SparseVILA-R1: Decoupling Visual Sparsity for
Efficient VLM Reasoning
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Figure 1: Overview of SparseVILA-R1. By decoupling prefill and decoding sparsity, Sparse VILA-R1
achieves faster decoding throughput, hence tailored to the compute workload of large reasoning
models. We achieve comparable performance on physical reasoning and video reasoning benchmarks
while accelerating end-to-end latency by up to 1.9x.

Abstract

Enabling Vision Language models (VLMs) to reason requires operating over
long chains of multimodal evidence grounded in video and physical interaction.
The computation profile of such reasoning VLMs differs starkly from standard
VQA-style inference (visual question answering). Reasoning VLMs typically
generate large numbers of decoding tokens, hence shifting the latency distribution
to the decoding stage and bottlenecking inference cost with token throughput. We
present SparseVILA-R1, an inference-time, token sparsity approach tailored to
visual reasoning. Through decoupling prefill and decoding sparsities, Sparse VILA-
R1 is able to strategically target token reduction, achieving up to 1.9x speedup
whith lossless performance. By aligning sparsity with the compute profile of
visual reasoning models, SparseVILA-R1 preserves cross-modal grounding while
improving end-to-end efficiency, operating at the speed-accuracy Pareto frontier
for long-context visual reasoning.

1 Introduction

In recent months, Vision Language models (VLMs) have been progressing from VQA-style systems —
which map images or short video clips to concise answers — toward reasoning VLMs that maintain
explicit chain-of-thought (CoT) over long multimodal contexts, enabling video understanding, robotic
decision-making, and physically grounded reasoning [1, 2, 3]. As the field moves beyond retrieval
and short-answer prediction, the runtime profile shifts in ways that stress current systems. First, prefill
latency scales with the spatial and temporal resolution of modern inputs (high-resolution images,
long videos). Second, reasoning workloads emit substantially more decoding tokens than VQA [4],
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making decoding token throughput the dominant bottleneck. Realizing grounded, long-context,
CoT-heavy interactions, therefore, requires efficiency by design.

We introduce SparseVILA-R1, a sparsity framework built on SparseVILA [5] and tailored to mul-
timodal reasoning. Its core design is stage-decoupled sparsity tailored to multimodal reasoning:
sparsity policies that treat prefill and decoding as distinct operating regimes with different compute
profiles and pruning sensitivities. During prefill, SparseVILA-R1 performs modality-aware com-
pression of spatiotemporal media — reducing redundant tokens before the LLM/token processor — to
achieve significantly faster prefilling. During decoding, we retrieve and maintain a highly sparse
contextually-aware subset of KV tokens that supports long chain-of-thought traces without eroding
visual grounding. Taken together, these choices accelerate the processing of long, high-resolution
visual media and sustain higher tokens-per-second during CoT generation, enabling faster, grounded
video analysis and embodied decision-making — without retraining.

2 Preliminaries

Token pruning has proven effective in accelerating inference across a variety of tasks, including
image classification [6, 7, 8] and semantic segmentation [9, 10]. With the rise of generative Al, these
techniques have been further extended to diffusion models [11, 12], large language models [13],
and vision-language models [14, 15, 16]. In this work, we examine how these techniques translate
to reasoning-oriented workloads. Compared to standard VQA, reasoning VLMs generally process
larger context and emit longer chains of thought, thereby shifting the cost profile towards decode-time
throughput. In particular, we show that these characteristics necessitate a stage-decoupled approach to
sparsity tailored to the compute profile of reasoning models, rather than relying solely on prefill-phase
context compression as is common in VQA settings.

3 SparseVILA-R1
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Figure 2: Overview of SparseVILA’s decoupled sparsity framework. In the prefill stage, query-
agnostic pruning removes redundant visual tokens based on salience scores from the visual encoder,
yielding a compact representation shared across conversation turns. During decoding, query-aware
retrieval selects only the most relevant visual tokens from the KV cache for attention computation,
accelerating generation while maintaining multi-turn fidelity.

Prior work in visual token pruning predominantly targets compression in the prefill stage, with
computational savings propagating into decoding. Subsequently, many prefill-pruning approaches
remove tokens either prior to the LLM [17, 15] or within its early layers [18]. As a result, the
removed tokens are excluded from most of the question’s causal attention graph; the model cannot
effectively attend to or recover information from them at decoding time, making aggressive prefill
pruning comparatively lossy for reasoning (see Sec. 3.2). Accordingly, we introduce SparseVILA-
R1, a reasoning-centric extension of SparseVILA [5], focusing on visual sparsity that decouples
compression across the prefill and decoding stages. By shifting more aggressive compression into
the decoding stage, where the question is known and relevant tokens can be retained, we better align
with the decoding-dominated latency profile of reasoning workloads. This design reduces visual
redundancy early without sacrificing coverage and concentrates decoding on contextually relevant
tokens, thereby improving token throughput and end-to-end latency.
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Figure 3: Salience Metric Kernels. Latency comparison between the naive and custom Triton
implementations across two settings: (a) query-agnostic salience computation for the SigLIP and
QwenVL vision encoders, and (b) query-aware retrieval salience for the Llama2 and Qwen?2 decoder
backbones. Our custom kernels consistently accelerate both query-agnostic and retrieval salience
computations, achieving up to 10x and 1.6 x speedups, respectively.

3.1 Prefill Phase: Query-Agnostic Pruning

During the prefill stage, the vision—language model (VLM) encodes the system prompt, visual tokens,
and optionally the first user query to construct the multimodal context. To ensure stable performance
across multiple dialogue turns, pruning at this stage must remain strictly query-agnostic—guided
only by visual redundancy or salience rather than any text-conditioned correlation. Since the visual
context is computed once and reused throughout the conversation, pruning must retain sufficient
coverage for future queries while minimizing redundant information.

Token Salience Estimation. We estimate token importance directly from the visual encoder’s
self-attention maps, providing a query-independent measure of visual salience. Following prior
work [19, 20, 21], we aggregate attention signals to quantify each token’s contribution to the overall
representation, pruning those with the lowest aggregate salience. For models without summary tokens
(e.g., SigLIP, QwenVL), importance is estimated by averaging intra-visual attention across all tokens,
effectively capturing the same global aggregation behavior.

Efficient Implementation. For long-context inputs such as video sequences, attention-based
salience estimation can be memory- and latency-intensive. To address this, we implement a custom
Triton [22] kernel that streams softmax normalization and salience accumulation without explicitly
forming the full attention matrix. This enables efficient salience computation even for hundreds of
thousands of tokens. Empirically, the kernel yields up to a 3x acceleration for SigL.IP-style encoders
and up to 10x for QwenVL-style encoders (Figure 3a), forming the computational foundation for
Sparse VILA-R1’s scalable prefill pruning.

3.2 Decode Phase: Query-Aware Retrieval

During the decoding phase, the VLM becomes memory-bound as it repeatedly computes next-token
predictions using the pre-filled KV cache. To accelerate this process, SparseVILA-R1 selectively
activates only the most query-relevant visual tokens during decoding attention, while preserving the
rest of the visual information in the KV cache for potential use in later turns. This design enables query-
conditioned sparsity without permanently discarding context, maintaining the flexibility required for
multi-turn reasoning.

Query-Aware Token Selection. Before decoding begins, SparseVILA-R1 estimates the relevance
of each visual token to the current query using attention-based salience. Specifically, it measures
the aggregate attention strength between the query embeddings and visual entries in the KV cache,



providing a query-aware signal that highlights which tokens the model is most likely to reference
during generation. Tokens with the highest relevance scores are retained for decoding, while less
relevant tokens remain cached but inactive. This dynamic retrieval process effectively narrows
the attention scope to the most informative subset of visual tokens, improving efficiency without
compromising context consistency. We extend the Triton kernel from the prefill stage to stream the
relevance computation directly between the query and cached visual tokens. This operation executes
concurrently with the FlashAttention2 [23] path during prefill, yielding up to a 1.6 x speedup over a
naive implementation (Figure 3b). Once salience scores are obtained, the selected visual KV entries
are compactly packed into a contiguous memory region, avoiding irregular sparse access patterns
during autoregressive decoding.

3.3 Decoupled Prefill-Decode Visual Sparsity

SparseVILA-R1 introduces a decoupled sparsity framework that explicitly separates where and how
visual compression is applied across the inference pipeline. This design is motivated by the distinct
computational characteristics of the two stages: the prefill stage executes once per visual input to
build the multimodal context, while the decoding stage performs iterative next-token prediction
and typically dominates end-to-end latency. Applying uniform sparsity across both is therefore
suboptimal—aggressive prefill pruning can permanently discard visual information required for later
turns, whereas decoding remains the primary runtime bottleneck.

To address this imbalance, SparseVILA-R1 decouples sparsity between stages: lightweight, query-
agnostic pruning is applied during prefill to remove globally redundant tokens while retaining
sufficient visual coverage, and aggressive, query-aware retrieval is applied during decoding to focus
computation on the most relevant visual cues. This adaptive allocation introduces sparsity where it
yields the greatest efficiency gain, without compromising contextual grounding for future queries.

We compare the decoupled design with a prefill-only Sparsity Speedup
sparsity baseline on RoboVQA [24] (Table 1). When RoboVQA
tuned for equivalent end-to-end speedup, reallocating ~ Prefill Decode Prefill Decode E2E

sparsity toward decoding consistently improves task 0% 0% 1.0x 1.0x 1.0x 864

performance. The prefill stage retains enough visual 0% 0% 146x 1Lix 1ax 800

tokens to maintain context integrity, while decod- 700, 859 49%x 12x 14x  89.1

ing sparsity effectively targets the dominant latency
source in multimodal generation. Table 1: Decoupled Prefill-Decode Sparsity

4 Experiments

Baselines. We evaluate SparseVILA-R1 against two categories of baselines: (i) vision-only pruning
methods, which reduce redundancy purely in the visual domain without considering the text query, and
(ii) text-aware methods, which adapt pruning decisions based on the language context. Representative
baselines include VisionZip[15], PruMerge[17], and FastV [18]. Many baselines incorporate token
salience metrics based on the attention weights of a particular layer. Although effective, these
approaches are prone to high latency and memory demands that exceed the available hardware,
particularly in the Vision Encoder, where attention is computed non-causally. In such cases, to
maintain a fair comparison, we apply a chunked computation of their attention weights, trading
off latency to remain within the memory bounds of the hardware (49GiB on 1xNVidia A6000).
Fortunately, SparseVILA-R1 employs custom kernels to fuse our metric computation, enabling low-
latency computation as shown in Figure 3 and Table 2. Our results demonstrate that SparseVILA-R1
achieves stronger adaptation to reasoning-oriented workloads and superior end-task performance
compared to both categories. Additional details are included in Section A of the Appendix.

Inference Setting. We build an optimized inference pipeline based on TinyChat. Specifically,
we apply W8AS quantization to the visual encoder following SmoothQuant [25], and W4A16
quantization to the LLM following AWQ [26]. This quantized version achieves a 2.4x end-to-
end speedup over the vanilla one, with negligible accuracy degradation, as verified in preliminary
experiments. All subsequent results in this work are reported on top of this quantized version. Unless
otherwise stated, inference is performed on a single NVIDIA A6000 GPU using greedy decoding
with a batch size of 1.



Latency Evaluation. We measure the end-to-end inference runtime, including the visual encoder
(E), language model prefilling (P), and decoding throughput (D). Total latency (E2E) is defined as the
sum of prefill time and per-token decoding time, with decoding lengths fixed to ensure consistency
across tasks. Reasoning models are evaluated in a single-turn setting, where total latency is computed
as the sum of prefill and decoding times over 1,500 tokens, consistent with the typical 1-2K token
output length of reasoning tasks.

Sparsity Ratio. Our sparsity configuration adopts a straightforward approach for both prefill and
decoding, ensuring efficient implementation and cross-model compatibility. Specifically, we set a
constant prefill sparsity before the LLM and a uniform decoding sparsity across all layers. More
granular strategies, such as layer-wise or head-aware sparsity, may yield further optimization but
introduce additional complexity and tuning overhead. We prioritize simplicity and generalization,
leaving these refinements for future work.

Sparsity Speedup ) )
HoloAssist RoboFail RoboVQA Average
P D E P D E2E
Cosmos-Reason1-7B (4{ps) 0 0 1.0x 1.0x 1.0x 1.0x 65.0 60.0 86.4 70.5
+ PruMerge 90 0 02x 22x 1.Ix 0.7x 41.0 39.0 52.3 4422
+ VisionZip 90 0 02x 14.6x 1.1x 0.8x 66.0 54.0 80.3 66.7
+ FastV 710 1.0x 22x 1.Ix 1.3x 46.0 37.0 80.9 52.5
+ SparseVILA-R1 70 85 0.7x 49x 1.2x 14x 64.0 63.0 89.1 72.0
Cosmos-Reasonl-7B (24fps) 0 0 1.0x 1.0x 1.0x 1.0x 72.0 54.0 88.2 71.4
+ PruMerge 97 00.04x 13.8x 1.6x 0.3x 46.0 43.0 70.0 53.0
+ VisionZip 97 00.04x 734x 1.6x 0.3x 64.0 54.0 80.9 66.6
+ SparseVILA-R1 75 95 04x 7.6x 2.0x 1.9x 75.0 58.0 94.5 75.9

Table 2: Physical Reasoning Benchmark Results. SparseVILA-R1 delivers up to 7.6x faster
language model prefill, 2.0 x faster decoding, and 1.9 x end-to-end speedup, while outperforming
prior methods and the baseline model at 24 frames-per-second.

Sparsity Speedup
P D E P D E2E

Temporal Goal Plot Spatial Overall

LongVILA-R1-7B (2048f) 0 0 1.0x 1.0x 1.0x 1.0x 68.7 87.8 73.1 48.1 74.1

+ PruMerge 97 0 09x 89.1x 1.5x 1.6x 60.5 823 64.7 543 67.9
+ VisionZip 97 0 09x 89.6x 15x 1.6x 61.6 86.8 68.9 494 70.4
+ SparseVILA-R1 85 95 1.0x 123x 1.6x 1.6x 68.0 88.5 753 60.5 75.8

Table 3: Video Reasoning Benchmark Results. SparseVILA-R1 maintains competitive performance
on long-video reasoning tasks while delivering up to 1.6 x end-to-end speedup.

4.1 Results on Reasoning Benchmarks

Physical Reasoning. As shown in Table 2, our SparseVILA-R1 performs comparably to the
baseline model on all benchmarks, further establishing the retained reasoning capability of our method.
SparseVILA-R1 significantly outperforms state-of-the-art approaches on Cosmos-Reason [27], with
scores on HA and RFail outperforming even the unquantized model. In these cases, SparseVILA-R1
operates at the Pareto-frontier of efficiency and performance, achieving a lossless 1.9x E2E speedup
with a 4.5% boost in performance from the Vanilla baseline.

LongVideo Reasoning. We evaluate Sparse VILA-R1 on a subset of the long video reasoning bench-
mark, which contains carefully curated question-answer pairs that require long-context reasoning [4].
Table 3 presents the performance comparison of SparseVILA-R1 with SoTA approaches [17, 15] and
baselines. FastV [18] does not support chunk pre-filling, hence is not included in this comparison.
By strategically shifting higher sparsity into the decoding stage, Sparse VILA-R1 once again achieves
an optimal efficiency-to-accuracy tradeoff, outperforming the vanilla baseline by +1.7% on average
while accelerating the model by upwards of 1.6x.



Discussion. In Table 2 and Table 3, we have illustrated the robustness of SparseVILA-R1 in
achieving strong compression/speedup while maintaining performance. Additionally, we have shown
that, although existing SoTA methods reduce the effective compute (token sparsity), this does not
always translate to overal latency reduction due to overheads in their metric computation. This
concretely emphasizes the need for efficient and scalable approaches to context compression, as
shown with SparseVILA-R1. In certain cases, we have shown that our approach improves upon
baseline accuracies. We attribute this phenomenon to improving the model’s retrieval ability by
effectively reducing the processed context length. Our decoding sparsity approach effectively
compresses the KV cache; the resulting cache constitutes a smaller, more information-dense context
over which the model can reason. Similar findings were echoed in StreamingL. LM [28], with the
use of local-cache position IDs. We further explore SparseVILA-R1’s retrieval capacity with Visual
Needle in a Haystack in Section B of the Appendix.

5 Conclusion

We introduce SparseVILA-R1, a decoupled visual sparsity approach to accelerate large reasoning
VLMs. By leveraging query-agnostic context stage pruning with query-aware generation stage
retrieval, SparseVILA-R1 achieves the Pareto frontier of VLM reasoning efficiency. Considering the
entire VLM inference stack — visual embedding, prefill, and decoding — SparseVILA-R1 achieves up
to 12.3x faster language model prefilling, 2.0 x faster decoding, and 1.9 x end-to-end speedup, while
preserving or improving accuracy on reasoning benchmarks. Unlike prior pruning methods that trade
speed for capability, Sparse VILA-R1 maintains fidelity across modalities and architectures through
decoupled sparsity allocation and efficient kernel design. This establishes a scalable, training-free
foundation for accelerating the next generation of multimodal systems, enabling VLMs to efficiently
reason about longer contexts, accommodating thousands of images and frames.
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A Details on Experimental Setup
In this section we include additional details on the models used and the inference setting.

Models We study compression in the context of two reasoning-focused VLMs: LongVILA and
Cosmos-Reason. LongVILA [4] employs a SigLIP [29] vision encoder followed by spatial token
pooling before the LLM. For vision-only compression approaches (e.g., VisionZip, PruMerge, and
our prefill-stage compression), we enforce a floored square token count to maintain compatibility with
LongVILA’s media processing pipeline. In contrast, Cosmos-Reason — built on the Qwen2.5VL [30]
architecture — processes spatial and temporal tokens jointly along a unified sequence dimension.
Consequently, compression in this setting operates in a spatio-temporal manner, enabling baselines
and our method to reduce redundancy across both visual and temporal modalities. This setup ensures
a fair comparison across architectures with distinct vision-language processing pipelines, while
highlighting the robustness of SparseVILA-R1 across both vision-only and text-aware strategies.

Additional Details on Inference Setting.  For inference, we employ chunked prefilling on the token
processor (LLM), with a chunk size of 32768 tokens. While the vision tower typically processes the
entire context embedding in a single forward pass, the memory footprint of LongVILA [4] exceeds the
GPU capacity on 1xNVidia A6000 when evaluating with 2048 frames. In such cases, we account for
the additional overhead introduced by embedding-prefill disaggregation, where both the embedding
and prefilling stages are executed in chunks.
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Figure 4: Long Context Visual Needle in a Haystack based on LongVILA [31]

In this section, we further evaluate the long-context retrieval performance with Visual Needle in a
Haystack (V-NIAH) benchmark [32, 31]. We compare the long-context retrieval capacity of our
method with the vanilla implementation on LongVILA [31] in Figure 4. SparseVILA-R1 maintains
comparable performance with the baseline, indicating that the sparse selection of tokens can continue
to support long context retrieval performance. We leverage a 90% decoding sparsity, translating to a
2x decoding speedup.
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