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Abstract

This work introduces Eq-YOLO, an Equivariant One-Stage Object Detector based on YOLO-
v8 incorporating group convolutions to handle rotational transformations. We show the
interest of using equivariant-transforms to improve the detection performance on rotated
data over the regular YOLO-v8 model while dividing the number of parameters to train by
a factor greater than three.
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1. Introduction

Object detection in aerial images is a challenging task in particular due to the size of the
object of interest (down to only a few pixels), the number of objects to detect and their
variability in terms of orientation. This inherently demands equivariance to a range of
transformations such as translations, scaling or rotations. Indeed, detecting objects from
various angles is essential, requiring not only class consistency (invariance) but also adjusted
bounding boxes according to their orientation (equivariance). Designing architectures which
are equivariant and invariant to the symmetries of the data allows to meet the detection
targets while reducing the necessary amount of parameters and training samples Cohen
and Welling (2016); Han et al. (2021). This paper focuses on making the YOLO-v8 Redmon
et al. (2016b); Jocher et al. (2023) architecture equivariant to rotations. Through the
incorporation of group-convolutions to handle rotational transformations, our proposed Eq-
YOLO achieves improved performance and robustness, all while notably reducing the overall
number of parameters.

2. Rotational Equivariance

Our object detection model can be defined as follows: Given an input signal f : R2 −→ R,
the model Φ is defined such that Φ : f 7→ Φ(f) ∈ (Z4 × [0, 1]nc)nobs , where nc is the number
of classes and nobs the number of detections.

For a given input signal f , Φ(f) provides the coordinates of the bounding boxes of the
fixed nobs detections along with the probabilities for each of the nc classes. Our goal is to
achieve equivariance for bounding box predictions and invariance for class predictions.
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An operator ϕ : X → Y is said to be G-equivariant for a given group G if there exist
two actions π and π′ on X and Y , respectively, such that:

∀g ∈ G, ∀x ∈ X,ϕ(πg(x)) = π′
g(ϕ(x)) (1)

If ∀g ∈ G, ∀x ∈ X,ϕ(πg(x)) = ϕ(x) the operator is invariant.

2.1. Group-convolution as an equivariant version of the convolution for
discrete groups

In our case, to achieve rotational and translational equivariance, we focus on G = Z2 ×C8,
where C8 represents the group of rotations by angles multiples of π/4 radians (45◦), a
discrete and finite subgroup of SO(2).

Similar to how convolutional neural networks (CNNs) use cross-correlation operations
for translation equivariance, we adopt Group-convolution as introduced in Weiler et al.
(2018); Hoogeboom et al. (2018); Bekkers et al. (2018) to extend this property to rotations.
This approach provides equivariance to the chosen group. In our case, this gives us, for a
given signal f̃ : G −→ Z and a kernel k̃ : G −→ Z:

[k̃ ⋆G f̃ ](y, gj) :=
∑

gn∈C8

∑
x∈Z2

k̃(g−1
j (x− y), g−1

j gn)f̃(x, gn) =
∑

gn∈C8

[gj · kgn ⋆ fgn ](y, gj) (2)

with kgn = k̃(·, gn) : Z2 −→ Z, and fgn = f̃(·, gn) : Z2 −→ Z.
Notably, the signal f̃ operates over Z2 × C8, different from our initial signal. Before

applying group convolutions, we need to ‘lift’ the signal by stacking rotated versions. Hence,
for the initial group-convolution, f̃ = (gn ·f)gn∈C8 . Features remain in this lifted space until
projection back to the original space before the final output.

Importantly, this expression enables efficient implementation of group convolutions using
only native conv2D functions available in popular deep learning frameworks. The fgn signals
are stacked into an 8-channel input, followed by a conventional convolution using the gj ·kgn
kernel. This integration ensures seamless application of group convolutions, with input
and output feature maps accommodating 8-channels. The first row remains learnable,
subsequent rows correspond to transformed versions influenced by the actions of distinct
group elements gn ∈ C8.

3. Eq-YOLO

YOLO-v8 Jocher et al. (2023) is an advanced single-stage object detection model with a
fully convolutional neural network backbone (more details in Appendix B). One of the
particularities of YOLO-v8 is to predict separately the class and the bounding-box. The
essence of Eq-YOLO resides in the transformation of all internal operations using equivariant
operations1. Each layer of YOLO-v8 must be replaced by its equivariant counter-part. We
implemented the equivariant version of Conv, C2f, SPPF, Upsample, Concatenation and
Detection Head layers using the ESCNN library Cesa et al. (2022). As done in Weiler and

1. For this preliminary work we only considered enforcing equivariance to discrete rotations
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Cesa (2019) or Cesa et al. (2022), to compete fairly with YOLO-v8 we construct our Eq-
YOLO model with the same number of channels through the entire network except for the
Detection Head.

Indeed, in the Detection Head, we need to add a projection before the final output
to avoid changing the output shape. The objective is to project f̃ : G −→ R onto a signal
f : Z2 −→ R.

3.1. Projection layer for the class

For class prediction we can directly integrate over C8. Moreover, if we denote as f : X → Y
the prediction of the class after projection, f is invariant. Then, for any function Ψ : Y −→ Y ,
Ψ◦f is also invariant. Since no matter when we project into the space of output, we keep the
invariance property, applying the projection from the start of the Detection Head allows
to keep the same computational cost as YOLO-v8.

3.2. Projection layer for the bounding box

As in Li et al. (2023a) and Tian et al. (2019), the network predicts fixed-point-centered
bounding boxes. The network output represents the distances between the fixed point and
the four sides of the box, denoted as (l, t, r, b) for left, top, right, and bottom, respectively.
We denote as fη(x) a box predicted by the network2.

Knowing how G acts on the output space allows to use all the information given by the
network. For easier representation, we consider G = C4

3, but this can be generalised to
G = C8. We seek a projection Ψ such that Ψ(g · fη(x)) = g · (l, t, b, r). Regardless of the
layer, the action of g on features is to shift channels over C4.

g1 · fη(x) = g1 ·


lg0 tg0 bg0 rg0
lg1 tg1 bg1 rg1
lg2 tg2 bg2 rg2
lg3 tg3 bg3 rg3

 =


lg1 tg1 bg1 rg1
lg2 tg2 bg2 rg2
lg3 tg3 bg3 rg3
lg0 tg0 bg0 rg0

 (3)

Hence, we can find several correct ways to define such a Ψ. The easiest way is to define
it such that:

Ψ1
init : fη(x) −→

[
1 0 0 0

]
· fη(x) =

[
lg0 tg0 bg0 rg0

]
However, this approach discards valuable information propagated in the network. Alterna-
tively, we could consider:

Ψ2
init : fη(x) −→ fη(x) ·

[
1 0 0 0

]T
=

[
lg0 lg1 lg2 lg3

]T
Again, this approach under-utilizes the information.

To use all the information provided by our network, we want to leverage the fact that
lg0 , rg1 , bg2 , tg3 are four different estimators of l. With Ψ = (Ψl,Ψt,Ψr,Ψb) we set:

2. fη(x) is a feature map of shape R|G|×4.
3. where the action g on a prediction (l, t, b, r) is a cyclic shift, e.g., g1 · (l, t, b, r) = (t, b, r, l)
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For l, we have: Ψl(fη(x)) =
1

|C4|

3∑
i=0

f i,(4−i) mod 4
η (x).

For t, we have: Ψt(fη(x)) =
1

|C4|

3∑
i=0

f i,(5−i) mod 4
η (x).

For r, we have: Ψr(fη(x)) =
1

|C4|

3∑
i=0

f i,(6−i) mod 4
η (x).

For b, we have: Ψb(fη(x)) =
1

|C4|

3∑
i=0

f i,(3−i) mod 4
η (x).

By combining the estimators of our targeted bounding box we leverage all the informa-
tion given by our network and hope to improve the accuracy of the model4.

4. Experiments and Analysis

We first created a specific object-detection dataset based on MNIST named OD-MNIST of
images featuring randomly positioned MNIST digits within a 134x134 canvas. While for
the train set, the digits are NOT rotated, the test set includes rotated numbers to assess
model robustness. An illustrative example is provided in Figure 1(b).

For comparison against the nano version of YOLO-v8, we introduced our proposed models,
Eq-YOLO-v1 and Eq-YOLO-v25, which have significantly fewer parameters. Both of our models
surpassed YOLO-v8’s performance in the considered metrics (Figure 1(a)6).

Model Size Precision Recall mAP-50

Eq-YOLO-v2 0.4 0.92 +/- .03 0.91 +/- .06 0.93 +/- .04
Eq-YOLO-v1 1.1 0.89 +/- .03 0.86 +/- .02 0.93 +/- .01
YOLO-v8 3.4 0.82 +/- .01 0.84 +/- .02 0.89 +/- .01

(a) Performance Metrics for different models (Precision and Recall
for IoU threshold of 0.5 (Everingham et al. (2010) part 2.4.3)
Sizes in Millions of Parameters. mAP stands for mean Average
Precision

(b) Image from
OD-MNIST test setFigure 1: Results on the OD-MNIST dataset.

Secondly, we tested Eq-YOLO on aerial images. We have used xView Lam et al. (2018)
restricted to four classes for training and an open-source drone-view dataset Aerial-Cars-
Dataset (2022) for testing (an example image is given in Appendix A). This test dataset
has been chosen to simultaneously verify the generalization capabilities of our model. At
this stage we only restricted our evaluation to the most representative classes in the test
set: car and truck.

4. When using C8 instead of C4, a similar idea applies, as C4 ⊂ C8, for example for l, it becomes:
Ψl(fη(x)) =

2
|C8|

∑3
i=0 f

2×i,2(4−i) mod 8
η (x).

5. Eq-YOLO-v2 uses the last version of the projection layer. For the class prediction, the projection into the
output space is done earlier which induces a reduction of the number of parameters.

6. The uncertainty is computed by training ten times the model with random initialisation. All models are
trained with the same data augmentation, random rotation of ±90 deg, mirror up/down, left/right are
applied.
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In Table 1, we show the results for Eq-YOLO as compared to the baseline YOLO-v8 model
for each of the two classes: car and truck. The size of the model is given in number of
weights at training (in Millions) and the inference time was estimated on CPU only.

Category Model AP-50 Precision Recall Size CPU Inference Time

Cars
Eq-YOLO 0.75 0.77 0.81 2.8M 252 ms
YOLO-v8 0.66 0.79 0.66 12M 149 ms

Trucks
Eq-YOLO 0.32 0.38 0.34 2.8M 252 ms
YOLO-v8 0.15 0.21 0.31 12M 149 ms

Table 1: Performance metrics on aerial data.

The Average Precision of Eq-YOLO is better by a large margin on each class, while the
model size is reduced by a factor of 4.8. On the other hand, the unfavorable difference in
inference time on CPU should be tackled with further work on the projection layer.

Limitations

The main limitation of Equivariant-YOLO is its time inference.
On Appendix 5, we can see the inference-time and number of operations (Flops) esti-

mated for the two models. These figures has been obtained on CPU and the average-time
is a mean over 20 measures. If the inference-time is comparable in the other layers, the last
layer, corresponding to the head module cannot compete with the YOLO-v8. That is why we
need to project the class back to R2 as quickly as possible. By projecting from the start of
the class prediction head instead of at the end, we can reduce the inference-time difference
by 25%.

Other directions for improving the inference time are to act on the box prediction head.
Indeed, if we had oriented bounded boxes, the box prediction head will then predict l, t, r, b, θ
for each of the ”center points”. This θ ∈ [0, 360] is the angle that orients the box. Note
that by choosing θ ∈ [0, 360], we have l, t, r, b which become invariant. This allows us to
project those values early on (as for the class) and hence expect important gains in inference
time.

Future Directions

Our work lays the path for further advancements in equivariant object detection in aerial
images. There are several promising avenues for further investigation, including the explo-
ration of rotated bounding boxes, i.e with sides not necessarily parallel to the image axis.
This could lead to both enhancements in object localization and faster prediction, as the
representation of bounding boxes as (l, t, r, b) would become invariant in the process.
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Figure 2: Illustration of the object detection task on xView Dataset. Cars are in red and
correspond to class 0, Trucks are in green and correspond to class 1.

Appendix A. Object Detection

Generic object detection aims at locating and classifying objects in an image. An object
detection model is usually a deep learning model that locates and classify objects by pre-
dicting a rectangular box around them as well as an associated class. There have been two
main approaches for solving this problem in the literature: two-stage methods and single-
stage ones. The two-stage approaches Girshick (2015) follow a traditional object detection
pipeline, first generating region proposals and then classifying each proposal into different
object categories. One stage detectors Redmon et al. (2016a), view object detection as a
regression or classification problem, adopting a unified framework to achieve categories and
locations simultaneously.

One of the things that makes the task of object detection significantly more complex
than classification or even generation tasks is the absence of prior knowledge about the
number of objects to detect, as opposed to classification. This detail may seem trivial, but
it has a profound impact. The output of an object detection network is constantly fixed,
as it depends on the fixed architecture itself. The challenge is then to detect a variable
number of objects in the image with a fixed number of outputs.
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A.1. Two-Stage Approaches

One perspective is to consider that while an image may contain multiple objects, one can
always frame this as a problem involving a single object. Initially, regions of interest (RoIs
Girshick et al. (2014); Girshick (2015)) are identified where only one object needs to be de-
tected. Then, a neural network, denoted as f , is applied to this RoI to extract the bounding
box and its associated class. The advantage of this approach is that well-established meth-
ods exist for extracting RoIs Girshick et al. (2014); Girshick (2015). However, the downside
is that if there are n objects in the image, this method requires applying n times f .

Two-stage object detection methods, such as Faster R-CNN Girshick (2015) and R-CNN
Girshick et al. (2013), have been influential in achieving state-of-the-art results. The two
stages are as follows:

1. Region Proposal Generation: In the first stage, a region proposal network (RPN) is
used to generate a set of candidate object regions (bounding boxes) within the image.
These regions are potential locations where objects may be present. RPNs use anchor
boxes and regression techniques to propose regions efficiently.

2. Object Classification and Refinement: In the second stage, the proposed regions are
fed into a classifier (e.g., a convolutional neural network) to determine the class labels
and refine the bounding box coordinates of the detected objects. Post-processing steps
can be applied to filter out duplicate detections and improve localization accuracy.

These methods have several advantages:

• High Accuracy: They often achieve higher detection accuracy due to the explicit
region proposal step, which focuses computation on potential object regions.

• Precise Localization: The two-stage architecture allows for precise localization of ob-
jects, making them suitable for tasks where accurate object boundaries are crucial.

Today, these types of algorithms achieve state-of-the-art performance in term of accuracy
Ding et al. (2019); Li et al. (2023b), however, they also exhibit some limitations with respect
to the second class of approaches:

• Slow inference: The multi-stage process can result in slower inference times, making
them less suitable for real-time applications.

• Increased complexity: Implementing and training two-stage models can be more com-
plex and resource-intensive.

A.2. One-Stage Approaches

On the other hand, the alternative approach, considered also in Eq-YOLO, takes a completely
different direction. Instead of detecting one object at a time, a fixed number, denoted as
nmax, of detections is made in each pass through the network, where nmax is significantly
greater than the number of objects in the dataset. At the end of the process only the “best
detections” are retained.
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One-stage object detection methods, exemplified by models like YOLO (You Only Look
Once) Redmon et al. (2016a) and SSD (Single Shot MultiBox Detector) Liu et al. (2016),
have gained popularity for their efficiency and speed. They operate in a single pass through
the network and directly predict object bounding boxes and class labels.
Key advantages of one-stage methods include:

1. Single-Pass Prediction: These methods predict object classes and bounding boxes
in a single forward pass through the network, making them faster than two-stage
approaches.

2. Efficiency: One-stage methods are well-suited for real-time and embedded applications
due to their speed.

In this paper we focused on YOLO models and more precisely on the very recent YOLO-v8
Ultralytics (2023), which we detail in the following.

Appendix B. Overview of YOLO-v8 model architecture

The YOLO-v8 model architecture consists of three main components, illustrated in Figure
3. The “backbone” network exhibits the characteristic structure of convolutional networks,
it is based on architectures such as ResNet or DarkNet (Lin et al. (2017); Targ et al.
(2016); Nixon (2021). It is composed entirely of convolutional layers and aims to extract
meaningful features from the images. Following the backbone is the “neck” which, in
addition to convolutional layers, also incorporates “UpSampling” layers to transform the
features extracted by the backbone back into the desired output shape. The third part is
composed of “head modules.” Features are extracted from three different locations within
the network to make final predictions.

Figure 3: A simplified view of YOLO-v8

B.1. Backbone

The backbone of the YOLO-v8 model serves as the foundation for feature extraction from
input images. It typically follows a structure reminiscent of convolutional neural networks
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(CNNs) like ResNet Lin et al. (2017); Targ et al. (2016). The primary purpose of the
backbone is to transform raw image data into higher-level feature representations, which
can be used for subsequent object detection tasks.

The backbone consists of multiple convolutional layers organized in a deep hierarchical
manner. These layers capture features at different scales, starting from low-level details
such as edges and textures and gradually moving towards more abstract and high-level
features that are indicative of objects and their spatial relationships.

The choice of the specific architecture for the backbone can have a significant impact
on the performance of the YOLO-v8 model. Common choices include ResNet, Darknet, or
custom-designed architectures tailored to the requirements of the object detection task.

B.2. Neck

The neck of the YOLO-v8 model is an intermediate component that bridges the gap between
the feature maps extracted by the backbone and the final output predictions. While the
backbone focuses on feature extraction, the neck module is responsible for shaping these
features into a format suitable for object detection.

In addition to convolutional layers, the neck often incorporates “UpSampling” layers,
which increase the spatial resolution of feature maps. This is crucial because object detection
requires precise localization, and higher-resolution feature maps are better suited for this
purpose.

The neck module plays a crucial role in aggregating multi-scale features from different
levels of the backbone. It helps the model gather information from both fine-grained and
coarse-grained feature maps, enabling it to detect objects of varying sizes and complexities.

B.3. Head Modules

The head modules of the YOLO-v8 model are responsible for making final predictions about
the objects detected in an image. These head modules typically operate on feature maps
obtained from different locations within the “neck”, allowing them to capture context and
details at multiple scales. More precisely, there are two “UpSampling” layers which implies
three different sizes of features.

YOLO-v8 employs a multi-head architecture, meaning that it uses multiple sets of pre-
diction layers, often one for each scale of the feature maps. In our case, this represents
three different scales. Each set of prediction layers consists of convolutional and fully con-
nected layers that output predictions for object bounding boxes and their associated class
probabilities.

The multi-head approach is essential for the YOLO-v8 model to detect objects at various
scales effectively. By considering features from different parts of the network, it can handle
both small and large objects within the same image.

B.4. YOLO-v8 architecture: Summary

In summary, the YOLO-v8 model backbone extracts features from input images, the neck
module prepares these features for object detection, and the head modules make final pre-
dictions about the objects present in the image. This modular architecture enables YOLO-v8
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to perform accurate and efficient object detection across a wide range of scenarios and
object sizes.

Appendix C. Details on Equivariance

C.1. Group Theory

Definition 1 (Group) A group is a pair (G, ·) containing a set G and a binary operation
· : G×G → G, (h, g) 7→ h · g, satisfying the following group axioms:

• Associativity: ∀a, b, c ∈ G, a · (b · c) = (a · b) · c

• Identity: ∃e ∈ G, ∀g ∈ G, g · e = e · g = g

• Inverse: ∀g ∈ G, ∃g−1 ∈ G, g · g−1 = g−1 · g = e

The binary operation · is called the group law. It can be proven that the inverse g−1 of
an element g is unique.

Example (Cyclic Group) The set of all the complex n-th roots of unity {eik2π/n | 0 ≤
k < n} forms a group under multiplication. This group is isomorphic to the group Z/nZ.
Indeed, we can define a homomorphism f between them as

f : eik2π/n 7→ k.

One can verify that this is indeed an isomorphism.

This group is also called the Cyclic Group of order n, often indicated as Cn. More
abstractly, this group can be defined as

Cn = {e = g0, g1, g2, . . . , gn−1 | gi = gj ⇔ i ≡ j (mod n)}.

Note that any element of the group can be identified by a power of the generating
element g. We can also notice that applying an element of Cn onto the complete set of
element of Cn shifts the whole set: g3 · {g0, g1, ..., gn−1} = {g3, g4, ..., g2}.
We will sometimes refers to the shift as a ”rotation” of the elements of Cn since it is a cyclic
group.

Definition 2 (Group Action and G-Space) Given a group G, a (left) G-space X is a
set X equipped with a group action G ×X → X, (g, x) 7→ g · x, i.e., a map satisfying the
following axioms:

• Identity: ∀x ∈ X, e · x = x

• Compatibility: ∀a, b ∈ G, ∀x ∈ X, a · (b · x) = (ab) · x

In this case, G is said to act on X.

12
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C.2. Translation and Rotation Equivariance

Definition 3 (Invariance and Equivariance) Given a group G and two G-sets X and
Y defined by their respective group action such that:
G×X −→ X, (g, x) −→ g · x
G× Y −→ Y, (g, y) −→ g ∗ y

• a function f : X → Y is said to be equivariant if for all x ∈ X and for all g ∈ G, we
have f(g · x) = g ∗ f(x).

• a function f : X → Y is said to be invariant if for all x ∈ X and for all g ∈ G, we
have f(g · x) = f(x).

As highlighted in Figure 4, it is important to notice here that the action of G on X can
be really different than the action of G on Y : “rotating” a digit is not necessarily the same
thing as “rotating” a detection.

Figure 4: Diagram illustrating the equivariance property, πg and π′
g represent the actions of

the group on different spaces. We obtain the same output whether we first apply
the model and then apply the group action π′

g, or if we apply the group action
πg and the apply the model.
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Appendix D. Comparaison of time inference at each layer between
Eq-YOLO and YOLO-v8

(a) Eq-YOLO (b) YOLO-v8

Figure 5: Inference Time (ms), Estimated Flops (GFlops), Number of parameters and Type
of layer. Computed on CPU, values are indicative for comparison only.
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