trajectories, since the subsequent moves and outcome can vary.
As training progresses and the agent’s evaluations become more accurate, the regret of previously
misjudged states gradually decreases. Conceptually, this resembles how human players repeatedly
review their mistakes to improve.

3.2 REGRET NETWORK

Although the regretR(st) of states on a finished self-play trajectory can be directly calculated, many
internal states in the MCTS search tree are not part of the actual trajectory and thus have no regret
values. Nevertheless, these states may still include critical states that the agent has not yet mastered.
Leveraging such states allows the agent to obtain more diverse restart states beyond the limited set
of self-play trajectories.

A naive approach is to train a regret value network that, given a state, directly predicts its regret
value, similar to settings in learning-to-learn problems (Wang et al., 2017; Chu et al., 2024; Gupta
et al., 2020). However, predicting regret value for arbitrary states in AlphaZero training is highly
challenging. First, the distribution is extremely imbalanced: most states have near-zero regret, while
high-regret states occur only rarely. Second, the learning target is non-stationary: high-regret states
are selected for restarts, and once revisited, their regret typically decreases quickly as the agent cor-
rects its mistakes. As a result, predicting regret becomes extremely difficult for this naive approach.

To tackle this challenge, we propose to learn regret with a ranking-based objective. The key idea
is that instead of predicting precise regret values, which are imbalanced and non-stationary targets,
we only need to identify which states have higher regret among all collected states. This relaxation
guides the model to focus on the most informative states, ensuring that they are included in the
prioritized buffer for restarting self-play.

Specifically, we incorporate a regret ranking network into the AlphaZero network. Given a state s,
the regret ranking network outputs an unnormalized score, γs, where γs represents the ranking score
of state s. Note that γ is a relative ranking score rather than the true regret value, with higher scores
corresponding to states with higher regrets. For a set of candidate states S, the restart distribution
ρ(s | S) is derived as follows:

ρ(s | S) = exp(γs)∑
s′∈S exp(γs′)

. (3)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Following Equation 1, the ranking objective is to maximize

Jrank =
∑
s∈S

ρ(s | S)R(s), (4)

which encourages the model to assign high probability to the highest-regret states, as these are the
most critical for maximizing Jrank and for restarting self-play.

To better optimize the regret ranking network, we apply an exponential transformation to the regret
values, which preserves the ranking order. Then, the network is optimized by using a surrogate
objective

J̃rank =
∑
s∈S

ρ(s | S) exp
(
R(s)

)
, (5)

and the corresponding loss function is defined as

Lrank = − log J̃rank = − log
∑
s∈S

ρ(s | S) exp
(
R(s)

)
(6)

= − log
∑
s∈S

(
exp

(
log softmax(γs) +R(s)

))
. (7)

The derived loss can be interpreted as adding regret as an additive bias to the log-softmax scores,
providing a smooth approximation to selecting the highest-regret states. We provide a detailed
derivation in the Appendix C.

Although the regret ranking network can differentiate states with higher regrets, its ranking score is
not bounded within the true regret value range. Therefore, to provide a quantitative measurement of
regret for the selected states, our regret network consists of both a regret value network and a regret
ranking network. The regret ranking network identifies high-regret states, while the regret value
network estimates their actual regret value.

3.3 PRIORITIZED REGRET BUFFER FOR SEARCH CONTROL

We describe the prioritized regret buffer (PRB), which utilizes the regret network to allow search
control during AlphaZero training. For each self-play game, we first apply the regret ranking net-
work to evaluate all states that appear both in the self-play trajectory and in the MCTS search trees.
The state with the highest ranking score is then selected. If the selected state s appears in the self-
play trajectory, we calculate its regret value R(s) using Equation 2; if it appears only in the search
tree, its regret value is estimated by the regret value network. The PRB maintains only a fixed ca-
pacity of K states. If the PRB is not yet full, the selected state s is added directly. Otherwise, it
is added only if its regret is higher than that of the lowest-regret state currently in the PRB. This
ensures that the PRB consistently stores a set of high-regret states for restarting.

For each self-play game, search control guides the choice of restarting state, starting from the empty
board with probability 1 − λ, and from a state sampled from PRB with probability λ. We adopt a
softmax distribution over all states in PRB when sampling to ensure high-regret states are prioritized.
The probability of selecting a state si in PRB is defined as P (si) = R(si)1/τ/

∑
j R(sj)1/τ , where

τ is the sampling temperature.

For restarting games from states in PRB, we update their regret valuesRnew(si) after replaying each
game using an exponential moving average (EMA):

Rnew(si)← (1− α)×Rold(si) + α×R(si), (8)

where Rold(si) is the previous regret value stored in the buffer, R(si) is the regret calculated from
the newly finished self-play game, and α is the EMA coefficient. This prevents regret values from
decreasing abruptly and ensures that once the agent has consistently mastered this state, its regret
will gradually decay, thereby reducing the probability of the state being sampled from the buffer.
In summary, this design mirrors how humans repeatedly review mistakes until they are fully under-
stood. We have also provided a detailed algorithm for RGSC in the Appendix B.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0K 2K 4K 6K
Iterations

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
wa

rd
s

(a) n = 5, Rewards

0K 2K 4K 6K
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

M
SE

(b) n = 5, MSE

0K 2K 4K 6K
Iterations

0.4

0.6

0.8

Av
er

ag
e

Re
wa

rd
s

(c) n = 6, Rewards

0K 2K 4K 6K
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

M
SE

No Search Control
Random
Regret

(d) n = 6, MSE

Figure 3: A toy example on n-level binary tree. (a) and (c) show the average rewards during the
training, while (b) and (d) show the mean squared error (MSE) of the optimal Q-values during the
training. The shaded area is a 95% confidence interval for the mean.

4 EXPERIMENTS

4.1 TOY EXAMPLE

We first investigate search control in a toy environment, an n-level sparse-reward binary tree, where
each leaf node is assigned an expected reward value p ∈ [0, 1]. The agent starts from the root and
selects nodes until reaching a leaf. Upon reaching a leaf node, it receives a stochastic binary reward:
1 with probability p and 0 with probability 1−p. Among all leaf nodes, exactly one node is assigned
to p = 1; thus, the objective in this environment is to discover the unique path that always guarantees
a reward 1. Next, we train Q-learning on this environment with three search control methods: (a)
No search control, always starting from the root; (b) Random, uniformly sampling from visited
nodes; and (c) Regret, sampling nodes in proportion to their regret. For the regret, we simply use
|Q̂(s) − Q(s, a)|, where Q̂(s) is the empirical maximum expected value estimated from all child
nodes, and Q(s, a) is the current Q-value of state s with action a. Figure 3 shows the results for the
5- and 6-level binary trees. The Regret method achieves higher average rewards than both Random
and No search control. These results demonstrate the importance of prioritizing states with high
learning potential and show the effectiveness of the regret-guided search control. Detailed settings
of the toy environment are provided in Appendix D.

4.2 RGSC IN BOARD GAMES

We compare RGSC against two baseline methods: (a) AlphaZero, which is trained without search
control, and (b) Go-Exploit with its GEVC variant described in subsection 2.2, across three board
games, including 9x9 Go, 10x10 Othello, and 11x11 Hex. All methods use a 3-block residual net-
work (He et al., 2016) and 200 MCTS simulations per move during self-play. Training runs for 300
iterations, with 160,000 states collected per iteration in 9x9 Go (due to its higher complexity) and
120,000 states in the other two games. We fix the number of training states rather than the number
of self-play games per iteration to ensure fairness, since AlphaZero without search control requires
more computation to generate a self-play game. Detailed settings are provided in Appendix A. In
summary, each training requires approximately 150 NVIDIA RTX A6000 GPU hours.

Figure 4 shows the Elo curves for each method across the three board games. For each game, all
models are evaluated against the 150-iteration AlphaZero model, whose Elo rating is fixed at 1000
as the reference point. When comparing the final checkpoint across all methods, RGSC consistently
outperforms both baselines in all three games. In 9x9 Go, RGSC surpasses AlphaZero and Go-
Exploit by 76 and 96 Elo points, respectively; in 10x10 Othello, the improvements are 70 and 50
Elo points; and in 11x11 Hex, the differences are 84 and 122 Elo points.

Interestingly, we observe that although Go-Exploit achieves a higher Elo than AlphaZero in the
early stages of training, its advantage diminishes as training converges. This phenomenon is also
evident in the original Go-Exploit experiments. We hypothesize that, during early training, many
states exhibit high regret since the model has much to learn, making it easy to select informative
states with uniform sampling. As training progresses, however, the number of unfamiliar states
decreases, thus uniform sampling becomes less effective. In contrast, RGSC continues to prioritize

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0K 10K 20K 30K 40K 50K 60K
Training Steps

0

200

400

600

800

1000

1200

1400

El
o

Ra
tin

g

(a) 9x9 Go

0K 10K 20K 30K 40K 50K 60K
Training Steps

200

400

600

800

1000

1200

1400

El
o

Ra
tin

g

(b) 10x10 Othello

0K 10K 20K 30K 40K 50K 60K
Training Steps

0

200

400

600

800

1000

1200

1400

1600

El
o

Ra
tin

g

AlphaZero
Go-Exploit
RGSC

(c) 11x11 Hex

Figure 4: Playing performance of AlphaZero, Go-Exploit, and RGSC on three different board
games. The shaded area is a 95% confidence interval for the mean.

the remaining high-regret states, allowing it to focus on difficult states and maintain its advantage in
the later stages of training.

Table 1: Win rate against established open-source programs on three board games.

AlphaZero Go-Exploit RGSC

9x9 Go 45.5%±1.5% 49.5%±2.0% 53.6%±2.4%
10x10 Othello 51.7%±2.5% 52.9%±3.3% 57.8%±3.2%

11x11 Hex 83.6%±1.6% 89.2%±1.8% 91.1%±2.0%

Furthermore, to assess whether the observed improvements remain consistent, we evaluate the final
checkpoint by playing against established open-source programs across all three games. We select
KataGo (Wu, 2020), one of the strongest open-source Go programs, for 9x9 Go; an alpha-beta search
implementation in Ludii (Piette et al., 2020) for 10x10 Othello; and MoHex (Huang et al., 2014), a
MCTS-based Hex program that won Computer Olympiad championships, for 11x11 Hex. Detailed
settings for each program are listed in subsection A.1. Table 1 summarizes the win rate against these
opponents. The results are consistent with the findings in Figure 4, showing that RGSC consistently
outperforms both AlphaZero and Go-Exploit. Overall, these experiments demonstrate that RGSC
offers a more efficient search control mechanism, resulting in higher training efficiency and stronger
playing performance.

4.3 RGSC ON WELL-TRAINED MODELS

Building on the findings in subsection 4.2, where Go-Exploit showed early improvement but failed
to yield significant progress as training converged, we now investigate whether RGSC can provide
further improvements when starting from an already well-trained model. It is worth noting that
mistakes become increasingly rare in such models, making it particularly challenging for the agent
to identify and learn from the remaining high-regret states.

To investigate this, we select a large 15-block baseline model trained with the AlphaZero algorithm
on 9x9 Go, which required approximately 1,060 NVIDIA RTX A6000 GPU hours and already
achieves a strong playing strength. When compared against a KataGo model of the same block size,
the baseline achieves a win rate of 69.3%. Similarly, we adopt AlphaZero, Go-Exploit, and RGSC
using the same baseline model as the initial weight to ensure a fair comparison. For RGSC, since the
original baseline model does not include the regret network, we add the regret network and generate
additional self-play games to train it, while keeping the policy and value networks frozen. All three
methods are then continued for 40 iterations under identical settings, requiring approximately 100
NVIDIA RTX A6000 GPU hours. Additional training details are provided in subsection A.2.

Figure 5 shows the results of continued training. Similar to the findings in subsection 4.2, RGSC
achieves the strongest performance, while Go-Exploit performs even worse than AlphaZero. At
the final checkpoint, RGSC surpasses AlphaZero by 42 Elo points and Go-Exploit by 87 points.
Furthermore, we evaluate the final checkpoint models against KataGo. The original baseline model
achieves a win rate of 69.3% ± 2.6%. After continued training, AlphaZero reaches 70.2% ± 2.7%

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 10000 20000 30000 40000
Training Steps

1000
1050
1100
1150
1200
1250
1300
1350

El
o

Ra
tin

g

AlphaZero
Go-Exploit
RGSC

Figure 5: Playing performance of AlphaZero, Go-Exploit, and RGSC when continued from well-
trained models. The shaded area is a 95% confidence interval for the mean.

and Go-Exploit 69.2% ± 2.7%, showing no meaningful improvement. In contrast, RGSC achieves
a substantially higher win rate of 78.2% ± 2.5%, significantly outperforming both baselines. To
conclude, these results indicate that RGSC can effectively track remaining self-mistake states even
in a well-trained model, thereby achieving further performance improvements.

4.4 COMPARISON BETWEEN RANKING AND REGRET IN RGSC

Both the regret value network and regret ranking network can be used to identify candidate states
for restarting, but their effectiveness may differ. The regret value network directly estimates regret
values, whereas the regret ranking network emphasizes relative ordering. In this subsection, we
analyze their differences in identifying high-regret states and examine the impact on search control.

We first train an RGSC variant that relies only on the regret value network for both state selection and
regret initialization. Figure 6 presents the training results, showing that the regret ranking network
outperforms the regret value network across all three games.

0K 10K 20K 30K 40K 50K 60K
Training Steps

0

200

400

600

800

1000

1200

1400

El
o

Ra
tin

g

(a) 9x9 Go

0K 10K 20K 30K 40K 50K 60K
Training Steps

200

400

600

800

1000

1200

1400

El
o

Ra
tin

g

(b) 10x10 Othello

0K 10K 20K 30K 40K 50K 60K
Training Steps

0
200
400
600
800

1000
1200
1400
1600

El
o

Ra
tin

g

Regret Value Network
Regret Ranking Network

(c) 11x11 Hex

Figure 6: Playing performance of RGSC using regret value network and regret ranking network.
The shaded area is a 95% confidence interval for the mean.

10K 20K 30K 40K 50K 60K
Training Step

0.2

0.3

0.4

Re
gr

et
 V

al
ue

(a) 9x9 Go

10K 20K 30K 40K 50K 60K
Training Step

0.40

0.45

0.50

0.55

0.60

Re
gr

et
 V

al
ue

(b) 10x10 Othello

10K 20K 30K 40K 50K 60K
Training Step

0.3

0.4

0.5

Re
gr

et
 V

al
ue

Go-Exploit
Regret Value Network
Regret Ranking Network

(c) 11x11 Hex

Figure 7: The regret values for nodes selected by Go-Exploit, regret value and ranking network. The
shaded area is a 95% confidence interval for the mean.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Next, we examine whether the states selected by the two networks indeed correspond to high-regret
states. We collect all states from self-play trajectories at each training step and evaluate them by
both networks. Since these states come directly from trajectories, their true regret values can be
computed according to Equation 2. We then rank the states separately with the regret value and
ranking networks, and select the top 2,000 states predicted by each. The true regret values of these
selected states are averaged to obtain the average regret of the states identified by each network.
Figure 7 shows the average regret of the states selected by each method during training. Overall,
the regret ranking network consistently selects states with higher true regret than the regret value
network, especially in 10x10 Othello. For convenience, we also include the Go-Exploit approach as
a baseline, where the average regret is obtained by randomly sampling 2,000 states. As expected,
the uniform sampling approach results in the lowest average regret among all methods. Moreover,
the average regret of Go-Exploit decreases during training, especially in Hex, corroborating our
hypothesis that Go-Exploit becomes less effective in later stages. In contrast, the regret ranking
network maintains a substantially higher average regret even at late training steps, indicating its
ability to continually identify difficult states. In summary, these results demonstrate that the ranking
objective improves the quality of selected states by prioritizing those with greater learning potential.

4.5 REGRET CHANGE IN PRIORITIZED REGRET BUFFER

This subsection examines whether the high-regret states in the PRB gradually decrease during train-
ing, i.e., whether the model can actually correct its mistakes by repeatedly revisiting those states.
Specifically, we record the regret of each state when it first enters the PRB and compare it with
its final regret before removal. Figure 8 shows the regret distributions at these two points across
all three games. Generally, the distributions consistently shift toward the left (lower regret values)
as training progresses. This confirms that states initially associated with high regret are eventually
corrected through repeated replay, resulting in reduced regret over time. In addition, by compar-
ing the average regret values, we observe that the average regret decreases significantly across all
games: from 0.655 to 0.296 in 9x9 Go, from 0.828 to 0.638 in 10x10 Othello, and from 0.848 to
0.657 in 11x11 Hex. These results demonstrate that RGSC continuously identifies states where the
agent struggles, allows them to be self-corrected through repeated revisits until mastered, and then
refreshes the buffer with new challenging states. More analyses on high-regret states and the game
length of restart states in PRB are provided in Appendix F and Appendix G, respectively.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Regret

0

200

400

600

800

1000

1200

1400

1600

Nu
m

 O
pe

ni
ng

s

At Entry
Before Removal

(a) 9x9 Go

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Regret

0

250

500

750

1000

1250

1500

1750

Nu
m

 O
pe

ni
ng

s

At Entry
Before Removal

(b) 10x10 Othello

0.0 0.5 1.0 1.5 2.0
Regret

0

500

1000

1500

2000

2500

Nu
m

 O
pe

ni
ng

s

At Entry
Before Removal

(c) 11x11 Hex

Figure 8: Regret distributions of states in the prioritized regret buffer at entry and before removal.

5 DISCUSSION

This paper proposes Regret-Guided Search Control (RGSC), an extension of AlphaZero that identi-
fies high-regret states. By integrating a regret network and a prioritized regret buffer, RGSC allows
the agent to repeatedly focus on correcting its most critical mistakes, mimicking how humans learn.
Experimental results show that RGSC outperforms AlphaZero and Go-Exploit, achieving an aver-
age of 77 and 89 Elo, respectively. Furthermore, RGSC successfully improves the win rate against
KataGo on a well-trained 9×9 Go model from 69.3% to 78.2%, while both baselines show no im-
provement. These results demonstrate the learning efficiency and robustness of RGSC.

Although our study focuses on board games, AlphaZero and its successor MuZero (Schrittwieser
et al., 2020) are general frameworks, suggesting that RGSC could be applied to more applica-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

tions beyond games. Specifically, our preliminary experiments (shown in Appendix H) applying
RGSC to MuZero on one of the Atari games, Pac-Man, show that under the same training bud-
get, RGSC-MuZero reaches 5166 points, compared to 3704 for MuZero. This demonstrates the
potential of RGSC to improve learning efficiency beyond board games. Future work can extend
RGSC to more domains, such as stochastic environments (Antonoglou et al., 2021) and continuous
control tasks (Hubert et al., 2021). The regret network also provides interpretability by revealing
specific weaknesses in the agent’s learning. Furthermore, the ability of RGSC to improve even on
a well-trained model indicates its scalability to more complex environments such as 19×19 Go or
large-scale sequential decision-making problems. We believe RGSC is a promising direction for
advancing RL field.

ETHICS STATEMENT

We do not foresee any ethical issues in this work.

REPRODUCIBILITY STATEMENT

To reproduce this work, we provided the details of the algorithm in Appendix B, and hyperparame-
ters in Appendix A. The source code, trained models used in the experiment, along with a README
file, will be released to ensure reproducibility once this paper is accepted.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models (LLMs) were used only for grammar correction and proofreading in the
preparation of this paper.

REFERENCES

Ioannis Antonoglou, Julian Schrittwieser, Sherjil Ozair, Thomas K. Hubert, and David Silver. Plan-
ning in Stochastic Environments with a Learned Model. In International Conference on Learning
Representations, October 2021.

Jónsson Björnsson, Y. Expediting Self-Play Learning in AlphaZero-Style Game-Playing Agents. In
ECAI 2023, pp. 263–270. IOS Press, 2023.

Cameron B. Browne, Edward Powley, Daniel Whitehouse, Simon M. Lucas, Peter I. Cowling,
Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A
Survey of Monte Carlo Tree Search Methods. IEEE Transactions on Computational Intelligence
and AI in Games, 4(1):1–43, March 2012.

Zhendong Chu, Renqin Cai, and Hongning Wang. Meta-Reinforcement Learning via Exploratory
Task Clustering. Proceedings of the AAAI Conference on Artificial Intelligence, 38(10):11633–
11641, March 2024.

Rémi Coulom. Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search. In Com-
puters and Games, Lecture Notes in Computer Science, pp. 72–83, Berlin, Heidelberg, 2007.
Springer.

Ivo Danihelka, Arthur Guez, Julian Schrittwieser, and David Silver. Policy improvement by planning
with Gumbel. In International Conference on Learning Representations, April 2022.

Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch,
and Sergey Levine. Emergent Complexity and Zero-shot Transfer via Unsupervised Environment
Design. In Advances in Neural Information Processing Systems, volume 33, pp. 13049–13061.
Curran Associates, Inc., 2020.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, and Jeff Clune. First return, then
explore. Nature, 590(7847):580–586, February 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter Abbeel. Reverse Cur-
riculum Generation for Reinforcement Learning. In Proceedings of the 1st Annual Conference on
Robot Learning, pp. 482–495. PMLR, October 2017.

Abhishek Gupta, Benjamin Eysenbach, Chelsea Finn, and Sergey Levine. Unsupervised Meta-
Learning for Reinforcement Learning, April 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 770–778, 2016.

Shih-Chieh Huang, Broderick Arneson, Ryan B. Hayward, Martin Müller, and Jakub Pawlewicz.
MoHex 2.0: A Pattern-Based MCTS Hex Player. In Computers and Games, volume 8427, pp.
60–71. Springer International Publishing, Cham, 2014.

Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Mohammadamin Barekatain, Simon
Schmitt, and David Silver. Learning and Planning in Complex Action Spaces. In Proceedings of
the 38th International Conference on Machine Learning, pp. 4476–4486. PMLR, July 2021.

Donald Joseph Hejna Iii and Dorsa Sadigh. Few-Shot Preference Learning for Human-in-the-Loop
RL. In Proceedings of The 6th Conference on Robot Learning, pp. 2014–2025. PMLR, March
2023.

Minqi Jiang, Edward Grefenstette, and Tim Rocktäschel. Prioritized Level Replay. In Proceedings
of the 38th International Conference on Machine Learning, pp. 4940–4950. PMLR, July 2021.

Xiaozhen Niu, Akihiro Kishimoto, and Martin Müller. Recognizing Seki in Computer Go. In Ad-
vances in Computer Games, Lecture Notes in Computer Science, pp. 88–103, Berlin, Heidelberg,
2006. Springer.

Jack Parker-Holder, Minqi Jiang, Michael Dennis, Mikayel Samvelyan, Jakob Foerster, Edward
Grefenstette, and Tim Rocktäschel. Evolving Curricula with Regret-Based Environment Design,
September 2023.

Éric Piette, Dennis J. N. J. Soemers, Matthew Stephenson, Chiara F. Sironi, Mark H. M. Winands,
and Cameron Browne. Ludii – The Ludemic General Game System, February 2020.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy Lillicrap, and
David Silver. Mastering Atari, Go, chess and shogi by planning with a learned model. Nature,
588(7839):604–609, December 2020.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan
Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering
the game of Go without human knowledge. Nature, 550(7676):354–359, October 2017.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Si-
monyan, and Demis Hassabis. A general reinforcement learning algorithm that masters chess,
shogi, and Go through self-play. Science, 362(6419):1140–1144, December 2018.

Richard S. Sutton. Dyna, an integrated architecture for learning, planning, and reacting. SIGART
Bull., 2(4):160–163, 1991.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. Adaptive Com-
putation and Machine Learning Series. MIT Press, Cambridge, MA, USA, 2 edition, November
2018.

Arash Tavakoli, Vitaly Levdik, Riashat Islam, Christopher M. Smith, and Petar Kormushev. Explor-
ing Restart Distributions, August 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Alexandre Trudeau and Michael Bowling. Targeted Search Control in AlphaZero for Effective Pol-
icy Improvement. In Proceedings of the 2023 International Conference on Autonomous Agents
and Multiagent Systems, AAMAS ’23, pp. 842–850, Richland, SC, May 2023. International Foun-
dation for Autonomous Agents and Multiagent Systems.

Pedro A. Tsividis, Joao Loula, Jake Burga, Nathan Foss, Andres Campero, Thomas Pouncy,
Samuel J. Gershman, and Joshua B. Tenenbaum. Human-Level Reinforcement Learning through
Theory-Based Modeling, Exploration, and Planning, July 2021.

Ikechukwu Uchendu, Ted Xiao, Yao Lu, Banghua Zhu, Mengyuan Yan, Joséphine Simon, Matthew
Bennice, Chuyuan Fu, Cong Ma, Jiantao Jiao, Sergey Levine, and Karol Hausman. Jump-Start
Reinforcement Learning. In Proceedings of the 40th International Conference on Machine Learn-
ing, pp. 34556–34583. PMLR, July 2023.

Jane X. Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z. Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn,
January 2017.

David J. Wu. Accelerating Self-Play Learning in Go. In Proceedings of the AAAI Workshop on
Reinforcement Learning in Games, November 2020.

Ti-Rong Wu, Hung Guei, Pei-Chiun Peng, Po-Wei Huang, Ting Han Wei, Chung-Chin Shih, and
Yun-Jui Tsai. MiniZero: Comparative Analysis of AlphaZero and MuZero on Go, Othello, and
Atari Games. IEEE Transactions on Games, 17(1):125–137, March 2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A TRAINING DETAILS

A.1 TRAINING RGSC IN BOARD GAMES

In this section, we describe the details for training models used in the experiments. The trainings in
section 4 are conducted on a machine with two Intel Xeon Silver 4516Y+ CPUs and four NVIDIA
RTX A6000 GPUs. For the implementation of RGSC, and the two baseline networks, AlphaZero
and Go-Exploit, each network employs the Gumbel AlphaZero algorithm (Danihelka et al., 2022).
Three methods are implemented based on an open-sourced AlphaZero framework (Wu et al., 2025).
During training, 4 self-play workers and 1 optimization worker are used. For RGSC, each worker
maintains its own prioritized regret buffer (PRB).

In the experiments of subsection 4.2, we use hyperparameters shown in Table 2 to train all three
methods. For the training of RGSC, the additional hyperparameters are set as follows: the sampling
probability λ is 0.5, the buffer sampling temperature τ is 0.1, the buffer size κ is 100, and the EMA
coefficient α is 0.5.

Table 2: Hyperparameters for training in subsection 4.2.

Parameter Go Hex Othello

Board size 9 11 10
Optimizer SGD
Optimizer: learning rate 0.02
Optimizer: momentum 0.9
Optimizer: weight decay 0.0001
MCTS simulation 200
Softmax temperature 1
Iteration 300
Self-Play states per iteration 160,000 120,000 120,000
Optimizations per iteration 200
Batch size 1024
Residual blocks 3
Residual blocks filters 256
Replay buffer size 20
Dirichlet noise ratio 0.25

In the experiments of subsection 4.3, we train all three methods from already well-trained models
with the hyperparameters shown in subsection 4.2. In this training setup, the buffer size is set to
500. To warm up the PRB in RGSC, we generate 1,000 self-play games with a buffer rate λ = 0.5,
excluding these warm-up games from the training data.

Regarding the computational cost of RGSC, although RGSC adds two additional heads (regret value
and ranking heads), they share the same backbone as the policy/value network, so the additional
computation is minimal, especially in larger models. We measured both the neural network infer-
ence time and the per-iteration wall-clock time on Go. Specifically, for the 3-block model (used
in subsection 4.2), RGSC is 1.35x slower in inference and 1.25x slower per iteration compared to
AlphaZero/Go-Exploit. However, for the 15-block model (used in subsection 4.3), RGSC is only
1.02x slower in inference, and the per-iteration time is nearly identical (∼1.00x) to AlphaZero/Go-
Exploit. In realistic settings (e.g., AlphaZero used 20 blocks and KataGo used 20-40 blocks), this
overhead becomes negligible. Therefore, RGSC adds almost no extra cost while improving training
efficiency.

A.2 EVALUATION

In the evaluation of each method, we repeat each experiment twice per game and average the results
to reduce stochastic variance. The number of MCTS simulations is set to 400, with the action
softmax temperature set to 1.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 3: Hyperparameters for the training in subsection 4.3.

Parameter Go

Board size 9
Optimizer SGD
Optimizer: learning rate 0.001
Optimizer: momentum 0.9
Optimizer: weight decay 0.0001
MCTS simulation 400
Softmax temperature 1
Iteration 40
Self-Play states per iteration 160,000
Optimizations per iteration 1000
Batch size 256
Residual blocks 15
Residual blocks filters 128
Replay buffer size 20
Dirichlet noise ratio 0.25

A.2.1 EVALUATION AGAINST THE ALPHAZERO

For the experiments in Figure 4 of subsection 4.2, and Figure 6 of subsection 4.3, all methods are
evaluated against the AlphaZero baseline every 15 iterations, with 200 games played per evaluation.
In the following paragraph, we will describe the setting of evaluation on Table 1.

A.2.2 EVALUATION AGAINST OPEN SOURCE PROGRAMS

In subsection 4.2 and subsection 4.3 of main text, we evaluated all the methods against open-sourced
programs across all three games. The setup of evaluations for each game is outlined below:

KataGo. For the evaluation of 9x9 Go in Table 1 of subsection 4.2, we selected KataGo (Wu, 2020)
models from ID 1 to 4 as baselines. For each baseline, we conduct 200 evaluation games with 100
games as Black and 100 games as White, with the simulation count for KataGo fixed at 400. The
four selected KataGo models are listed in Table 4.

For the evaluation against KataGo in subsection 4.3, we pick KataGo with ID 5 in Table 4. In
this experiment, actions are selected without applying softmax, and 1,200 evaluation games are
conducted for each method.

Table 4: The versions of the selected KataGo models for 9x9 Go.

ID Version # blocks Elo ratings

1 kata1-b6c96-s152505856-d23152636 6 9833.3 ± 16.1
2 kata1-b6c96-s165180416-d25130434 6 9900.6 ± 16.2
3 kata1-b6c96-s175395328-d26788732 6 9958.6 ± 16.9
4 kata1-b10c128-s41138688-d27396855 10 10138.6 ± 18.3
5 kata1-b15c192-s86740736-d72259836 15 11180.1 ± 16.1

Alpha-Beta Algorithm in Ludii. For the evaluation of 10x10 Othello in Table 1 of subsection 4.2,
we use the Alpha-Beta algorithm from Ludii (Piette et al., 2020) with search levels set to 2, 3, and
4 as our baselines. For each method in Table 1, a total 300 games are played, with 150 games as
Black and 150 games as White.

MoHex. For the evaluation of 11x11 Hex in Table 1 of subsection 4.2, all methods fight against
MoHex (Huang et al., 2014). For the MoHex setup, the maximum thinking time is set to 1 second,
without using a cache book. Additionally, we use two MoHex baselines with the following search
settings: a search width of 15 with a maximum search depth of 5, and a search width of 25 with a
maximum search depth of 8.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B RGSC ALGORITHM

In this section, we describe the details of the RGSC algorithm in Algorithm 1. It contains value
network R, regret ranking network ρ within the prioritized regret buffer (PRB). Lines 5–12 specify
the procedure of buffer sampling, while Lines 13–30 outline the self-play process, during which
all nodes in the search tree are evaluated by the regret network and describe how an opening s is
selected. Line 31–40 describe how an opening s is updated and how it inserted into buffer. In this
procedure, search tree nodes are inserted into the PRB, enabling us to exploit the search tree while
exploring previously unseen states with potentially high regret.

Algorithm 1 RGSC Algorithm

Require: Buffer β, Buffer size N , Buffer rate λ, Buffer Sample Rule Ψ(β), Regret ranking network
ρ, Regret value network R

1: Initialize Buffer β
2: while Self-Play do
3: Reset the environment
4: Initial Buffer candidate s′ with ranking R′ and regret r′
5: Sample random number p ∈ (0, 1)
6: if p < λ then
7: Sample a opening s from β with Ψ(β)
8: Set s as the starting state of self-play
9: Update sampled times of opening s

10: else
11: Set empty state s0 as the starting state of self-play
12: end if
13: while The environment is not terminal do
14: Perform MCTS and selected an action
15: Obtain regret ranking value ρ(s) and predicted regret r ← R(s) for every search node s
16: if A search node s with regret ranking ρ(s) > R′ then
17: update r′ ← r
18: update s′ ← s
19: end if
20: end while
21: Use the final return to compute the regret r of every node s on the trajectory
22: if Using regret ranking network then
23: Obtain regret ranking value ρ(s) for every node s on the self-play trajectory
24: if A trajectory node s with Ranking ρ(s) > R′ then
25: update r′ ← r
26: update s′ ← s
27: end if
28: end if
29: if p < λ then
30: Update the regret of opening s using the EMA rule in Equation 8
31: else
32: Store candidate s′ into the buffer with regret s′
33: end if
34: end while

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C DETAIL OF REGRET RANKING HEAD TRAINING OBJECTIVE

A step-by-step derivation of Equation 6 is provided below.

Lrank = − log
∑
s∈S

ρ(s | S) exp
(
R(s)

)
(9)

= − log

(∑
s∈S

exp(γs)∑
s′∈S exp(γs′)

exp
(
R(s)

))
(10)

= − log
∑
s∈S

(
exp

(
log
(exp(γs)∑

s′∈S exp(γs′)

))
exp

(
R(s)

))
(11)

= − log
∑
s∈S

(
exp

(
log
(exp(γs)∑

s′∈S exp(γs′)

)
+R(s)

))
(12)

= − log
∑
s∈S

(
exp

(
log
(

softmax(γs)
)
+R(s)

))
(13)

D DETAIL FOR TOY MODEL EXPERIMENT

In the experiments in subsection 4.1, we implemented a simple Q-learning example on sparse-reward
binary trees with five and six levels. In Q-learning, the learning rate is set to 0.1, ϵ is set to 0.1 in
epsilon greedy, discount factor γ is also set to 0.1. We compare the training speed of three opening
sampling strategies for selecting the starting state in self-play. The first one always starts from the
root. The second one uniformly samples a non-terminal state from a fixed-size first-in-first-out buffer
that stores past trajectories with buffer rate 0.5, similar with the GEVC method in Go-Exploit. For
random method and regret method, buffer rate of 0.5 is applied and regret method samples states
simply proportion to their regrets. For each method, 6000 iterations is trained and for every 100
iterations 6000 games is played for evaluation and the average reward is calculated. We done the
entire progress for 25 different seeds to reduce stochastic variance.

In Figure 3b, we compare the difference between the root’s estimated Q-value and its theoretical
optimal Q-value across the three methods.

E PERFORMANCE UNDER DIFFERENT HYPERPARAMETER SETTINGS IN
RGSC

In this section, we explore the hyperparameters in RGSC, including the sampling probability (λ),
the buffer sampling temperature (τ), the buffer size (κ), and the EMA coefficient (α) across 9x9
Go, 10x10 Othello, and 11x11 Hex. In the ablation study, we aim to choose the setting with less
computational cost, better performance. Additionally, we select the setting that demonstrates stable
and consistent results across different games.

E.1 SAMPLING PROBABILITY

We evaluate different sampling probabilities (λ), which represents the probability (as introduced
in Section 3.3) of starting a self-play trajectory from a state sampled from the PRB. We evaluate
λ ∈ {0.2, 0.5, 0.9}, as shown in Figure 9. Overall, RGSC with λ = 0.5 performs consistently
well across the three games, so we use λ = 0.5 for our final setting. In 11x11 Hex (Figure 9c),
a high sampling probability (λ = 0.9) yields an early improvement around 10K training steps,
but subsequently causes significant performance instability toward the end of the training process.
Moreover, in 9x9 Go, it also shows that λ = 0.9 exhibits marginally reduced stability (Figure 9a).
These may be due to overly frequent sampling of recent self-play data from the PRB.

E.2 BUFFER SAMPLING TEMPERATURE

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0K 10K 20K 30K 40K 50K 60K
Training Steps

0

200

400

600

800

1000

1200

1400

El
o

Ra
tin

g

=0.2
=0.5
=0.9

(a) 9x9 Go

0K 10K 20K 30K 40K 50K 60K
Training Steps

0

200

400

600

800

1000

1200

1400

El
o

Ra
tin

g

=0.2
=0.5
=0.9

(b) 10x10 Othello

0K 10K 20K 30K 40K 50K 60K
Training Steps

0

200

400

600

800

1000

1200

1400

1600

El
o

Ra
tin

g

=0.2
=0.5
=0.9

(c) 11x11 Hex

Figure 9: Playing performance of different sampling probabilities (λ) across three games. The
orange curve is the final RGSC setting.

Furthermore, we investigate the effect of the buffer sampling temperature (τ) described in subsec-
tion 3.3, where a higher value leads to a more uniform softmax distribution for the PRB. We test
τ ∈ {0.1, 0.5, 1}, as shown in Figure 10, and the results show that τ = 0.1 achieves the best
performance.

0K 10K 20K 30K 40K 50K 60K
Training Steps

0

200

400

600

800

1000

1200

1400

El
o

Ra
tin

g

=0.1
=0.5
=1

(a) 9x9 Go

0K 10K 20K 30K 40K 50K 60K
Training Steps

0

200

400

600

800

1000

1200

1400

El
o

Ra
tin

g

=0.1
=0.5
=1

(b) 10x10 Othello

0K 10K 20K 30K 40K 50K 60K
Training Steps

0
200
400
600
800

1000
1200
1400
1600

El
o

Ra
tin

g
=0.1
=0.5
=1

(c) 11x11 Hex

Figure 10: Playing performance of different buffer sampling temperatures (τ) across three games.
The orange curve is the final RGSC setting.

E.3 BUFFER SIZE

We evaluate different buffer sizes, κ ∈ {100, 500, 1000} in RGSC, as shown in Figure 11. The
results show no significant difference in performance, so we use κ = 100 in our final setting to
minimize computational cost.

0K 10K 20K 30K 40K 50K 60K
Training Steps

0

200

400

600

800

1000

1200

1400

El
o

Ra
tin

g

=100
=500
=1000

(a) 9x9 Go

0K 10K 20K 30K 40K 50K 60K
Training Steps

0

200

400

600

800

1000

1200

1400

El
o

Ra
tin

g

=100
=500
=1000

(b) 10x10 Othello

0K 10K 20K 30K 40K 50K 60K
Training Steps

0
200
400
600
800

1000
1200
1400
1600

El
o

Ra
tin

g

=100
=500
=1000

(c) 11x11 Hex

Figure 11: Playing performance of different buffer sizes (κ) across three games. The orange curve
is the final RGSC setting.

E.4 EMA COEFFICIENT

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

For the EMA coefficient used to update the regret values in Equation 8 of the main text, we test
α ∈ {0.1, 0.5, 1}, as shown in Figure 12, finding that α = 0.5 generally yields the best performance
in RGSC. Note that α = 1 only uses the regret calculated from the newly finished self-play game,
explaining its slightly unstable performance in 10x10 Othello (Figure 12b), and 11x11 Hex (Figure
12c).

0K 10K 20K 30K 40K 50K 60K
Training Steps

0

200

400

600

800

1000

1200

1400

El
o

Ra
tin

g

=0.1
=0.5
=1

(a) 9x9 Go

0K 10K 20K 30K 40K 50K 60K
Training Steps

0

200

400

600

800

1000

1200

1400

El
o

Ra
tin

g

=0.1
=0.5
=1

(b) 10x10 Othello

0K 10K 20K 30K 40K 50K 60K
Training Steps

0
200
400
600
800

1000
1200
1400
1600

El
o

Ra
tin

g

=0.1
=0.5
=1

(c) 11x11 Hex

Figure 12: Playing performance of different EMA coefficients (α) across three games. The orange
curve is the final RGSC setting.

In conclusion, these experiments show that RGSC is not highly sensitive to hyperparameter choices
and that our recommended configuration works well across different games, demonstrating the over-
all robustness of the method.

F ANALYSIS OF HIGH-REGRET STATES

(a) 9x9 Go
(White’s Turn)

(b) A state similar to (a)
(White’s Turn)

(c) 10x10 Othello
(Black’s Turn)

A B C D E F G H I J K

1

2

3

4

5

6

7

8

9

10

11

(d) 11x11 Hex
(Blue’s Turn)

Figure 13: Example of high-regret states.

24.6K 24.8K 25.0K 25.2K
Training Steps

0.4

0.5

0.6

0.7

0.8

0.9

1.0

W
in

ra
te

High-Regret State
Similar State

(a) 9x9 Go

13.0K 13.2K 13.4K 13.6K 13.8K 14.0K 14.2K 14.4K
Training Steps

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

W
in

ra
te

High-Regret State

(b) 10x10 Othello

18.4K 18.6K 18.8K 19.0K
Training Steps

0.6

0.7

0.8

0.9

1.0

W
in

ra
te

High-Regret State

(c) 11x11 Hex

Figure 14: Win rates of high-regret states during RGSC training.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

To further examine the high-regret states stored in the regret buffer, we analyze states trained in 9x9
Go, 10x10 Othello and 11x11 Hex For 9x9 Go, the high-regret state in Figure 13a appears at 2,600
training steps, 124 iterations and is repeatedly selected in the buffer, which is White’s turn.

In this state, White can only win through keeping the stones at I8 and I6 alive. Once White plays
at H9, there would be a seki (Niu et al., 2006) situation at the top-right corner. In a seki situation,
Black and White cannot capture each other’s stones. The player who plays inside the seki area first
will have their stones captured by the opponent. Forming the seki situation is the only way that
leads to White’s victory. To evaluate whether the agent has learned the technique for solving this
high-regret state, we use AlphaZero models trained with 60,000 training steps as baselines to fight
against and start playing games from these states for evaluation. Once the agent makes no mistakes
on these openings, the winrate will be 1. In 9x9 Go, the winrate on the high-regret opening increases
significantly from 47% to 99% after the first update, and for the subsequent three weights it remains
consistently above 90%.

To test whether the agent has truly learned to solve such seki situations, we provide a 9x9 Go state
(Figure 13b) that shares the same pattern as the one in Figure 13a, where White can only win by
playing H9. Remarkably, after training with the weights with 25,000 training steps, White’s winrate
in this state increases from 47% to 85%. These results demonstrate that the prioritized regret buffer
enables the agent to identify weaknesses in its current policy and correct them automatically, while
also generalizing to structurally similar situations.

In 11x11 Hex, another high-regret example is observed as shown in Figure 13d. In the Figure 13d,
the Blue stone at G2 can connect through D4 and G5, guaranteeing a win for Blue. However, the
first update on 18,400 training steps causes the winrate on this opening to surge to 88%. After
one additional round of training, at the 94th iteration, the winrate rose to 91%, reflecting a 14%
improvement within a single iteration. For a high-regret state in 10x10 Othello, the first update
around 13,000 training steps shows little improvement; however, after the second update at 13,800
training steps, the winrate jumps to 100%. These experiments demonstrate that our method not
only enables the agent to correct its mistakes but also enhances the interpretability of the AlphaZero
framework.

24
.6K

24
.8K

30
.0K

Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Av
er

ag
e

Re
gr

et

Black Win
White Win

(a) 9x9 Go

13
.0K

13
.8K

14
.2K

Training Steps

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Av
er

ag
e

Re
gr

et

Black Win
White Win

(b) 10x10 Othello

18
.4K

18
.6K

Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Av
er

ag
e

Re
gr

et

Black Win
White Win

(c) 11x11 Hex

Figure 15: Relationship between game outcomes and regrets during training.

We also plot the relationship between the game outcome and the corresponding regret in ??. For
a state where White always wins under the optimal play, the regret associated with White’s victory
decreases as the agent’s predictions on that state become more accurate. At the same time, the
proportion of self-play games won by White also increases significantly as training progresses. As
shown in Figure 15a and Figure 15c, where White wins under the optimal policy, the regret for
White’s victory diminishes with more training iterations on these openings, while the regret for
Black’s victory correspondingly increases. Conversely, in cases where Black has a guaranteed win,
such as in Figure 15b, the variation evolves in the opposite direction.

G ANALYSIS OF PRIORITIZED REGRET BUFFER

In this section, we investigate the openings’ attributes in PRB. In subsection G.1, we investigate the
distribution of opening lengths during training and how the model adapts to different phases of the

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

game. Finally, in subsection G.2, we track how the regret values of the openings evolve throughout
training, demonstrating that the model becomes increasingly familiar with the high-regret states and
refines its policy accordingly.

G.1 OPENING-LENGTH DISTRIBUTIONS IN TRAINING PROCESS

Opening Length: 0~4
Opening Length: 5~9

Opening Length: 10~19
Opening Length: 20~39

Opening Length: 40~59
Opening Length >= 60

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Iteration

0%

20%

40%

60%

80%

100%

Pr
op

or
tio

n

(a) RGSC w/o regret ranking network

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Iteration

0%

20%

40%

60%

80%

100%

Pr
op

or
tio

n

(b) RGSC

Figure 16: Change in the proportion of openings with different lengths across training in 9×9 Go.

Opening Length: 0~4
Opening Length: 5~9

Opening Length: 10~19
Opening Length: 20~39

Opening Length: 40~59
Opening Length >= 60

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Iteration

0%

20%

40%

60%

80%

100%

Pr
op

or
tio

n

(a) RGSC w/o regret ranking network

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Iteration

0%

20%

40%

60%

80%

100%

Pr
op

or
tio

n

(b) RGSC

Figure 17: Change in the proportion of openings with different lengths across training in 10×10
Othello.

Opening Length: 0~4
Opening Length: 5~9

Opening Length: 10~19
Opening Length: 20~39

Opening Length: 40~59
Opening Length >= 60

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Iteration

0%

20%

40%

60%

80%

100%

Pr
op

or
tio

n

(a) RGSC w/o regret ranking network

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Iteration

0%

20%

40%

60%

80%

100%

Pr
op

or
tio

n

(b) RGSC

Figure 18: Change in the proportion of openings with different lengths across training in 11×11
Hex.

In board games such as Go, Hex, and Othello, the game is typically divided three phases: early
game, midgame, and endgame. Among these, the midgame typically involves the most complex
tactics and combinatorial challenges, offering the greatest potential for learning. To see which phase

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

of the game is preferred for learning during training, we examine the length of openings used in
PRB throughout the training process.

Figure 16 shows the dynamics of the proportion of openings with different lengths throughout the
training process in RGSC with and without regret ranking network in 9x9 Go. RGSC without
regret ranking network shows no significant preference for opening lengths, as shown in Figure
16a. In contrast, RGSC exhibits a clear phase-aware curriculum. In the early stages of training, it
favors openings with opening lengths ranging from 20 to 39, corresponding to midgame positions,
which are the most complex and informative. As training nears the end, the model’s overall strength
improves, allowing self-play games to reach the midgame phase with fewer steps. As a result, the
distribution shifts towards shorter opening lengths ranging from 5 to 9. This indicates that RGSC
still targets the most worth-learning states as the MCTS value estimation improves.

Figure 17 and Figure 18 show the results of the analysis in Hex and Othello. We observe the same
qualitative pattern: relative to the RGSC without regret ranking network, RGSC progressively biases
toward shorter opening lengths as training advances. The consistency across various games indicates
that RGSC selects openings based on the model’s playing strength, allowing it to identify the most
valuable learning states at different training stages.

The dynamics of opening lengths show that RGSC induces an implicit, data-driven curriculum on
game phases: initially focusing on complex midgame positions, then shifting shorter openings as
the model’s playing strength improves. In contrast, RGSC without regret ranking network remains
less sensitive to the phases and difficulty of the game.

G.2 DECREASING REGRET VALUES ACROSS TRAINING

First
Appearance

1st
Update

2nd
Update

3rd
Update

4th
Update

5th
Update

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
gr

et

(a) 9x9 Go

First
Appearance

1st
Update

2nd
Update

3rd
Update

4th
Update

5th
Update

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Re
gr

et

(b) 10x10 Othello

First
Appearance

1st
Update

2nd
Update

3rd
Update

4th
Update

5th
Update

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Re

gr
et

(c) 11x11 Hex

Figure 19: Changes in the values of openings from their first appearance to the final update during
training.

In Figure 19, we analyze how the regret values of the openings in the regret buffer change throughout
the training process. Specifically, we track the regret values of openings from their first appearance
to their final removal, after being updated across five different iterations. The results show that
the regret values consistently decrease with each update across the three games, indicating that the
model has learned and become familiar with these high-regret openings. By the final update, the
regret distribution has shifted significantly towards the lower values, resulting in the lowest regret
value across all iterations, just before the opening is removed from the buffer. It shows that the
model progressively focuses more on learning these challenging states and reduces their regret over
time to optimize as training progresses.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

H RGSC ON ATARI GAMES

RGSC can also be generalized to MuZero (Schrittwieser et al., 2020) or other AlphaZero-variants.
To demonstrate this, we further integrate RGSC into MuZero in a large-scale domain, the Atari
benchmark. Specifically, we select one of the Atari games, Ms. Pac-Man, in our evaluation. Unlike
board games, where the outcome is only available at the terminal state, we use the internal rewards
to compute n-step return for z in Equation 2 for all intermediate states in Atari games.

Since Go-Exploit is implemented only within AlphaZero for board games, our experiment focuses
on comparing RGSC with MuZero. Throughout the entire training process, RGSC significantly
outperforms MuZero, as shown in Figure 20. At the final iteration, RGSC achieves an average
score of 5166 points, while MuZero only achieves 3704 points, demonstrating the generality of
RGSC when applied to other AlphaZero-like style algorithms and highlighting its ability to handle
complex tasks.

20K 40K 60K
Training Steps

0K

2K

4K

6K

Re
tu

rn
s

MuZero
RGSC

Figure 20: Playing performance of MuZero, and RGSC on Ms. Pac-Man. The shaded area is a 95%
confidence interval for the mean.

22

	Introduction
	Background
	Search Control in Reinforcement Learning
	Search Control in AlphaZero

	Regret-Guided Search Control
	Regret Definition in Board Games
	Regret Network
	Prioritized Regret Buffer for Search Control

	Experiments
	Toy Example
	RGSC in Board Games
	RGSC on Well-Trained Models
	Comparison between Ranking and Regret in RGSC
	Regret Change in Prioritized Regret Buffer

	Discussion
	Training Details
	Training RGSC in Board Games
	Evaluation
	Evaluation Against the AlphaZero
	Evaluation Against Open Source Programs

	RGSC Algorithm
	Detail of Regret Ranking Head Training Objective
	Detail for toy model experiment
	bluePerformance under Different Hyperparameter Settings in RGSC
	blueSampling Probability
	blueBuffer Sampling Temperature
	blueBuffer Size
	blueEMA Coefficient

	Analysis of High-Regret States
	Analysis of Prioritized Regret Buffer
	Opening-Length Distributions in Training Process
	Decreasing Regret Values Across Training

	RGSC on Atari Games

