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Abstract

Popular safe Bayesian optimization (BO) algorithms successfully control safety-
critical systems in unknown environments. However, most algorithms require
smoothness assumptions, which are encoded by a norm in a reproducing kernel
Hilbert space (RKHS). The RKHS is a potentially infinite-dimensional space and
it remains unclear how to reliably obtain the RKHS norm of an unknown function.
In this work, we propose a safe BO algorithm capable of estimating the RKHS
norm from data. We provide statistical guarantees on the RKHS norm estimation,
derive novel confidence intervals for, and prove safety of the resulting safe BO
algorithm. We apply our algorithm to safely optimize reinforcement learning
policies on physics simulators and on a real Furuta pendulum, demonstrating
improved performance, safety, and scalability compared to the state-of-the-art.

Keywords Safe Bayesian optimization, reproducing kernel Hilbert spaces, PAC learning, robotics.

1 Introduction
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Figure 1: Toy example of safe BO and the influence of the RKHS norm. We aim to maximize the
reward function (blue) while only sampling above the safety threshold (red dashed line). The predicted
function (black line) is computed based on iteratively acquired samples (black dots, initial sample
shown by the magenta diamond) and the confidence intervals are shown by the gray shaded area. At
each iteration, we compute a set of parameters that we believe to be safe (cyan), potential expanders
(purple), and potential maximizers (orange), thus safely balancing exploration and exploitation. The
upper sub-figures show safe BO, where the true RKHS norm is used to compute the confidence
intervals, while the lower sub-figures are generated with an under-estimated RKHS norm. An under-
estimation of the RKHS norm can yield confidence intervals that do not contain the reward function,
which may eventually lead to unsafe experiments (red cross).
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When learning policies for systems that act in the real world, such as mobile robots or autonomous
vehicles, two crucial requirements must be met: (i) the learning algorithms we use must be sample
efficient, as learning experiments are time-consuming and cause wear and tear to the hardware; and
(ii) we must guarantee safety during exploration, i.e., while testing new policies, for systems not to
damage themselves, their environment, or endanger people. Currently, one of the most popular tools
for policy learning is reinforcement learning (RL). Without the need for a dynamics model, RL learns
a policy through trial-and-error, i.e., by performing experiments and receiving a reward signal in
return that it tries to maximize. Unfortunately, RL struggles with both requirements. Hence, the most
impressive results of RL algorithms have been achieved in simulated or gaming environments [1–3].

An alternative to RL for policy learning is combining Bayesian optimization (BO) [4, 5] with Gaussian
process (GP) [6] regression. When modeling the reward function with a GP, we can leverage this
model and pose the decision of where to explore next as an optimization problem. This way of
sequential decision-making dramatically improves sample efficiency, as shown in numerous hardware
experiments [7–9]. Thus, combining GPs and BO meets the first requirement. For the second
requirement, safe BO algorithms guarantee safety during exploration with high probability; a well-
known example is SAFEOPT [10]. SAFEOPT, as well as other popular safe BO algorithms, assume
that the reward function lies in a reproducing kernel Hilbert space (RKHS). However, guaranteeing
safety requires an additional smoothness assumption, which is encoded by knowing a tight upper
bound on the norm of the reward function in that RKHS. Even though the assumption elegantly paves
the way to guarantee safety with high probability [11, Theorem 1], it is highly unrealistic since the
RKHS is a potentially infinite-dimensional space, and it is unclear how to guess that upper bound for
systems with unknown dynamics. If we misspecify the RKHS norm, i.e., if the true RKHS norm is
higher than the bound we assume, safety guarantees become obsolete, as we illustrate in Figure 1.

Contribution. In response, we present a data-driven approach to compute an RKHS norm over-
estimation with statistical guarantees. We integrate the RKHS norm over-estimation into a safe BO
algorithm reminiscent of SAFEOPT, for which we derive novel confidence intervals and prove safety
with high probability. Moreover, we extend our proposed safe BO algorithm by introducing a notion
of locality. By considering local RKHS norms, which are potentially smaller than the global RKHS
norm, we can explore more optimistically and improve scalability by separately discretizing local
sub-domains. We compare our algorithm to SAFEOPT in a synthetic example and challenging robotic
simulation benchmarks, where we demonstrate the benefits of over-estimating the RKHS norm from
data instead of randomly guessing it. Finally, we demonstrate the applicability of our algorithm to
real-world systems in a hardware experiment.

2 Problem setting and preliminaries

We cast safe policy search as a constrained optimization problem, where the objective function
measures the performance. We consider parameterized policies, and the parameters, which could be
the parameters of a controller, serve as the decision variables of the optimization problem.

Problem setting. We aim to maximize an unknown reward function f : A ⊆ Rn → R while
guaranteeing safety. We define safety as only sampling parameters a ∈ A that correspond to reward
values larger than a pre-defined safety threshold h ∈ R. Thus, we write the optimization problem as

max
a∈A

f(a) subject to f(a) ≥ h. (1)

We solve (1) by sequentially querying the reward function at each iteration t ∈ N. In return, we
receive measurements yt := f(at) + ϵt, where ϵt is independent and identically distributed (i.i.d.) σ-
sub-Gaussian measurement noise. We denote the queried parametrizations until iteration t by a1:t :=
[a1, . . . , at]

⊤ and the corresponding measurements are denoted by y1:t. GP regression provides a
natural tool to estimate f , as done in SAFEOPT [10] and numerous other BO algorithms [11, 12].
Given data a1:t and y1:t at each iteration t, the posterior GP mean and covariance are

µt(a) = kt(a)
⊤(Kt + σ2It)

−1y1:t,

σ2
t (a) = k(a, a)− kt(a)

⊤(Kt + σ2It)
−1kt(a),

(2)

respectively [6], where k(a, a) is the kernel evaluated at a ∈ A, kt(a) = [k(a, a1), . . . , k(a, at)]
⊤ ∈

Rt the covariance vector, Kt ∈ Rt×t the covariance matrix with entry k(ai, aj) at row i and column j
for all i, j ∈ {1, . . . , t}, and It the t× t identity matrix.
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Similar to SAFEOPT and other safe BO algorithms, we assume that the reward function lies in the
RKHS of kernel k, i.e., f ∈ Hk. This assumption is, in general, non-restricting as many kernels satisfy
the universal approximation property [13]. We can now obtain frequentist confidence intervals Qt(a)
around the posterior mean µt that contain the ground truth f with high probability [11, Theorem 2].
We combine [11, Theorem 2] with data-dependent bounds from [14], as done in [15], to obtain

Qt(a) := µt(a)±
(
Bt +

√
2σ log(1/δ det(1/σKt + It))

)
σt(a), (3)

with confidence parameter δ ∈ (0, 1). In (3), Bt is an over-estimation of the ground truth RKHS norm,
i.e., Bt ≥ ∥f∥k. The RKHS norm is given by ∥f∥2k =

∑∞
s=1

∑∞
t=1 αsαtk(xs, xt), where α are the

coefficients and x are the center points of the RKHS function f . Notably, an under-estimation of the
RKHS norm might lead to unsafe experiments (Figure 1), while a too conservative over-estimation
might yield too cautious exploration and even premature stopping (Appendix A). In this paper, we
compute a data-dependent Bt at each iteration t that over-estimates the RKHS norm ∥f∥k with
high probability. The data-driven RKHS norm over-estimation is the chief distinction between our
approach and other safe BO algorithms like SAFEOPT [10] that guess the RKHS norm a priori.

Lipschitz constant. Besides knowing an upper bound on the RKHS norm, safe BO algorithms like
SAFEOPT typically assume that an upper bound on the Lipschitz constant is known. We replace the
Lipschitz constant with the RKHS norm over-estimation and the kernel (semi) metric

dk(a, a
′) :=

√
k(a, a) + k(a′, a′)− k(a, a′)− k(a′, a), (4)

yielding an RKHS norm induced continuity [16, Proposition 3.1].

Safe exploration. Equivalent to SAFEOPT [10, 17], we define the contained set Ct(a) := Ct−1(a) ∩
Qt(a), C0 = R, lower bound ℓt(a) := minCt(a), and upper bound ut(a) := maxCt(a) to quantify
probabilistically whether a policy parameter a is safe. At each iteration t, we restrict function
evaluations to a safe set St ⊆ A that only contains parameters a that are safe with high probability:

St := ∪a∈St−1{a′ ∈ A|ℓt(a)−Btdk(a, a
′) ≥ h}. (5)

To start exploration, we assume that a set of initial safe samples ∅ ≠ S0 ⊆ A is given and obtain a
monotonically growing safe set St by sequentially augmenting the GP. Moreover, we define

Mt = {a ∈ St|ut(a) ≥ max
a′∈St

ℓt(a
′)}, (6)

Gt = {a ∈ St|gt(a) > 0}, gt(a) := card(a′ ∈ A \ St|ut(a)−Btdk(a, a
′) ≥ h), (7)

as the set of potential maximizers and potential expanders, respectively. At each iteration t, the next
parameter at+1 is given by the most uncertain parameter within Mt ∪Gt, i.e.,

at+1 = argmax
a∈Mt∪Gt

(
Bt +

√
2σ log(1/δ det(1/σKt + It))

)
σt(a), (8)

which results in safely balancing exploration and exploitation to solve (1).

3 Safe Bayesian optimization with RKHS norm over-estimation

Algorithm 1 summarizes the proposed safe BO algorithm with the RKHS norm over-estimation. In
each iteration, we query the acquisition function and conduct an experiment with the newly acquired
parameter. The acquisition function is described in Algorithm 2. First, we define the GP model given
the current set of samples. Then, we compute an over-estimation of the RKHS norm by querying
Algorithm 3, which we extensively explain in Section 3.1. Moreover, we compute the confidence
intervals, the set of safe samples St, the set of potential maximizers Mt, and the set of potential
expanders Gt. Finally, we return the most uncertain parameter within Mt ∪Gt and its corresponding
uncertainty. The acquisition function is reminiscent of SAFEOPT with the crux difference lying in the
RKHS norm Bt (l. 2), where SAFEOPT guesses the RKHS norm a priori and maintains that guess.
Hence, we naturally recover SAFEOPT by replacing the query of Algorithm 3 with an oracle.

In the remainder of this section, we present the RKHS norm over-estimation to compute Bt (Sec-
tion 3.1), provide theoretical guarantees for Bt ≥ ∥f∥k, derive novel confidence intervals for and
prove safety of Algorithm 1 (Section 3.2), and extend Algorithm 1 by exploiting locality (Section 3.3).
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Algorithm 1 Proposed safe BO algorithm with RKHS norm over-estimation
Require: k, A, S0, δ, κ, γ m, σ

1: Init: a1 and y1 samples corresponding to safe set S0, B0 =∞
2: for t = 1, 2, . . . do
3: at+1 ← Algorithm 2(k,A, St−1, δ, κ, γ,m, σ, t) ▷ Acquisition function
4: yt+1 ← f(at+1) + ϵt ▷ Conduct experiment
5: return Best safely evaluable parameter a ∈ A

Algorithm 2 Acquisition function
Require: k, A, St−1, δ, κ, γ, t, Bt−1, t, σ

1: Compute GP mean µt and covariance σ2
t given samples a1:t and y1:t ▷ (2)

2: Bt ← Algorithm 3(γ, κ,m,A, k, Bt−1, a1:t, y1:t, k) ▷ RKHS norm over-estimation
3: Compute sets Qt(a), Ct(a), and bounds ut(a), ℓt(a) from samples a1:t, y1:t, and Bt ▷ (3)
4: if t > 1 then compute safe set St (5) else St ← S0 ▷ (5)
5: Compute ωt(a) :=

(
Bt +

√
2σ log(1/δ det(1/σKt + It))

)
σt(a), and sets Mt, Gt ▷ (6), (7)

6: return argmaxa∈Mt∪Gt
ωt(a), maxa∈Mt∪Gt ωt(a) ▷ (8)

3.1 RKHS norm over-estimation

The RKHS norm over-estimation used in Algorithm 2 is based on two pillars: (i) a recurrent neural
network (RNN) [18, 19] that predicts the RKHS norm for each iteration, and (ii) random RKHS
functions that infer the potential behavior of the unknown reward function f .

RNN. We use an RNN to estimate the RKHS norm ∥f∥k based on the current samples a1:t and y1:t.
Specifically, for each iteration, we compute the RKHS norm of the GP mean function ∥µt∥k and
the reciprocal integral of the posterior covariance σ2

t , which quantifies sampling density and store
them as sequences. As the sampling density increases, the GP mean µt and its RKHS norm ∥µk∥k
approximate the reward function f and its RKHS norm ∥f∥k more closely. While the two sequences
serve as the input to the RNN, we also require labels to train it. To this end, we optimize artificial
RKHS functions g ∈ Hk, whose known RKHS norms ∥g∥k serve as the labels for training the
RNN, using our proposed safe BO algorithm. We provide more details on the RNN in Appendix B,
including its architecture, the generation of training data, and its performance.

Random RKHS functions. The second pillar is the computation of random RKHS functions. In
essence, the random RKHS functions ρj ∈ Hk, j ∈ {1, . . . ,m} capture the behavior of the unknown
reward function f , as shown in Figure 2, which we exploit on top of the RNN to obtain theoretical
guarantees on the RKHS norm over-estimation. Ideally, we would create random RKHS functions
that capture the entire RKHS; however, this would require computing infinite sums. Hence, in
implementation, we follow the pre-RKHS approach [20, Appendix C.1] to create random RKHS
functions ρj =

∑N̂
s=1 αsk(·, xs), N̂ ≫ t. Furthermore, we require the random RKHS functions to

interpolate the given samples y1:t subject to σ-sub-Gaussian noise. Thus, the interpolating property
determines the first α1:t coefficients. Moreover, we assume that the first center points x1:t are equal
to the parameters a1:t. The remaining αt+1,N̂ , xt+1,N̂ are i.i.d. samples from uniform distributions
with x ∈ A and a ∈ [−ᾱ, ᾱ], introducing the required stochasticity. Subsequently, the random
RKHS functions exhibit vastly different behavior for fewer samples and approach f for more samples
(Figure 2), which will yield tighter RKHS norm over-estimations for an increasing sample density.

Algorithm. The RKHS norm over-estimation is summarized in Algorithm 3. First, we receive the
RKHS norm estimation from the RNN, given the current set of samples. Second, we construct m
i.i.d. random RKHS functions with known RKHS norms. Based on the return of the RNN and the
RKHS norms of the random RKHS functions, we return Bt, which over-estimates ∥f∥k with high
probability. The explicit form of Bt becomes clear in Theorem 1.

Remark 1. Our design choices decrease the space that is covered by the random RKHS functions.
Nevertheless, the random RKHS functions in Figure 2 display a high degree of randomness, although
they lie in a sub-space of the pre-RKHS from which f is generated, which supports the design choices.
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Figure 2: Random RKHS functions. The random RKHS functions approach the unknown reward
function with more samples. We generated the plots with the Matérn32 kernel with length scale ℓ =

0.1. The remaining hyperparameters were N̂ = 500, ᾱ = 1, and σ = 10−2. The reward function f
has 1000 random center points and coefficients, which were scaled to yield ∥f∥k = 5. We sampled
the parameters a1:t ⊆ A from a uniform distribution.

Algorithm 3 RKHS norm over-estimation
Require: γ, κ, m, A, k, Bt−1, a1:t, y1:t, k

1: Bt ← RKHS norm estimation given a1:t, y1:t, k,A with RNN
2: Construct m random RKHS functions Hk ∋ ρt,j : A → R, with ∥ρt,j∥k given a1:t, y1:t
3: Sort random RKHS functions by ascending RKHS norm {ρt,j}mj=1

4: if Bt < ∥ρt,m∥k then
r ← maxr∈{1,...,m−1} r subject to

∑r
i=0

(
m
i

)
γi(1− γ)m−i ≤ κ ∧ Bt < ∥ρt,m−r∥k

5: if Bt < Bt−1 then Bt ← Bt−1

6: return Bt

Remark 2. Although we integrate the RKHS norm over-estimation into SAFEOPT, it is equally
applicable to any extension such as [17, 21–23]. Besides, the relevance of the RKHS norm goes
beyond BO. It also appears in, e.g., statistics [24] or kernel-based function approximation [25].

3.2 Theoretical analysis

In the following, we present theoretical guarantees on the RKHS norm over-estimation and Algo-
rithm 1. First, we make an assumption on the inputs, the noise, and the kernel, akin to [11].
Assumption 1. The kernel k:R×R→ R≥0 is symmetric, positive definite, and continuous. Moreover,
the action sequence {at}∞t=1 is an Rn-valued discrete time stochastic process and at is Ft−1-
measurable ∀t ≥ 1. The noise {ϵt}∞t=1 is a real-valued stochastic process and for some σ ≥ 0 and
all t ≥ 1, ϵt is (i) Ft-measurable and (ii) σ-sub-Gaussian conditionally on Ft−1.

Next, we introduce an assumption that connects the random RKHS functions and the reward function.
Assumption 2. For any iteration t ≥ 1, given a1:t, y1:t, the random RKHS functions ρt,j , j ∈
{1, . . . ,m}, and the reward function f are i.i.d. samples from the same probability space.
Remark 3. As f ∈ Hk, Assumption 2 is satisfied if ρt,j ∈ Hk. In practice, we have to restrict ρt,j
to a pre-RKHS H0,k ⊆ Hk, as mentioned in Remark 1. However, the evaluation, as well as the
numerical investigation in Section 5, in which we apply Algorithm 3 to 200 RKHS functions and
quantify its performance, demonstrate the reliability of our proposed bounds.

The following theorem is our main theoretical contribution and proves Bt ≥ ∥f∥k with high
probability. Specifically, it shows that Bt ≥ ∥f∥k is probably approximately correct (PAC) [26].
Theorem 1 (RKHS norm over-estimation). Given Assumptions 1 and 2, for any iteration t ≥
1, γ, κ ∈ (0, 1), and m ∈ N such that (1− γ)m−1(1 + γ(m− 1)) ≤ κ, consider the Bt returned by
Algorithm 3. With confidence at least 1− κ, we have Bt ≥ ∥f∥k with probability at least 1− γ.

Proof. (Idea) First, we show that the RKHS norms of the ground truth and the random RKHS
functions are i.i.d. random variables from the same probability space. Then, we formulate the RKHS
norm over-estimation problem using a sampling-and-discarding scenario approach and obtain PAC
bounds by leveraging [27, Theorem 2.1]. We provide a detailed proof in Appendix C.1.
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The following corollary lifts Theorem 3 to hold jointly for all iterations t ≥ 1.

Corollary 1 (Lifting Theorem 1 to all iterations). Under the hypotheses of Theorem 1, receive Bt

from Algorithm 3 at all iterations t. Then, with a confidence of at least 1− κ, Bt over-estimates the
ground truth RKHS norm ∥f∥k jointly for all iterations t ≥ 1 with a probability of at least 1− γ.

Proof. (Idea) First, we show that the discrete-time stochastic process {Bt}Tt=1, T ∈ N, containing the
PAC RKHS norms is a supermartingale. Then, we use a standard stopping time criterion construction
as in [28, Theorem 1]. We provide a detailed proof in Appendix C.2.

Next, we present novel confidence intervals that contain the reward function f with high probability.

Theorem 2 (Confidence intervals). Under the same hypotheses as those of Corollary 1, let Bt

be returned by Algorithm 3 ∀t ≥ 1 with κ, γ ∈ (0, 1). Moreover, define Qt(a) as in (3) with
any δ ∈ (0, 1) and Ct := Ct−1 ∩ Qt with C0 = R. Then, with confidence of at least 1 − κ,
f(a) ∈ Ct(a) holds jointly for all a ∈ A and for all t ≥ 1 with probability of at least (1− γ)(1− δ).

Proof. (Idea) First, we use the classic result from [11, Theorem 2] merged with bounds from [14].
Then, we combine this result with the PAC RKHS norm over-estimation from Corollary 1 by applying
the law of total probability. We provide a detailed proof in Appendix C.3.

Finally, we prove safety of the proposed safe BO algorithm with RKHS norm over-estimation.

Theorem 3 (Safety). Under the same hypotheses as those of Theorem 2, initialize Algorithm 1 with a
safe set S0 ̸= ∅ such that f(a) ≥ h ∀a ∈ S0. Then, with confidence at least 1− κ, f(at) ≥ h holds
jointly for all t ≥ 1 with a probability of at least (1− γ)(1− δ) when running Algorithm 1.

Proof. (Idea) The proof is similar to the proof of [10, Theorem 1]. However, we replace the Lipschitz
continuity from [10, Theorem 1] with an RKHS norm induced continuity from [16, Proposition 3.1]
using the (semi) metric (4). Then, by the law of total probability, we combine the PAC RKHS
norm over-estimation from Corollary 1 with the confidence intervals from Theorem 2 to show that
all a ∈ St are safe with high probability. We provide a detailed proof in Appendix C.4.

3.3 Locality

Thus far, we proposed a safe BO algorithm with theoretical guarantees. At its heart lies the data-driven
computation of the RKHS norm, which is required to, e.g., compute the safe set (5). The definition of
the safe set implies that the algorithm explores in a neighborhood of already collected samples. Thus,
we may not achieve the high sampling density on the entire parameter space that we would, following
Figure 2, desire for a tight RKHS norm over-estimation. However, as we restrict exploration to
the safe subset St of the parameter space A, estimating the RKHS norm on A \ St is superfluous.
Actually, it is precisely in unsafe areas where we expect non-smooth behavior and, hence, large RKHS
norms. Thus, considering even the true global RKHS norm may yield overly conservative exploration,
as also reported in [15]. Therefore,—inspired by local Lipschitz-based methods [29, 30]—we execute
safe BO using sub-domains and localized RKHS norms while inheriting the theoretical guarantees
derived for Algorithm 1.

Algorithm 4 summarizes the proposed localized safe BO algorithm with the data-driven RKHS norm
over-estimation. We adopt an adaptive notion of locality by forming uniform local cubes around each
sample a ∈ a1:t. Specifically, we define N local cubes of width (1, . . . ,N) ·∆ around each sample
with hyperparameter ∆ > 0. Besides the local cubes, we preserve the global domain A and naturally
recover Algorithm 1 by setting N = 0. We introduce the notation Ct := {0, . . . , t ·N} as the set of
integers labeling the local cubes and the global domain and use the integer c ∈ Ct to refer to each
object. At each iteration t and for each local cube c ∈ Ct, we compute the local RKHS norm and
determine a candidate parameter with (8). We choose the parameter for the next experiment as the
most uncertain candidate parameter among all cubes.

Besides exploration benefits, the localized approach significantly improves the scalability of dis-
cretized BO algorithms like SAFEOPT. These discretized BO algorithms suffer from the curse of
dimensionality since either the computational and memory complexities grow exponentially or we
must accept a coarser discretization; the latter implying exponentially growing distances between
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Algorithm 4 Proposed localized safe BO algorithm with RKHS norm over-estimation
Require: k, A, S0, δ, κ, γ m, σ, ∆, N

1: Init: a1, y1 samples corresponding to safe set S0, B0 =∞
2: for t = 1, 2, . . . do
3: Compute Ct given t and N
4: for c ∈ Ct do ▷ Iterate through sub-domains
5: Determine Ac ⊆ A, a1:t,c ⊆ Ac, and y1:t,c ⊆ y1:t given c and ∆
6: at+1,c, ωt,c(at+1,c)← Algorithm 2(k,Ac, St−1,c, δ, κ, γ, t, Bt−1,c) ▷ Acquisition
7: at+1 ← argmaxat+1,c,c∈Ct

ωt,c(at+1,c) ▷ Most uncertain interesting parameter
8: yt+1 ← f(at+1) + ϵt ▷ Conduct experiments
9: return Best safely evaluable parameter

the samples, in the worst case causing an empty safe set. The localized approach sequentially loops
through each local cube when acquiring the next sample. This enables separate discretization in each
local cube, which increases the discretization density and, therefore, simplifies exploration.

The following corollary formally states the inherited theoretical guarantees of Algorithm 4.
Corollary 2 (Localized safe BO). Choose any N ∈ N, any ∆ > 0, consider any t ≥ 1, and
any c ∈ Ct. Define the restriction fc: Ac ⊆ A → R, fc(a) = f(a) for all a ∈ Ac and assume
that fc ∈ Hk, i.e., ∥fc∥k < ∞. Moreover, let Assumption 2 hold for fc. Then, the results from
Theorem 1, Corollary 1, Theorem 2, and Theorem 3 are directly applicable for the local reward
functions fc and Algorithm 4, if the conditions therein are satisfied.

Proof. Instead of deriving the mathematical statements only for the function f on the global do-
main A, they are derived for fc on Ac for all c ∈ Ct at any iteration t ≥ 1. Since Algorithm 4 only
samples from the corresponding safe sets, safety directly follows from Theorem 3.

4 Related work

Next, we relate our safe BO algorithm with RKHS norm over-estimation to the state-of-the-art.

Safety. SAFEOPT [10] and its extensions [31, 21–23] require a tight upper bound on the RKHS norm
of the unknown reward function to prove safety with high probability. The impracticability of this
assumption has been addressed in [15] by proposing an algorithm similar to SAFEOPT, which instead
relies on a priori upper bounds on (i) the noise and (ii) the Lipschitz constant of the unknown reward
function; both of which are unknown and estimating the Lipschitz constant is similarly nontrivial
as estimating RKHS norms. For GOOSE [32], another popular safe BO algorithm, [33] proposes a
variant that approximates the Lipschitz constant, but without guarantees.

RKHS norm estimation. Only a few works tackle the RKHS norm estimation. References [34, 35]
observe that the RKHS norm of the approximating function under-estimates the RKHS norm of the
ground truth. Nevertheless, for safety guarantees, we require an over-estimation. Based on [34, 35],
Reference [36] proposes a simple RKHS norm extrapolation, which empirically results in an upper
bound, however, without any safety guarantees and in a noise-free setting with equidistant samples.

5 Experiments

In this section, we first provide a numerical investigation of the RKHS norm over-estimation. Then,
we evaluate Algorithm 4 and compare it with SAFEOPT. Specifically, we illustrate the impact of
estimating the RKHS norm instead of randomly guessing it in a one-dimensional toy experiment
before comparing both algorithms on challenging RL benchmarks [37, 38]. Finally, we demonstrate
the practicability of our algorithm by optimizing a controller for a real Furuta pendulum [39]. All
experiments were conducted with hyperparameters σ = 10−2, δ = 10−2, γ = 10−1, κ = 10−2, α =

1, m = 1000, and N̂c = max{500width(Ac), t+10}. Moreover, we shift and normalize the domains
to yield A = [0, 1]n and use the Matérn32 kernel with ℓ = 0.1 unless stated otherwise. We provide
videos for the RL and hardware experiments at https://safeexploration.wordpress.com/.
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domain and stays safe, while SAFEOPT is either too conservative (center) or samples unsafely (right).

RKHS norm investigation. To test Corollary 1, we create 200 RKHS functions with RKHS
norms sampled uniformly from [1, 10]. We sample the number of center points for each RKHS
function uniformly from [100, 1000], and scale the corresponding coefficients α to satisfy the pre-
determined ∥f∥k. At each iteration, we compute the over-estimations Bt using Algorithm 3 for each
RKHS function f and append a new parameter sampled uniformly from A. As already discussed in
Section 3.1, we see in Figure 3 that the RKHS norm over-estimation gets tighter for an increasing
sample set, supporting the sensibility of the proposed RKHS norm over-estimation. Crucially, in only
two out of 200 cases did Algorithm 3 under-estimate the RKHS norm. As we chose γ = 10−1 and
κ = 10−2, this is well within the guaranteed range.

Numerical experiments. To illustrate the benefits of our algorithm compared to SAFEOPT, we
let both maximize a synthetic function f ∈ Hk generated with 1000 random center points x and
coefficients α scaled to yield ∥f∥k = 5. For SAFEOPT, we perform two runs, one with an over-
estimation (Bt ≡ 25, center) and one with an under-estimation (Bt ≡ 1, right) of the RKHS norm.
As shown in Figure 5, the former yields conservative exploration (crucially, it does not find the
optimum within the given number of iterations), while the latter incurs failures (red crosses). In
contrast, our algorithm (left) stays safe and finds the optimum. For Algorithm 4, we used N = 5
and ∆ = 0.1.

RL benchmarks. Next, we evaluate our algorithm and compare it to SAFEOPT in challenging
simulation benchmarks. In particular, we consider a sim-to-real setting, where no safety guarantees
are required during simulation. Thus, we train policies in simulation using the soft actor-critic (SAC)
algorithm [40] implemented in [41]. Those RL policies map from the states to the actions in Rn

for the cart pole (n = 1), mountain car (n = 1), swimmer (n = 2), lunar lander (n = 2), and half
cheetah (n = 6) environments [37, 38]. Then, to imitate real-world experiments, we manipulate the
environments by, e.g., adding a wind disturbance for the lunar lander; see Appendix D for details.
Thus, the policies learned with SAC still provide a safe starting point but are not optimal anymore.
As we now must guarantee safety, we optimize these initial policies by learning an additive bias
term b ∈ Rn using Algorithm 4 and SAFEOPT. Figure 6 displays the reward development for
the different environments. Algorithm 4 stays safe and learns a bias that improves the reward for
all environments. For SAFEOPT, a small RKHS norm leads to frequent safety violations (black
crosses), which, e.g., correspond to the lunar lander crashing, whereas a large RKHS norm mostly
yields conservative exploration and even premature stopping. Notably, even SAFEOPT with a small
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Figure 6: RL benchmarks. We optimize SAC policies by learning an additive bias in a sim-to-real
inspired setting. Algorithm 4 exhibits better scalability, safety, and performance than SAFEOPT. We
plot the maximum reward encountered over iterations and mark violations of h = 0 with crosses.

RKHS norm fails to explore noticeably in the half cheetah environment, which is due to the coarse
discretization in high dimensions, whereas our method improves scalability by exploiting locality
and successfully improves the reward.

Hardware experiment. Lastly, we demonstrate the applicability of Algorithm 4 to real-world systems
by optimizing the balancing controller of a Furuta pendulum [39]; see Appendix E for a visualization
of the setup. We consider a similar experimental setup as [22], where the reward function corresponds
to the control performance, and we tune the first two entries of a linear quadratic regulator (LQR).
We execute Algorithm 4 with ℓ = 0.2, N = 3,∆ = 0.15 and we have S0 = [0.239, 0.424]⊤ as an
initial safe parametrization, see Figure 4. After 30 iterations, we significantly improved the controller
performance while only conducting safe experiments, demonstrating that our algorithm is applicable
to safety-critical real-world systems.

6 Conclusions

We presented a novel safe BO algorithm that learns an over-estimation of the RKHS norm from data
including statistical guarantees. With that, it lifts the assumption of popular safe BO algorithms of
knowing a tight upper bound on the RKHS norm a priori. We further developed novel confidence
intervals for and proved safety of a safe BO algorithm with RKHS norm over-estimation. The
proposed algorithm was also extended with an adaptive notion of locality and, thus, improved
exploration and scalability. Finally, we demonstrated the benefits of our algorithm compared to
SAFEOPT in simulation and showed its practicability in a hardware experiment. Although we
integrated the RKHS norm over-estimation and the locality into SAFEOPT, both can equally be
integrated into any modification or extension thereof. More importantly, we expect applications of the
RKHS norm over-estimation to go beyond safe BO and open avenues for more realistic guarantees in
general kernel-based methods or even for estimating Lipschitz constants with theoretical guarantees.
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A Additional figure for the introductory example
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Figure 7: Safe BO corresponding to Figure 1. In this case, the RKHS norm is a conservative
over-estimation. The safe BO algorithm cannot sample any parameter since none is safe with high
probability. Hence, a conservative over-estimation of the RKHS norm is undesirable.

B Estimating RKHS norms with RNNs

We use a custom RNN to process data from two distinct input sequences: (i) from the RKHS norm
of the GP mean µt; (ii) from the reciprocal integral of the GP posterior covariance σ2

t . From these
two sequences, the RNN extrapolates the unknown RKHS norm of the reward function ∥f∥k. For
generating the training data and training the RNN, we used a cluster with 60GB RAM and 20 cores.

Architecture. This model leverages two Long-Short-Term Memory RNN branches with twenty
hidden layers, respectively. Moreover, each RNN branch contains two sigmoid and hyperbolic tangent
activation functions, respectively. We use this custom RNN setup to capture temporal dependencies
within each input stream independently before merging their representations to produce unified
predictions.

Training data. Before training the RNN to estimate unknown RKHS norms ∥f∥k, we require
training data. We generate training data by optimizing 103 artificial RKHS functions g ∈ Hk

using Algorithm 4. To generate g and by executing Algorithm 4, we use the Matérn32 kernel
with lengthscale ℓ = 0.1. We run Algorithm 4 with δ = 10−2, κ = 10−2, γ = 10−1, ∆ =
10−1, and N = 3 for 50 iterations. To generate g, we first sample the number of center points
uniformly from [600, 1000] and sample the center points x uniformly from A = [0, 1]. Then, we
sample ∥g∥k ∈ [0.5, 30] from a uniform distribution and scale the random coefficients α to satisfy
the pre-determined ∥g∥k. When executing Algorithm 4, we generate training data from each local
object c ∈ Ct. Hence, we require the corresponding RKHS norm ∥gc∥k as the label, which is not
directly inferred from the center points x and coefficients α of the function g. Thus, we densely
discretize the function gc for any c ∈ Ct and any iteration t, and compute a heuristic RKHS
norm ∥gc∥k using kernel interpolation; see e.g., [25] for the computation of the RKHS norm of the
interpolating function.

Performance. The 103 functions g yielded 280 · 103 training samples for the RNN. We train the
RNN with 100 epochs, a learning rate of 10−2, and the ADAM optimizer, which took around 10min.
We additionally preserved 20% of validation data. The root mean squared error on the validation data
was approximately 5 · 10−3.
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C Proofs

C.1 Proof of Theorem 1

We prove the theorem by following a (sampling-and-discarding) scenario approach [27, 42]. To this
end, we first need to show that under Assumption 2, the RKHS norms of the ground truth and all
random RKHS functions are i.i.d. random variables conditioned on the samples.

Part I. Under Assumption 2, the stochasticity arises from the tail coefficients αt+1,N̂ and the tail
center points xt+1:N̂ , which are i.i.d. uniform samples from [−ᾱ, ᾱ] and A, respectively. Choose
any t ≥ 1 with corresponding parameters a1:t and samples y1:t (and hence x1:t and α1:t). Consider
the function

F (O) =

√√√√ N̂∑
s=1

N̂∑
i=1

αsαik(xs, xi)

that maps i.i.d. random center points and coefficients in RN̂−t to the resulting RKHS norm in R≥0

with corresponding Borel setsRN̂−t andR≥0, respectively, as σ-algebras. Hence, if F is measurable,
then the RKHS norms are i.i.d. random variables [43, Theorem 1.3.5] from the same probability
distribution; we prove measurability by contradiction.

Suppose that F is not measurable. Then, there exists an event E ∈ R≥0 with E ∋ F (O), O ∈ RN̂−t

such that O ̸∈ RN̂−t. This is a contradiction sinceRN̂−t is the Borel σ-algebra and, therefore, F is
measurable. Hence, due to [43, Theorem 1.3.5], we deduce that F (O) is a random variable and, thus,
the RKHS norms are i.i.d. random variables from the same probability distribution.

Part II. Consider any iteration t ≥ 1 and write the RKHS norm over-estimation as a constrained
optimization problem

min
B∗

t ∈R≥Bt

B∗
t

subject to B∗
t ≥ ∥f∥k. (9)

In this notation, B∗
t corresponds to the optimization variable and Bt to the value returned by the RNN.

We could similarly consider the optimization domain R≥0. However, by lower-bounding B∗
t with the

initial estimate obtained from the RNN, we introduce some conservatism. Clearly, Problem (9) is not
solvable since ∥f∥k is unknown. Hence, we formulate the optimization problem using the scenario
approach [42] with m i.i.d. random RKHS functions ρt,j :

min
B∗

t ∈R≥Bt

B∗
t

subject to B∗
t ≥ ∥ρt,j∥k ∀j ∈ {1, . . . ,m}. (10)

We can use a scenario approach (10) to tackle Problem (9) since the RKHS norms are i.i.d. random
variables from the same probability distribution [42]. Specifically, by solving (10), we obtain a
solution that satisfies all m constraints, which, in return, yields a PAC solution for Problem (9).
However, some of the random RKHS functions could be outliers with unreasonably high RKHS
norms. To trade feasibility (constraint satisfaction with respect to all random RKHS functions) for
performance (a smaller RKHS norm over-estimation), we follow a sampling-and-discarding scenario
approach [27]. To this end, we formulate the following scalar optimization problem:

min
B∗

t ∈R≥Bt

B∗
t

subject to B∗
t ≥ ∥ρt,j∥k ∀i ∈ {1, . . . ,m− r} (11)

B∗
t < ∥ρt,j∥k ∀j ∈ {m− r + 1, . . . ,m},

i.e., the optimal solution violates r constraints corresponding to the r largest random RKHS norms.

We continue to map our problem to a sampling-and-discarding scenario approach, specifically
to [27, Theorem 2.1]. Consider the probability space (R≥0,R≥0,P). The probability space with m
scenarios can be written as (Rm

≥0,⊗m
j=1R≥0,Pm), equivalent to the setting in [27]. Before using [27,

Theorem 2.1], we have to satisfy the following conditions:

15



(C1) The domain of the optimization problem is convex and closed.
(C2) The objective function is convex.
(C3) The feasible domain is convex and closed.
(C4) The optimization problem is feasible for m <∞ with a feasibility domain with nonempty

interior and unique solution.
(C5) The optimal solution violates all r discarded constraints almost surely.

We continue the proof in three different cases.

Case I, Bt < ∥ρt,m∥k ∧ Bt ≤ Bt−1 In this case, the RKHS norm estimation returned by the
RNN is smaller than the largest random RKHS norm and smaller than the previous PAC RKHS
norm over-estimation. Condition (C1) is satisfied since R≥Bt

is convex and closed for any Bt ∈ R.
Condition (C2) directly follows from having a linear objective function. Condition (C3) holds since
the feasible domain is [∥ρt,m−r∥k, ∥ρt,m−r+1∥k) ⊆ R≥0, with r computed in Algorithm 3 (l. 4).
Moreover, Problem (11) is feasible for m <∞ with a feasibility domain with nonempty interior and
unique solution (C4). In fact, the solution of (11) is

B⋆
t,m,r = max{∥ρt,m−r∥k, Bt}, (12)

explicitly denoting that the value depends on the number of scenarios m and the number of removed
constraints r < m.

We now prove claim (C5), i.e., that B⋆
t,m,r under-estimates the RKHS norms corresponding to j =

m − r + 1, . . . ,m in (11) almost surely. To this end, note that the RKHS norms are sorted in an
ascending order and that ∥ρt,j∥k ̸= ∥ρt,i∥k, i, j ∈ {1, . . . ,m}, i ̸= j almost surely. Since B⋆

t,m,r =
max{∥ρt,m−r∥k, Bt} with Bt < ∥ρt,m−r∥k by Algorithm 3 (l. 4) and ∥ρt,m−r∥k < ∥ρt,j∥k,
∀j ∈ {m − r + 1, . . . ,m} almost surely, the claim holds. Hence, we can use the result in [27,
Theorem 2.1]:

Pm
[
(∥ρt,1∥k, . . . , ∥ρt,m∥k) ∈ Rm

≥0 : P
[
∥f∥k ∈ R≥0: B

⋆
t,m,r ≥ ∥f∥k

]
≥ 1− γ

]
≥ 1−

r∑
i=0

(
m

i

)
γi(1− γ)m−i. (13)

Inequality (13) provides PAC bounds on the constraint satisfaction for any unknown random variable
in R≥0. Therefore, it probabilistically quantifies the constraint satisfaction of the optimal solution
of (11) with respect to the unsolvable optimization problem (9), where we upper-bound the unknown
RKHS norm ∥f∥k. Since Algorithm 3 requires

r∑
i=0

(
m

i

)
γi(1− γ)m−i ≤ κ

and sets Bt = max{∥ρt,m−r∥k, Bt}, we have
Pm

[
(∥ρt,1∥k, . . . , ∥ρt,m∥k) ∈ Rm

≥0 : P [∥f∥k ∈ R≥0: Bt ≥ ∥f∥k] ≥ 1− γ
]
≥ 1− κ, (14)

which concludes the proof for Case I.

Case II, Bt ≥ ∥ρt,m∥k ∧Bt ≤ Bt−1 In this case, the RKHS norm estimation returned by the RNN
is larger than the largest random RKHS norm and smaller than the previous PAC RKHS norm over-
estimation. Then, we recover the classic scenario approach, i.e., we satisfy all m constraints, which
can also be seen as a sampling-and-discarding scenario approach with r = 0 discarded constraints in
Problem (11). Conditions (C1)-(C4) are satisfied equivalently to Case I, and Condition (C5) holds
trivially since r = 0. The optimal solution of Problem (11) is given by

B⋆
t,m,0 = Bt

and Algorithm 3 returns Bt as the PAC RKHS norm over-estimation.

Note that we choose γ,m, κ such that (1− γ)m−1(1 + γ(m− 1)) ≤ κ in Theorem 1. Since
0∑

i=0

(
m

i

)
γi(1− γ)m−i ≤

1∑
i=0

(
m

i

)
γi(1− γ)m−i

= (1− γ)m−1(1 + γ(m− 1)) (15)
≤ κ,
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we can directly obtain PAC bounds for the optimal solution of the sampling-and-discarding scenario
approach (11) with r = 0. Namely,

Pm
[
(∥ρt,1∥k, . . . , ∥ρt,m∥k) ∈ Rm

≥0 : P [∥f∥k ∈ R≥0: Bt ≥ ∥f∥k] ≥ 1− γ
]

≥
0∑

i=0

(
m

i

)
γi(1− γ)m−i

(15)
≥ 1− κ,

which concludes the proof for Case II.

Case III, Bt > Bt−1 We now consider the case where the RKHS norm over-estimation at the
previous iteration was tighter than the over-estimation at the current iteration. In this case, we choose

Bt = min{Bt, Bt−1},
see Algorithm 3 (l. 5), with B0 = ∞ by convention. The reason behind this choice is that if the
estimation is PAC at iteration t− 1, it is again PAC at iteration t.

C.2 Proof of Corollary 1

Let {Bt}Tt=1, T ∈ N be the discrete-time stochastic process containing the RKHS norm over-
estimations for each iteration t. Since we choose Bt = min{Bt−1, Bt} in Algorithm 3, we have

Bt ≤ Bt−1 ≤ . . . ≤ B1 ∀t ≥ 1. (16)

Moreover, let {Ft}Tt=1 be a filtration with Ft = σ(B1, . . . , Bt) the σ-algebras. Then, we have
that Bt ∈ Ft and due to (16), E[Bt] ≤ B1 <∞. Moreover,

E[Bt+1|Ft] ≤ Bt ≤ B1 ∀t ≥ 1,

follows from (16), i.e., {Bt}Tt=1 is a supermartingale with respect to the filtration {Ft}Tt=1 [43,
Section 4.2]. Therefore, we can use a stopping-time construction for (super)martingales as done
in [28, Theorem 1] and [11, Theorem 1].

Let us define the bad event

Bt = {ω ∈ Ω: Bt < ∥f∥k}
as under-estimating the ground truth RKHS norm ∥f∥k. Let τ ′ be the first time when the bad event Bt

happens, i.e.,

τ ′(ω) := min{t ≥ 1: ω ∈ Bt}
with min{∅} =∞. Since ⋃

t≥1

Bt = {ω ∈ Ω: τ ′(ω) <∞},

we have

P [∪t≥1Bt] = P[τ ′ <∞]

= P [Bt < ∥f∥k, τ ′ <∞] (17)
≤ P [Bt < ∥f∥k] .

In Theorem 1, we proved that P [Bt ≥ ∥f∥k] ≥ 1−γ holds with confidence 1−κ for any (fixed) t ≥ 1.
Therefore,

P [Bt < ∥f∥k] ≤ γ

holds with confidence 1− κ for any (fixed) t ≥ 1, which with (17) implies that

P [Bt ≥ ∥f∥k] ≥ 1− γ

holds with confidence 1− κ jointly for all t ≥ 1.
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C.3 Proof of Theorem 2

First, we define the following events (the complementary event is denoted by the superscript ⊥):

Ct: It holds that f(a) ∈ Ct(a) jointly for all a ∈ A and for all t ≥ 1.
Qt: It holds that f(a) ∈ Qt(a) jointly for all a ∈ A and for all t ≥ 1.
Bt: It holds that Bt ≥ ∥f∥k jointly for t ≥ 1.

The proof aims at providing a lower bound on the probability of occurrence of event Ct. We start by
investigating the probability of the event Qt from which we can directly infer the probability of Ct.
By the law of total probability, we can write

P[Qt] = P[Qt|Bt] · P[Bt] + P[Qt|B⊥t ] · P[B⊥t ]
≥ P[Qt|Bt] · P[Bt].

By arguments of [11, Theorem 2], we have that

P[Qt|Bt] ≥ 1− δ.

The stochasticity in [11, Theorem 2] arises from probabilistically upper-bounding the norm induced
by a positive definite matrix of the noise vector ϵ1:t. The same case applies to our setting when
conditioning on the event Bt. However, different to [11, Theorem 2], we use the purely data-dependent
upper bound from [14] to bound the noise, as done in [15]. The noise bound holds with a confidence
of at least 1 − δ for the noise in the present setting (Assumption 1). For details, we refer to the
aforementioned works.

Moreover, with Corollary 1,

P[Bt] ≥ 1− γ

holds with a confidence of at least 1− κ. Therefore, with a confidence of at least 1− κ, it holds that

P[Qt] ≥ (1− γ)(1− δ).

From [17, Corollary 7.1], we have

P[Ct] = P[Qt],

and therefore

P[Ct] ≥ (1− γ)(1− δ),

with confidence 1− κ, which concludes the proof.

C.4 Proof of Theorem 3

First, we present a Lipschitz-like continuity for RKHS functions for which we use the (semi)
metric (4).
Lemma 1 (RKHS-induced continuity). [16, Proposition 3.1] Let all conditions in Theorem 3 hold
and let Bt be returned by Algorithm 3. Then, jointly for any a, a′ ∈ A and any t ≥ 1, with a
confidence least 1− κ,

|h(a, i)− h(a′, i)| ≤ Btdk(a, a
′)

holds with probability of at least 1− γ.

Proof. With confidence 1− κ and probability 1− γ,

|f(a)− f(a′)| = |⟨f, k(a, ·)− k(a′, ·)⟩k| Reproducing property [44, Definition 4.18]

≤ ∥f∥k
√

k(a, a)− k(a′, a)− k(a, a′) + k(a′, a′) Cauchy-Schwarz inequality
(4)
= ∥f∥kdk(x, x′)

Cor.1
≤ Btdk(x, x

′),

where ⟨f, g⟩k denotes the inner product between two functions in the RKHS of kernel k. Note that
solely the last inequality introduces stochasticity and the previous steps hold deterministically.
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For each iteration t ≥ 1, we are only allowed to sample within the safe set St (5). The following
lemma exploits the definition of the safe set St to prove that we can guarantee safety with high
probably for all iterations when only sampling within St.
Lemma 2. Under the same hypotheses of Theorem 3, with confidence of at least 1− κ,

∀a ∈ St, f(a) ≥ h

holds jointly for all iterations t ≥ 1 with probability of at least (1− δ)(1− γ).

Proof. The lemma is akin to [10, Lemma 11]. However, we replace the assumption of knowing the
true upper bound on the RKHS norm ∥f∥k with the PAC RKHS norm over-estimation received by
Algorithm 3. Furthermore, in contrast to [10], we do not require the Lipschitz constant and prove
safety with high probability by exploiting the RKHS norm induced continuity formulated in Lemma 1
instead.

First, similar to the proof of Theorem 2, we introduce the following events (the complementary event
is denoted by the superscript ⊥):
Σt: It holds that f(a) ≥ h jointly ∀a ∈ St, ∀t ≥ 1.
Ct: It holds that f(a) ∈ Ct(a) jointly for all a ∈ A and all t ≥ 1.
Bt: It holds that Bt ≥ ∥f∥k jointly for all t ≥ 1.

Clearly, lower-bounding P[Σt] proves the lemma, which we formulate in three parts. In Part I, we
compute P[Σt|Bt, Ct]. In Part II, we lower-bound P[Bt, Ct] and finalize the proof by providing a
lower bound on P[Σt] in Part III.

Part I: We prove that P[Σt|Bt, Ct] = 1 by induction, equivalent to the proof of [10, Lemma 11].

Base case: In the first iteration, we set S1 ≡ S0, see Algorithm 2. Hence, by assumption, for all
a ∈ S1, f(a) ≥ h holds deterministically.
Induction step: Assume for some t ≥ 2, f(a) ≥ h, ∀a ∈ St−1. We show that f(a) ≥ h, ∀a ∈ St−1

implies f(a) ≥ h, ∀a ∈ St. Given the occurrence of both events Bt and Ct, we have that ∀a′ ∈ St,
∃a ∈ St−1 such that

h
(5)
≤ ℓt(a)−Btdk(a, a

′)

Thm.2
≤ f(a)−Btdk(a, a

′)

Lem.1
≤ f(a′),

i.e.,
P[Σt|Bt, Ct] = 1. (18)

Part II: By the formula for conditional probability, we have
P[Bt, Ct] = P[Ct|Bt] · P[Bt].

From [11, Theorem 1], it follows that
P[Ct|Bt] ≥ 1− δ,

as argued in Theorem 2. Moreover,
P[Bt] ≥ 1− γ

with a confidence of at least 1− κ follows from Corollary 1. Therefore,
P[Bt, Ct] ≥ (1− δ)(1− γ) (19)

with confidence of at least 1− κ.

Part III: By the law of total probability, we have that
P[Σt] = P[Σt|Ct,Bt] · P[Ct,Bt] + P[Σt|C⊥t ,Bt] · P[C⊥t ,Bt]

+ P[Σt|C⊥t ,B⊥t ] · P[C⊥t ,B⊥t ] + P[Σt|Ct,B⊥t ] · P[Ct,B⊥t ]
≥ P[Σt|Ct,Bt] · P[Ct,Bt]

(18)
= P[Ct,Bt]

(19)
≥ (1− δ)(1− γ)

holds with confidence at least 1− κ, which concludes the proof.

Theorem 3 follows directly from Lemma 2.
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D Safe RL policy optimization in OpenAI Gym

In this section, we provide further details on the RL benchmark simulations. As discussed in Section 5,
we trained the SAC algorithm [40] in various OpenAI Gym environments [37], in particular, the
mountain car, the cart-pole system, the swimmer, the lunar lander, and the half-cheetah. We then alter
specific physical properties within each environment to imitate real-world experiments, in which we
utilize our proposed algorithm and SAFEOPT to optimize an action bias matching the dimensionality
of the action space. We next state the remaining hyperparameters and detail how we alter the physical
properties for the different environments. We conducted the experiments on a cluster with 60GB
RAM and 20 cores.

Mountain car (1D). We set N = 3, ∆ = 10−1, and discretize the environment with 103 points. For
the imitated real experiments, we reduce the power of the car from 0.015 to 0.013. The target is to
reach the top of the mountain; any position before or after the goal point at the end of an episode was
considered unsafe.

Cart-pole (1D). We set N = 3, ∆ = 10−1, and discretize the environment with 103 points. For the
imitated real experiments, we change the pole length from 0.6 to 0.8. The goal is to maintain the
pole in an upright position; dropping the pole was considered unsafe.

Swimmer (2D). We set N = 5, ∆ = 10−1, and discretize the environment with 5 · 102 points per
dimension. For the imitated real experiments, we change the lengths of the “torso” and “back” links
from 0.1 to 0.3. The goal is to achieve forward movement of the swimmer; any backward movement
was considered unsafe.

Lunar lander (2D). We set N = 5, ∆ = 10−1, and discretize the environment with 5 · 102 points
per dimension. For the imitated real experiments, we add wind of velocity 3m s−1. The goal was for
the lander to descend and come to a complete rest; any instance of the lander tipping over or crashing
was considered unsafe.

Half-cheetah (6D). We set N = 10, ∆ = 5 · 10−2, and discretize the environment with 8 points per
dimension. For the imitated real experiments, we change the thickness of the back link from 0.046 to
0.066. The goal is to ensure forward movement without falling; any fall was considered unsafe.

E Hardware setup

We conducted the hardware experiment on an Ubuntu laptop with 32GB RAM and an Intel Core
i7-12700H processor. Figure 8 shows the setup of the Furuta pendulum.

Figure 8: Hardware setup. The Furuta pendulum starts from a downward position (left) and is swung
upright. Then, we use an LQR controller is used to balance the pendulum (right).
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