
Under review as submission to TMLR

Control-ITRA: Controlling the Behavior of a Driving Model

Anonymous authors
Paper under double-blind review

Abstract

Simulating realistic driving behavior is crucial for developing and testing autonomous sys-
tems in complex traffic environments. Equally important is the ability to control the be-
havior of simulated agents to tailor scenarios to specific research needs and safety consider-
ations. This paper extends the general-purpose multi-agent driving behavior model ITRA
(Ścibior et al., 2021), by introducing a method called Control-ITRA to influence agent be-
havior through waypoint assignment and target speed modulation. By conditioning agents
on these two aspects, we provide a mechanism for them to adhere to specific trajectories
and indirectly adjust their aggressiveness. We compare different approaches for integrating
these conditions during training and demonstrate that our method can generate controllable,
infraction-free trajectories while preserving realism in both seen and unseen locations.

1 Introduction

The simulation of realistic driving behavior is a cornerstone in the development and validation of autonomous
driving systems. As autonomous vehicles (AVs) increasingly integrate into real-world traffic, the necessity for
robust, reliable, and diverse simulation environments becomes paramount. These environments enable the
testing of AVs in complex, high-stakes scenarios that would be difficult or dangerous to replicate in real-world
conditions. Moreover, the ability to simulate realistic multi-agent interactions is critical for ensuring that
AVs can navigate and respond appropriately to the unpredictable behavior of human drivers and other road
users.

One of the key challenges in multi-agent driving simulations is the balance between realism and control.
State-of-the-art models (Ścibior et al., 2021; Suo et al., 2021; Nayakanti et al., 2023; Gulino et al., 2023;
Seff et al., 2023; Wu et al., 2024) aim to replicate the nuances of human driving behavior but often lack
the flexibility to adapt to specific research needs or safety protocols. The ability to control the behavior
of simulated agents is essential for tailoring scenarios to investigate particular driving conditions, test edge
cases, or enforce safety standards. However, introducing control mechanisms without sacrificing realism
remains a significant challenge in the field.

Conceptually, human driving behavior encompasses numerous unobserved variables, ranging from high-
level goals such as “going to the grocery store across the roundabout,” to intermediate behavioral traits
like aggressiveness, down to low-level controls such as setting acceleration and steering values. An ideal
driving simulator would allow conditioning on any of these variables, enabling targeted scenario design.
However, achieving such comprehensive control is challenging due to the difficulty of precisely defining
different behaviors or measuring the degree to which conditions are met.

In this work, we introduce Control-ITRA, a model that enables the control of agent behavior through two
primary methods: by specifying waypoints for the agent to follow and by setting a target speed for it
to reach. Waypoints provide a natural mechanism for guiding agents along a desired path, while target
speeds offer a way to influence the agent’s aggressiveness indirectly. Specifically, we build upon the ITRA
framework (Ścibior et al., 2021), a state-of-the-art model that leverages rasterized overhead birds-eye view
representations to perceive its environment. We selected ITRA as our foundation, as birdviews offer an
intuitive means of spatially placing waypoints. Additionally, we developed a mechanism to assign target
speeds per agent, supporting both conditional and unconditional control execution.
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We further explore two strategies for selecting conditions during training, demonstrating that our approach,
Control-ITRA, enables the model to meet specified conditions while preserving the realism of the driving be-
havior. Finally, we evaluate our conditional model on unseen, out-of-domain locations using TorchDriveEnv
(Lavington et al., 2024), a reinforcement learning environment with simulated traffic, and show that our
method outperforms traditional reinforcement learning baselines in the benchmark validation scenarios from
TorchDriveEnv.

2 Related Work

Trajectory Prediction: Numerous advanced autonomous vehicle simulators have been proposed in recent
years (Dosovitskiy et al., 2017; Santara et al., 2021; Zhao et al., 2024), reflecting the community’s growing
recognition of simulation as an essential element for achieving Level 5 autonomous driving (On-Road Au-
tomated Driving (ORAD) Committee, 2021). In this paper, we focus on trajectory prediction models that
can simulate realistic traffic behavior. The primary task of trajectory prediction models is to predict fu-
ture trajectories based on observed environmental behavior. Broadly, trajectory models can be classified
into physics-based and learning-based models. Physics-based methods leverage physical models to generate
trajectories with relatively low computational resources, often using kinematic and dynamic models (Lin &
Ulsoy, 1995; Lytrivis et al., 2008; Brännström et al., 2010) combined with inference techniques like Kalman
Filters (KF) (Ammoun & Nashashibi, 2009; Jin et al., 2015; Lefkopoulos et al., 2021) and Monte Carlo
methods (Althoff & Mergel, 2011; Okamoto et al., 2017; Wang et al., 2019). These traditional methods are
generally suitable only for simple prediction tasks and environments.

Recently, deep learning-based methods have gained popularity due to their ability to model complex physical,
road-related, and agent-interactive factors, making them adaptable to more realistic environments. Predict-
ing future states is inherently probabilistic, and methods like those in Cui et al. (2019); Chai et al. (2020)
forecast multiple possible trajectories for each agent. Djuric et al. (2020) employs rasterized ego-centric and
ego-rotated birdview representations to depict an agent’s current and past states, using a CNN to predict
future trajectories. Similarly, ITRA (Ścibior et al., 2021) uses ego-centric birdview representations to per-
ceive the environment, modeling each agent as a variational recurrent network (Chung et al., 2015). Tang
& Salakhutdinov (2019) applies a discrete latent model with a fixed number of future trajectories per agent,
utilizing a different representation with separate modules for map encoding and individual RNN networks
for encoding agent states. Casas et al. (2020) leverages spatially-aware graph neural networks to model
agent interactions in the latent space. Transformer-based approaches (Liu et al., 2021; Huang et al., 2022;
Seff et al., 2023; Niedoba et al., 2023; Wu et al., 2024) have also been widely adopted to encode interactions
between agent states.

Goal-conditioned Models: In the literature, conditioning on waypoints is typically framed as a goal-
conditioning task, often addressed through inverse planning. Here, trajectory prediction is divided into
first predicting candidate waypoints and then generating trajectories based on these waypoints. PRECOG
(Rhinehart et al., 2019) introduces a probabilistic forecasting model conditioned on agent positions. PECNet
(Mangalam et al., 2020) generates endpoints for pedestrian trajectory prediction in a two-step process, where
the proposed endpoints guide pedestrian trajectory sequences. Graph-TERN (Bae & Jeon, 2023) divides
pedestrian future paths into three sections, inferring a goal point for each section using mixture density
networks. MUSE-VAE (Lee et al., 2022) uses a conditional VAE model to generate short-term and long-
term goal heatmaps, from which the agent trajectory is then conditioned. DenseTNT (Gu et al., 2021)
predicts a dense goal probability distribution over the road ahead and uses a goal set prediction model
to determine the final trajectory goals. Y-net (Mangalam et al., 2021) generates goal position heatmaps
using a convolution-based approach, sampling final endpoints from the resulting goal distribution. In Goal-
LBP (Yao et al., 2024), goal endpoints are generated based on both static context maps and dynamic local
behavior information. S-CVAE (Zhang et al., 2024) reformulates point prediction as a region-generation
task, constructing an incremental greedy region to enlarge the coverage of candidate waypoints allowing
to model the multimodality of behavioral intentions. Finally, Vista (Gao et al., 2024) employs a different
approach, learning a driving world model using video diffusion from the driver’s first-person view, where
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Figure 1: Example ego-centric and ego-rotated birdview representations from various locations in the training
set. Waypoints are shown as brown circles.

waypoint conditioning is achieved by selecting a 2D coordinate projected from the ego vehicle’s short-term
destination onto the initial frame.

Unlike previous work, our method does not focus on generating goal waypoints at inference time. Instead,
we concentrate on developing a driving behavior model that can realistically follow either densely or sparsely
placed waypoints by effectively amortizing (Lioutas et al., 2022) the distribution of waypoint-conditional
driving behavior extracted from human traffic data. In addition, we introduce a second type of controllability
in the form of target speeds, which can implicitly allow us to vary driving aggressiveness.

3 Method

3.1 Background: ITRA

The main contribution of this paper is to enable the control of a driving behavior model by conditioning its
output. Doing so will allow the extraction of interesting interactive behaviors that can be used for testing
and further improving driving models. Numerous generative models have been proposed in the literature
(Ścibior et al., 2021; Suo et al., 2021; Nayakanti et al., 2023; Gulino et al., 2023; Seff et al., 2023; Niedoba
et al., 2023; Wu et al., 2024). We select ITRA (Ścibior et al., 2021) as our base model, a driving behavior
model trained on real-world traffic data that provides a convenient representation of the observed world
state.

In ITRA, the environment is represented as a rasterized birdview image encoding interactions between the
ego agent, other agents, and the surrounding environment. These ego-centric, ego-rotated birdview images
are denoted as bi

t ∈ RH×W ×3 for each agent i and timestep t, and they are generated using a rendering
function bi

t = render(i, s1:N
t , V ) where V is a triangle mesh representing the drivable area. A trajectory

segment is represented as a sequence of states s1:T = {s1:N
1 , . . . , s1:N

T }, where T is the number of timesteps
and N is the number of agents in the segment. Each state is a tuple si

t = (xi
t, y

i
t, ψ

i
t, v

i
t) ∈ R4, where xi

t and
yi

t denote the coordinates of the agent’s geometric center, ψi
t represents its orientation, and vi

t its current
speed. Each agent is represented as a rotated bounding box with length li and width wi, which are assumed
to be provided.

ITRA is structured as a multi-agent variational recurrent neural network (Chung et al., 2015) where each
agent samples its own latent variables zi

t. The generative model is followed by a standard bicycle kinematic
model, which transforms each agent’s actions ai

t = (αi
t, β

i
t) into the next state si

t+1, where αi
t represents the

acceleration and βi
t the steering angle. The joint distribution of ITRA is given by

pθ(s1:T ) = p0(s1:N
1 )p0(h1:N

0 )
∫ ∫ T∏

t=1

N∏
i=1
p(zi

t)p(bi
t|i, s1:N

t , V )pθ(ai
t|bi

t, z
i
t, h

i
t−1) (1)

pθ(hi
t|hi

t−1, a
i
t, b

i
t, z

i
t)p(si

t+1|si
t, a

i
t)dz1:N

1:T da
1:N
1:T ,
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where p0(s1:N
1 ) is a given distribution of initial states, p0(h1:N

0 ) is the distribution of initial recurrent states
and

p(zi
t) = N (zi

t; 0, I), (2)
p(bi

t|i, s1:N
t , V ) = δrender(i,s1:N

t ,V )(bi
t), (3)

pθ(ai
t|bi

t, z
i
t, h

i
t) = N (ai

t;µθ(bi
t, z

i
t, h

i
t−1), I), (4)

pθ(hi
t|hi

t−1, a
i
t, b

i
t, z

i
t) = δRNNθ(hi

t−1,ai
t,bi

t,zi
t)(hi

t), (5)

p(si
t+1|si

t, a
i
t) = δkin(si

t,ai
t)(si

t+1). (6)

The model is optimized using the standard evidence lower bound objective (ELBO). This process minimizes
the negative ELBO, defined as

LELBO = E
s1:T ∼pD(s1:T )

[ T −1∑
t=1

N∑
i=1

(
E

qϕ(zi
t|ai

t,bi
t,hi

t−1)

[
log pθ(si

t+1|bi
t, z

i
t, h

i
t−1)

]
−DKL

[
qϕ(zi

t|ai
t, b

i
t, h

i
t−1)||p(zi

t)
] )]
(7)

≤ E
s1:T ∼pD(s1:T )

[
log pθ(s1:T )

]
where qϕ is a separate inference network approximating the proposal distribution defined as

qϕ(zi
t|ai

t, b
i
t, h

i
t−1) = N (zi

t; {µϕ, σϕ}(ai
t, b

i
t, h

i
t−1)), (8)

and trained jointly with the model pθ.

3.2 Waypoint Conditioning

An intuitive way of controlling the behavior of the simulated agents is to set waypoints for them to follow.
Specifically, we formally define waypoints wi

1:Ki
for each agent i as an ordered collection of Ki tuples of

target coordinates where wi
k = (xi

k, y
i
k). Additionally, a waypoint is considered reached from an agent i at a

timestep t when √
(xi

t − xi
k)2 + (yi

t − yi
k)2 ≤ R, (9)

where R is a hyperparameter and corresponds to the radius from the center of the waypoint. In our definition
of the waypoint following task, the agent must reach each waypoint sequentially in the specified order. Once
a waypoint is deemed reached, the next waypoint in the sequence is shown. Each agent is presented with
only one waypoint at any time from the waypoints list wi

1:Ki
.

The agents are not constrained to reach waypoints as quickly as possible or within a specific timeframe. In-
stead, they are free to take any actions necessary to reach the target point safely and realistically. Waypoints
that cannot be reached safely should be ignored. Finally, waypoints are an optional condition, meaning that
not all agents are given a list of waypoints. Agents without waypoints are expected to react and behave
realistically according to their learned human-like behavior priors.

Waypoints are provided to ITRA as part of the rendered birdview representation (Figure 1). This represen-
tation is well-suited for waypoint conditioning, as it allows for a natural placement of waypoints within the
spatial context. Additionally, the limited field of view of the ego-centric representation enables the agent to
act unconditionally until a waypoint enters its vicinity.

3.3 Target Speed Conditioning

In many scenarios, controlling the aggressiveness of simulated driving behavior is essential for testing safety
conditions. Driving aggressiveness can significantly affect safety outcomes, influencing the likelihood of
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Algorithm 1 Conditional ITRA Training Step
Input: Ground truth segment s1:N

1:T
Ego-agent index i
Behavior model pθ

Ordered list of conditions C
Conditioning probability pC

Output: Total loss LELBO

1: use_condition← randomly enable conditioning with probability pC

2: LELBO ← 0
3: k ← 1
4: for t ∈ 2 . . . T do
5: if use_condition and k ≤ len(C) then
6: ŝi

t ∼ pθ(si
t|s1:N

1:t−1, Ck) using proposal distribution qϕ

7: if Ck is reached then
8: k ← k + 1
9: else

10: ŝi
t ∼ pθ(si

t|s1:N
1:t−1,∅) using proposal distribution qϕ

11: Lt
ELBO ← compute using si

t and ŝi
t

12: LELBO ← LELBO + Lt
ELBO

13: return LELBO

collisions, near-misses, and the ability to navigate complex traffic situations. However, defining aggressiveness
remains an open question in the literature, as it encompasses a wide range of behaviors and can have varying
interpretations depending on the context (Danaf et al., 2015). For instance, aggressiveness may be reflected
in rapid acceleration, sharp turns, or a tendency to follow other vehicles too closely. These behaviors can
also differ depending on road conditions, traffic density, and even driving cultural factors.

Due to this complexity, directly modeling aggressiveness can be challenging. A practical, indirect method
for controlling how aggressively a driver behaves is to condition their predicted actions on predefined target
speed values. For instance, a lower target speed may lead to more cautious, conservative driving patterns,
while a higher target speed could encourage more assertive or aggressive behaviors.

To incorporate target speeds, we apply FiLM-like blocks (Perez et al., 2018) on the input of every intermediate
layer of ITRA’s encoder and decoder modules. Specifically, given a target speed v̄i as condition and the
recurrent state hi

t for agent i at timestep t, we generate the scale and shift parameters for each layer k as

γi
t,k = fk(v̄i, hi

t), βi
t,k = hk(v̄i, hi

t). (10)

These parameters are then used to perform conditional affine transformations of the input xi
t,k of each layer

by

x̃i
t,k = γi

t,kxi
t,k + βi

t,k. (11)

This process allows the model to adapt its feature representations based on the given target speed, effectively
conditioning the driving actions on the desired speed profile. Target speed conditioning helps the model to
capture the relationship between speed and other driving factors, such as road conditions and traffic density,
leading to more realistic and robust driving behavior predictions. A target speed is regarded as reached when

|vi
t − v̄i| ≤ ϵv, (12)

where vi
t is the speed of the agent i at timestep t and ϵv is a small error coefficient.

3.4 Training with Conditions

We aim to obtain a driving behavior model that can drive vehicles realistically while optionally following
agent-specific conditions. In Sections 3.2 and 3.3 we described the two main types of conditioning considered
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Algorithm 2 Sampling Training Waypoints in Space
Input: Ground truth ego-agent track si

1:Tmax
Range min/max distances dmin, dmax
Maximum number of conditions N

Output: Ordered list of conditions C
1: C ← ∅
2: ttarget ← 1
3: do
4: Sample random distance dr ∼ U(dmin, dmax)
5: Find maximum tc ∈ {ttarget, . . . , Tmax} where ∥si

tc
− si

ttarget
∥2 ≤ dr

6: C ← C ∪ {si
tc
}

7: ttarget ← tc
8: while len(C) < N and ttarget < Tmax
9: return C

Algorithm 3 Sampling Training Target Speeds in Time
Input: Ground truth ego-agent track si

1:Tmax
Range min/max time increment ∆tmin,∆tmax
Maximum number of conditions N

Output: Ordered list of conditions C
1: C ← ∅
2: ttarget ← 1
3: do
4: Sample random time increment ∆tr ∼ U(∆tmin,∆tmax)
5: Find maximum tc ∈ {ttarget, . . . , ttarget + ∆tr} where tc ≤ Tmax
6: C ← C ∪ {si

tc
}

7: ttarget ← tc
8: while len(C) < N and ttarget < Tmax
9: return C

in this work. In this section, we introduce the principal way of training such conditional models. Specifically,
we extend the main training procedure of ITRA (Ścibior et al., 2021) to utilize the additional conditions.
We refer to these new conditional models as Control-ITRA. Algorithm 1 describes the process of executing
a single step for training a conditional model. Given a ground truth sequence of states s1:N

1:T for N agents
and an ordered list of conditions for the ego-agent, the conditioning for the current training step is enabled
with a probability pC . The use of the conditioning probability pC allows for training both conditionally and
unconditionally using a single behavioral model. During each timestep t within the training segment length
T , the model predicts the ego state ŝi

t conditioned on the previous states s1:N
1:t−1 and the current condition

Ck if conditioning is enabled. The transition to the next condition occurs if the current condition is reached
according to the condition type. If conditioning is not enabled, the model predicts the state without any
conditional information. The algorithm iteratively computes the evidence lower bound loss Lt

ELBO for each
timestep by comparing the predicted state ŝi

t to the ground truth si
t. The total loss LELBO accumulates over

all timesteps.

The strategy for selecting training conditions is crucial. A straightforward method involves consistently
using information from the last state of the training segment as the condition. For instance, this could
mean relying solely on the position of the ego-agent at the final timestep si

1:T of the training segment as
the waypoint. We argue that this is not ideal since it implicitly introduces the concept of satisfying the
condition exactly in T timesteps. In Algorithm 2 we present a better sampling method for picking waypoints
during training. Starting with an empty set of conditions C, the algorithm iteratively samples waypoints
by selecting random distances within a defined range [dmin, dmax]. For each iteration, a random distance dr

is sampled, and the algorithm searches for the farthest possible timestep tc such that the distance between
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Table 1: Four-second ego-agent predictions given only initial state as observation. Conditions use information
from the last ground truth ego state given at the ground truth segment. W and TS stand for the waypoint
and target speed conditioning accordingly.

Model Cond. ADE minADE FDE minFDE Miss
Rate MFD Collision

Rate

Waypoint
Reach
Rate

Target
Speed
Reach
Rate

ITRA
(Ścibior et al., 2021) - 0.93 0.44 2.46 1.07 0.14 6.59 0.01 0.73 0.83

Control-ITRA
(Last Timestep)

- 0.95 0.46 2.52 1.10 0.14 6.51 0.01 0.75 0.81
W 0.30 0.28 0.42 0.34 0.006 0.18 0.001 0.99 0.96
TS 0.71 0.54 1.75 1.17 0.18 2.08 0.003 0.84 0.91

W/TS 0.28 0.26 0.39 0.31 0.004 0.18 0.001 0.99 0.99

Control-ITRA

- 0.96 0.47 2.60 1.12 0.14 6.48 0.01 0.74 0.82
W 0.63 0.32 1.32 0.54 0.07 3.73 0.005 0.80 0.89
TS 0.75 0.41 1.89 0.93 0.11 4.35 0.003 0.80 0.88

W/TS 0.50 0.28 0.96 0.44 0.04 2.15 0.001 0.89 0.95

Table 2: Eight-second ego-agent predictions given only initial state as observation. Conditions use infor-
mation from the last ground truth ego state given at the ground truth segment. W and TS stand for the
waypoint and target speed conditioning accordingly.

Model Cond. ADE minADE FDE minFDE Miss
Rate MFD Collision

Rate

Waypoint
Reach
Rate

Target
Speed
Reach
Rate

ITRA
(Ścibior et al., 2021) - 3.21 1.44 8.63 3.44 0.45 20.29 0.04 0.61 0.78

Control-ITRA
(Last Timestep)

- 3.14 1.82 8.58 4.47 0.50 14.53 0.04 0.61 0.79
W 7.45 6.86 12.83 10.71 0.73 5.54 0.29 0.96 0.93
TS 3.23 2.41 8.02 5.41 0.58 8.08 0.04 0.62 0.93

W/TS 7.45 6.87 11.86 9.80 0.71 5.50 0.28 0.96 0.95

Control-ITRA

- 3.46 1.58 9.46 3.79 0.49 21.02 0.04 0.62 0.79
W 2.18 1.11 3.61 1.28 0.44 8.55 0.03 0.77 0.90
TS 2.87 1.50 6.93 3.24 0.42 6.93 0.03 0.69 0.93

W/TS 2.06 1.21 3.21 1.43 0.41 5.48 0.02 0.84 0.94

the current waypoint and the target point is less than or equal to dr. This found waypoint is then added
to the list of conditions C. The process continues until the list contains a maximum number of conditions
N or the end of the ego trajectory Tmax is reached. The algorithm ultimately returns the ordered list C of
sampled waypoints, which are used as training conditions. Similarly Algorithm 3 generates an ordered list
of training target speeds sampled in time.

4 Experiments

In this section, we begin by describing the experimental setup. We proceed by evaluating the performance of
Control-ITRA through a series of experiments designed to measure the effectiveness of following waypoints
and target speeds in various driving scenarios.

We train all our models on a large-scale self-driving dataset containing more than 1000 hours of traffic data
collected from 19 countries worldwide. Drones were used to record continuous traffic trajectories from various
kinds of intersections. Vehicles and pedestrians are represented by 2D bounding boxes that are automatically
detected and tracked. Each location is annotated with a high-definition map representation capturing the
road geometry and topology. In addition, traffic controls such as traffic lights, and stop and yield signs are
annotated.
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Table 3: Single-agent performance for waypoint conditioning using TorchDriveEnv. We generated 20 traffic
initializations for each test location and sampled 4 predictions on the same initialization for all the tested
models.

Model Condition Collision
Rate

Offroad
Rate

Traffic Light
Violation Rate

Avg. Number
of Waypoints

Avg. Episode
Length Avg. Return

SAC

Waypoints

0.0 0.29 0.15 3.64 118.32 143.96
PPO 0.0 0.74 0.10 1.32 71.58 78.71
TD3 0.0 0.99 0.02 0.24 12.50 4.06
A2C 0.0 0.98 0.01 0.19 16.12 6.31

Control-ITRA - 0.0 0.08 0.21 2.06 170.79 297.98
Waypoints 0.0 0.20 0.17 4.54 162.58 533.02

Table 4: Multi-agent performance for waypoint conditioning using TorchDriveEnv. We generated 20 traffic
initializations for each test location and sampled 4 predictions on the same initialization for all the tested
models.

Model Condition Collision
Rate

Offroad
Rate

Traffic Light
Violation Rate

Avg. Number
of Waypoints

Avg. Episode
Length Avg. Return

SAC

Waypoints

0.34 0.27 0.14 2.34 108.93 105.17
PPO 0.24 0.62 0.15 1.15 59.42 51.24
TD3 0.11 0.91 0.01 0.20 10.68 4.89
A2C 0.14 0.84 0.02 0.28 13.22 7.11

Control-ITRA - 0.21 0.11 0.10 1.25 142.47 182.46
Waypoints 0.11 0.02 0.09 2.75 167.45 317.53

All models are trained with 4-second segments with a simulation frequency of 10Hz which results in approxi-
mately 40 million segments usable for training. Only the first initial state is given as observation and the rest
39 timesteps are predicted. Similar to Ścibior et al. (2021), we used classmates-forcing during training where
all states are replayed from the ground truth trajectory except for the states of the designated ego-agent.
We set the introduced hyperparameters R and ϵv to 2.0 and 1.0 accordingly.

4.1 Improving Performance By Following Ground Truth Conditions

We first test the ability of the proposed model to satisfy conditions in the same locations used for training.
We use a validation set containing 1165 segments, each lasting four seconds. Our goal is to demonstrate that
the conditional models can maintain realism while reaching the specified conditions. For this experiment, we
provide only the initial state as an observation and generate subsequent timesteps. Similar to the training
setting, we use classmates-forcing for the non-ego agents. We measure realism using multiple metrics.
Specifically, we use the average displacement error (ADE) and the final displacement error (FDE) against
the ground truth trajectory. For each validation case, we sample 6 predictions and additionally report the
minimum ADE and FDE values of the six samples. Miss rate is also reported as an additional realism
metric. It is important for the conditional driving model to satisfy conditions while not yielding additional
infractions. We report collision rate to showcase the ability of the model to not drive recklessly for the sake of
condition reachability. Finally, we state the rate of reaching both the waypoint and target speed conditions.

In Table 1 we compare three different models. As a baseline, we trained a standard unconditional ITRA
model as described in Ścibior et al. (2021) and reported the results on all metrics. Although this model
does not support waypoint or target speed conditioning, we still report the average rate of reaching the
last-timestep conditions as previously defined. In Section 3.4, we mentioned that a rather straightforward
way for picking training conditions is to always use the information from the last timestep of the training
segment. We compare this strategy (referred to as last timestep) against our proposed way of sampling
training conditions. For every conditional model, we test their unconditional capabilities as well as their
ability to satisfy either condition or both at the same time. As expected, all conditional models achieve
higher condition-satisfaction rates than either the baseline ITRA model or the conditional models when
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Table 5: Results on target speed conditioning using the unseen locations from TorchDriveEnv. Episodes run
for 20 seconds using the five test locations. For each location and target speed, we used 30 different traffic
initializations and sampled 4 generated trajectory rollouts from the stochastic Control-ITRA model.

Target Speed
(km/h) Traffic Condition

Given
Collision

Rate
Offroad

Rate
Traffic Light

Violation Rate
Target Speed

Hit Percentage

0
Single-Agent No - 0.08 0.21 29.8%

Yes - 0.14 0.11 84.3%

Multi-Agent No 0.21 0.11 0.10 39.6%
Yes 0.18 0.16 0.06 76.3%

20
Single-Agent No - 0.09 0.21 71.5%

Yes - 0.10 0.17 79.8%

Multi-Agent No 0.23 0.10 0.10 68.0%
Yes 0.23 0.12 0.12 72.6%

35
Single-Agent No - 0.10 0.21 36.8%

Yes - 0.09 0.31 65.5%

Multi-Agent No 0.21 0.11 0.11 28.5%
Yes 0.35 0.09 0.19 46.8%

55
Single-Agent No - 0.10 0.22 6.0%

Yes - 0.07 0.45 32.0%

Multi-Agent No 0.22 0.09 0.13 4.0%
Yes 0.40 0.08 0.23 21.8%

70
Single-Agent No - 0.09 0.22 1.0%

Yes - 0.05 0.41 5.0%

Multi-Agent No 0.21 0.12 0.11 0.3%
Yes 0.37 0.09 0.23 2.5%

90
Single-Agent No - 0.11 0.23 0.0%

Yes - 0.03 0.37 0.6%

Multi-Agent No 0.22 0.09 0.10 0.0%
Yes 0.40 0.11 0.19 0.6%

110
Single-Agent No - 0.08 0.19 0.0%

Yes - 0.05 0.35 0.3%

Multi-Agent No 0.22 0.11 0.09 0.0%
Yes 0.41 0.12 0.17 0.1%

tested without providing conditions. Notably, models trained with the last timestep sampling strategy
perform better than those trained with our proposed sampling scheme. This occurs because training with
waypoints always positioned at the fourth second in the ground-truth trajectory implicitly encourages the
model to reach waypoints precisely at four seconds, which improves performance on this specific experiment
by reinforcing ground-truth trajectory adherence.

However, as shown in Table 2, when we test the same models on eight-second predictions given only the
initial state as observation, the performance of the model trained with the last timestep strategy significantly
declines. Although it still satisfies the conditions at a higher rate, its collision rate becomes unacceptable,
and its realism metrics suffer. This degradation occurs because the model rushes to reach the waypoint
sampled from the eight-second timestep at exactly four seconds, compromising realistic driving behavior.

4.2 Testing Out-of-domain Performance

We also evaluate the model’s performance in new, unseen locations to ensure that it generalizes well across
various scenarios while maintaining both condition satisfaction and good driving behavior. For this testing,
we leverage TorchDriveEnv (Lavington et al., 2024), a reinforcement learning environment with simulated
traffic driven by a human-like expert policy model. TorchDriveEnv utilizes locations from the CARLA
simulator (Dosovitskiy et al., 2017) and enables the control of a designated ego agent, while the rest of
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(b) Control-ITRA

Figure 2: The distribution of speed values in the collected human-traffic training dataset compared to the
learned speed distribution of Control-ITRA.

the non-player characters (NPCs) are driven to create realistic traffic. In TorchDriveEnv, as with ITRA-
based models, the action space is continuous and defined by steering and acceleration, and observations are
provided as 2D egocentric birdview rasterizations. The reward function is given by

r = α1rmovement + α2rwaypoint − β1rsmoothness, (13)

where α1, α2, and β1 are hyperparameters. We adopt the default configuration from the released benchmark
codebase1.

The environment includes five distinct validation scenarios: Parked-Car, Three-Way, Chicken, Roundabout,
and Traffic-Lights. Each scenario is designed to test the model’s capability to navigate specific challenging
situations. For each scenario, a designated ego agent is assigned, while the remaining traffic agents are
randomly initialized and reactively simulated using a commercial simulation service. The ego agent is given
a sequence of waypoints, and the simulation halts if any infraction (e.g., collisions, off-road driving, or traffic
light violations) involving the ego agent occurs. We evaluate our approach in both single-agent (without other
traffic agents) and multi-agent (with other traffic agents) settings. As a baseline, we report the performance
of four standard reinforcement learning algorithms—SAC (Haarnoja et al., 2018), PPO (Schulman et al.,
2017), TD3 (Fujimoto et al., 2018), and A2C (Mnih et al., 2016)—trained in the same environment following
the setup in Lavington et al. (2024). For each method, we report the average cumulative return (as defined
in Equation (13)), average episode length and the average number of waypoints reached. Additionally, we
measure the infraction rates for collisions, off-road incidents, and traffic light violations.

As shown in Table 3, in the single-agent setting, Control-ITRA outperforms all baseline RL methods, achiev-
ing a higher average number of waypoints reached and a higher cumulative return. The smoothness penalty in
the reward function causes RL baseline methods to suffer from excessive jerk movements, which contributes
to their lower average returns despite reaching comparable waypoint counts. In contrast, Control-ITRA,
being a data-driven approach trained on imitating human-collected traffic data, produces notably smoother
trajectories. Additionally, running Control-ITRA unconditionally results in fewer waypoints reached, high-
lighting the model’s effectiveness in following waypoints when conditioned to do so.

In the multi-agent setting (Table 4), Control-ITRA also achieves a higher average return and reaches more
waypoints compared to the RL baseline methods. The driving behavior is smoother (as implied by the
reward function), resulting in longer episodes with significantly lower infraction rates in both conditional
and unconditional prediction modes.

1https://github.com/inverted-ai/torchdriveenv
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As of the time of writing, TorchDriveEnv does not include standard test cases to assess target speed condi-
tioning. Therefore, we evaluate the model’s ability to follow target speeds in new, unseen locations by testing
on the same five scenarios from TorchDriveEnv, while conditioning on seven target speeds. We conduct this
experiment in both single-agent and multi-agent settings, with results presented in Table 5. The model
satisfies the target speed condition at a significantly higher rate, particularly for lower speeds, compared to
unconditional predictions, with minimal compromise in infraction rates. However, as target speeds increase,
the model shows a tendency toward higher collision rates. This is expected since target speed functions as
an implicit control for aggressiveness. Additionally, we observe that hit percentages for high speeds decrease,
which can be attributed to three factors. First, TorchDriveEnv test locations feature single-lane roads that
are not conducive to safely reaching high speeds. Initial states from TorchDriveEnv contain pre-defined ini-
tial speeds that are given as input to the model. It is highly unlikely that these initial speeds are initialized
in a way that would allow agents to reach high target speeds. Second, episodes terminate after 20 seconds,
which may limit the model’s ability to accelerate to high speeds realistically. Finally, as shown in Figure 2,
the dataset used to train our model contains few instances of high-speed values, limiting the model’s training
opportunities for high target speed conditioning. In the same figure, we can see that Control-ITRA very
closely imitates the speed distribution of the dataset.

5 Conclusion

In this paper, we highlighted the importance of controlling driving behavior through waypoint setting and
indirectly modulating behavior aggressiveness by conditioning on target speeds. We extended the ITRA
driving behavior model to enable partial conditioning of agents in the scene to follow waypoints, target
speeds, or both. We proposed Control-ITRA, a training scheme that allows the model to adhere to these
control conditions while maintaining realistic, human-like driving behavior.

Our experiments demonstrated that in locations where traffic data is available, the conditional model ef-
fectively follows waypoints and target speeds without compromising behavioral realism. Additionally, we
validated the method in novel, unseen locations, showing that it can satisfy the given conditions without
increasing infraction rates. These controllable models offer the potential for augmenting current driving
simulations to create complex and challenging scenarios. Future work could explore conditioning on more
abstract control forms, such as natural language commands or driver intentions.
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