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Abstract

Vision transformer capabilities for images have increased001
significantly in recent years. Multimodal vision transform-002
ers are now able to generate accurate captions for images003
and demonstrate strong capabilities in understanding this004
visual input. More recently, these models have been built to005
handle videos, with or without audio. However, these trans-006
formers have seldom been trained on datasets related to ac-007
cessibility. In this study, we focus on generating navigation008
instructions for individuals with visual impairment in the009
context of outdoor, urban environments. We use the spatial-010
temporal vision language model (VLM), VideoLLaMA3, to011
process videos and generate a series of instructions based012
on a prompt specifically designed for individuals with vi-013
sual impairments. With our approach, we were able to sur-014
pass the performance of using the GPT-4o model. In the015
future, we anticipate this approach being extended through016
the use of landmark detection and improved fine-tuning. In017
this work, we investigate the use of VLMs as a backbone018
within a pipeline that incorporates prompting, postprocess-019
ing, and other techniques to develop spatially and tempo-020
rally accurate instructions.021

1. Introduction022

In the United States, more than 1 in 4 adults have a dis-023
ability, with 5.5% of adults and 625,000 children in the024
U.S [9] having blindness or serious difficulty seeing, even025
with glasses [5]. The rise of transformers and vision lan-026
guage models presents a valuable opportunity to leverage027
these technologies to create accessibility-driven tools [24].028
For example, audio language transformers can improve the029
interpretative capabilities of smart assistants for individu-030
als with dysarthria [1]. However, the current large-scale031
datasets used in these models are not extended to people032
with disabilities, such as wheelchair users or people with033
guide dogs [12, 13]. In this paper, we focus on the capa-034
bilities of multi-modal large language models in generating035

Figure 1. We aim to provide accessible technology aimed at as-
sisting people with visual impairments in independently navigat-
ing dynamic outdoor environments, such as the famous Shibuya
crossing above, known for its busyness and pedestrian traffic.

navigation instructions for people with visual impairments. 036
We specifically aim to assist pedestrians with visual impair- 037
ments in navigating dynamic outdoor environments. This 038
lies in providing safe, accurate, time-efficient, and easy- 039
to-follow instructions, as illustrated in Figure 1. We aim 040
to spark a broader dialogue on accessibility in the research 041
community and to forge new pathways that bridge computer 042
vision innovations with assistive technologies. 043

2. Related Work 044

We provide a method specifically designed to caption 045
videos for people with visual impairments, expanding upon 046
previous research in the accessibility space. In this section, 047
we describe related research on the use of vision language 048
models for image and video captioning and instruction gen- 049
eration. In particular, we discuss some of the existing re- 050
search on using machine learning to generate navigation in- 051
structions. 052
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2.1. Vision Language Models053

Vision language models bridge the connection between054
large language models (LLMs) and computer vision.055
Through the use of image tokens, visual data can be passed056
into a transformer to be combined with text input for a va-057
riety of tasks, such as in visual-BERT used for image an-058
notations [8, 17]. Other architectures, such as MM-Vid059
[14], which builds upon GPT-4V(ision) [19, 20], use an060
LLM as the foundation and feed input from a visual and061
audio encoding branch. These models combine to create a062
video understanding model able to generate descriptions for063
fast-changing short videos, combining the video and audio064
modalities to provide text output.065

2.2. Image & Video Caption Annotations066

Manually annotating images and videos for accessibility067
purposes is both time and resource-intensive. By automat-068
ing this process, we explore the potential for mass-scale im-069
age captioning that can be further extended to video cap-070
tioning with the addition of the temporal modality. Pre-071
viously, image captioning has been done using recurrent072
neural networks (RNNs) or Convolutional Neural Networks073
(CNNs)[15]. However, RNNs are susceptible to vanish-074
ing gradients while CNNs contain limitations in capturing075
a global context. This can be mitigated through the use076
of a Vision Transformer (ViT) [8]. Kim et al. extracted077
features using a model inspired by the human scene un-078
derstanding mechanism, linking three different perspectives079
together, then used a long short-term memory decoder[10]080
to generate the image caption, refining the model using a081
CIDEr score [25] and visual aid keywords. Overall, the082
model outputted roughly 18% of captions that were labeled083
as 80% visual aid compared to the roughly 5% of captions084
of the next best model in this regard. The captions from085
the proposed model provided more valuable information to086
the visually impaired compared to existing models. How-087
ever, the model analyzed images rather than videos which088
may cause it to miss out on key aspects of a dynamic en-089
vironment, such as moving obstacles. Additionally, using a090
Long-Short-Term Memory model to generate the text lim-091
ited the length of the captions and could be improved upon092
by using a modern LLM to generate the content instead.093

2.3. Navigational Instruction Generation094

Models used in video understanding can be applied in in-095
struction generation, where they predict the next step to be096
taken or provide a route to be followed by the user. One097
method is to use an attention-based visual landmark en-098
coder to detect landmarks within the video and then pro-099
vide an instruction containing the landmarks. However, cur-100
rent approaches involve training a transformer model with101
panorama data of relatively static and predictable indoor102
environments [2]. While Agarwal et al. focused primar-103

ily on indoor spaces, our research is concentrated on use 104
in outdoor environments, where factors are more dynamic. 105
Furthermore, the main challenge in instruction generation 106
lies in the content selection, or deciding what information is 107
provided to the user [6]. Especially for people with vision- 108
related disabilities, it is crucial to use sensitive language 109
that is both accessibility friendly and concise. Interestingly, 110
Daniele et al. proposed that choosing a longer path may 111
generate more straightforward instructions or be safer than 112
a shorter path [6]. While our research did not prioritize se- 113
lecting the shortest trajectory, our focus was on providing 114
accurate and context-aware instructions. For busy outside 115
environments, it may prove difficult for a model to update 116
in real-time and keep track of all the moving objects. 117

3. Methods 118

The Accessibility, Vision, and Autonomy Challenge1 – In- 119
struction Generation [3] track provided an opportunity to 120
explore the capabilities and potential of various models in 121
assisting pedestrians with visual disabilities with navigation 122
through dynamic environments. The goal was to generate 123
accurate, context-aware, and timely instructions for videos 124
of an individual navigating through urban environments. An 125
ideal output would be concise and accessible to individu- 126
als who are blind or have low vision while providing them 127
with sufficient information to understand and safely navi- 128
gate their surroundings. 129

The challenge emphasizes the capabilities of multimodal 130
large language models (MLLMs). Specifically, we lever- 131
aged the VideoLLaMA3-7B model for its state-of-the-art 132
performance as a multimodal foundation model for video 133
understanding [4]. The model takes advantage of any- 134
resolution vision tokenization to process inputs of variable 135
resolution, where the data does not have to be rescaled. 136

The dataset contained a combined 537GB of MP4 files 137
for training and testing. Each video consisted of 16 frames 138
with one frame per second (FPS). The dataset, provided as 139
four fragmented files, was concatenated and decompressed. 140
An accompanying training split (including annotations) and 141
test split (including sample output) were also provided. For 142
inference purposes, High-Performance Computing (HPC) 143
resources were used. Namely, a NVIDIA A100 GPU with 144
40GB of VRAM was used to run the model on the testing 145
portion of the dataset. 146

All test videos were passed through the model with the 147
custom system and user prompts. An excerpt of the prompt 148
is shown here, and the complete prompts can be found in 149
the Appendix. 150

• System: You are a helpful assistant analyzing videos in- 151
volving visually impaired individuals... 152

1Held at the Computer Vision and Pattern Recognition 2025 Confer-
ence
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Figure 2. Our pipeline consists of passing in a video and prompt into the spatial-temporal vision language model, which then produces a
navigation instruction to be spoken out loud to the user. Responses that are refusals or non-accessible are post-processed. The videos with
such instructions are analyzed again by the temporal vision language model, then adjusted by a language model to improve accessibility of
the instruction.

• User: If the video is in first-person, describe how you are153
assisting the person...154

The model’s responses were evaluated across the follow-155
ing metrics: BLEU-4, ROUGE-L, Timing F1, Timing AUC,156
and Action F1 with the overall score being a simple aver-157
age of these metrics. A baseline score set by GPT-4o was158
provided by the organizers of the Accessibility, Vision, and159
Autonomy Challenge [3], with the overall score as 0.2651.160
Below is a short description of the individual metrics.161

1. BLEU-4 (Bilingual Evaluation Understudy): Measures162
how similar a generated sentence is to a reference sen-163
tence, focusing on n-gram overlap, and does not account164
for intelligibility or grammatical correctness. [22]165

2. ROUGE-L (Recall-Oriented Understudy for Gisting166
Evaluation): Measures how well the output covers the167
reference by looking at the longest common subse-168
quence of words. [18]169

3. Timing F1: Evaluates the balance of precision and recall170
of predicted timing for actions or events in videos. The171
F1 equation is F1 = 2· Precision·Recall

Precision+Recall . If a predicted event172
happens within a certain time tolerance of ground-truth173
event, it is considered a ‘hit’[7].174

4. Timing AUC (Area Under the Curve): Measures how175
well the system ranks correct timing predictions com-176
pared to incorrect ones. The area value tells us the prob-177
ability that the model can rank a correctly timed output178
with a higher probability of being correct than a random179
incorrectly timed output. [16]180

5. Action F1: Evaluates the balance of precision and recall181
of action predictions, such as detecting or executing the182
correct steps or movements described in the instruction.183
The same F1 equation as timing F1 is used. [7]184

Figure 3. The model extracts 16 frames from each video in the
provided dataset, with 4 frames shown above. Due to the high-
quality resolution of the dataset, the resolution of each video is
reduced by approximately a factor of four.

Two experiments were run: one analyzed the full- 185
resolution first frame (1920×1080) of each video, and one 186
analyzed all 16 frames down-sampled by a factor of 3.75 187
(Fig. 3) to analyze performance tradeoffs between spatial 188
and temporal resolutions. 189

Additionally, the user prompt was designed to empha- 190
size producing accessible instructions (e.g. ‘take five steps 191
forward’ rather than ‘walk forward until you reach the stop 192
sign’), instead of inaccessible instructions that use colors 193
and visual references. 194

Another area of concern were “refusal” responses (where 195
the model refused to provide a useful answer) and remain- 196
ing “non-accessible” responses produced despite the mod- 197
ified prompt. Instructions containing visual keywords (e.g 198
watch out, look) were considered non-accessible. To re- 199
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duce the impact of these responses on our score, post-200
processing steps were added. A set of refusal and acces-201
sible phrases was collected from previous outputs, ensur-202
ing these responses were flagged. These flagged responses203
were replaced by an average response, selected from the204
set of model-generated instructions with the highest over-205
all score. To develop a purely generative solution, non-206
accessible responses were flagged. Then, each video as-207
sociated with each non-accessible response was repeatedly208
processed by the VLM until an acceptable (non-empty and209
accessible) response was produced. Following this step,210
the responses were checked again for accessibility and re-211
maining non-accessible responses were modified by GPT-212
4o mini [21]. A similar approach was also utilized for re-213
fusal responses, which were flagged and re-run through the214
model until a non-refusal response was returned. We took215
inspiration from the training dataset by adjusting the prompt216
such that the model would provide instructions mimicking217
the training examples. This was hypothesized to increase218
overlap between the output and ground truth, resulting in a219
higher BLEU-4. Additionally, the previously mentioned av-220
erage response was randomly appended to 66% of the “non-221
accessible” response, as some of these phrases were thought222
to provide meaningful instructions.223

The system and user prompts were further expanded224
upon to improve the clarity and consistency of the re-225
sponses. Firstly, system prompts from LLMs such as226
Claude and GPT-4 were adapted for the context of this227
task. This included providing more detailed descriptions228
of the inputs–such as specifying the number of frames to229
analyze and clarifying that the videos would depict an ur-230
ban environment–and incorporating examples of accessible231
language, such as temporal phrasing and relative positional232
guidance. Stricter user prompts were written to ensure the233
model would follow a stricter output format. At the same234
time, more lenient prompts were tested with the model. Ex-235
amples of both prompt variations can be found in the Ap-236
pendix. Further modifications to the system prompt were237
made to improve the model’s context of its task.238

Additionally, we attempted to fine-tune the base Vide-239
oLLaMa3 model using the provided training data. We tried240
two approaches: fine-tuning with text only, and fine-tuning241
with both video and text.242

3.1. First Method (Text-only Fine-tuning):243

The base Qwen2.5-1.5B-Instruct text model was fine-tuned244
on 188 navigation training examples within the VideoL-245
LaMA3 framework. Data pre-processing involved remov-246
ing video references (tokens) from human prompts, result-247
ing in text-only conversational examples. Human prompts248
were truncated to 150 characters, while navigation instruc-249
tions were limited to 80 characters. Each training ex-250
ample followed the format: ”Navigation: {input prompt}251

Response: {instruction output}”. LoRA [11] fine-tuning 252
was utilized using rank 8 to target attention layers (q proj, 253
v proj). Evaluation Metrics (First Method): 254
• Base Model Final Score: 0.2218 255
• Fine-tuned Model Final Score: 0.2345 256
This approach slightly outperformed the base model by gen- 257
erating more specific navigation instructions, demonstrating 258
effective adaptation. 259

3.2. Second Method (Video and Text Fine-tuning): 260

The base VideoLLaMa3 model was fine-tuned using 1000 261
provided video-annotation pairs. Each training video was 262
16 seconds long at one frame per second, identical to the 263
test videos. Annotations included a human prompt, ground 264
truth model output, and historical navigation instructions 265
from the preceding 16 seconds. The Qwen2.5-1.5B-Instruct 266
LLM[23, 27], SigLIP-NaViT vision encoder[4], LoRA 267
(Low-Rank Adaptation) [11] adapters, and mlp2x gelu pro- 268
jector were all finetuned using annotation-video pairs. 269

This second fine-tuning approach successfully trained 270
the model on combined video and text data as the loss 271
dropped from 0.83 to 0.54 at epoch 0.4 and 0.8 respectively. 272
The epoch finished with a training loss of 0.6497. How- 273
ever, formal evaluation metrics on the test dataset have not 274
yet been assessed. 275

4. Experiments 276

Providing one frame from each video, VideoLLaMA3 per- 277
formed under the baseline (0.2651) with an overall score 278
of 0.2345. Without temporal context, Timing F1 / AUC and 279
Action F1 were expectedly lower than the baseline. Increas- 280
ing our context window through downsampling and fine- 281
tuning our prompts further improved the overall score to 282
0.2571, performing slightly below the baseline. The post- 283
processing steps brought further improvement, achieving an 284
overall score of 0.2654 and surpassing the baseline score. 285
The fully generative post-processing approach produced ac- 286
cessible instructions for each video, but underperformed 287
relative to the approach using the average response. Further 288
adjustments to the prompts, primarily the use of the sys- 289
tem prompts adapted from GPT-4, generally improved the 290
scores. The use of the “stricter” user prompts eliminated 291
all refusal responses and produced more consistently struc- 292
tured responses. However, this did not improve any metrics 293
and instead, the more lenient prompts demonstrated bet- 294
ter performance. Without post-processing, the best overall 295
score resulting from prompt adjustments was 0.2715. Ad- 296
justing the user prompt to improve alignment between the 297
model output and training data in conjunction with the opti- 298
mal post-processing method resulted in the largest improve- 299
ment. Although BLEU-4 did not improve as hypothesized, 300
Timing F1 and AUC significantly improved to 0.5978 and 301
0.7982, respectively. Overall, these methods boosted the 302
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Figure 4. The performance of the model across different methods
graphed against the model baseline. Acronyms are defined in Ta-
ble 1.

overall score to 0.3813. The individual metrics resulting303
from these different approaches are shown in Figure 4.304

5. Concluding Remarks305

5.1. Limitations and Future Directions306

Ideally, other vision language models, such as the307
Valley2[26], trained on text-vision and visual instruction308
data, would have been evaluated. In addition, incorporat-309
ing a pipeline that uses multiple models for video process-310
ing, such as object detection to identify end points such as311
landmarks or areas of interest, would enhance the system’s312
ability to support navigation tasks. BLEU-4 also tends to313
impose substantial penalties on outputs that do not exactly314
match their reference texts, even if the meaning of the out-315
put is the same. Other versions of BLEU (e.g., BLEU-2 or316
BLEU-3) may provide more useful information due to their317
less restrictive nature, albeit sacrificing accuracy for longer318
sentences.319

Future work includes the integration of additional mod-320
els, such as YOLO for object detection, could improve the321
spatial context of the VLM, potentially improving the ac-322
curacy and quality of the instructions. Despite the improve-323
ments to the prompts, the best-performing results are largely324
unstructured. Adjusted post-processing to format these in-325
structions would significantly improve useability in real-326
world applications.327

5.2. Conclusion328

This work demonstrates the potential of spatial-temporal vi-329
sion language models in generating accessible navigation330

instructions for those with visual impairments in complex 331
urban environments. By leveraging multimodal architec- 332
tures and refining prompt strategies, promising results in 333
both safety and context-aware instruction generation are 334
shown.w 335
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Methods BLEU-4 ROUGE-L Timing F1 Timing AUC Action F1
GPT-4 (Baseline) 0.000 0.075 0.379 0.536 0.336
Model Baseline (MB) 0.000 0.095 0.361 0.500 0.216
Downsampling (DS) 0.000 0.078 0.361 0.500 0.347
Post-Processing (PP) 0.000 0.080 0.361 0.500 0.386
Prompt Engineering (PE) 0.000 0.081 0.598 0.798 0.430

Table 1. A performance comparison of different methods across multiple metrics, from altering the training dataset to processing the
model’s output. Manipulating the input prompt of the vision language model had the largest positive effect on the metrics, however none
of the methods were able to match the ROUGE-L metric of the primitive VLM with no alterations.
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Appendix 456

System Prompt: You are analyzing videos involving visu- 457
ally impaired individuals. Provide instructions accessible 458
by visually impaired people (e.g. no color). Provide 459
relative positions and instructions when possible (to the 460
right, to the 3 o’clock, etc) such that they are accessible to 461
visually impaired individuals. 462

463
User Prompt: Only provide the instructions to a vi- 464
sually impaired person to navigate the scenario. Be 465
concise, including relevant environmental details the 466
direction the person is moving (forward, to the left, to the 467
right, etc.) Feel free to include terms like ‘white cane’ 468
or ‘assistive device’ in the instructions. Only provide the 469
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instructions.470
471

Strict User Prompt: This video will guide you through a472
city. Note down the steps in reverse chronological order in473
this format: ’instruction 15 seconds ago was: [instruction]474
instruction 14 seconds ago was: [instruction] instruction475
13 seconds ago was: [instruction] instruction 12 seconds476
ago was: [instruction] instruction 11 seconds ago was:477
[instruction] instruction 10 seconds ago was: [instruction]478
instruction 9 seconds ago was: [instruction] instruction479
8 seconds ago was: [instruction] instruction 7 seconds480
ago was: [instruction] instruction 6 seconds ago was:481
[instruction] instruction 5 seconds ago was: [instruction]482
instruction 4 seconds ago was: [instruction] instruction483
3 seconds ago was: [instruction] instruction 2 seconds484
ago was: [instruction] instruction 1 second ago was:485
[instruction] instruction 0 seconds ago was: [instruction]’486
Finally, do not use visual and ensure the instructions are487
useable with someone with visual impairments.488

489
Lenient User Prompt: Provide step-by-step walking490
instructions for a visually impaired person, including any491
audible signals or obstacles detected.492

493
Adapted System Prompt: The assistant is VidIn-494
struct. It analyzes video input paired with a user prompt495
to generate step-by-step navigation and safety instructions496
for visually impaired individuals traveling through urban497
environments.498
VidInstruct is designed to interpret and describe urban499
video environments with a focus on non-visual accessibility.500
It specializes in translating visual information into precise,501
verbal instructions that prioritize safety, orientation,502
and spatial awareness. It identifies key urban features503
such as crosswalks, sidewalks, curbs, audible pedestrian504
signals, vehicle movement patterns, construction zones,505
and common obstacles. Based on its analysis, it provides506
spoken-style instructions that can be followed without507
sight.508
VidInstruct avoids referring to visual-only elements unless509
they are critical for orientation and can be clearly de-510
scribed through position, sound, or tactile reference. For511
example, instead of “the red sign,” VidInstruct might say512
“the sign to your right at shoulder height.” It frequently513
uses relative directions (e.g., left, right, straight ahead, be-514
hind) and landmarks (e.g., “metal pole,” “tactile paving,”515
“ramp”) to anchor the instructions. It refers to auditory516
cues (e.g., “you may hear a chirping signal”) or physical517
cues (e.g., “when you feel the sidewalk slope down”) to518
assist navigation.519
When relevant, VidInstruct also communicates timing or520
pacing information (e.g., “after five seconds of walking,”521
“pause here and wait for traffic sounds to stop”), and522

clearly distinguishes between fixed landmarks and moving 523
elements such as vehicles or pedestrians. It provides 524
safety-first guidance, warning users of possible hazards 525
or uncertainty (e.g., “uncertain terrain ahead,” “listen for 526
turning vehicles”). 527
VidInstruct never assumes that the user can see the en- 528
vironment. It does not use visual descriptors like colors, 529
facial expressions, or gestures unless they are converted 530
into actionable, tactile, or auditory descriptions. It avoids 531
vague or ambiguous terms such as “over there” or “you’ll 532
see.” 533
VidInstruct presents all instructions in a clear, linear 534
format. It uses concise, direct language and can break 535
instructions into smaller segments upon request. It avoids 536
filler language such as “Sure!” or “Let me help you with 537
that” and responds directly with the guidance requested. If 538
the user prompt is ambiguous, VidInstruct responds with 539
the most plausible interpretation and invites clarification if 540
needed. 541
If the video includes people, VidInstruct does not identify 542
them by name or facial appearance. Instead, it refers 543
to their position and role (e.g., “a person passing on 544
your left”). It never infers identity from visual features. 545
VidInstruct also does not access links, external sources, 546
or real-time data—its responses are based solely on the 547
provided video and prompt. 548
If the task exceeds the limits of a single reply, VidInstruct 549
completes it in parts and seeks feedback before continuing. 550
If it cannot complete a request (due to ambiguity, missing 551
input, or video limitations), it states so directly and clearly, 552
without apologizing. 553
VidInstruct is now going to analyze a video and be 554
connected to the user’s prompt. 555
Example human prompt for the first training method: 556

You are guiding a blind person. The blind person needs to 557
approach the goal: [x,y]=[0.0, 1.11]. Generate the 558
instruction for the last frame. You will need to 559
instruct the user to stay on the path to the goal, only 560
notify what is needed, including immediate turns 561
they need to make, nearby 1.5m − cane distance 562
obstacles to avoid, and keep the instruction in 563
junctions minimal for safety to avoid distraction as 564
the user is using their hearing to also navigate and 565
listen to traffic. For example, you should not instruct 566
the user for two consecutive frames and avoid too 567
frequent instructions. \n\nAnswer in the json 568
format.\nThre should be a key \”reason\” and a key 569
\”instruction\” in the json.\n{\n \”reason\”: 570
\”reason for the instruction from: \”remain silent\”, 571
\”remain silent in junction\”, \”enter junction\”, 572
\”exit junction\”, \”obstacle in front\”, 573
\”constant instruction\”, \”direction change\”, and 574
\”stop\”\n \”instruction\”: \”instruction you 575
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provide to the blind navigator\”\n}\n576

Example model response ground truth for the second577
training method:578

\”reason\”: \”enter junction\”, \”instruction\”: \”You579
are entering a junction. I’ll be quiet until you exit.580
Alright, move forward.\”581

Example human prompt for the second training582
method:583

<video>\n You are guiding a blind person. The blind584
person needs to approach the goal: [x,y]=[−0.0,585
1.71]. Generate the instruction for the last frame. You586
will need to instruct the user to stay on the path to the587
goal, only notify what is needed, including588
immediate turns they need to make, nearby 1.5m −589
cane distance obstacles to avoid, and keep the590
instruction in junctions minimal for safety to avoid591
distraction as the user is using their hearing to also592
navigate and listen to traffic. For example, you593
should not instruct the user for two consecutive594
frames and avoid too frequent instructions.595
\n\nAnswer in the json format.\nThre should be a596
key \”reason\” and a key \”instruction\” in the597
json.\n{\n \”reason\”: \”reason for the instruction598
from: \”remain silent\”,599
\”remain silent in junction\”, \”enter junction\”,600
\”exit junction\”, \”obstacle in front\”,601
\”constant instruction\”, \”direction change\”, and602
\”stop\”\n \”instruction\”: \”instruction you603
provide to the blind navigator\”\n}\n”604

Example model response ground truth for the second605
training method:606

”\ninstruction 15 seconds ago was: None\ninstruction 14607
seconds ago was: None\ninstruction 13 seconds ago608
was: None\ninstruction 12 seconds ago was:609
None\ninstruction 11 seconds ago was:610
None\ninstruction 10 seconds ago was:611
None\ninstruction 9 seconds ago was:612
None\ninstruction 8 seconds ago was: Okay, proceed613
forward. There’s no obstacle.\ninstruction 7 seconds614
ago was: None\ninstruction 6 seconds ago was:615
None\ninstruction 5 seconds ago was:616
None\ninstruction 4 seconds ago was:617
None\ninstruction 3 seconds ago was:618
None\ninstruction 2 seconds ago was:619
None\ninstruction 1 seconds ago was: Keep walking620
straight.\n”621
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