Opacus: User-Friendly Differential Privacy Library
in PyTorch

Ashkan Yousefpour* Igor Shilov* Alex Sablayrolles* Davide Testuggine

Karthik Prasad Mani Malek John Nguyen Sayan Ghosh
Akash Bharadwaj Jessica Zhao Graham Cormode Ilya Mironov
Facebook Al
Abstract

We introduce Opacus, a free, open-source PyTorch library for training deep learning
models with differential privacy (hosted at opacus.ai). Opacus is designed for
simplicity, flexibility, and speed. It provides a simple and user-friendly API, and
enables machine learning practitioners to make a training pipeline private by adding
as little as two lines to their code. It supports a wide variety of layers, including
multi-head attention, convolution, LSTM, and embedding, right out of the box,
and it also provides the means for supporting other user-defined layers. Opacus
computes batched per-sample gradients, providing better efficiency compared to
the traditional “micro batch” approach. In this paper we present Opacus, detail
the principles that drove its implementation and unique features, and compare its
performance against other frameworks for differential privacy in ML.

1 Background and Introduction

Differential privacy (DP) [4] has emerged as the leading notion of privacy for statistical analyses. It
allows performing complex computations over large datasets while limiting disclosure of information
about individual data points. Roughly stated, an algorithm that satisfies DP ensures that no individual
sample in a database can have a significant impact on the output of the algorithm, quantified by the
privacy parameters € and 4.

Formally, a randomized mechanism M: D — R is (e, d)-differentially private for e > 0 and
§ € [0, 1) if for any two neighbouring datasets D, D’ € D (i.e., datasets that differ in at most one
sample) and for any subset of outputs R C ‘R it holds that

P(M(D) € R) < exp(e) B(M(D') € R) + 6.

Differentially Private Stochastic Gradient Descent (DP-SGD) [1]] is a modification of SGD that
ensures differential privacy on every model parameters update: instead of computing the average
of gradients over a batch of samples, a DP-SGD implementation computes per-sample gradients,
clips their /5 norm, aggregates them into a batch gradient, and adds Gaussian noise. (See Fig.
Appendix [A]for an illustration.) However, mainly for efficiency reasons, deep learning frameworks
such as PyTorch or TensorFlow do not expose intermediate computations, including per-sample
gradients; users only have access to the gradients averaged over a batch.

*Equal contribution. Correspondence to yousefpour@fb. com.

Preprint. Under review.

https://opacus.ai

A naive way to implement DP-SGD is thus to separate each batch into micro-batches of size one,
compute the gradients on these micro-batches, clip, and add noise (sample code to obtain the per-
sample gradients using this approach is provided in Appendix [B). While this procedure (called the
“micro-batch method” or “micro-batching”) does indeed yield correct per-sample gradients, it can
be very slow in practice due to underutilization of hardware accelerators (GPUs and TPUs) that are
optimized for batched, data-parallel computations.

Opacus implements performance-improving vectorized computation instead of micro-batching. In
addition to speed, Opacus is designed to offer simplicity and flexibility. In this paper, we discuss
these design principles, highlight some unique features of Opacus, and evaluate its performance in
comparison with other DP-SGD frameworks.

2 Design Principles and Features
Opacus is designed with the following three principles in mind:

» Simplicity: Opacus exposes a compact API that is easy to use out of the box for researchers
and engineers. Users need not know the details of DP-SGD in order to train their models
with differential privacy.

* Flexibility: Opacus supports rapid prototyping by users proficient in PyTorch and Python,
thanks to its rich set of features (described below).

* Speed: Opacus seeks to minimize performance overhead of DP-SGD by supporting vector-
ized computation.

We explain throughout the paper how these principles manifest themselves in the Opacus APIL.

Example Usage. The core component of Opacus is PrivacyEngine. It is instantiated with privacy
parameters (sample rate and noise multiplier), and keeps track of the “privacy budget” spent so far.
PrivacyEngine wraps a PyTorch nn.Module into a GradSampleModule, which adds capabilities
for per-sample gradient computations to the backward pass. It also modifies the optimizer.step()
function to compute noisy gradients and update the privacy budget.

From the user’s perspective, all of this is transparent (reflecting the simplicity principle in action) and
attaching Opacus to an existing script can be done with changing as few as two lines of code, e.g., the
lines containing privacy_engine in the following example:

dataset = Dataset()

model = Net()

optimizer = SGD(model.parameters(), 1lr)

privacy_engine = PrivacyEngine (
model,
sample_rate=batch_size / len(dataset),
noise_multiplier=noise_multiplier,
max_grad_norm=max_grad_norm,

)

privacy_engine.attach(optimizer)

Now it’s business as usual

Main features of Opacus. We highlight some of the key features Opacus provides.

Privacy accounting. Opacus provides out-of-the-box privacy tracking with an accountant based on
Rényi Differential Privacy [10}|11]]. The PrivacyEngine keeps track of how much privacy budget is
spent at any given point in time, enabling early stopping and real-time monitoring. Note that Opacus
also allows a user to directly instantiate a PrivacyEngine targeting an (e, d) budget: in this case,
the engine computes a noise level o that yields an overall privacy budget of (¢, d).

Model validation. Before training, Opacus validates that the model is compatible with DP-SGD.
For example, certain layers (e.g., BatchNorm or GroupNorm modules in some configurations) mix
information across samples of a batch, making it impossible to define a per-sample gradient; Opacus
disallows those modules. It also ensures that no additional statistics without DP guarantees are
tracked by the model (such as the use of track_running_stats in normalization layers).

125 80 64 m 128 W 256

100 W16 W32
20
75
50 10
23 ol [[T

Opacus BackPack PyVacy JAX TFP-C TFP-C (XLA) Opacus BackPack PyVacy — JAX TFP-C TFP-C (XLA)
MNIST with CNN IMDb with Embedding
400 1500
300
200 1000
100 500
0 0
Opacus BackPack PyVacy JAX TFP-C TFP-C (XLA) Opacus BackPack PyVacy JAX TFP-C TFP-C (XLA)
CIFAR with CNN .
IMDb with LSTM

Figure 1: Runtime of the frameworks under different settings (each color representing different batch
size). Note that BackPACK does not support LSTM and embedding, hence there are no results for
those experiments for BackPACK. An open TensorFlow 2 bug prevents the code from evaluating
Custom TFP (XLA) [14] [13]].

Poisson sampling. Opacus also supports uniform sampling of batches (also called Poisson sampling):
each data point is independently added to the batch with probability equal to the sampling rate.
Poisson sampling is necessary in some analyses of DP-SGD [11].

Vectorized computation. Opacus makes efficient use of hardware accelerators (See Section 3)).

Virtual steps. As Opacus is highly optimized for batched per-sample gradient computation, it faces an
inevitable speed/memory trade-off. In particular, when computing per-sample gradients for the entire
batch, the size of the gradient tensor it needs to store is increased by the factor of batch_size. In
order to maximize the usage of all available memory, Opacus provides an option to decouple physical
batch size (which is limited by the amount of memory available) and logical batch size (which is
dictated by training utility considerations).

Custom layers. Opacus is flexible as it supports several layer types, including convolutions, LSTMs,
multi-head attention, normalization, and embedding layers. When using a custom PyTorch layer (or
a standard layer Opacus does not yet support), users can provide a method to calculate per-sample
gradients for that layer and register it with a simple decorator provided by Opacus.

Secure random number generation. Opacus offers a cryptographically safe (but slower) pseudo-
random number generator (CSPRNG) for security-critical code. This can be enabled by the option
secure_mode, which enables CSPRNG for noise generation and random batch shuffling.

3 Vectorized Computation

In accordance with its speed objective, Opacus supports computing per-sample gradients efficiently,
in a vectorized manner. This is achieved by deriving a per-sample gradient formula for every layer
and implementing its vectorized realization. Due to space constraints, we discuss this approach only
for the nn. Linear layer (Appendix [C). The implementation details for other layers and other related
tutorials can be found in opacus.ai/tutorials.

We experimentally evaluate runtime performance of Opacus, TensorFlow Privacy, PyVacy, BackPack,
and a JAX implementation of DP-SGD. The experiments are based on the benchmarks in [[13]], but
executed with the most current versions of the code of the respective frameworks. The datasets
include MNIST, a handwritten digit recognition dataset, CIFAR10, a dataset of small color images,
and IMDb [9], a movie review sentiment classification dataset. The models are a CNN with 26,010
parameters for MNIST, a CNN with 605,226 parameters for CIFAR10, and an LSTM network and
Embedding network with 1,081,002 and 160,098 parameters, respectively, for IMDDb datasets [|13]].
For TensorFlow Privacy, we choose the custom implementation (referred to as “TFP-C”) that uses
vectorization and optional XLA-driven JIT compilation, which achieves the best results for this
framework [13]. Results are shown in Fig.[I] Since all methods aim to implement essentially the
same algorithm for a given privacy level, we do not compare accuracy, but rather focus on running
time. All experiments are obtained on Nvidia Tesla K80.

https://opacus.ai/tutorials

We can see that Opacus and JAX consistently achieve the fastest performance compared to other
frameworks for DP-SGD. This is most pronounced when the batch size is larger. PyVacy has the
highest running time among all of the frameworks. Both BackPACK and TensorFlow Privacy have
comparable performance on the MNIST benchmark, while Opacus has better performance in other
experiments. Since BackPACK does not support LSTM and embedding, the corresponding data are
omitted.

JAX, a general-purpose framework for high-performance numerical computing, performs extremely
well in these experiments. This implementation is based on a hand-crafted custom code for DP-SGD.
Opacus, on the other hand, is a library for training deep learning models with differential privacy via
a simple and flexible API. Thus, the approach based on hand-crafted JAX code is not compatible
with our aim to provide easy and flexible DP versions of existing deep learning pipelines. Moreover,
for large-scale ML tasks, it is the compute- and memory-intensive tasks of matrix multiplication and
other tensor operations that ultimately form the real bottleneck for any framework. Finally, we believe
that the picture will look different when similar functionalities in JAX (e.g., vmap) are implemented
in Pytorch and Opacus is be able to leverage them.

4 Related Work

Gradient Clipping. At the heart of implementing DP-SGD is the need to compute clipped gradients,
for which there are several different approaches. A first option, as implemented in Opacus, is to
directly compute and clip the per-sample gradients. A second option is to compute only the norm
of each sample’s gradient (in an exact or approximate form), and form the weighted average loss
over the batch by weighing samples according to their norm. Typically, each sample’s weight is
C/max(N;, C), where C is the clipping threshold and N; is the norm of the sample’s gradient. The
gradient of this loss with respect to the parameters yields the average of clipped gradients. This
option was proposed by Goodfellow [5] with exact norms, and was considered more recently along
with Johnson-Lindenstrauss projections [2] to compute approximate gradient norms.

The method in [5]] is based on computing per-sample ¢>-norms of the gradients and is restricted to
fully-connected layers; more recently, Rochette ez al. [12]] extended it to CNNs. Lee and Kifer [8]]
propose computing the norm of the per-sample gradients directly, hence doing two passes of back-
propagation: one pass for obtaining the norm, and one pass for using the norm as a weight. In Opacus
per-sample gradients are obtained in a single back-propagation pass, without performance or accuracy
penalties of alternative techniques.

Existing frameworks. There are a few other frameworks for differentially private learning. Ten-
sorFlow Privacy and PyVacy are two existing frameworks providing implementation of DP-SGD for
TensorFlow and PyTorch, respectively. BackPACK [3]], another framework for DP-SGD, exploits
Jacobians for efficiency. BackPACK currently supports only fully connected or convolutional layers,
and several activation layers (recurrent and residual layers are not yet supported). In Section 3| we
compare the performance of these frameworks with Opacus.

Last, we point to some efforts to perform ML training under different notions of privacy and security:
the Myelin system makes use of secure hardware to add noise centrally [6]], while Crypten [7] does
training in a secure multi-party setting, without explicit noise addition.

5 Conclusions

Opacus is a PyTorch library for training deep learning models with differential privacy guarantees.
The system design aims to provide simplicity, flexibility, and speed, for maximal compatibility with
existing ML pipelines. We have outlined how these design principles have influenced the features
of Opacus, and demonstrated that it achieves best-in-class performance on a battery of ML tasks
compared to other DP training frameworks.

Opacus is actively maintained as an open source project, supported primarily by the privacy-preserving
machine learning team at Facebook. A number of extensions and upgrades are planned for Opacus in
the future, including enhanced flexibility for custom components, further efficiency improvements,
and improved integration with PyTorch ecosystem through projects like PyTorch Lightning.

References

(1]

(2]

(3]
(4]

(5]
(6]
(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar,
and Li Zhang. “Deep Learning with Differential Privacy”. In: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security (Oct. 2016).

Zhiqi Bu, Sivakanth Gopi, Janardhan Kulkarni, Yin Tat Lee, Judy Hanwen Shen, and Uthaipon
Tantipongpipat. “Fast and Memory Efficient Ddifferentially Private-SGD via JL Projections”.
In: arXiv preprint arXiv:2102.03013 (2021).

Felix Dangel, Frederik Kunstner, and Philipp Hennig. “BackPACK: Packing more into back-
prop”. In: arXiv preprint arXiv:1912.10985 (2019).

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. “Calibrating noise to
sensitivity in private data analysis”. In: Theory of cryptography conference. Springer. 2006,
pp- 265-284.

Ian Goodfellow. “Efficient per-example gradient computations”. In: arXiv preprint
arXiv:1510.01799 (2015).

Nick Hynes, Raymond Cheng, and Dawn Song. “Efficient Deep Learning on Multi-Source
Private Data”. In: CoRR abs/1807.06689 (2018). arXiv: 1807 .06689.

Brian Knott, Shobha Venkataraman, Awni Hannun, Shubho Sengupta, Mark Ibrahim, and
Laurens van der Maaten. CrypTen: Secure Multi-Party Computation Meets Machine Learning.
2021. arXiv:12109.00984 [cs.LG].

Jaewoo Lee and Daniel Kifer. “Scaling up Differentially Private Deep Learning with Fast
Per-Example Gradient Clipping.” In: Proc. Priv. Enhancing Technol. 2021.1 (2021), pp. 128—
144,

Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher
Potts. “Learning Word Vectors for Sentiment Analysis”. In: Proceedings of the 49th annual
meeting of the association for computational linguistics: Human language technologies. 2011,

pp. 142-150.

Ilya Mironov. “Rényi Differential Privacy”. In: 2017 IEEE 30th Computer Security Founda-
tions Symposium (CSF). IEEE. 2017, pp. 263-275.

Ilya Mironov, Kunal Talwar, and Li Zhang. “Rényi Differential Privacy of the Sampled
Gaussian Mechanism”. In: arXiv preprint arXiv:1908.10530 (2019).

Gaspar Rochette, Andre Manoel, and Eric W Tramel. “Efficient Per-Example Gradient Com-
putations in Convolutional Neural Networks”. In: arXiv preprint arXiv:1912.06015 (2019).
Pranav Subramani, Nicholas Vadivelu, and Gautam Kamath. “Enabling Fast Differen-
tially Private SGD via Just-in-Time Compilation and Vectorization”. In: arXiv preprint
arXiv:2010.09063 (2020).

Nicholas Vadivelu. XLA compilation does not work with Embeddings Layer. https ://
github.com/tensorflow/tensorflow/issues/43687. 2020.

https://arxiv.org/abs/1807.06689
https://arxiv.org/abs/2109.00984
https://github.com/tensorflow/tensorflow/issues/43687
https://github.com/tensorflow/tensorflow/issues/43687

Appendix

A Representation of the DP-SGD algorithm and its implementation in
Opacus

Params 1 Params 2

1 1
I B I
+ -+
| t

NOISE

Aggregate

Clip

>
> >
< >

a
> >
b >
> <4
> >

Per-Sample Gradients

—— —

X2 Layer 1 e L2YET 2
== — =

X3
BATCH

L

Loss

Figure 2: Pictorial representation of the DP-SGD algorithm. The single-colored lines represent
per-sample gradients, the width of the lines represent their respective norms, and the multi-colored
lines represent the aggregated gradients.

B Micro-Batching

The following code snippet is a naive way to yield the per-sample gradients through micro batching.

for batch in Dataloader(train_dataset, batch_size):
all_per_sample_gradients = []
for x,y in batch:
y_hat = model(x)
loss = criterion(y_hat, y)
loss.backward()

per_sample_grads = [p.grad.detach().clone() for p in model.parameters()]

all_per_sample_gradients.append(per_sample_grads)
model.zero_grad() # reset p.grad

C Vectorized Computation for nn.Linear

Consider one linear layer with weight matrix . We omit the bias from the forward pass equation
and denote the forward pass by Y = WX, where X is the input and Y is the output of the linear
layer. X is a matrix of size d x B, with B columns (B is the batch size), where each column is
an input vector of dimension d. Similarly, the output matrix Y would be of size r x B where each
column is the output vector corresponding to an element in the batch and r is the output dimension.

The forward pass can be written as follows:

d
b b
v =y i,
j=1

(b

where Y) denotes the i’th coordinate of the b’th sample in the batch.

In an ML problem, we typically need the derivative of the loss with respect to weights. Correspond-
ingly, in Opacus we need the “per-sample” version of that, which is per-sample derivative of the loss
with respect to the weights W:

" 9L aY
ZZ -

b)
b=1i'= 18Y(

Applying the chain rule above, we can now replace variable z with W; ; and get

" 9L ay“’)
3W1 4 Z Z y(b) oW,

bl’l

(b)
We know from Y = WX that g;/v is X, ®) \Wwhen i = i’, and is 0 otherwise. Continuing the above

we have

B

_Z Y(b

This equation corresponds to a matrix multiplication in PyTorch. In a regular backpropagation, the
gradients of the loss function with respect to the weights (i.e., the gradients) are computed for the
output of each layer and averaged over the batch. Since Opacus requires computing per-sample
gradients, what we need is the following:

aLbatch _ oL (b)

= 1
Wi; ay" @
More generally, in a neural network with more layers, equation (1) can be written as
OLpatc oL
batch _ Z(—~1)(b))

ow® oz O®
Z’j

for every layer [, where Zi(l)(b) is the activation of the hidden layer [for the b’th element of the batch
of the neuron . We refer to % as the highway gradient.

We now explain how we compute the per-sample gradient equation (2)) in Opacus efficiently. In
order to remove the sum reduction to get to the equations (I)) and (2, we need to replace the matrix
multiplication with a batched outer product. In PyTorch, einsum allows us to do that in vectorized
form. The function einsum is for evaluating the Einstein summation convention on the operands; it
allows computing many multi-dimensional linear algebraic array operations by representing them in
a short-hand format based on the Einstein summation convention.

For instance, for computing the per-sample gradients for a linear layer, the einsum function can be
written as torch.einsum("n...i,n...j->nij", B, A), where variables A and B refer to activa-
tions and backpropagations, respectively. In Opacus activations and backpropagations essentially
store what we need for equation (2): using module and tensor hooks in PyTorch Opacus stores

—1)(®) .

the activations Z j(-l in forward hooks and access the highway grad1ents (l)(5y through back-

ward hooks. That is how the method torch.einsum("n...i,n...j->nij", B, A) implements
equation () for computing per-sample gradients for a nn.Linear layer.

	Background and Introduction
	Design Principles and Features
	Vectorized Computation
	Related Work
	Conclusions
	Representation of the DP-SGD algorithm and its implementation in Opacus
	Micro-Batching
	Vectorized Computation for nn.Linear

