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Abstract

We present a new class of fast polylog-linear algorithms based on the theory of
structured matrices (in particular low displacement rank) for integrating tensor
fields defined on weighted trees. Several applications of the resulting fast tree-field
integrators (FTFIs) are presented, including (a) approximation of graph metrics
with tree metrics, (b) graph classification, (c) modeling on meshes, and finally
(d) Topological Transformers (TTs) [Choromanski et al., 2022] for images. For
Topological Transformers, we propose new relative position encoding (RPE) mask-
ing mechanisms with as few as three extra learnable parameters per Transformer
layer, leading to 1.0-1.5%+ accuracy gains. Importantly, most of FTFIs are exact
methods, thus numerically equivalent to their brute-force counterparts. When
applied to graphs with thousands of nodes, those exact algorithms provide 5.7-13x
speedups. We also provide an extensive theoretical analysis of our methods.

1 Introduction

Matrix-vector multiplication remains a key computational block of virtually all modern machine
learning (ML) algorithms. For this reason, decades of research have been dedicated towards making
this fundamental operation more efficient. One approach to achieve this goal is through efficient
hardware design, e.g., using modern GPU and TPU accelerators [Abadi et al., 2016, Yu et al.,
2022, 2020]. The alternative method involves developing algorithms for efficient matrix-vector
multiplication by leveraging either (1) sparse matrices [Wang, 2021, Beniamini et al., 2020], or (2)
structured dense matrices [Thomas et al., 2018, Chandrasekaran et al., 2018]. These algorithms can be
applied in modern neural network systems, where weights are pruned to encourage sparsity [Blalock
et al., 2020] or they can be parameterized with structured matrices [Sindhwani et al., 2015].

In this work, we aim to accelerate multiplications with a large class of matrices, that we refer to
as f -distance matrices, which play an important role in several ML algorithms. Consider a matrix
MG

f = [f(dist(i, j))]i,j=1,...,N ∈ RN×N , where dist(i, j) stands for the shortest-path distance
between the i-th and j-th vertex of an undirected graph G = (V,E,W). Here V = {1, ..., N} stands
for the set of vertices (nodes), E denotes the set of edges, W : E → R+ maps them to their positive
weights, and f : R → R. We call MG

f a f -distance matrix in G. Note that if f(x) def
= x, then MG

f is
the Shortest Path Kernel matrix.

The product MG
f x (where x ∈ RN ) represents a scalar field on V obtained by discretely integrating

the field defined by x. In this integration, a new field value at a vertex v is calculated by averaging the
old field values at all vertices u, weighted according to the function f(dist(v, u)). This integration can
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be extended to general tensor fields by replacing vector x ∈ RN with a tensor X ∈ RN×d1×d2×...:

MG
f X[i] =

∑
j∈V(G)

f(dist(i, j))X[j] (1)

We refer to the above procedure as the f -integration of a field X on G. We will use the terms
graph field integration (GFI) and multiplication with f -distance matrices interchangeably throughout
the paper. When the graph, G, is a tree, we call this procedure (Eq. 1) tree field integration. Next, we
highlight several applications that rely on multiplications with f -distance matrices, MG

f .

1. Interpolation on manifolds: This task involves predicting unseen values on a manifold from a
set of known values. For example, predicting the velocities of all points on a flag with known
velocities for a few points [Pfaff et al., 2021]. For a discretized manifold, the interpolated values
can be obtained using a weighted average using graph field integration (Eq. 1).

2. Optimal Transport (OT): A popular method used to solve the entropic OT problem [Peyré
and Cuturi, 2019] is the Sinkhorn algorithm [Eckstein and Nutz, 2022]. Sinkhorn relies on
multiplications with cost matrices, which are special cases of f -distance matrices for metric
spaces induced by shortest-path distances in graphs. This can be efficiently solved using graph
field integration.

3. Topological Transformers (TTs): Topological Transformers [Choromanski et al., 2022] are
extensions of traditional Transformers [Vaswani et al., 2017] for graph inputs. TTs modify the
1-D relative positional encoding (RPE) using “mask matrices", which are f -distance matrices. We
show how these matrices can be efficiently integrated into the attention mechanism (Sec. 4.4).

In the above applications, apart from the graph field integration step, the bottleneck lies in the process
of explicitly materializing the f -distance matrix. Naively performing the integration in Eq 1 consists
of two steps: (a) computing the f -distance matrix, MG

f , which requires O(N3) time in the worst
case (which we call preprocessing), and (b) performing the multiplication takes O(N2) time. This is
prohibitively expensive while using large graphs.

In this paper, we introduce a new class of fast polylog-linear algorithms for graph field integration
that uses low displacement rank (LDR) matrices [Thomas et al., 2018, Chandrasekaran et al., 2018].
To summarize, our primary contributions are given below:

1. We provide the first exact polylog-linear multiplication algorithms called Fast Tree-Field In-
tegrators (FTFIs), for general weighted trees and a rich class of maps f , including rational,
trigonometric, exponential and exponentiated quadratic functions (Sec. 3.2).

2. We show how Fast Tree-Field Integrators can be applied to support fast computations on general
graphs by approximating graph metrics with tree metrics (Sec. 4).

3. We show that FTFIs are 5.7-10x faster than baseline graph field integration methods for large-scale
graphs (Sec. 4.1 and 4.2).

4. We showcase the efficacy of FTFIs in several applications including graph classification (Sec. 4.2),
interpolation on meshes (Sec. 4.2), and Topological Vision Transformers (TVTs) (Sec. 4.4). For
TVTs, we propose new relative position encoding (RPE) masking mechanisms by introducing
only three extra learnable parameters, which leads to 1.0-1.5% accuracy gains. We provide an
exhaustive evaluation on Vision Performers (25 models on multiple datasets). Some of our best
models use exponentiated quadratic functions f , which has not been applied in this context before.

For completeness, we also propose approximate FTFI extensions via Non-Uniform FFT (NU-FFT)
[Kircheis et al., 2023] and random Fourier features (RFFs) [Rahimi and Recht, 2007] (Sec. A.2).

2 Related work

Efficient graph field integration (Eq. 1) has been studied by prior works for different classes of
matrices. For example, Al-Mohy and Higham [2011] considered exponentiated adjacency matrix-
vector multiplication, Spielman and Teng [2012] targeted symmetric diagonally dominant matrices
(e.g., Laplacian), Arrigo et al. [2018] analyzed matrices that are power series of random walk kernels.
In contrast to these approaches, Saad and Schultz [1986] proposed general iterative methods for
solving certain linear systems using Arnoldi’s iterations. However, These iterative methods can suffer
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Figure 1: Pictorial representation of the IntegratorTree (see: Sec 3.1) data structure for the nine-vertex input
tree T on the left. Numbers in blue next to the input tree denote the weights of its edges. Leaves of the
IntegratorTree object represent f -transformed (element-wise) distance matrices: D0,D1,D2,D3 for sub-trees
induced by vertex-sets: {1, 2, 4}, {1, 3, 0}, {5, 7, 8} and {5,6,0} respectively. Different levels correspond to
different distances from the pivot point.

from convergence issues. Williams [2007] showed that it is possible to pre-process any boolean
matrix to achieve sub-quadratic matrix-vector multiplication.

The general problem of computing the action of a matrix on a vector, where the matrix is the graph
kernel, in sub-quadratic time is intractable, except for a few special cases [Al-Mohy and Higham,
2011, Choromanski et al., 2023]. In this work, we embed the graph G under consideration in a tree
(replacing the graph metric by the underlying tree metric). Then, we leverage the tree structure to
approximate the action of the kernel on a given vector by providing exact integration on a tree.

Previous works [Bartal et al., 2022, 2019, Abraham et al., 2008, Bartal, 1998] have used the theory of
tree metrics (TMs) in several applications in mathematics and computer science. TMs are widely
used to embed a complex metric space (e.g., a Riemannian manifold) into a more tractable one, while
approximately preserving (all or most of the) pairwise distances. They find applications in distributed
& online algorithms [Khan et al., 2008, Bubeck et al., 2018], biology [Mossel, 2007], vision, robotics
[Athitsos and Sclaroff, 2003], and ML (e.g., metric spaces’ regression [Gottlieb et al., 2011]).

Tree metrics for fast matrix multiplication: Applying tree metrics (TM) to compute approximate
MG

f is a natural approach to scale up matrix multiplications. If a TM approximates the metric
space well, then the derived embeddings should have low distortion. However, in the worst-case
scenario, this is not true for deterministic tree embeddings. A natural alternative is to sample trees
from probabilistic distributions, which are shown to provide logarithmic distortion in expectation
[Fakcharoenphol et al., 2004b, Bartal et al., 2022]. This can be further improved to constant distortion
for certain classes of metrics, e.g., celebrated snowflake metics [Leeb, 2016]. For graph metrics
defined by shortest-path distances, there exist spanning trees providing constant average distortion
(over all pairs of nodes). These spanning trees can be constructed as near minimum weight spanning
trees [Bartal et al., 2016]. Unfortunately, explicit application of any tree metric still requires O(N2)
time (impractical for large N ) to: (1) compute all shortest-path distances via the breadth-first-search
algorithm (BFS), even if sub-quadratic methods were used to construct a tree (e.g. minimum spanning
tree), (2) store the matrix, and (3) perform matrix-vector multiplications. We provide more details
about work related to graph field integration in Appendix B.

3 Fast Tree-Field Integrators (FTFI)

In this section, we present our approach for performing efficient field integration on a tree, which we
call fast tree field integrator. We begin by introducing the concept of integrator trees (ITs), which is a
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specialized decomposition of a tree using the theory of balanced separators (Sec 3.1). Subsequently,
we leverage these integrator trees to execute efficient integration on a tree via a divide-and-conquer
algorithm (Sec 3.2).

3.1 IntegratorTrees (ITs) - preliminaries

To support fast integration for various tensor fields X ∈ RN×d1×...×ds defined on a given input tree
T , we first design a special data structure that we refer to as an IntegratorTree (IT). An object of
this type is constructed only once per T , regardless of the number of tensor fields used. An IT is a
rooted binary tree. To avoid confusion, we will refer to its vertices as nodes, reserving term vertices
for those of T . Each node of IT corresponds to the induced sub-tree ST of T . For every non-leaf
node corresponding to some ST , a pivot point p along with two sub-trees: STleft and STright are
constructed. The following needs to be satisfied:

• |ST x| ≥ |ST |
4 for x ∈ {left, right},

• ST x ∩ ST y = {p} (| · | denotes the number of vertices).

The next lemma shows that every tree K with |K| ≥ 6 has the above decomposition and it can be
efficiently found.

Lemma 3.1 (Pivoting). If K is a tree with |K| ≥ 6, then K admits a decomposition (Kleft,Kright, p)
given above and it can be constructed in linear time.

The algorithmic proof is provided in Appendix A.1 and uses standard tools from the theory of
balanced separators.

The left child of the non-leaf node for ST corresponds to ST left and the right child to ST right. In
addition to these two pointers, a non-leaf node also contains eight extra fields, partitioned into two
groups, one corresponding to its left child and one to its right children. The fields corresponding to
the left child are as follows:

• Left-ids: an array of the ids (in T ) of those vertices that are in ST left, mapping the ids of vertices
in ST left to the original ids in T (each sub-tree uses consecutive numbers from 0 as ids locally).

• Left-d: an array of different shortest-path distances from the pivot point to the vertices in ST left.
• Left-id-d: an array mapping the ids of vertices (in ST left) to the indices in left-d of their corre-

sponding distances from the pivot point.
• Left-s: a corresponding array of the ordered sub-sets of ids (in ST left) of vertices within a particular

distance from the pivot point.

Fields corresponding to the right child are defined similarly. The leaf nodes of the IT consist only of
the f -transformed (element-wise) distance matrices D for their corresponding sub-trees (see: Fig 1).
In principle, the leaf nodes of IT correspond to sub-trees with less than t = 6 vertices each. In
practice, we choose higher t, for more efficient integration (see: discussion in Sec. 4.1).

Time & space complexity of constructing ITs: From what we have said so far, it is clear that an
IT can be constructed by applying breadth first search (BFS) and the linear algorithmic procedure for
constructing the decomposition from Lemma 3.1. Note that every vertex of the input tree appears in
the logarithmic number of nodes in the IT since the size of the sub-tree is at most 3

4× the size of its
parent in IT. We conclude that IT for the given input tree T can be computed in O(N log(N)) time,
where N stands for the number of vertices |T | of T .

3.2 Integrating with IntegratorTrees

We are ready to explain how ITs allow us to efficiently integrate any given tensor field X ∈
RN×d1×...×ds defined on T for a wide class of function f : R → R. We will apply a divide-and-
conquer strategy.

We start in the root node of IT. If that node is a leaf then the f -transformed distance matrix is stored
and can be directly used for matrix-tensor multiplication. If this node is not a leaf, then it encodes the
decomposition (Tleft, Tright, p). Take some v ∈ V(Tleft). Note that the value MG

f X[v] of the new
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field in v after f -integration is given as follows for W = V(Tright)\{p}:∑
j∈V(Tleft)

f(dist(v, j))X[j]

︸ ︷︷ ︸
Finner(v)

+
∑
j∈W

f(dist(v, j))X[j]︸ ︷︷ ︸
Fcross(v)

. (2)

To compute the new values of the field for nodes v ∈ Tleft, one needs to:

1. Compute the contribution to it from Tleft (Finner(v)-terms). This can be done simply by applying
Eq. 2 recursively for Tleft, which means traversing to the left child of the root.

2. Add the so-called cross-terms contributions coming from the vertices of W (Fcross(v)-terms).

The key observation is that the latter (cross-term) contributions can be retrieved simply by computing
CX′, where: (1) C ∈ Rk×l with k and l being the sizes of the node’s left-d and right-d arrays
respectively. C(i, j) = f(left-d[i] + right-d[j]), and (2) Let bj

def
= |right-s[j]| where | · | refers to the

size of the subset. Then X′ ∈ Rl×d1×...×ds is defined as follows:

X′[j]
def
=

bj−1∑
z=0

X[right-ids[right-s[j][z]]]. (3)

Given the structure of IT, tensor X′ can be computed in linear time. Note that the following holds:

Fcross(v) = (CX′)[τ(v)]− f(left-d[τ(v)])X′[0], (4)

where τ(v) = left-id-d[v]. Analogous analysis can be derived for v ∈ Tright, with matrix C⊤

replacing C. Thus the overall time complexity of the cross-terms computations is determined by the
algorithm for matrix-tensor multiplications with matrices C and C⊤.

3.2.1 The case for structured matrices: multiplications with C,C⊤ and cordiality

Matrices C,C⊤ are of the form: [f(xi+yj)]
j=1,...,b
i=1,...,a for some sequences X = (xi)

a
i=1, Y = (yj)

b
j=1

and a, b ∈ N+.
Definition 3.2 (cordial functions). A function f : R → R is d-cordial (or: cordial if d is not specified),
if there exists d ∈ N such that matrix-vector multiplication with a matrix M = [f(xi + yj)]

j=1,...,b
i=1,...,a

can be conducted in time O((a+ b) logd(a+ b)) for every (xi)
a
i=1, (yj)bj=1.

Next, we demonstrate the importance of cordial functions in our FTFI framework.
Lemma 3.3 (f -integration with cordial functions). If f is d-cordial then f -integration for the general
weighted tree of N vertices can be conducted in time O(N logd+1(N)).

Proof. Denote by T (N) time complexity for running FTFI on the N -vertex tree. We have the
following recursive formula for T , where 1

4 ≤ c ≤ 3
4 :

T (N) ≤ T (cN) + T ((1− c)N) +O(N logd(N)) (5)

This is implied by the fact that: (1) the size of each sub-tree is at most 3
4× the size of its parent, (2)

the computation across left and right children is dominated by multiplications with matrices C and
C⊤. The solution of this recursion leads to the statement.

Next, we show some practical implications of Lemma 3.3, where tree weights are completely
arbitrary. Additional results are given in Sec. A.2.3.

Rational functions: We claim that every rational f is (2 + ϵ)-cordial for any ϵ > 0. We will use
Lemma 1 from [Cabello, 2022] stating that: given any set of b rational functions Rj(x) =

Pj(x)
Qj(x)

and {xi}ai=1, one can compute the a values
∑b

j=1 Rj(xi) in time O((a+ b) log2(b) log(log(b))) (by
applying FFT). For a given vector v ∈ Rb, it thus suffices to define: Rj(x) = vjf(x+ yj) and that
lemma can be applied to efficiently compute Mv. We conclude that for any ϵ > 0, f -integration can
be conducted in O(N log3+ϵ(N)) time for N -vertex weighted trees and any rational f : R → R (see
also: Sec. 4.3, Sec. 4.2, Sec. 4.4).
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Figure 2: Pictorial representations of the main concepts behind efficient matrix-vector multiplications Mv with
M ∈ R5×4, for the polynomial f and f(x) = exp(λx)

x+c
. In the polynomial case, M is re-written as a sum of

low-rank outer-product matrices corresponding to terms of different degrees (e.g., constant, linear, quadratic,
etc.). Matrix associativity property is applied for efficient calculations (dotted-border blocks indicating the
order of computations). In the second case, M is high-rank, but the so-called low displacement rank operator
∆D1,D2 : X → D1M−MD2 for diagonal D1,D2 can be applied to make it a low-rank outer-product matrix.
The multiplication with M can be efficiently performed using the theory of LDR matrices [Thomas et al., 2018].

Polynomial functions: The above result on rational functions clearly applies also to polynomial
f , but here we can do better. We show that f is 0-cordial. Assume that f(x) =

∑B
t=0 atx

t. We
have: M =

∑B
t=0

∑t
l=0 at

(
t
l

)
Ml,t−l, where matrix Mu,v ∈ Ra×b is defined as an outer-product

of two vectors: (xu
1 , ..., x

u
a) ∈ Ra and (yv1 , ..., y

v
b ) ∈ Rb. Thus each Mu,v supports linear matrix-

vector multiplication (via associativity property). The proof is completed, since B is a constant. We
conclude that f -integration can be conducted in O(N log(N)) time for N -vertex weighted trees and
any polynomial f : R → R (see: Fig. 2 and Fig 9).

Exponential functions: Take f(x) = exp(λx). Then M is an outer-product of two vectors:
(exp(λxi))

a
i=1 ∈ Ra and (exp(λyj))

b
j=1 ∈ Rb. The remaining analysis and conclusion is thus the

same as for the polynomial case (see also: Sec. 4.4).

Function: f(x) = exp(λx)
x+c : (c is a constant) We claim that f is 2-cordial. In that setting, matrix M

satisfies: M(i, j) =
exp(λxi) exp(λyj)
(xi+

c
2 )+(yj+

c
2 )

and thus is a Cauchy-like LDR, supporting fast O(N log2(N))

matrix-vector multiplication [Victor Y. Pan, 2000]. We conclude that f -integration can be conducted
in O(N log3(N)) time for N -vertex weighted trees and f(x) = exp(λx)

x+c (see: Fig. 2).

Functions f(x) = exp(ux2 + vx+w) and trees with positive rational weights: Now matrix M
can be re-written as M = exp(w)D1VD2, where D1 ∈ Ra×a and D2 ∈ Rb×b are diagonal, with
diagonal entries given by sequences {exp(ux2

i +vxi)}ai=1 and {exp(uy2j+vyj)}bj=1 respectively, and
furthermore V is the generalized Vandermonde matrix (GVM) (using arbitrary nonnegative integers
as exponents). It is defined as: V(i, j) = r

sj
i , where ri = exp( 2uxi

q ) and sj = yjq ∈ N. As in the
previous case, the embedding trick can be applied, but we will use it only for columns. That effectively
leads to the completion of the set of exponents {sj} to the set of consecutive integers starting from
0 and a regular Vandermonde matrix, that supports O(N log2(N)) matrix-vector multiplication,
replacing GVM. The benefit of this embedding, as compared to the previous one, is that even though
it still increases the number of columns by a multiplicative factor of p, the number of rows does not
change. Therefore, for p ≫ log(N), substantial computational speedups are achieved (see: Sec. 4.4).

4 Experiments

In this section, we outline the experimental setup and report the performance of FTFI across
various settings. For all the experiments, we only consider minimum spanning tree (MST) as an
approximation of our graph. Specifically, we design experiments to answer these research questions:
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(Q1) How efficient are FTFIs for tree field integration?
(Q2) How does the approximation quality of FTFI compare to other integration algorithms?
(Q3) How can we further improve the approximation quality in FTFI?
(Q4) How can we use FTFI in real-world large-scale settings?

4.1 Runtime Efficiency of FTFI
synthetic meshes
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Figure 3: Runtime comparison of FTFI with BTFI as a
function of the number of vertices, N . Left: Synthetic
graphs. Right: Mesh-graphs from Thingi10K. The speed
is not necessarily monotonic in N as it depends on the
distribution of lengths of the shortest paths. For each graph,
10 experiments were run (std. shown via dotted lines).

The main goal of this experiment is to
evaluate the speedups obtained by FTFI
as compared to brute-force tree field in-
tegrator (BTFI) i.e. the explicit calcu-
lation of Eq 1 on a tree. We consider
two classes of graphs: (a) synthetic, ob-
tained from a path-graph by adding ran-
dom edges and (b) mesh graphs from
Thingi10K [Zhou and Jacobson, 2016]
dataset. For BTFI, we compute the MST
and then integrate a random scalar field
X on the vertices of the MST. Since
BTFI & FTFI are numerically equiva-
lent, we report the pre-processing time
and integration as a function of vertex
count (N ) in Fig. 3. We observe that FTFI achieves up to 13x speedups for 20K-vertex meshes and
5.7x+ for synthetic graphs with over 10K vertices compared to BTFI.

4.2 Approximation Quality of FTFI

We evaluate the approximation quality achieved by FTFI across a wide range of graph-based tasks.

Interpolation on meshes. We compare the efficiency of FTFI with baselines on the normal vector
prediction task. Every node of the considered mesh G with a vertex-set V, is associated with a location
xi ∈ R3 and a vertex normal Fi ∈ R3. For each mesh, we randomly select a subset V′ ⊆ V with
|V′| = 0.8|V| and mask out their vertex normals (set as zero vectors). The interpolation task involves
predicting the vertex normals of each masked node i ∈ V′ as: Fi =

∑
j∈V\V′ Kf (i, j)Fj , where

Kf (w, v) = f(dist(w, v)), with dist(w, v) being the shortest path distance between node w and v,
and f is a rational function f(x) = 1/(1 + λx2). We perform a grid search to set hyperparameter λ
for each mesh and report the result with the highest cosine similarity between predicted and ground
truth vertex normals, averaged over all the nodes. We run tests on 40 meshes of the 3D-printed
objects with a wide range of sizes from the Thingi10K dataset (details in Appendix D.3). We compare
FTFI with BTFI, low-distortion tree-based algorithms such as Bartal Trees [Bartal, 1996] and FRT
trees [Fakcharoenphol et al., 2004a] alongside the state-of-the-art method for graph-field integration,
the Separator Factorization (SF) algorithm [Choromanski et al., 2023]. We also compare against the
baseline BGFI which entails explicitly materializing the kernel matrix of G and then performing
matrix tensor multiplication with a tensor field F defined by the Fi’s.

Preprocessing involves building specific tree structures (FRT, Bartal), calculating the kernel matrices
(BGFI, BTFI), or creating specialized data structures (SF, FTFI) for efficient later use. The first
two plots in Fig. 4 shows the pre-processing time and cosine similarity for various algorithms
applied to meshes of different sizes. FTFI is the fastest in terms of pre-processing time and achieves
competitive performance in terms of cosine similarity (between predicted and actual vertex normals)
when compared with the SF algorithm while being numerically equivalent to BTFI. FTFI is a few
orders of magnitude faster than BTFI and the tree-based methods while maintaining accuracy.

Graph classification. Graph kernels have been widely used for graph classification tasks in
previous works [Kriege et al., 2020, Nikolentzos et al., 2021]. We compare the classification results
obtained using the approximate kernel from FTFI with those from the exact SP kernel. In this setting,
we use the Shortest Path (SP) kernel, f(dist(i, j)). We perform experiments on a wide range of
bioinformatics and social networks datasets like D&D, MUTAG, REDDIT, IMDB, among others. We
follow [de Lara and Pineau, 2018] and construct the graph feature for both kernels by using the
smallest k eigenvalues (k is a hyperparameter). This feature set is then used for classification, using
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reducing fp time across most datasets. We report the reduction in FTFI’s processing time (±x%)
compared to BGFI using a dotted line.

a random forest classifier. We observe that FTFI achieves significant speed improvements while
achieving similar accuracy compared to its brute-force counterpart, BGFI (see Fig. 5). We provide
more details about the experimental setup and baselines Appendix D.4. We also report additional
experiments on meshes and point clouds in Appendix D.1.

4.3 Improving approximation quality with learnable f -distance matrices

We propose to further improve the approximation quality of FTFI by learning a f -distance matrix on
metrics derived from the MST. As an application, we choose general graph metrics, where our goal
is to learn the shortest-path distance dv,w between a given pair of nodes (v, w) in a graph. Given a
f -distance matrix and tree-derived metric d̂v,w the objective is to learn a mapping to minimize

E(v,w)∈D

[(
dv,w − fa0,...,at

b0,...,bs
(d̂v,w)

)2
]
. (6)

Rather than using a fixed f , we parameterize and train it. We consider rational function f :

fa0,...,at

b0,...,bs
(x) =

a0 + a1x+ ...+ atx
t

b0 + b1x+ ...+ bsxs
, (7)

where a0, ..., at, b0, ..., bs ∈ R are trainable parameters.
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Figure 6: Left: Relative Frobenius norm error as a function of the number of training iterations for
different sizes n and learnable quadratic f . Middle: Comparison of the training of different rational
functions f with num:d defining the degree of the numerator and den:d, the degree of the denominator
for the synthetic graph obtained from a path on N = 800 by adding 600 random edges and assigning
random weights taken from (0, 1). Right: constructed similarly, but for a sampled mesh graphs from
Thingi10k dataset.

Training dataset D. For a graph G, we randomly sample vertices. The training dataset consists of
tuples of the form: (v, w, dv,w, d̂v,w) ∈ D, where v, w are randomly sampled vertices. Each data
point can be constructed in time O(N log(N)), or even O(N) if weights are in N [Thorup, 1997].

Final evaluation. To evaluate the quality of the approximation, we compute the relative Frobenius

norm error: ϵ =
∥MT

f −MG
id∥F

∥MG
id∥F

, where ∥ · ∥F stands for the Frobenius norm, T is a tree for a given
graph G and id is an identity function (see: our notation from Sec. 1). It quantifies how closely
the distance matrix of G is approximated by the f -distance matrix of T. Computing ϵ is expensive
and our training does not rely on it. Our empirical results show that the relative error, ϵ, can be
substantially improved by using the light-weight MSE training loss (defined in Eq. 6).

We report the evaluation error for these experiments in Fig. 6 (with additional results in Fig. 8 in the
Appendix). We observe that a rational function with quadratic numerator and denominator provides
strong performance across different graphs. We notice that increasing the training set to > 100 data
points does not have a substantial impact on the final error. Estimating the coefficients of f provides
approximation improvements across all graphs in as few as 40 training steps.

These above results show that tree-based estimators are expressive enough to emulate integration on
arbitrary graphs. This expressive power can be further enhanced by pairing them with “nonlinear"
functions f . Thus, they explain why the presented techniques are relevant for general graphs.

4.4 Large Scale Transformer Experiments using FTFI

For large-scale applications of FTFI, we select Topological Vision Transformers (TopViT), [Choro-
manski et al., 2022], and leverage it for efficient incorporation of masking within ViTs. We provide
detailed description of masked Transformers in Appendix C.

Topological Vision Transformers with trees : We propose an extension to TopViT that seamlessly
integrates FTFI. In this extension, we model the mask matrix as an f -distance matrix (with learnable
f ) defined on the minimum spanning tree (MST) obtained from the 2D grid graph image encoding,
where vertices correspond to different patches. We parameterize f as f t

g
def
= g(

∑t
i=0 atx

t). We
use the linear attention mechanism introduced in Performers [Choromanski et al., 2021], where the
attention kernel is written as: K(q,k) = ϕ(q)⊤ϕ(k) for a deterministic ϕ : RdQK → R, applied
element-wise. We experiment with different values of hyperparameters g, t, ϕ and cross-heads
parameter sharing strategies as shown in Table 1 (synced indicates that RPE-parameters are shared
across different attention heads).

We run experiments on ImageNet and Places365 datasets using ViT-B/16 (see Table 1). For all the
kernels, our variants beat the baselines. For ϕ(x) = x4, the best variant applies an exponentiated
quadratic function, for which we apply Vandermonde matrices (see: discussion in Sec. 3.2.1). Our
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Table 1: Performance of Topological Vision Transformers with tree-based masking. For each attention
kernel, we present the results of the best variant in bold and Performer baselines in blue.

ImageNet Place365
ϕ :=RELU ϕ := x → x2 ϕ := x → x4 ϕ := exp ϕ := ReLU

synced g t Acc. (%) synced g t Acc. (%) synced g t Acc. (%) synced g t Acc. (%) synced g t Acc. (%)

NA NA NA 76.23 NA NA NA 75.03 NA NA NA 76.37 NA NA NA 76.76 NA NA NA 54.80
✓ exp 1 77.28 ✓ exp 1 76.66 ✓ exp 1 77.84 ✗ exp 1 78.79 ✗ exp 1 56.69
✓ exp 2 76.60 ✓ exp 2 75.91 ✓ exp 2 77.23 ✗ exp 2 78.51 ✗ z → z−1 1 56.44
✗ exp 1 77.79 ✗ exp 1 76.76 ✗ exp 1 77.94 ✗ z → z−1 1 77.39 ✗ z → z−1 5 56.32
✗ exp 2 77.43 ✗ exp 2 76.27 ✗ exp 2 78.15 ✗ z → z−1 2 77.69 ✗ z → z−1 10 56.51

best variant across all kernels (78.79%) provides 2% accuracy gains over the best baseline (76.76%).
In the synced setting, we use only three extra learnable parameters per layer (shared in all attention
heads across all layers) and obtain 1-1.5% accuracy gains. In the asynced setting, we use a small set of
36 extra learnable parameters per layer (3 extra parameters per head). Overall, we observe that FTFI
improves the approximation quality within Transformers with a minimal number of parameters. We
provide additional discussions on the ViT results for ImageNet in Appendix D.5.1 and for Places365
in Appendix D.5.2.
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Figure 7: Left: Experiments with the RPE
mechanism for ViT-B and on ImageNet. We
observe that FTFI provides 7% accuracy
gain compared to the Performer variant.

Additional results on the I-Naturalist dataset, where we
outperform various low-rank attention baselines, are
provided in Appendix D.5.3.

Larger Transformer models: We scale our experi-
ments to run on the larger ViT-L architectures and eval-
uate on ImageNet. In this setting, we use RPE mecha-
nism with g = exp and t = 1 (that provided strong per-
formance in previous experiments) and asynced strat-
egy. We observe that FTFI provides 7% accuracy im-
provement (see: Fig. 7).

Further results on Video Transformer (ViViT) [Arnab
et al., 2021] are provided in Appendix D.6. We
also provide additional experiments including Gromov-
Wasserstein distance computation [Vayer et al., 2018]
(see Sec. D.2), along with code pointers (Appendix D).

5 Conclusion
We provided a new class of algorithms for fast and exact integration of tensor fields defined on
weighted trees, relying on the theory of structured (in particular low displacement rank) matrices.
We showed how those algorithms can be applied for accurate integration on general graphs, in
particular via their minimum weight spanning trees. We presented several applications of the
presented methods, from graph classification and interpolation on meshes, through graph metric
approximation to Topological Vision Transformers. Our methods provide significant (5-13x) speedups
while maintaining the quality of their exact counterparts.

6 Author Contributions

KC conceived the idea behind FTFI, proved the theoretical results, implemented FTFI algorithm and
ran the vision experiments in this paper. AS integrated the FTFI algorithm in the GW style algorithms
and ran some graph and point cloud classification tasks. SBRC ran graph classification experiments
as well as experiments on the CUBES dataset. HL ran the experiments on the meshes. AD helped
develop methods, and along with TS and SC acted as senior advisors for the project. All authors
contributed to the writing of the manuscript.
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Vivit: A video vision transformer. In Proceedings of the IEEE/CVF international conference on
computer vision, pages 6836–6846, 2021.

Walter E. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue prob-
lem. Quarterly of Applied Mathematics, 9:17–29, 1951. URL https://api.semanticscholar.
org/CorpusID:115852469.

Francesca Arrigo, Peter Grindrod, Desmond J. Higham, and Vanni Noferini. On the exponential
generating function for non-backtracking walks. Linear Algebra and its Applications, 556:381–
399, 2018. ISSN 0024-3795. doi: https://doi.org/10.1016/j.laa.2018.07.010. URL https:
//www.sciencedirect.com/science/article/pii/S0024379518303288.

Vassilis Athitsos and Stan Sclaroff. Database indexing methods for 3d hand pose estimation. In
Antonio Camurri and Gualtiero Volpe, editors, Gesture-Based Communication in Human-Computer
Interaction, 5th International Gesture Workshop, GW 2003, Genova, Italy, April 15-17, 2003,
Selected Revised Papers, volume 2915 of Lecture Notes in Computer Science, pages 288–299.
Springer, 2003. doi: 10.1007/978-3-540-24598-8\_27. URL https://doi.org/10.1007/
978-3-540-24598-8_27.

T. Auckenthaler, M. Bader, T. Huckle, A. Spörl, and K. Waldherr. Matrix exponentials and parallel
prefix computation in a quantum control problem. Parallel Computing, 36(5-6):359–369, May
2010. ISSN 0167-8191. doi: 10.1016/j.parco.2010.01.006.

Yair Bartal. Probabilistic approximation of metric spaces and its algorithmic applications. In
Proceedings of 37th Conference on Foundations of Computer Science, pages 184–193. IEEE, 1996.

Yair Bartal. On approximating arbitrary metrices by tree metrics. In Jeffrey Scott Vitter, editor,
Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing, Dallas, Texas,
USA, May 23-26, 1998, pages 161–168. ACM, 1998. doi: 10.1145/276698.276725. URL
https://doi.org/10.1145/276698.276725.

11

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://doi.org/10.1109/FOCS.2008.62
https://doi.org/10.1137/09074721X
https://doi.org/10.1137/100788860
https://api.semanticscholar.org/CorpusID:115852469
https://api.semanticscholar.org/CorpusID:115852469
https://www.sciencedirect.com/science/article/pii/S0024379518303288
https://www.sciencedirect.com/science/article/pii/S0024379518303288
https://doi.org/10.1007/978-3-540-24598-8_27
https://doi.org/10.1007/978-3-540-24598-8_27
https://doi.org/10.1145/276698.276725


Yair Bartal, Arnold Filtser, and Ofer Neiman. On notions of distortion and an almost minimum
spanning tree with constant average distortion. In Robert Krauthgamer, editor, Proceedings of the
Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA,
USA, January 10-12, 2016, pages 873–882. SIAM, 2016. doi: 10.1137/1.9781611974331.CH62.
URL https://doi.org/10.1137/1.9781611974331.ch62.

Yair Bartal, Arnold Filtser, and Ofer Neiman. On notions of distortion and an almost minimum
spanning tree with constant average distortion. J. Comput. Syst. Sci., 105:116–129, 2019. doi:
10.1016/J.JCSS.2019.04.006. URL https://doi.org/10.1016/j.jcss.2019.04.006.

Yair Bartal, Ora Nova Fandina, and Ofer Neiman. Covering metric spaces by few trees. J. Comput.
Syst. Sci., 130:26–42, 2022. doi: 10.1016/J.JCSS.2022.06.001. URL https://doi.org/10.
1016/j.jcss.2022.06.001.

Gal Beniamini, Nathan Cheng, Olga Holtz, Elaye Karstadt, and Oded Schwartz. Sparsifying the
operators of fast matrix multiplication algorithms, 2020.

Michele Benzi, Thomas M. Evans, Steven P. Hamilton, Massimiliano Lupo Pasini, and Stuart R.
Slattery. Analysis of monte carlo accelerated iterative methods for sparse linear systems. Numeri-
cal Linear Algebra with Applications, 24, 2017. URL https://api.semanticscholar.org/
CorpusID:6970134.

Davis W. Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John V. Guttag. What is the
state of neural network pruning? CoRR, abs/2003.03033, 2020. URL https://arxiv.org/abs/
2003.03033.

Guy E. Blelloch, Anupam Gupta, Ioannis Koutis, Gary L. Miller, Richard Peng, and Kanat Tang-
wongsan. Near linear-work parallel sdd solvers, low-diameter decomposition, and low-stretch
subgraphs, 2011.

Erik Boman, Bruce Hendrickson, and Stephen Vavasis. Solving elliptic finite element systems in
near-linear time with support preconditioners, 2008.

Richard P. Brent. Stability of fast algorithms for structured linear systems. CoRR, abs/1005.0671,
2010. URL http://arxiv.org/abs/1005.0671.

Sébastien Bubeck, Michael B. Cohen, Yin Tat Lee, James R. Lee, and Aleksander Madry. k-
server via multiscale entropic regularization. In Ilias Diakonikolas, David Kempe, and Monika
Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 3–16. ACM, 2018. doi:
10.1145/3188745.3188798. URL https://doi.org/10.1145/3188745.3188798.

Sergio Cabello. Computing the inverse geodesic length in planar graphs and graphs of bounded
treewidth. ACM Trans. Algorithms, 18(2):14:1–14:26, 2022. doi: 10.1145/3501303. URL
https://doi.org/10.1145/3501303.

Shivkumar Chandrasekaran, Nithin Govindarajan, and Abhejit Rajagopal. Fast algorithms for
displacement and low-rank structured matrices. In Manuel Kauers, Alexey Ovchinnikov, and
Éric Schost, editors, Proceedings of the 2018 ACM on International Symposium on Symbolic and
Algebraic Computation, ISSAC 2018, New York, NY, USA, July 16-19, 2018, pages 17–22. ACM,
2018. doi: 10.1145/3208976.3209025. URL https://doi.org/10.1145/3208976.3209025.

Krzysztof Choromanski, Han Lin, Haoxian Chen, Tianyi Zhang, Arijit Sehanobish, Valerii Likhosh-
erstov, Jack Parker-Holder, Tamás Sarlós, Adrian Weller, and Thomas Weingarten. From block-
toeplitz matrices to differential equations on graphs: towards a general theory for scalable masked
transformers. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and
Sivan Sabato, editors, International Conference on Machine Learning, ICML 2022, 17-23 July 2022,
Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learning Research, pages 3962–
3983. PMLR, 2022. URL https://proceedings.mlr.press/v162/choromanski22a.html.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane,
Tamás Sarlós, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser, David Ben-
jamin Belanger, Lucy J. Colwell, and Adrian Weller. Rethinking attention with performers. In 9th

12

https://doi.org/10.1137/1.9781611974331.ch62
https://doi.org/10.1016/j.jcss.2019.04.006
https://doi.org/10.1016/j.jcss.2022.06.001
https://doi.org/10.1016/j.jcss.2022.06.001
https://api.semanticscholar.org/CorpusID:6970134
https://api.semanticscholar.org/CorpusID:6970134
https://arxiv.org/abs/2003.03033
https://arxiv.org/abs/2003.03033
http://arxiv.org/abs/1005.0671
https://doi.org/10.1145/3188745.3188798
https://doi.org/10.1145/3501303
https://doi.org/10.1145/3208976.3209025
https://proceedings.mlr.press/v162/choromanski22a.html


International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May
3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?id=Ua6zuk0WRH.

Krzysztof Marcin Choromanski, Arijit Sehanobish, Han Lin, Yunfan Zhao, Eli Berger, Tetiana
Parshakova, Alvin Pan, David Watkins, Tianyi Zhang, Valerii Likhosherstov, Somnath Basu Roy
Chowdhury, Kumar Avinava Dubey, Deepali Jain, Tamás Sarlós, Snigdha Chaturvedi, and Adrian
Weller. Efficient graph field integrators meet point clouds. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, International
Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume
202 of Proceedings of Machine Learning Research, pages 5978–6004. PMLR, 2023. URL
https://proceedings.mlr.press/v202/choromanski23b.html.

Paul Christiano, Jonathan A. Kelner, Aleksander Madry, Daniel A. Spielman, and Shang-Hua Teng.
Electrical flows, laplacian systems, and faster approximation of maximum flow in undirected
graphs, 2010.

Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk,
Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. ISBN
978-3-319-21274-6. doi: 10.1007/978-3-319-21275-3. URL https://doi.org/10.1007/
978-3-319-21275-3.

Samuel I. Daitch and Daniel A. Spielman. Faster approximate lossy generalized flow via interior
point algorithms, 2008.

Nathan de Lara and Edouard Pineau. A simple baseline algorithm for graph classification, 2018.

P. Drineas and R. Kannan. Fast monte-carlo algorithms for approximate matrix multiplication. In
Proceedings 42nd IEEE Symposium on Foundations of Computer Science, pages 452–459, 2001.
doi: 10.1109/SFCS.2001.959921.

Petros Drineas, Ravindran Kannan, and Michael Mahoney. Fast monte carlo algorithms for matrices
i: Approximating matrix multiplication. SIAM J. Comput., 36:132–157, 01 2006. doi: 10.1137/
S0097539704442684.

Stephan Eckstein and Marcel Nutz. Quantitative stability of regularized optimal transport and
convergence of sinkhorn’s algorithm. SIAM J. Math. Anal., 54(6):5922–5948, 2022. doi: 10.1137/
21M145505X. URL https://doi.org/10.1137/21m145505x.

Michael Elkin, Yuval Emek, Daniel A. Spielman, and Shang-Hua Teng. Lower-stretch spanning
trees, 2005.

Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of graph
neural networks for graph classification. In Proceedings of the 8th International Conference on
Learning Representations (ICLR), 2020.

Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating arbitrary
metrics by tree metrics. Journal of Computer and System Sciences, 69(3):485–497, 2004a.

Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating arbitrary
metrics by tree metrics. J. Comput. Syst. Sci., 69(3):485–497, 2004b. doi: 10.1016/J.JCSS.2004.
04.011. URL https://doi.org/10.1016/j.jcss.2004.04.011.

Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z. Alaya, Aurélie Boisbunon, Stanislas
Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, Léo Gautheron,
Nathalie T.H. Gayraud, Hicham Janati, Alain Rakotomamonjy, Ievgen Redko, Antoine Rolet,
Antony Schutz, Vivien Seguy, Danica J. Sutherland, Romain Tavenard, Alexander Tong, and
Titouan Vayer. Pot: Python optimal transport. Journal of Machine Learning Research, 22(78):1–8,
2021. URL http://jmlr.org/papers/v22/20-451.html.

Lee-Ad Gottlieb, Aryeh Kontorovich, and Robert Krauthgamer. Efficient regression in metric spaces
via approximate lipschitz extension. CoRR, abs/1111.4470, 2011. URL http://arxiv.org/
abs/1111.4470.

13

https://openreview.net/forum?id=Ua6zuk0WRH
https://proceedings.mlr.press/v202/choromanski23b.html
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1137/21m145505x
https://doi.org/10.1016/j.jcss.2004.04.011
http://jmlr.org/papers/v22/20-451.html
http://arxiv.org/abs/1111.4470
http://arxiv.org/abs/1111.4470


Leslie Greengard and June-Yub Lee. Accelerating the nonuniform fast fourier transform. SIAM Rev.,
46(3):443–454, 2004. doi: 10.1137/S003614450343200X. URL https://doi.org/10.1137/
S003614450343200X.

Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar Fleishman, and Daniel Cohen-Or.
Meshcnn: a network with an edge. ACM Transactions on Graphics (ToG), 38(4):1–12, 2019.

Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijayanarasimhan,
Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human action video dataset.
arXiv preprint arXiv:1705.06950, 2017.

Maleq Khan, Fabian Kuhn, Dahlia Malkhi, Gopal Pandurangan, and Kunal Talwar. Efficient dis-
tributed approximation algorithms via probabilistic tree embeddings. In Rida A. Bazzi and Boaz
Patt-Shamir, editors, Proceedings of the Twenty-Seventh Annual ACM Symposium on Principles of
Distributed Computing, PODC 2008, Toronto, Canada, August 18-21, 2008, pages 263–272. ACM,
2008. doi: 10.1145/1400751.1400787. URL https://doi.org/10.1145/1400751.1400787.

Melanie Kircheis, Daniel Potts, and Manfred Tasche. Nonuniform fast fourier transforms with
nonequispaced spatial and frequency data and fast sinc transforms. Numer. Algorithms, 92(4):
2307–2339, 2023. doi: 10.1007/S11075-022-01389-6. URL https://doi.org/10.1007/
s11075-022-01389-6.

Kyle Kloster and David F. Gleich. A nearly-sublinear method for approximating a column of
the matrix exponential for matrices from large, sparse networks. In Algorithms and Models
for the Web Graph: 10th International Workshop, WAW 2013, Cambridge, MA, USA, Decem-
ber 14-15, 2013, Proceedings, page 68–79, Berlin, Heidelberg, 2023. Springer-Verlag. ISBN
978-3-319-03535-2. doi: 10.1007/978-3-319-03536-9_6. URL https://doi.org/10.1007/
978-3-319-03536-9_6.

Ioannis Koutis and Gary L. Miller. A linear work, o(n1/6) time, parallel algorithm for solving
planar laplacians. In ACM-SIAM Symposium on Discrete Algorithms, 2007. URL https://api.
semanticscholar.org/CorpusID:9556271.

Ioannis Koutis and Gary L. Miller. Graph partitioning into isolated, high conductance clusters: theory,
computation and applications to preconditioning. In ACM Symposium on Parallelism in Algorithms
and Architectures, 2008. URL https://api.semanticscholar.org/CorpusID:2152215.

Ioannis Koutis, Gary L. Miller, and Richard Peng. Approaching optimality for solving sdd systems,
2010.

Ioannis Koutis, Gary Miller, and Richard Peng. A nearly-mlogn time solver for sdd linear systems,
2011a.

Ioannis Koutis, Gary L. Miller, and David Tolliver. Combinatorial preconditioners and multilevel
solvers for problems in computer vision and image processing. Comput. Vis. Image Underst.,
115(12):1638–1646, dec 2011b. ISSN 1077-3142. doi: 10.1016/j.cviu.2011.05.013. URL
https://doi.org/10.1016/j.cviu.2011.05.013.

Ioannis Koutis, Gary L. Miller, and Richard Peng. A fast solver for a class of linear systems.
Commun. ACM, 55(10):99–107, oct 2012. ISSN 0001-0782. doi: 10.1145/2347736.2347759. URL
https://doi.org/10.1145/2347736.2347759.

Nils M. Kriege, Fredrik D. Johansson, and Christopher Morris. A survey on graph kernels. Applied
Network Science, 5(1), January 2020. ISSN 2364-8228. doi: 10.1007/s41109-019-0195-3. URL
http://dx.doi.org/10.1007/s41109-019-0195-3.

William Leeb. Approximating snowflake metrics by trees. Applied and Computational Harmonic
Analysis, 45, 12 2016. doi: 10.1016/j.acha.2016.10.002.

Shengjie Luo, Shanda Li, Tianle Cai, Di He, Dinglan Peng, Shuxin Zheng, Guolin Ke, Liwei
Wang, and Tie-Yan Liu. Stable, fast and accurate: Kernelized attention with relative positional
encoding. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and
Jennifer Wortman Vaughan, editors, Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December
6-14, 2021, virtual, pages 22795–22807, 2021.

14

https://doi.org/10.1137/S003614450343200X
https://doi.org/10.1137/S003614450343200X
https://doi.org/10.1145/1400751.1400787
https://doi.org/10.1007/s11075-022-01389-6
https://doi.org/10.1007/s11075-022-01389-6
https://doi.org/10.1007/978-3-319-03536-9_6
https://doi.org/10.1007/978-3-319-03536-9_6
https://api.semanticscholar.org/CorpusID:9556271
https://api.semanticscholar.org/CorpusID:9556271
https://api.semanticscholar.org/CorpusID:2152215
https://doi.org/10.1016/j.cviu.2011.05.013
https://doi.org/10.1145/2347736.2347759
http://dx.doi.org/10.1007/s41109-019-0195-3


Bruce M. Maggs, Gary L. Miller, Ojas D. Parekh, Ramamoorthi Ravi, Sha-Sha Leung, and Maverick
Woo. Solving symmetric diagonally-dominant systems by preconditioning. 2003. URL https:
//api.semanticscholar.org/CorpusID:1593940.

Per-Gunnar Martinsson. Randomized methods for matrix computations, 2019.

Facundo Mémoli. Gromov–wasserstein distances and the metric approach to object matching.
Foundations of computational mathematics, 11:417–487, 2011.

Cleve Moler and Charles Van Loan. Nineteen dubious ways to compute the exponential of a matrix,
twenty-five years later. SIAM Review, 45(1):3–49, 2003. doi: 10.1137/S00361445024180. URL
https://doi.org/10.1137/S00361445024180.

Gerald Moore. Orthogonal polynomial expansions for the matrix exponential. Linear Alge-
bra and its Applications, 435(3):537–559, 2011. ISSN 0024-3795. doi: https://doi.org/10.
1016/j.laa.2010.09.021. URL https://www.sciencedirect.com/science/article/pii/
S0024379510004842. Special Issue: Dedication to Pete Stewart on the occasion of his 70th
birthday.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In ICML
2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020), 2020. URL
www.graphlearning.io.

Elchanan Mossel. Distorted metrics on trees and phylogenetic forests. IEEE ACM Trans. Comput.
Biol. Bioinform., 4(1):108–116, 2007. doi: 10.1109/TCBB.2007.1010. URL https://doi.org/
10.1109/TCBB.2007.1010.

Giannis Nikolentzos, Giannis Siglidis, and Michalis Vazirgiannis. Graph kernels: A survey. Journal
of Artificial Intelligence Research, 72:943–1027, November 2021. ISSN 1076-9757. doi: 10.1613/
jair.1.13225. URL http://dx.doi.org/10.1613/jair.1.13225.

Gabriel Peyré and Marco Cuturi. Computational optimal transport. Found. Trends Mach. Learn., 11(5-
6):355–607, 2019. doi: 10.1561/2200000073. URL https://doi.org/10.1561/2200000073.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W. Battaglia. Learning mesh-
based simulation with graph networks. In 9th International Conference on Learning Repre-
sentations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL
https://openreview.net/forum?id=roNqYL0_XP.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In John C.
Platt, Daphne Koller, Yoram Singer, and Sam T. Roweis, editors, Advances in Neural Information
Processing Systems 20, Proceedings of the Twenty-First Annual Conference on Neural Information
Processing Systems, Vancouver, British Columbia, Canada, December 3-6, 2007, pages 1177–1184.
Curran Associates, Inc., 2007.

Youcef Saad and Martin H. Schultz. Gmres: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 7(3):856–869,
1986. doi: 10.1137/0907058. URL https://doi.org/10.1137/0907058.

Jonathan R Shewchuk. An introduction to the conjugate gradient method without the agonizing pain.
Technical report, USA, 1994.

Vikas Sindhwani, Tara N. Sainath, and Sanjiv Kumar. Structured transforms for small-footprint
deep learning. In Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and
Roman Garnett, editors, Advances in Neural Information Processing Systems 28: Annual Confer-
ence on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec,
Canada, pages 3088–3096, 2015. URL https://proceedings.neurips.cc/paper/2015/
hash/851300ee84c2b80ed40f51ed26d866fc-Abstract.html.

Daniel A. Spielman and Shang-Hua Teng. A local clustering algorithm for massive graphs and its
application to nearly-linear time graph partitioning, 2008.

Daniel A. Spielman and Shang-Hua Teng. Spectral sparsification of graphs, 2010.

15

https://api.semanticscholar.org/CorpusID:1593940
https://api.semanticscholar.org/CorpusID:1593940
https://doi.org/10.1137/S00361445024180
https://www.sciencedirect.com/science/article/pii/S0024379510004842
https://www.sciencedirect.com/science/article/pii/S0024379510004842
www.graphlearning.io
https://doi.org/10.1109/TCBB.2007.1010
https://doi.org/10.1109/TCBB.2007.1010
http://dx.doi.org/10.1613/jair.1.13225
https://doi.org/10.1561/2200000073
https://openreview.net/forum?id=roNqYL0_XP
https://doi.org/10.1137/0907058
https://proceedings.neurips.cc/paper/2015/hash/851300ee84c2b80ed40f51ed26d866fc-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/851300ee84c2b80ed40f51ed26d866fc-Abstract.html


Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for preconditioning and
solving symmetric, diagonally dominant linear systems, 2012.

Anna T. Thomas, Albert Gu, Tri Dao, Atri Rudra, and Christopher Ré. Learning compressed trans-
forms with low displacement rank. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen
Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural Information
Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 9066–9078, 2018.

Mikkel Thorup. Undirected single source shortest path in linear time. In 38th Annual Symposium
on Foundations of Computer Science, FOCS ’97, Miami Beach, Florida, USA, October 19-22,
1997, pages 12–21. IEEE Computer Society, 1997. doi: 10.1109/SFCS.1997.646088. URL
https://doi.org/10.1109/SFCS.1997.646088.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von Luxburg,
Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors,
Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 5998–6008, 2017.

Titouan Vayer, Laetitia Chapel, Rémi Flamary, Romain Tavenard, and Nicolas Courty. Fused gromov-
wasserstein distance for structured objects: theoretical foundations and mathematical properties.
CoRR, abs/1811.02834, 2018. URL http://arxiv.org/abs/1811.02834.

Ailong Zheng Victor Y. Pan. Superfast algorithms for cauchy-like matrix computations and
extensions. Linear Algebra and its Applications, 310(1–3):83–108, 2000. URL https:
//www.sciencedirect.com/science/article/pii/S0024379500000410.

Ziheng Wang. Sparsednn: Fast sparse deep learning inference on cpus. CoRR, abs/2101.07948, 2021.
URL https://arxiv.org/abs/2101.07948.

Ryan Williams. Matrix-vector multiplication in sub-quadratic time: (some preprocessing re-
quired). In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’07, page 995–1001, USA, 2007. Society for Industrial and Applied Mathematics. ISBN
9780898716245.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3d shapenets: A deep representation for volumetric shapes, 2015.

Fuxun Yu, Zirui Xu, Tong Shen, Dimitrios Stamoulis, Longfei Shangguan, Di Wang, Rishi Madhok,
Chunshui Zhao, Xin Li, Nikolaos Karianakis, Dimitrios Lymberopoulos, Ang Li, Chenchen Liu,
Yiran Chen, and Xiang Chen. Towards latency-aware DNN optimization with GPU runtime
analysis and tail effect elimination. CoRR, abs/2011.03897, 2020. URL https://arxiv.org/
abs/2011.03897.

Fuxun Yu, Di Wang, Longfei Shangguan, Minjia Zhang, Chenchen Liu, and Xiang Chen. A
survey of multi-tenant deep learning inference on GPU. CoRR, abs/2203.09040, 2022. doi:
10.48550/ARXIV.2203.09040. URL https://doi.org/10.48550/arXiv.2203.09040.

Qingnan Zhou and Alec Jacobson. Thingi10k: A dataset of 10,000 3d-printing models. arXiv preprint
arXiv:1605.04797, 2016.

16

https://doi.org/10.1109/SFCS.1997.646088
http://arxiv.org/abs/1811.02834
https://www.sciencedirect.com/science/article/pii/S0024379500000410
https://www.sciencedirect.com/science/article/pii/S0024379500000410
https://arxiv.org/abs/2101.07948
https://arxiv.org/abs/2011.03897
https://arxiv.org/abs/2011.03897
https://doi.org/10.48550/arXiv.2203.09040


A Theoretical results

In this section, we provide proofs of all theoretical results in the paper.

A.1 Proof of Lemma 3.1

Proof. We will apply Lemma 7.19 from [Cygan et al., 2015] (that we provide also below for reader’s
convenience) and its algorithmic proof. We refer to Cygan et al. [2015] for a definition of the related
graph terms.

Lemma A.1. Assume that G is a graph of treewidth at most k, and consider a nonnegative weight
function w : V(G) → R≥0 on the vertices of G. Then in G there exists a 1

2 -balanced separator X of
size at most k + 1.

Note first that for each rooted tree, we can compute the size of each of its rooted sub-trees (and
store it in the root of the sub-tree) in the linear time, simply by applying dynamic programming. We
can now apply the above lemma for the tree G = K with the weight function that assigns weight
w = 1.0 for each vertex. By following its algorithmic proof (and using breadth first search for tree
exploration), we can obtain a node p and sub-trees T1, ..., Tl rooted in vertices connected with p, with
the following properties:

• V(T1) ∪ ... ∪V(Tl) ∪ {p} = V(K),

• |V(Ti)| ≤ 1
2 |V(K)| for i = 1, ..., l and where || stands for the set size.

We then choose the first index k such that |V(T1)| + ... + |V(Tk)| ≥ 3
4 |V(K)|. Note that such an

index k exists and k > 1 because of the above and the fact that our tree has at least six vertices. We
define as Kleft a sub-tree of K induced by the set: V(T1)∪ ...V(Tk−1)∪{p} and by Kright a sub-tree
of K induced by the set: V(Tk) ∪ ...V(Tl) ∪ {p}. Note that the triple (Kleft,Kright, p) satisfies the
requirements of Lemma 3.1. That completes the proof.

A.2 Fast Approximate Tree-Field Integrators

If matrices M = [f(xi+yj)]
j=1,...,b
i=1,...,a from Sec. 3.2.1 do not support fast matrix-vector multiplication,

the question arises whether fast approximate procedures can be applied.

A.2.1 Random Fourier Features (RFFs)

Assume that the Fourier Transform (FT) of f exists and denote it by τ : C → C. Note that f is the
inverse FT of τ and can be re-written as f(z) =

∫
R exp(2πiωz)τ(ω)dω. Therefore, the following

holds:

f(xi + yj) =

∫
R
exp(2πiωxi) exp(2πiωyj)τ(ω)dω. (8)

We conclude that for any probabilistic distribution P on R with pdf p, f(xi + yj) can be re-
written as: f(xi + yj) = E[µ(xi)

⊤µ(yj)], where random µ : R → Rm is given as: µ(t)⊤ =

1√
m

(√
τ(ωl)
p(ωl)

exp(2πiωlt)
)m

l=1
for ω1, ..., ωm ∼ P and m ∈ N+. Thus matrix M can be unbiasedly

approximated as: M ≈ UW⊤ for U ∈ Ra×m, W ∈ Rb×m with rows given by µ(x1)
⊤, ..., µ(xa)

⊤

and µ(y1)⊤, ..., µ(yb)⊤ respectively. Matrix-vector product Mv can be then unbiasedly approximated
as U(W⊤v) and computed in time O((a+ b)m). For m ≪ ab

a+b , substantial computational gains
are obtained. In particular, if m = O(logd(a+ b)), the approximate f -integration is conducted in
time O(N logd+1(N)). Note that m controls estimator’s variance, thus decreasing m increases the
error.

A.2.2 Non-Uniform FFT (NU-FFT)

We will now propose a closely-related method, that relies on the non-uniform FFT (NU-FFT).2

2See [Greengard and Lee, 2004] for an excellent introduction.
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Denote: g = Mv for a given v = (v1, ..., vb)
⊤ ∈ Rb. Define: g(x) =

∫
R
f(x− z)P (z)dz, where

P is given as: P (z) =
∑b

j=1 vjδ(z − zj), and furthermore: (1) δ is a delta-Dirac function, (2)
zj = −yj . Our goal is to efficiently evaluate function g in points: {x1, ..., xa}.

Assume that the inverse FT of g exists and denote it by η : C → C. Note that g is the FT of η
and can be written as: g(x) =

∫
R η(ω) exp(−2πiωx)dω. Since g is also a convolution of f and

P , η is a product of the inverse FTs: ρ and R respectively. Therefore, we can write: g(x) =∫
R ρ(ω)R(ω) exp(−2πiωx)dω, where R(ω) =

∑b
j=1 vj exp(2πiωzj). Now, function g can be

evaluated for {x1, . . . , xa} as follows: (1) a quadrature method is applied to obtain points: ω1, ..., ωr

(and corresponding weights) for the approximate computation of the integral defining g, (2) the
NU-FFT is applied to compute R(ω) simultaneously in those points in polylog-linear time, (3) given
pre-computed (ρ(ωi)R(ωi))

r
i=1 (and the quadrature weights), NU-FFT is applied again to compute

quadrature-based approximation of g.

The f -integration process applying this method runs in polylog-linear time since the computation
of g = Mv takes polylog-linear time. A prominent application is f given as: f(x) = sin(x)

x , with
ρ being a renormalized indicator of belonging to interval [−0.5, 0.5]. In this setting, the integral
defining g is thus limited to [−0.5, 0.5]. Interestingly, for f(x) = sin(x)

x we can also apply methods
from Sec. 3.2.1 (see: our discussion below on the trigonometric case).

A.2.3 Additional implications of Lemma 3.3

Products of exponentials and polynomials: Note that a Hadamard (element-wise) product of two
outer-product matrices is itself an outer-product matrix. Using the analysis from the polynomial
and exponential cases, we conclude that M is a sum of a constant number of terms, each being an
outer-product matrix. Thus the same conclusion follows.

The case of the trigonometric f : If f(x) = cos(x) then it can be re-written as: f(x) =
exp(ix)+exp(−ix)

2 . Observe that the cordiality property is preserved under linear combination of
the finite number of cordial functions. We can thus conclude that analogous results as the above for
f(x) = exp(λx) can be derived for f(x) = cos(x). That is also the case for f(x) = sin(x) that can
be re-written as: f(x) = exp(ix)−exp(−ix)

2i . In both cases, we extend the domain from R to C, but this
does not affect the analysis.

So far we have not put any restrictions on the tree weights. If we restrict all weights to be the
same (without loss of generality, equal to one), then the problem becomes easier. In this case for
any function f , matrices C and C⊤ are Hankel [Brent, 2010] (constant on each anti-diagonal and
belonging to LDR class). Then, matrix-vector multiplication can be done in O((a+ b) log(a+ b)).
The analysis from the proof of Lemma 3.3 for d = 1 can be repeated. We conclude that f -integration
can be conducted in O(N log2(N)) time for N -vertex unweighted trees and any f : R → R. This
was already proven in [Choromanski et al., 2022].
Trees with positive rational weights: Assume that tree weights take values of the form: { e

q : e ∈
{1, ..., p}} for some p, q ∈ N+. Then, matrices C and C⊤ do not need to be Hankel, but can be
embedded into Hankel matrices with rows/columns corresponding to distances l

q from the pivot,
where l = {0, ...,mp} and mp

q is the largest distance between a vertex and the pivot. Tensor X can
also be padded into a larger one with extra rows/columns (corresponding to unrealized distances) set
to zero. If p is constant, the asymptotic time complexity remains the same as in the previous case, but
the algorithm might not be practical since the number of rows and columns grows by a multiplicative
factor of p. For certain non-cordial f , the algorithm can be modified for potential gains.

B Additional Related Work

In this section we provide additional related works. One of the methods to tackle this problem is
via iterative methods [Koutis et al., 2012] like Arnoldi iteration [Arnoldi, 1951], Conjugate Gradi-
ent [Shewchuk, 1994] and the celebrated Spielman-Teng algorithm [Spielman and Teng, 2012] for
symmetric diagonally dominant (SDD) matrices. There are a number of extensions and variations
of the above methods [Blelloch et al., 2011, Boman et al., 2008, Christiano et al., 2010, Koutis and
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Miller, 2007, Spielman and Teng, 2008, Daitch and Spielman, 2008, Koutis and Miller, 2008].They
mainly take into account the structure of the matrix (SDD) [Koutis et al., 2010, 2011a, 2012], embed-
ding of a graph into low stretch spanning trees [Elkin et al., 2005], graph sparsification [Spielman
and Teng, 2010] and the choice of a good pre-conditioner [Maggs et al., 2003, Koutis et al., 2011b].
We want to emphasize that the research on low stretch trees for general graphs is orthogonal to the
main topic of this work. In our manuscript, we show in particular how to conduct efficient integration
on arbitrary trees. Thus our work can be naturally combined with those algorithms to leverage all the
above low stretch tree constructions for a better approximation of the graph’s metric.

The other class of method comes from the celebrated work of [Al-Mohy and Higham, 2011] and
there are a number of extensions of this work [Kloster and Gleich, 2023, Al-Mohy and Higham, 2010,
Moore, 2011, Moler and Van Loan, 2003, Auckenthaler et al., 2010].

Another class of methods is via sampling, where one samples a subset of a large matrix, which is then
used to approximate the matrix-vector multiplication (i.e. Monte Carlo sampling) methods [Drineas
et al., 2006, Drineas and Kannan, 2001, Acebron, 2019, Acebron et al., 2019, Benzi et al., 2017,
Martinsson, 2019].

We note that none of these methods are directly applicable in our cases as our f -matrix is neither
Hermitian or SDD. The randomized algorithms are harder to use in the setting of training of a neural
network. Moreover our method is exact on trees, where all the above methods are approximations.

C Topological Transformers

Algorithm 1 General Efficient Low-Rank Masked Attention from Choromanski et al. [2022]
Input: Query/key matrices: Q,K ∈ RL×dQK , value matrix V ∈ RL×d, mask M ∈ RL×L,
procedure FastMultM : RL → RL calculating Mx (or its approximation) for the input x ∈ RL,
kernel feature map: ϕ : RdQK → Rm. vec(·) denotes vectorization.
Output: Masked low-rank attention embeddings using ϕ.
1. Compute matrices V1 ∈ RL×(md), V2 ∈ RL×m with rows defined as: V1

i: = vec(ϕ(k⊤
i )vi),

V2
i: = ϕ(k⊤

i )
⊤, where ki/vi stands for the ith row of K/V.

2. D̃1 := [FastMultM(V1
:1), ...,FastMultM(V1

:md)] ∈ RL×md,
D̃2 := [FastMultM(V2

:1), ...,FastMultM(V2
:m)] ∈ RL×m for V1/2

:i denoting ith column of V1/2.

3. Output the embedding ri of the ith tokens as: ri =
ϕ(q⊤

i )⊤devec(D̃1
i:)

ϕ(q⊤
i )⊤(D̃2

i:)
⊤ , where qi is the ith row of Q

and devec(·) devectorizes its input back to Rm×d.

We now recall the formulation of general masked transformers.

Let us denote by L the number of input tokens. The attention used in a regular Transformer linearly
projects their representations into three learnable matrices Q,K ∈ RL×dQK , V ∈ RL×d called
queries, keys and values respectively.
Definition C.1 (general masked attention). General masked attention is given by the following
equation, where M ∈ RL×L is the mask matrix, and A ∈ RL×L is the so-called masked attention
matrix (MAM): which is defined as:

AttK(Q,K,V,M) = D−1AV,

A = M⊙K(Q,K), D = diag(A1L),
(9)

where ⊙ denotes the element-wise (Hadamard) matrix product, K : Rd × Rd → R is some kernel
function and K(Q,K) is a kernel matrix defined as: K(Q,K)i,j = K(q⊤

i ,k
⊤
j ) for the ith row qi

of Q and the jth row kj of K respectively. We call A′ = K(Q,K) the unmasked attention matrix
(UAM). Note that when K is the softmax function, we recover the well-known attention mechanism
in Transformers.

Here 1L is the all-ones vector of length L, and diag(·) is a diagonal matrix with the input vector as
the diagonal. The time complexity of computing (9) is O(L2d).
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Figure 8: Relative Frobenius norm error as a function of the number of training iterations for different
sizes n and learnable quadratic f . We report the results for 3 mesh graphs from Thingi10k.

If the kernel K admits (at least in expectation) a dot-product decomposition, i.e. K(x,y) =
E[ϕ(x)⊤ϕ(y)] for some mapping: ϕ : RdQK → Rm (and some m > 0). ϕ(u) is called a (random)
feature map (RFM) for u ∈ Rd. For Q′,K′ ∈ RL×m with rows given as ϕ(q⊤

i )
⊤ and ϕ(k⊤

i )
⊤

respectively, RFM-based kernel linearization leads directly to the efficient unmasked attention mecha-
nism of the form:

ÂttK(Q,K,V) = D̂−1(Q′((K′)⊤V)),

D̂ = diag(Q′((K′)⊤1L)).
(10)

Here ÂttK stands for the approximate attention and brackets indicate the order of computations.
Such a mechanism is characterized by time complexity O(Lmd) as opposed to O(L2d) for regular
attention. If m ≪ L, computational gains are obtained.

The central question in [Choromanski et al., 2022] was how to incorporate the masking in the linear
attention as above. Note that in this case A′ is never materialized. Building on the work of [Luo et al.,
2021], the authors [Choromanski et al., 2022] propose a general algorithm that efficiently implements
masked linear attention.

In this work, we use different mappings ϕ (see Table 1). Our key contribution in this work is to
propose a novel mask matrix M and the implementation of a fast matrix multiplication by M. The
above result then allows us to construct novel classes of Topological Transformers.

D Experimental Details and Additional Experiments

In this section, we provide additional details regarding the experimental setup and present addi-
tional results from our experiments. Our code is available at https://github.com/brcsomnath/
FastTreeIntegrator. Specifically, we provide there the code for: (1) our algorithm leveraging
IntegratorTree data structure (depicted in Fig 1), (2) adaptation to the Gromov-Wasserstein-type
computation, (3) graph classification and (4) experiments on interpolation on meshes.

D.1 Additional experiments for graph metric approximation with f -distance matrices

We present additional results for the training loss, relative Frobenius Norm Error (ϵ), for more samples
from the Thingi10K dataset (to complement the results in Fig. 6). In Fig. 9, we observe that in most
cases having rational functions with higher polynomial degrees results in lower training loss.

We also perform similar experiments for graph classification on the CUBES dataset Hanocka et al.
[2019]. Specifically, we investigate how the polynomial degree affects the graph classification
performance in Fig. 9 (left). We observe that increasing the polynomial degree improves the
classification accuracy up to a certain degree. For the same dataset, we also compute the training loss
for different polynomial degrees in Fig. 9 (right). Similarly, we observe that higher-degree rational
functions achieve lower training loss for fitting the polynomial coefficients.

Moreover, we benchmark FTFI on ModelNet10 [Wu et al., 2015], a dataset for 3D Point Cloud (PC)
classification. For each PC, we create an ϵ-neighborhood-graph and use FTFI for graph classification
The Shortest Path kernel achieves an accuracy of 39.6%, whereas our FTFI with the degree-2
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Figure 9: Left: Variation in FTFI performance with different f -distance functions on the CUBES
dataset. We use general rational functions (GRF) of varying polynomial degrees. GRF(i) indicates a
rational function of the i-th degree. We observe a general trend of accuracy increase with function
complexity up to a certain degree. The coefficients of the GRF were learnt using a few graph instances.
Right: We show the training loss curves for estimating the coefficients of the rational function, f ,
for samples in the CUBES dataset. We report the training loss for rational functions with varying
polynomial degrees. We observe that the training loss is lower when we use rational functions with
high-degree polynomials.

polynomial improves the accuracy to 44.2% (10% relative improvement over the baseline), similar to
the observation in 9.

D.2 Integration of FTFI into GW-style algorithms
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Figure 10: Comparison of field integration time between GW and FTFI-GW. We observe that FTFI
achieves significant computation time gain over the baseline.

Wasserstein distance has found many uses in ML, particularly due to it’s principled approach to
compare probability distributions. Gromov Wasserstein Mémoli [2011] discrepancy is an extension
of Wasserstein distance to graph structured data, with a lot of downstream applications like graph
clustering and classification. Inspired by the work of [Choromanski et al., 2023], we follow the exact
same procedure in the integration of FTFI in the conditional gradient algorithm. The FTFI can be
injected seamlessly in place of the Fast Matrix Multiplication (FMM) algorithms in Algorithm 2 and
Algorithm 3 (see [Choromanski et al., 2023]).

Our method GW-FTFI run consistently 2-6x faster than the baseline methods using the Shortest Path
kernel, with no drop in accuracy in computing the associated costs (Figure 10). The plots shown are
obtained by averaging over 10 seeds and random trees of various sizes. For the baseline experiments,
we use the implementation from the POT library [Flamary et al., 2021].

D.3 Interpolation on Meshes

In this section, we present implementation details for the mesh interpolation experiments in
Section 4.2. All experiments were run on a computer with an i9-12900k CPU and 64GB memory.

In the vertex normal prediction task in Section 4.2, we choose 40 meshes for 3D-printed objects with
a wide range of size from the Thingi10K [Zhou and Jacobson, 2016] dataset with the File IDs:
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Table 2: Statistics of the graph classification datasets used in this paper.

Avg. Avg. # Node # Node
DATASETS # Graphs # Labels # Nodes # Edges Labels Attributes

MUTAG 188 2 17.93 19.79 7 -
PTC-MR 344 2 14.29 14.69 19 -
ENZYMES 600 6 32.63 62.14 3 18
PROTEINS 1113 2 39.06 72.82 3 1
D&D 1178 2 284.32 715.66 82 -
IMDB BINARY 1000 2 19.77 96.53 - -
IMDB MULTI 1500 3 13.0 65.94 - -
NCI1 4110 2 29.87 32.30 37 -
COLLAB 5000 3 74.49 2457.78 - -
REDDIT BINARY 2000 2 429.63 497.75 - -
REDDIT MULTI-5K 4999 5 508.52 594.87 - -
REDDIT MULTI-12K 11929 11 391.41 456.89 - -

Table 3: Feature processing time of FTFI compared to exact shortest path kernel computation. We
observe that FTFI achieves significant speedups up to 90% reduction in processing time. All times
are reported in seconds (s).

DATASETS

IMDB IMDB REDDIT REDDIT REDDIT COLLABAlgorithm BINARY MULTI BINARY MULTI-5K MULTI-12K

BGFI 5.6 7.6 3371.9 6267.6 8086.3 209.1
FTFI 4.3 4.7 338.2 755.3 1959.5 232.4

Improvement +23.2% +38.2% +90.0% +88.0% +75.8% -11.1%

DATASETS

Algorithm MUTAG ENZYMES NCI1 PTC-MR D&D PROTEINS

BGFI 0.88 3.68 32.8 0.89 715.4 14.9
FTFI 0.37 4.39 20.2 0.93 325.3 18.6

Improvement +58.0% -19.3% +38.4% -4.5% +54.5% -24.8%

[60246, 85580, 40179, 964933, 1624039, 91657, 79183, 82407, 40172, 65414, 90431,
74449, 73464, 230349, 40171, 61193, 77938, 375276, 39463, 110793, 368622, 37326,
42435, 1514901, 65282, 116878, 550964, 409624, 101902, 73410, 87602, 255172, 98480,
57140, 285606, 96123, 203289, 87601, 409629, 37384, 57084]

For both our FTFI and the baseline BFFI methods, we do a grid-search over the hyper-parameter λ
for each mesh and report the pre-processing time associated with the hyper-parameter(s) that give(s)
us the best cosine similarity.

D.4 Additional Details on Graph Classification

We conduct graph classification experiments on a wide range of benchmark datasets. We report the
dataset statistics for the graph classification datasets in Table 2. More details about the datasets are
available in Morris et al. [2020]. To evaluate the performance of the different kernels, we employ the
framework proposed by [Errica et al., 2020]. In particular, 10-fold cross-validation is used to obtain
an estimate of the generalization performance of our method and the baseline method. We repeat this
cross validation experiment 5 times to get a robust estimation and report the standard deviation for
each setup.

To obtain graph features, we follow the approach presented in [de Lara and Pineau, 2018]. In
this setting, we obtain the k-smallest eigenvalues from the approximated kernel from FTFI and
forward these features to a random forest classifier for classification. For BGFI, we perform the
same process obtaining the k-smallest eigenvalues from the exact shortest kernel. FTFI achieves
similar performance to the BGFI while being significantly faster. We tune the hyperparameter k
independently for each method.
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In Table 4, we report the results for a wide range of baselines and compare FTFI. We observe that
FTFI achieves competitive performance among various strong kernel-based classification baseline
approaches. Note that FTFI results are not directly comparable with other approaches, as FTFI
constructs an intra-graph kernel while other methods use inter-graph kernels. Despite the afore-
mentioned considerations, we contend that positioning our results within the broader framework of
alternative methodologies demonstrates that FTFI remains a compelling approach, owing to its speed
and comparable classification accuracy.

D.5 Additional details on experiments for Topological transformers

In this subsection, we provide additional training details for our image classification tasks. Table 5
and table 6 present the architectural as well as the training details.

We train the ViT models starting from their pretrained checkpoint (pretrained on ImageNet-21k). We
replace the dense attention in ViT by the Performer attention (see Equation 10). We use Algorithm 1
to efficiently incorporate the mask matrix M in the attention mechanism.

D.5.1 ImageNet

We have already provided comparison with SOTA efficient-attention methods: low-rank attention
Transformers in Sec 4.4, quality-wise. On standard ImageNet benchmark, our best Transformer
with FTFI provide 78.15% accuracy, as compared to 76.37% of the best low-rank -attention variant
(obtained by testing three different linear variants). That gives 1.78% accuracy improvement with
only 3 extra trainable parameters per head (36 extra trainable parameters per layer). We have also run
the experiments with cosFormer. It achieved 76.3% accuracy (consistent with what is reported in the
literature, see [8]), lower than both: our method and the best tested low-rank attention variant. The
RF-Gate-Gaussian achieved 76.35% accuracy, which is is still lower than both: FTFI and the best
tested low-rank attention variant.

D.5.2 Places365

We have also conducted tests on another challenging dataset: Places365. In the paper, we report
1.71% accuracy improvement over low-rank attention Transformer (56.51% accuracy vs 54.8%
accuracy). For the rebuttal, we also run the experiment with cosFormer which achieved 55.4%
accuracy (consistent with what is reported in the literature, see: [8]). This is still 0.93% behind our
method. The RF-Gate-Gaussian achieved accuracy 55.1%, lower than this of cosFormer.

D.5.3 I-naturalist 2017

I-naturalist is yet another challenging dataset, with 10K classes, diverse image quality and significant
class imbalance. Transformer with FTFI provides 1% accuracy improvement over its regular low-
rank attention counterpart and the cosFormer. Furthermore, FTFI achieved 0.8% improvement over
RF-Gate-Gaussian. The convergence of the FTFI variant is 20-23% faster than this of its regular
low-rank attention counterpart, the cosFormer and RF-Gate-Gaussian.

D.6 Video Vision Transformer

ViViT ([Arnab et al., 2021]) is a novel architecture that adapts the Vision Transformer (ViT) for
video processing. It efficiently handles the spatiotemporal dimensions of video data by factorizing the
input and applying attention mechanisms across both space and time. This allows ViViT to capture
complex motion patterns and long-range dependencies in videos.

Applying FTFI with a topological masking mechanism to the ViViT architecture (factorized Trans-
former model variant, trained from scratch, as described in Arnab et al. [2021]) results in a 0.8%
absolute improvement on the Kinetics dataset ([Kay et al., 2017]). The experimental setup fol-
lows Arnab et al. [2021]. To the best of our knowledge, this is the first application of Topological
Transformers to video data.
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Table 4: Comparison of FTFI with a broad range of graph kernel-based classification approaches.
We observe that FTFI achieves performance similar to that of Exact SP, its exact counterpart, across
almost all datasets. The baseline results have been compiled from Nikolentzos et al. [2021]. OOT
and OOM indicate that the corresponding algorithm ran out of time or memory respectively.

DATASETS

IMDB IMDB REDDIT REDDIT REDDIT COLLABAlgorithm BINARY MULTI BINARY MULTI-5K MULTI-12K

VH 50.0 (± 0.0) 33.3 (± 0.0) 50.0 (± 0.0) 20.0 (± 0.0) 21.7 (± 1.5) 52.0 (± 0.1)
RW 64.1 (± 4.5) 44.6 (± 4.1) OOT OOT OOT 68.0 (± 1.7)
SP 58.2 (± 4.7) 39.2 (± 2.3) 81.7 (± 2.5) 47.9 (± 1.9) OOT 58.8 (± 1.2)
GR 66.1 (± 2.7) 39.5 (± 2.7) 76.1 (± 2.6) 34.7 (± 2.0) 23.0 (± 1.4) 73.0 (± 2.0)
WL-VH 70.7 (± 6.8) 51.3 (± 4.4) 67.8 (± 3.5) 50.5 (± 1.6) 38.7 (± 1.7) 78.3 (± 2.1)
WL-SP 58.2 (± 4.7) 39.2 (± 2.3) OOT OOT OOT 58.8 (± 1.2)
WL-PM 73.6 (± 3.4) 49.1 (± 5.5) OOM OOM OOM OOM
WL-OA 72.6 (± 5.5) 51.1 (± 4.3) 89.0 (± 1.3) 54.0 (± 1.2) OOT 80.5 (± 2.0)
NH 71.6 (± 4.5) 50.5 (± 5.0) 81.2 (± 2.0) 49.9 (± 2.4) 39.6 (± 1.4) 81.1 (± 2.4)
NSPDK 67.4 (± 3.3) 44.6 (± 3.8) OOT OOT OOT OOT
Lo-ϑ 51.0 (± 4.2) 39.8 (± 2.6) OOT OOT OOT OOT
SVM-ϑ 52.3 (± 4.0) 39.5 (± 2.7) 74.8 (± 2.6) 31.4 (± 1.1) 22.9 (± 0.9) 52.0 (± 0.1)
ODD-STh 65.0 (± 4.0) 46.7 (± 3.4) 52.1 (± 3.2) 43.1 (± 1.8) 30.0 (± 1.6) 52.0 (± 0.1)
PM 66.3 (± 4.2) 46.1 (± 3.8) 86.5 (± 2.1) 48.3 (± 2.5) 41.1 (± 0.6) 74.0 (± 2.4)
GH 59.4 (± 3.4) 39.5 (± 2.6) OOT OOT OOT 60.0 (± 1.4)
SM OOT OOT OOM OOM OOM OOT
PK 51.7 (± 3.7) 34.5 (± 3.0) 63.9 (± 3.0) 34.9 (± 1.7) 23.9 (± 1.2) 57.0 (± 1.2)
ML 69.9 (± 4.8) 47.7 (± 3.2) 89.4 (± 2.1) 35.4 (± 2.0) OOM 75.6 (± 1.6)
CORE-WL-VH 73.5 (± 6.1) 51.7 (± 4.1) 73.0 (± 4.5) 51.1 (± 1.6) 40.2 (± 1.8) 84.5 (± 2.0)
CORE-SP 68.5 (± 3.9) 51.0 (± 3.5) 91.0 (± 1.8) OOT OOM OOT

FTFI 65.1 (± 1.6) 46.4 (± 1.9) 83.7 (± 1.3) 43.8 (± 2.0) 31.8 (± 0.3) 63.7 (± 0.3)
BGFI 65.1 (± 2.0) 47.6 (± 2.0) 84.3 (± 3.5) 44.0 (± 1.9) 37.6 (± 0.3) 75.5 (± 0.3)

DATASETS

Algorithm MUTAG ENZYMES NCI1 PTC-MR D&D PROTEINS

VH 69.1 (± 4.1) 20.0 (± 4.8) 55.7 (± 2.0) 57.1 (± 9.6) 74.8 (± 3.7) 71.1 (± 4.4)
RW 81.4 (± 8.9) 16.7 (± 1.8) OOT 54.4 (± 9.8) OOM 69.5 (± 5.1)
SP 82.4 (± 5.5) 37.3 (± 8.7) 72.5 (± 2.0) 60.2 (± 9.4) 77.9 (± 4.5) 74.9 (± 3.6)
WL-VH 86.7 (± 7.3) 50.7 (± 7.3) 85.2 (± 2.2) 64.9 (± 6.4) 78.7 (± 2.3) 76.2 (± 3.5)
WL-SP 81.4 (± 8.7) 27.3 (± 7.4) 60.8 (± 2.4) 54.5 (± 9.8) 76.0 (± 3.5) 72.1 (± 3.1)
WL-PM 88.3 (± 7.1) 57.5 (± 6.8) 85.6 (± 1.7) 65.1 (± 7.5) OOM 75.9 (± 3.8)
WL-OA 87.2 (± 5.4) 58.0 (± 5.0) 86.3 (± 1.6) 65.7 (± 9.6) 77.6 (± 3.0) 76.2 (± 3.9)
NH 88.3 (± 6.3) 54.5 (± 3.6) 84.7 (± 1.9) 63.4 (± 9.2) 74.6 (± 3.5) 75.0 (± 4.2)
NSPDK 85.6 (± 8.9) 42.2 (± 8.0) 74.3 (± 2.1) 59.1 (± 7.3) 78.9 (± 4.7) 72.5 (± 2.9)
ODD-STh 80.4 (± 8.8) 32.3 (± 4.8) 75.2 (± 2.0) 59.4 (± 9.8) 76.4 (± 4.5) 70.9 (± 4.1)
PM 85.1 (± 5.8) 43.2 (± 5.3) 73.5 (± 1.9) 60.2 (± 8.2) 77.9 (± 3.7) 70.9 (± 4.4)
GH 82.5 (± 5.8) 37.2 (± 6.6) 71.0 (± 2.3) 60.2 (± 9.4) OOT 74.8 (± 2.4)
SM 85.7 (± 5.8) 35.7 (± 5.5) OOT 60.2 (± 6.8) OOM OOM
PK 76.6 (± 5.2) 44.0 (± 6.3) 82.1 (± 2.1) 65.1 (± 5.6) 77.7 (± 4.2) 73.1 (± 4.7)
ML 87.2 (± 7.5) 48.5 (± 7.8) 79.7 (± 1.8) 64.5 (± 5.8) 78.6 (± 4.0) 74.2 (± 4.4)
CORE-WL-VH 85.6 (± 6.5) 51.7 (± 7.0) 85.2 (± 2.2) 65.5 (± 5.6) 79.5 (± 3.2) 76.5 (± 4.4)
CORE-SP 85.1 (± 6.8) 39.5 (± 9.3) 73.8 (± 1.4) 57.3 (± 9.7) 79.3 (± 3.8) 76.5 (± 3.9)

FTFI 81.6 (± 3.8) 34.6 (± 1.0) 72.8 (± 1.2) 60.6 (± 2.1) 73.6 (± 2.1) 72.5 (± 1.2)
BGFI 82.2 (± 2.8) 42.5 (± 1.8) 73.7 (± 1.2) 58.7 (± 2.5) 74.8 (± 2.1) 71.7 (± 2.0)
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Table 5: Hyperparameters for the different ViT models used in this paper

Model Heads Layers Hidden Dim. MLP Dim. Params Patch Size

ViT-Base 12 12 768 3072 86M 16
ViT-Large (16) 24 16 1024 4096 307M 16

Table 6: Hyperparameters for Topological Transformer experiments

Parameter Value

Activation layer gelu
Dropout prob 0.1
Attention dropout prob 0.1
Optimizer Adam
Learning rate 10−3

Batch Size 4096
Compute resources 8× 8 TPUv3
Number of Epochs 300
Warmup 10K
weight decay 0.1
learning schedule cosine decay

E Broader Impact

We do believe that the potential impact of this work is significant, as providing both: (a) theoretical
advancements in structural graph theory as well as (b) practical applications in (1) designing com-
putationally efficient Transformers leveraging topological inductive priors, (2) graph classification
and (3) interpolation on manifolds. The core problem of fast multiplication with f -distance matrices
plays an important role in various fields: physical sciences, chemistry, and network sciences. Our
main contributions are algorithmic, with no clear negative side effects. While used in the context
of Transformers, they should be though applied cautiously due to the nontrivial carbon emission
footprint associated with training large Transformer models.

F Limitations

Currently, FTFI can be applied on general graphs via certain classes of trees defined on these graphs
(e.g. spanning trees), with low-distortion trees being more preferable. It would be interesting to see
whether the main concepts used in the FTFI algorithm (such as the theory of balanced separators) can
be directly incorporated into efficient and exact algorithms operating on general graphs (or general
sparse graphs that appear in most machine learning applications). Determining general conditions on
the classes of graphs and functions f under consideration that are sufficient for exact sub-quadratic
time integration is yet another important problem for future work.
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Answer: [Yes]

Justification: The broader impacts of our work is detailed in Appendix E.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper is theoretical in nature and we are not releasing any new models or
data.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly cited all the papers that introduced various algorithms and
data that are used in this work.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We release the code for the main algorithm. The usage is detailed in the
anonymous github repo.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not conduct any research that involves crowd sourcing or with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowd sourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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