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Abstract

We study the problem of differentially private second moment estimation and
present a new algorithm that achieve strong privacy-utility trade-offs even for
worst-case inputs under subsamplability assumptions on the data. We call an input
(m, a, B)-subsamplable if a random subsample of size m (or larger) preserves w.p
> 1 — [ the spectral structure of the original second moment matrix up to a multi-
plicative factor of 1 + «. Building upon subsamplability, we give a recursive algo-
rithmic framework similar to Kamatfh ef all (2001Y9) that abides zero-Concentrated
Differential Privacy (zCDP) while preserving w.h.p the accuracy of the second
moment estimation upto an arbitrary factor of (1 £ ). We then show how to ap-
ply our algorithm to approximate the second moment matrix of a distribution D,
even when a noticeable fraction of the input are outliers.

1 Introduction

Estimating the second moment matrix (or equivalently, the covariance matrix) of a dataset is a funda-
mental task in machine learning, statistics, and data analysis. In a typical setting, given a dataset of n
points in R?, one aims to compute an empirical second moment (or covariance) matrix that is close,
in spectral norm, to the true second moment matrix. However, as modern datasets increasingly con-
tain sensitive information, maintaining strong privacy guarantees has become a key consideration.

A natural way to protect sensitive data is through differential privacy (DP). In this paper, we focus on
the zero-Concentrated Differential Privacy (zCDP) framework (Bun-& Stfeinke, P0T6), which offers
elegant composition properties and somewhat tighter privacy-utility trade-offs compared to tradi-
tional (¢, 6)-DP. While there have been works regarding the estimation of the second moment matrix
(and PCA), they mostly focused on Gaussian input or well-conditioned input (see Related Work
below). In contrast, our work focuses on a general setting, where the input’s range is significantly
greater than \yi,, the least eigenvalue of the 2nd-moment matrix.

Suppose indeed we are in a situation where the first and least eigenvalues of the input’s 2nd moment
matrix are very different. By and large, this could emanate from one of two options: either it is
the result of a few outliers, in which case it is unlikely to approximate the 2nd moment matrix
well with DP; or it is the case that the underlying distribution of the input does indeed have very
different variances along different axes, and here DP approximation of the input is plausible. Our
work is focuses therefore on the latter setting, which we define using the notion of subsamplability.
Namely that from a sufficiently large random subsample, one can recover a spectral approximation
to the original second moment matrix with high probability. This property resonates with classical
matrix-concentration results (namely, matrix Bernstein bounds), yet — as our analysis shows — our
subsamplability assumption offers a less nuanced path to controlling the tail behavior of the data.
In this work we formalize this notion of subsamplability — which immediately gives a non-private
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approximation the data’s second moment matrix, and show how it can be integrated into a privacy-
preserving algorithm with some overhead.

Subsamplability Assumption. Throughout this paper, we assume that our n-size input dataset is
subsamplable, which we formally define as follows.

Definition 1.1. ((m, o, 3)-subsamplability) Let X C R be a dataset of n points. Fix m < n,a >
0,8 € (0,1). Let Xq,..., X,/ be a random subsample of m’ > m points i.i.d from X. Denote
S=1 %Y X;XTandX =-L5 > X; X7, then the dataset X is (m, «, 3)-subsamplable if:

iem) "™ iem ’

vm'>m:  Prll-a)2 <X <(1+a)%]>1-7

By assuming subsamplability, we ensure that the critical spectral properties of the data are retained,
enabling efficient and accurate private estimation. This assumption provides a tractable way to
manage the inherent complexity of the problem while maintaining robustness to variations in the
data. On the contrapositive — when the data isn’t subsamplable, estimating the second moment
matrix becomes significantly more challenging. Furthermore, in the case where the n input points
are drawn i.i.d. from some distribution (the case we study in Section H) subsamplability follows
directly from the convergence of a large enough sample to the true (distributional) second moment
matrix; alternatively, sans subsamplability we cannot estimate the distribution’s second moment
matrix.

It is important to note that our subsamplability assumption is weaker than standard concentration
bounds, which state that for any «, 8 there exists m(«, §) such that a random subsample of m (or
more) points preserve w.p.> 1 — [3 the spectral structure of ¥ upto a (1 £ «)-factor. Here we only
require that for some «, ( there exists such a m(c, 3), a distinction that allows us to cope even with
a situation of a well-behaved distribution with outliers, as we discuss in Section B. In our analysis we
require that & = O(1) (we set it as aw < 1/2 purely for the ease of analysis); however, our analysis
does require a bound on the 3 parameter, namely having 8 = O(a/log(R)), with R denoting the
bound on the L, norm of all points. It is an interesting open problem to replace this requirement on
B with a O(1)-bound as well. It is also important to note that our result is stronger than the baseline
we establish: subsamplability implies that using (roughly) ™/ samples, one can succesfully apply
the subsample-and-aggregate framework (Nissim ef all, P007) and obtain a 1 4+ O(«)-approximation
of the spectrum of the second moment matrix. In contrast, our algorithm can achieve a (1 £ 7)-
approximation of the second moment matrix of the “nice” portion of the input even for v < «
(provided we have enough input points). Details below.

Contributions. First, we establish a baseline for this problem. Under our subsamplability assump-
tion, we use an off-the-shelf algorithm of Ashfiani & Tiaw (2027) that follows the “subsample-and-
aggregate paradigm (Nissim ef all, P007) to privately return a matrix ¥ satisfying (1 — 2a)¥ < ¥ <
(1+2a)X.

We then turn our attention to our algorithm, which is motivated by the same recursive approach
given in Kamafhef all (Z01Y): In each iteration we deal with an input X whose 2nd moment matrix
satisfy I < ¥ < kI, add noise (proportional to #/m) to its 2nd-moment matrix and find the subspace
of large eigenvalue (those that are greater than i« for 1) &~ 1/m), and then apply a linear transfor-
mation II reducing the projection onto the subspace of large eigenvalues by 1/2, thereby reducing
the second moment matrix of II.X so that it is < 37”I . So we shrink R, the range of the input, to

\/3/7R and continue by recursion. Yet unlike Kamafh_ef all (20019) who work with the underlying
assumption that the input is Gaussian, we only know that our input is subsamplable, and so in our

setting there could be input points whose norm is greater than /3/7R after applying IT and whose

norm we must shrink to fit in the \/?%R-ball. So the bulk of our analysis focuses on these points
that undergo shrinking, and show that they all must belong to a particular set we refer to as P
(see Definition B2). We argue that there aren’t too many of them (just roughly a 8/m-fraction of
the input) and that even with shrinking these points, the second moment matrix of the input remains
> I. This allows us to recurse all the way down to a setting where x o< m, where all we have to do
is to simply add noise to the 2nd moment matrix to obtain a (1 + +)-approximation w.h.p.

We then apply our algorithm to an ensemble of points drawn from a general distribution (even a
heavy-tailed one). So next we consider any distribution D with a finite second moment >p where



the vector y = E;l/ 24 for & ~ D exhibits particular bounds (See Claim B2 for further details),
and give concrete sample complexity bounds for our algorithm to approximate .5 up to a factor of
14~ w.p. 1 —&. We then consider a mixture of such a well-behaved D with an n-fraction of outliers.
We show that our algorithm allows us to cope with the largest fraction of outliers (roughly O(1/d))
provided that the second moment matrix of the outliers Yoy satisfies Yoy < O(1/n)Xp. In contrast,
the subsample and aggregate baseline (and other baselines too) not only requires a smaller bound on
7 but also has a significantly large sample complexity bound. Details appear in Section &.

Organization. After surveying related work in the remainder of Section [, we introduce necessary
definitions and background in Section D. In Section Bl we survey the baseline of Ashfiani & Tiaw
(P027), and in Section B2 we discuss using existing algorithms to estimate the initial parameters of
the input we require, namely its range R and its least eigenvalue \;,. Multiplying B2 by 1/Amin
we obtain an input that indeed satisfies I < X <X xI (with Kk = R? /Amin)- Then, in Section B3 we
present our algorithm and state its utility theorem, which we prove in Section B-4. Finally, Section 8
illustrates how to apply our framework to a general (potentially heavy tailed) distribution, including
the case of a noticeable fraction of outliers.

Related Work. Differential privacy has been extensively studied in the context of mean and co-
variance estimation, particularly in high-dimensional regimes. Early work by Dwork”efall (20014
proposed private PCA for worst-case bounded inputs via direct perturbation of the second moment
matrix, laying foundational tools for differentially private matrix estimation. Subsequently, Nissim
ef-all (Z007) introduced the subsample-and-aggregate framework, which has since become a stan-
dard paradigm for constructing private estimators under structural assumptions.

A significant body of research has focused on learning high-dimensional Gaussian distributions
under differential privacy. Kamafh ef all (Z01Y) introduced a recursive private preconditioning tech-
nique for Gaussian and product distributions, achieving nearly optimal bounds while relying on the
assumption of a well-behaved (Gaussian) input. Their approach underlies several subsequent ad-
vances in private estimation. Building on these ideas, Kamafh ef-all (20027) proposed a polynomial-
time algorithm for privately estimating the mean and covariance of unbounded Gaussians. Their
algorithm, which incorporated a novel private preconditioning step, improved both accuracy and
computational efficiency.

Ashfiani & Tiaw (2027) proposed a general framework that reduces private estimation to its non-
private analogue. This yielded efficient, approximate-DP estimators for unrestricted Gaussians with
optimal (up to logarithmic factors) sample complexity. Their method also demonstrated the power
of reduction-based techniques in bridging private and non-private statistics. Aden-ATi efall (2021)
gave near-optimal bounds for agnostically learning multivariate Gaussians under approximate DP,
while Amin_ef all (Z0TY) and Dong_et al] (Z027) revisited the task of private covariance estimation
under e-DP and zCDP, respectively. These works introduced trace- and tail-sensitive algorithms for
better handling of data heterogeneity.

Recent work has emphasized robustness and practical applicability. For example, Biswas
ef_all (2020) introduced a robust and accurate mean/covariance estimator for sub-Gaussian data,
and Kofhariefall (20027) developed a robust, polynomial-time estimator resilient to adversarial out-
liers. Further, ATabi_ef all (2023) presented near-optimal, computationally efficient algorithms for
privately estimating multivariate Gaussian parameters in both pure and approximate DP models.

A particularly notable contribution is by Brown ef-all (20023), who studied the problem of differen-
tially private covariance-aware mean estimation under sub-Gaussian assumptions. They introduced
a polynomial-time algorithm that achieves strong Mahalanobis distance guarantees with nearly op-
timal sample complexity. Their techniques also extend to distribution learning tasks with provable
guarantees on total variation distance.

Our algorithm outperforms prior methods that rely on per-point bounded leverage and residual
conditions—most notably the private covariance estimation algorithm of Brown et al. Brown ef all
(P0723)—in settings where the dataset may contain a small fraction of outliers or where individual
points may exhibit high leverage scores, but the global spectral structure is preserved in random
subsamples. Unlike their algorithm, which requires strong uniform constraints on every data point
(i.e., no large leverage scores), our method only assumes a subsamplability condition that holds with
high probability over random subsamples. This allows us to tolerate the presence of many multiple



outliers, provided they do not dominate the overall spectrum. Moreover, our algorithm is tailored
for second moment estimation, and achieves strong utility guarantees even when the second moment
matrix has a large condition number — a regime where the estimator of Brown efall (2023) may incur
significant error with the presence of outlier correlated with the directions of small eigenvalues. A
more elaborated discussion demonstrating this setting appears in Section E72.

2 Preliminaries

Throughout the paper, we assume that our instance of dataset is subsamplable, as given in Defini-
tion .

Notations. Let S?~! denote The unit sphere in R?, which is defined as the set of all points in
d-dimensional Euclidean space that have unit norm, i.e., S~ = {z € R? | ||z|| = 1}. Here, the
superscript d — 1 indicates that the unit sphere is an object of intrinsic dimension d — 1 embedded
in R%.

Let GUE(0?) denote the distribution over d x d symmetric matrices N where for all i < j, we have
N;;j ~ N(0,0?) ii.d.. From basic random matrix theory, we have the following guarantee.

Fact 2.1 (see e.g. Maad (2017) Corollary 2.3.6). For d sufficiently large, there exist absolute constants
C,c>0suchthat:  Pr [Nz > Aov/d] < Ce=44 forall A > C.

N~GUE(02)

Definition 2.2 (Differential Privacy (Dwork ef all, 2006)). A randomized algorithm A satisfies (e, d)-
differential privacy if, for all datasets D and D’ differing in at most one element, and for all measur-
able subsets S of the output space of A, it holds that:

Pr[A(D) € S] < e Pr[A(D') € S] + 6.

Definition 2.3 (Zero-Concentrated Differential Privacy (zCDP) (Bun-& Sfeinkd, P0T6)). A random-
ized algorithm A satisfies p-zero-concentrated differential privacy (p-zCDP) if, for all datasets D
and D’ differing in at most one element, and for all & > 1, the Rényi divergence of order « be-
tween the output distributions of .A on D and D’ is bounded by pa, i.e., Dy (A(D)|.A(D")) < pa.
Here, p > 0 is the privacy parameter that controls the trade-off between privacy and utility, and D,,
denotes the Rényi divergence of order «.

Theorem 2.4 (Bun_& Steinked (2016)). If a randomized algorithm A satisfies p-zero-concentrated
differential privacy (p-zCDP), then A also satisfies (e, )-differential privacy for any § > 0, where:

e=,0+\/2p1n(%).

Theorem 2.5 (Composition Theorem for p-zCDP). Let My and My be two independent mecha-
nisms that satisfy p1-zCDP and p2-7CDP, respectively. Then their composition My o My satisfies
(p1 + p2)-zCDP.

3 Technical Analysis

3.1 Baseline

In this section, we provide a baseline for the problem of 2nd-moment estimation using subsample
and aggregate framework (Nissim ef-all, P007). For the lack of space we move the entire discussion
of the baseline to Appendix &, and only cite here the conclusion.

Theorem 3.1. Let &, €, § be parameters, and let X C R? be a (m, a, B)-subsamplable set of n
points. Then, there exists an algorithm for which the following properties hold:

1. The algorithm is (2¢, 4e%0)-Differential Private.
2. The algorithm returns % satisfying | L ~1/285~1/2 — I|| < 20, where ¥ = LxxT.

These guarantees hold under the following conditions:

ef—1
25

1. The dataset size satisfies: n > 800m- max \/Zd(‘”l/”z) 8y/In) in(z/s) 12/dnCs) In(1+
- b € b )

€ €

where 1 = SO ) for a sufficiently large constant C' > 0.
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2. The subsamplability parameters satisfy m > 2n/€.

In particular, Item 1 suggests a sample complexity bound of n = Q(M)

3.2 Finding Initial Parameters

Our recursive algorithm requires as input two parameters that characterize the “aspect ratio” of
the input, namely — R.x, the maximum distance of any point from the origin, and A;,, the
minimum eigenvalue of the input. These two parameters give us the initial bounds, as they imply
that Apin <X X =< R?naxl . Due to space constraints, we move the entire discussion, regarding how
to apply off-the-shelf algorithms, or modify such algorithms, to obtain these initial parameters to
Appendix B.

3.3 Main Algorithm and Theorem

Next, we detail our algorithm that approximates the second moment of the input. Its starting point
is the assumption that the input has a known bound on the Ly-norm of each point R, and that the
second moment matrix of the input, X, satisfies [ < 3 < R?I.

Algorithm 1 DP Second Moment Estimation
Input: a (m, a, 3)-subsamplable set of n points X C R?, parameters: error parameter & € (0, 1),
privacy parameter p, covering radius R.

_1 \Rp2
1: Set: 1 + 12, T<—log7/3<(1<;4‘(’)zf), V4 o, e go C 4+ 640m, K+ R?

2 i%m( (ﬁ)XW»dJ,CaC»(ﬁ)“, (ﬁ)R,T,f,P)

3: return (1 — )X

Algorithm 2 Recursive DP Second Moment Estimation (RecDPSME)

Input: a set of n points X C R¢Y parameters: linear shrinking n < 1,
eigenvalue threshold < 1, stopping value C, noise ¢, eigenvalue upper
bound «, radius R, iterations bound 7T, error parameter &, privacy loss p.

2

Set o+ 42T
Sample N ~ GUE(0?)
S+ LxXT+ N
if x < C then

return .
end if }
V < Span({v; : eigenvector of 3 with eigenvalue > ¢k })
II < nlly + Iy 0 {1I;; denotes the projection matrix onto U'.}

Y e /31X
Xnpext < S(Y) where S(Y) = {y . min{l, éﬁ} Y€ Y}

11: Sy  BecOPSME (Xnm,n,qp,a ¢, 2k, ﬁR, T,g,p)
12: return 1171 S, T

R A Sl e

,_
=4

In our analysis, the following definition plays a key role.

Definition 3.2. Let X be a (m,«, 3)-subsamplable set. We denote Pi,; as the set of points
whose projection onto some direction u in R? is m times greater than expected, namely

1
Par={z€X: JueR?: (z,u)? 1 = 2
rail {16 u € (z,u)* >m(l+a) - (x, u) }



Theorem 3.3. Fix parameters £ € (0,1), p > 0,7 > 0andk > 1. Let X C R be a (m a, f)-

subsamplable set of n points bounded in Ly norm by R?, with o < 1/2 and 3 < W
a)loe\ T aym

1\ p2
s.t. I 25 X R where ¥ = L X XT. Then, denoting T = logz, <(164(62f) = O(log(£/m)), we

have that Algorithm [l satisfies p-zCDPY, and if

n = <m\/§ (\/Tlog(T/f) + bg(ﬁ))

Then (1) Py holds at most a (ﬁ%ﬁ?)-fmction of | X|, and (2) w.p. > 1 — 2¢ it outputs Y such that:
1-NTp =2 (1+7)Z
where Sy =1 Y aa”.

zeX\Rail

3.4 Algorithm’s Analysis

Next we prove Theorem B3. Momentarily we shall argue that Algorithm @ repeats for at most

L H)R% . . . .
T = log- /s % iterations. Based on Fact PZ1 and on the bound on the number of iterations,

it is simple to argue that the following event holds w.p. > 1 — &:
& := in each iteration of Algorithm @ we have || N|| < cR? = cx

which follows from the fact that in each iteration the upper bound on the largest eigenvalue of X is
at most k = R2. We continue our analysis conditioning on £ holding.

The analysis begins with the following lemma, that shows that under £ we have that in each iteration
the eigenvalues of X decrease. Its proof is very similar to the proof in Kamath ef all (Z0TY) and so it
is deferred to Appendix 0.

Lemma 3.4. Given X = {X;,..,X,} CR%, C>0,c>0,0<n<1,0<¢ < 1,and x > 1s.t.
I =Y 2kl where X = LXXT Let V « Span({v; : A; > tx}) of the largest eigenvalues of the

noisy ¥ and let IT = nIIy + II,,.. Given that: n > Q ( % ln(T/g)) Then:

1
In particular, if & > C' for some C' then: I < 71'[21'[ =< n?+7¢1+2c%[.

@ 2w =) 70(7/21/1—6))

Corollary 3.5. Given X = {X1,..,X,} CR%and k > 1s.t. I 2 ¥ < wl where ¥ = LX X7
Let V, I be as in Algorithm [, and set p = 1/2, ) = /10m, ¢ = 1/8om and C' = 640m in Lemma E4.

Then w.p. > 1 —¢&:
(1—80m )I-<HEH-<(1+1>/~;I
4 8m
In particular, if £ > C' then: 1 < 2IIXII < 2k1.

Based on Corollary B3 we can bound the number of iterations of the algorithm.

_1 yp2
Corollary 3.6. Algorithm D has 7" = logy, ( 16‘4‘635 ) iterations.

Proof. The algorithm halts when (%)T( L )n < C = 640m so: T > log3/7( 640m ) =

11—« ( T )&
R2
10g7/3< 164(537: ) O

'Note that the privacy of Algorithm 0 holds for any input X with bounded Lo-norm, regardless of X being
subsamplable or not.




With IT reducing the largest eigenvalues of X from « to 3%/7, we now proceed and bound the radius of
all datapoints by from R to \/3/77R. This is where our analysis diverges from the analysis in Kamafh
ef_all (20T9). Whereas Kamath et al rely on the underlying Gaussian distribution to argue they
have no outliers, we have to deal with outliers. For our purpose, a datapoint x is an outlier if the
shrinking function S (Step 10 in Algorithm ) reduces the norm of Il since ||IIz|| > /3/7R. In
the following claims we argue that all outliers lie in P (Definition B2), and moreover, that by
shrinking the outliers we do not alter the second moment matrix all too much. We begin by arguing
that there aren’t too many outliers.

Claim 3.7. Analogously to Definition B2, fix any m’ > m and define Ppy(m') = {x € X : Ju €
RY: (2Tu)? > m/(1+ )L 3. (27u)?}. Then it holds that

B+ 2
Pyl € Palm)] < 205

Proof sketch. The proof applies the (m, «, 3)-subsamplability property: if a point violates the
bound, it would contradict subsamplability with non-negligible probability. A simple union bound
and tail approximation then yield the claimed bound. Full details are deferred to Appendix C2. [

Lemma 3.8. Let X be a (m, a, 3)-subsamplable with § < ———2——— Let P = X \ Pig.
4(14«) log(m)
Then:

1 1
VueRY: — 2> (1-a)= 2
u € nz<1‘,u> >(1 a)nz<x,u>
zeP reX
Proof sketch. We partition the tail points according to the magnitude of their contribution and apply
Claim B7 to bound the measure of each bucket. Summing across buckets shows that the overall loss

from removing the tail points is small. Full proof is deferred to Appendix C3. O

Lemma 3.9. At each iteration ¢ of Algorithm [, only points belonging to F; are subjected to
shrinking, given that o < 1/2, ¢ = ﬁ and ¢ = om-

Proof sketch. The proof uses induction over iterations. Shrinking happens only if a point’s mass in
a low-eigenvalue subspace is too large. By carefully tracking how shrinking operates and applying
Weyls theorem and Lemma B8, we show that only initially bad points (i.e., those in Fy;) can cause
such violations. Full proof appears in Appendix C4. O

Corollary 3.10. In all iterations of the algorithm it holds that ¥ > I, namely, that the least eigen-
value of the second moment matrix of the input is > 1.

Proof sketch. We argue by induction that removing or shrinking tail points preserves a spectral lower
bound. Using Lemma B and the shrinkage structure from Lemma B™, the transformation at each
step maintains the least eigenvalue above 1. Full proof is provided in Appendix C3. O

Proof of Theorem B3. First we argue that Algorithm [ is p-zCDP. Given two neighboring data sets
X, X' of size n which differ in that one contains X; and the other contains X Z’ , the covariance matrix
of these two data sets can change in Spectral norm by at most:

(2R)

n

1 1 1
HE(Xz'XiT*Xl{XZ(T)Hz < EH(Xi*X{)(Xi*X;)THQ < E||(Xz‘*Xz{)||2||(Xz‘*X{)T||2 <

Since Algorithm 0 invokes T calls to Algorithm D each preserving #/7-zCDP, thus the privacy guar-
antee of Algorithm [ follows from sequential composition of zCDP.

We now turn to proving the algorithm’s utility. From Claim B2 we conclude that | P;| is indeed at
most (BLfﬁ)—fraction of | X|. We prove by recursion that: (1 — 7)Yer < X < (14 ).

m

Stopping Rule: Let X7 be the input at the final iteration 7" and let P = X \ Py. Denote %(-)
as the second moment matrix operator. We know that throughout the algorithm, the points from
P were not shrunk. Moreover, Corollary B0 assures that the least eigen value of X(X) is > 1.
Additionally, our bound on n yields that when x < C' then the noise matrix N we add satisfy that
IN||2 <~ w.p. > 1—¢. It thus follows that (1 —7)2(XT) < S+ N =< (14+7)2(X7T) as required.



Recursive Step: Let X! be the input at iteration ¢ < 7. Then, by Lemma B4, we have:
I <X (%HX t) = %I{I . Lemma B ensures that S(IIX t) shrinks only points from F; and so
Corollary BT0 assures that the eigenvalue is > 1 throughout the recursive iterations. Hence, by the
inductive hypothesis, our recursive call returns Y. such that:

(1 - V)Eeff (ﬁHXt) j Zrec j (1 +’Y>E (\/ant> )

T _
(1= 7)Zerr(X) < S BeelTH < (14 9)2(X7).

which implies:

Proving the required for any intermediate iteration of Algorithm D. O

4 Applications: Coping with Qutliers

4.1 Input Drawn from ‘Nice’ Distributions

First, we show our algorithm returns an approximation of the 2nd-moment matrix when the input is
drawn from a distribution D. Throughout this section, we apply the Matrix-Bernestein Inequality.
Fact 4.1. Let Z be the sum of m i.i.d. matrices Z = ZZ Z;, whose mean is 0 and have norm
bounded by || Z;|| < R almost surely. Then, denoting o = || E[ZZT]||, it holds that

Pr[||Z] > t] < 2d =2
' =4SP\ 2R3

We can apply Fact Bl above to measure how well the sample covariance estimator approximates
the true covariance matrix of a general distribution using the following claim (proof deferred to
Appendix [CH.)

Claim 4.2. Let D be a distribution on R? with a finite second moment X. Consider a random vector
y chosen by drawing = ~ D and then multiplying y = ¥~ /2. Suppose that ||y|| < M a.s. that we

also have a bound || E[(y?y)yyT]|| < Ma. Fix a, 8 > 0. If we draw m = max {% 2(1+M12)} .

a? 3a

In(4d/) examples from D and compute the empirical second moment matrix S, thenw.p. >1— 73
it holds that .
|S728n 2 |y < a

Recall that we (1 +)-approximate the 2nd-moment matrix of the input w.p.> 1 — . Thus, we need
the input itself to be a (1 & y)-approximation of the 2nd-moment matrix of the distribution. (We can
then apply Fact B3 to argue we get a 1 £+ O(+y) approximation of the distribution’s second moment
matrix.) This means our algorithm requires

m(a, B)
g

m(v,§) + O ( R ) log(los (52~ )/£)> 1)

)\min

d
p

fora = 1/2and 5 = O(W) in order to return a (1 & O(~))-approximation of the 2nd mo-

ment of the distribution w.p. > 1 —O(&). In Appendix O we give concrete examples of distributions
for which this bound is applicable, including (bounded) heavy-tail distributions.

4.2 Distributional Input with Outliers

Next, we consider an application to our setting, in which we take some well-behaved distribution D
and add to it outliers. Consider D to be a distribution that for any v, £ > 0 is m(+y, £)-subsamplable

form = O(%). We consider here inputs that are composed of (1 — n)-fraction of good points
and n-fraction of outliers. We thus denote the second moment matrix of the input as
Y= (1 - n)ZD + nzout

We assume throughout that the least eigenvalue of Xp is Ayyin. Our goal is to return, w.h.p. (> 1—-¢)
an approximation of Xp using a DP algorithm.



Inapplicability of Brown et all (2023). The work of Brown ef all (Z023) shows that if the input
has A-bounded leverage scores, namely, if Vz, :Z}T(%X XT)~=1x < )\, then they recover the second
moment of the input with O()\@) overhead to the sampling complexity. However, in this case one
can set outliers so that their leverage scores is £/, (provided the input has Ly-norm bound of
R). We argue that the algorithm of Brown ef all (Z023) is unsuited for such a case. Indeed, the
algorithm of Brown efall (20023) has an intrinsic “counter” of outliers (referred to as score), which
when reached O(1/¢) causes the algorithm to return ‘Failure’.? So either it holds that 7 is so small
that the overall number of outliers is a constant (namely, nn = O(1/c)), or we set the bound on the
leverage scores to be B2/, and suffer the cost in sample complexity.

A Private Learner. Suppose 7 is very small. In this case we can simply take some off-the-shelf
(¢, 0)-DP algorithm with sample complexity m(~, £, €, 0) that approximates the second moment ma-
trix, and run in over a subsample of m points out of that input. In order for this to work we require

that 7 would be smaller than O<m)’ so that a subset of size m would be clean of any outliers.

Subsample and Aggregate. The framework of Subsample and Aggregate (Nissim_ef all, PO07)
is in a way a ‘perfect fit’ for the problem: we subsample ¢ datasets of size m(~, &) each, and then
wisely aggregate the (majority of the) ¢ results into one. However, in order for this to succeed, it
is required that most of the ¢ subsamples are clean of outliers. In other words, we require that the
probability of a dataset to be clean ought to be > 1/2, namely - (1 — )™ > 1/2 or alternatively
thatn = O(T}m), which in our case means n = O(W({Zd/f))‘ We analyze this paradigm as part of
the subsample-and-aggregate baseline we establish (Appendix @), and the subsample-and-aggregate

baseline requires
- (d- - [/ d2]
o (Ln0)) g (Les))
ey ey
in order to return a (1+£O())-approximation of the 2nd moment of the distribution w.p. > 1—-0O(§).

Our Work. Our work poses an alternative to the above mentioned techniques. Rather than having

n < m, we have a slightly more delicate requirement. We require that there exists « = 1/2 and
8 < Do) such that np = O(m ) ). (In particular, for the given D it implies that we require

that n = O(m), which is considerably higher value than in the case of subsample

and aggregate discussed above.) This way, we can argue that w.p. > 1 — g it holds that a subsample

B
2

sense that its empirical second moment satisfy Y~ Yp.

of size m(a, £) contains only points from D and that w.p. > 1 — g that sample is ‘good’ in the

However, we also require that the subsample of size m(«, g) would satisfy that its empirical second

moment matrix ¥ satisfies that (1 — 1T = =< (14 1)% since we set @ = 3. As S Sp it
follows that it suffices to require that

(1- %)[(1 —1)Ep + NZout] <X Tp X (1+ %)[(1 = 1% + 1 %out]

Some arithmetic shows that the upper bound is easily satisfied when ﬂ—n <
for our value of 1), yet the lower bound requires that we have

1
™m

% (which clearly holds

Zout = ( + 1)27) = O(I/W)ZD

Under these two conditions, our work returns w.p. 1 — O(§) a matrix > that satisfies that
Y = (1 = O(%))Xp, with sample complexity of

- E og(R/X\_ . )
m(e,2)  [dlog(Rirem) 1 log(®ami)y | _ - [ dlog(d/e) | d°/?log(d)log® 2 (R/x,,;,) log(*2  min) )
0 (1mir,€) + 2222 /T g oy ) — 0 (il o

*Moreover, in their algorithm, this ‘score’ intrinsically cannot be greater than k = O(1/c) as they use a
particular bound of the form e*/¢.
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A Baseline

In this section, we provide a baseline for the problem of 2nd-moment estimation using subsample
and aggregate framework (Nissim ef all (2007)).

In this baseline, we work with the following notion of a convex semimetric space. The key property
to keep in mind is that for semimetric spaces, we only have an approximate triangle inequality, as
long as the points are significantly close to one another.

Definition A.1. Let ) be a convex set and let dist : J x YV — R>(. We say (), dist) is a convex
semimetric space if there exist absolute constants t > 1, ¢ > 0, and > 0 such that for every k € N
and every Y, Y7, Yo, ..., Y, € ), the following conditions hold:

1. dist(Y,Y) = 0 and dist(Y7, Y2) > 0.

2. Symmetry. dist(Y7, Ys) = dist(Y2, 7).

3. t-approximate r-restricted triangle inequality. If both dist(Y7,Y3),dist(Ys,Y3) < r,
then

dist(Y1, Y3) < t- (dist(Yy, Y2) + dist(Ya, Y3)).
4. Convexity. For all o € Ay,
dist <Z o;Y;, Y) < Zaidist(Yi,Y).
5. ¢-Locality. For all a, o’ € A,
dist (; a;Y;, ;aéYl) < ; lo; — o <q§ + rr}%xdist(Yi Y])> .
where Ay denotes the k-dimensional probability simplex. When r is unspecified, we take it to mean

r = oo and refer to it as a t-approximate triangle inequality.

The following technical lemma (whose proof appears in Appendix C in [Ashfiani & Tiaw (Z027)) is
helpful for learning second moment matrices.

Lemma A.2. Let S, be the set of all d x d positive definite matrices. For A, B € Sy, let
dist(A, B) = max{|A"Y2BAY2 — 1||,|B~Y?AB~Y? — I|)}.

Then (Sg, dist) is a convex semimetric which satisfies a (3/2)-approximate 1-restricted triangle in-
equality and 1-locality.

Based on Lemma A7, the following distance function forms a semimetric space for positive definite
matrices:

max (|25 22,55 2 — I, 1157 25.T 2 — 1)) if rank® = rank¥, = d
0 otherwise

diSt(El, 22) = {

Fact A.3. Let A, B be d x d matrices and suppose that |A~7/2BA~"> — I|| < v < 1/2. Then
|BAB~ - 1] < 4y

12



Algorithm 3 Baseline DP Second Moment Estimation

Input: a set of n points X C RY, subsamplability parameters m, c, 3, error parameter & € (0,1),
privacy parameters ¢, 4.

1: Randomly split X into T' = |n/m] subgroups X7, ..., Xr of size m.
for ¢ € [T] do

Y+ EXtXtT
end for
for¢ € [T] do

qr < %‘{t/ € [T] ZdiSt(Et,Et/) S %H
end for
Q « % ZtG[T] at
9: Z ~ TLap(2?/T,¢,0)
10: Q<+~ Q+Z
11: if Q < 0.8+ 2 In(1 + <) then
12:  fail and return L
13: end if
14: fort € [T] do
15:  w; = min(1, 10 max(0, g; — 0.6))
16: end for
17: X« Zte[T] WS/ ZtE[T] We
18: N ~ /\/(0, 1)d><d

P SOV )
20: return ¥ = 3Y2(I +nN)(I +nN)T2Y?

{C some large constant}

Lemma A.4. (Utility Analysis) Let ¥ = 2X X7 and setn = Wm for a sufficiently

large constant C' > 0. Then w.p. > 1 — & Algorithm B returns % such that dist(X, f]) < 2« given

that: 10 e q 5
nzimln(lJre —~) and mZ%

€

Proof. Indeed, we have that
ISEST — I = |(T+nN)(I +9N)T = 1|
< 2N +n?|INNT||

< 2C(Vd + /In(¥e)) + 1*(C(Vd + /In(e)))?
where we used the fact that || N|| < C(v/d + /In(4/¢)) w.p. > 1 — ¢/2. Applying 1 as defined in
the lemma gives that: ~
[£7728872 — 1| < o/12
Following from Fact A3 we have that:
ISEES Y~ ) < ofs
So we have that dist(3, 3) < o/3.
Now we show that dist(2, %) < o w.p. > 1 — &/2:
Based on the subsamplability assumption, we know that w.p. > (1 — 3)T":
Ve [T]: dist(X4,Y) < a
It means that w.p. > (1 — B)T all t # ¢’ € [T] satisfy:

dist(3, %) < « ) 2a
— dist(Z,, D) <
{dist(zt,72)<a ist(Xe, 2er) <

l1—«

Hence w.p. > (1 — )T > e > 1— ¢/2 all t € [T satisfy:

. 2
@ == ’{t/ € [T+ dist(Sy, ) < —— }

=1
T l1—«

13



Finally, @ = 1 > 0.8 + Z In(1 + <5%) w.p. > 1 — ¢/2 and therefore the algorithm does not fail
w.p. >1—¢.

Now obviously dist(2, $2) < « since 3 is a weighted average of 3.

So we have that dist(2, ) < /3 and dist(2, %) < a w.p. > 1 — £. Applying the 3/2-approximate
triangle inequality for the dist function, we get:

IR g < ;(a +5) =2 O

Lemma A.5. (Privacy Analysis) Suppose that:
Yn? In(2 2/5) 12+/dIn(2
n > 800m - (max{\/2d(d+ /n ), 8d\/n( /6), 81n( /5)7 dIn(?/s) })

€ € € €n

Then Algorithm B is (2¢,4¢e¢))-DP.

Proof. By basic composition of Truncated Laplace Mechanism and Lemma 3.6 of [Ashfiani & T.iaw
(022). O

Both Lemma A= and Lemma B™ together imply the following theorem:

Theorem A.6. Let &, €, & be parameters, and let X C R be a (m, o, B)-subsamplable set of n
points. Then, for Algorithm B, the following properties hold:

1. Algorithm B satisfies (2¢, 4¢)-Differential Privacy.
2. The algorithm returns 3. such that dist(3,%) < 2a, where > = LxxT.
These guarantees hold under the following conditions:

1. The dataset size satisfies:

n > 800m- <max { 2d(d + Y/n*) 8d\/In(%s) 8In(2/5) 12y/dIn(?/s) In(1+ 552;1) })
- ’ € ’ e €n ’ 80e '

€

where 1 = for a sufficiently large constant C > Q.

48C (Vd++/1n(4/¢))
2pn

2. The subsamplability parameters satisfy m > e

B Finding Initial Parameters

Our recursive algorithm requires as input two parameters that characterize the “aspect ratio” of
the input, namely — Ry,.x, the maximum distance of any point from the origin, and Ap;,, the
minimum eigenvalue of the input. These two parameters give us the initial bounds, as they imply
that Apin/ < ¥ < R2__I. We detail here the algorithms that allow us to retrieve these parameters.
Finding R, is fairly simple, as it requires us only to apply off-the-shelf algorithms that find an
enclosing ball of the n input points (Nissim_ef-all (P016); Nissim & Stemmerd (2018); Mahpud &
Shetfei (P0272)). Finding the minimal eigenvalue is fairly simple as well, and we use a subsample-
and-aggregate framework. Details follow.

Finding a Covering Radius of The Data

Definition B.1. A I-cluster problem (X%, n,t) consists of a d-dimensional domain X and param-
eters n > t. We say that algorithm M solves (X ¢, n,t) with parameters (A, w, 3) if for every input
database S € (X %)™ it outputs, with probability at least 1 — /3, a center ¢ and a radius 7 such that:
(i) the ball of radius r around c contains at least ¢ — A points from .S; and (i) 7 < w - rop, Where
Topt 18 the radius of the smallest ball in X 4 containing at least ¢ points from S.
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Theorem B.2 (Nissim & Sfemmer (Z0IR)). Let n,t, 5, ¢, 0 be s.t.

0. Vd 1 d 1 .
t20 (f oz () 108 (55) s () -9 (”ﬁ)>

There exists an (¢, §)-differentially private algorithm that solves the 1-cluster problem X n,t with
parameters (A, w) and error probability 3, where w = O(1) and

n0-1 1 1 log*
_ JAE - 2\ . glog™ (2|X|V4d)
AO<€ log< 5)1og( ) 9 )

In words, there exists an efficient (¢, 0)-differentially private algorithm that (ignoring logarithmic

factors) is capable of identifying a ball of radius O(r,p¢) containing ¢ — O(#) points, provided
thatt > O(n®! - V/e).

Finding Minimal Eigenvalue The algorithm described in Kamafh ef all (2027) (Section 3) pri-
vately estimates all eigenvalues of the second moment matrix of the data. However, for the purpose
of this study, we focus solely on identifying the minimum eigenvalue while maintaining the privacy
guarantees provided by the algorithm. To adapt the algorithm, we modify its structure to priori-
tize the computation of the minimum eigenvalue directly, rather than estimating the full spectrum
of eigenvalues. This simplification not only reduces computational overhead but also aligns with
the specific objectives of our work. Below, we detail the adjusted methodology and highlight the
changes made to the original theorem.

Algorithm 4 DP Minimum Eigenvalue Estimator

Input: a set of n points X C R?, subsamplability parameters m, o, 3, error parameter & € (0, 1),
privacy parameters ¢, 9.

1: Randomly split X into T = |?/m] subgroups X, ..., X7 of size m.

2: fort € [T] do

3:  Let Al be the minimum eigenvalue of L X, X7

4: end for

5: 0 { L [(1l-a)?l-a)[l-a1), 1 125), [i2a gmay)s - 1 U{[0, 01}
6: Divide [0, c0) into 2.

7: Run (€, §)-DP histogram on all \! . = over Q.

8: if no bucket is returned then

9: return L.
10: end if _
11: Let [¢, u] be a non-empty bucket returned and set A, 4.

12: return A,,;,

Theorem B.3. ((Differentially Private EigenvalueEstimator) from Kamath et all (P0022)) For every
€,6,& > 0, the following properties hold for Algorithm B:

1. The algorithm is (e, 6)-differentially private.
2. The algorithm runs in time poly("/m,In(1/ec))

3. if
n>o(mln(1/6€>> and m > —2P
€ 111(1775/2)

then it outputs Amin Such that with probability at least 1 — &, Amin € [(1— @) Amin, (1 +
) Amin] Where A is the minimum eigenvalue of %XXT.

Proof. Privacy and running time is proven by the theorem of stability-based private histograms
(See Lemma 2.6 in Kamafh“ef-all (2027)). Now, we move on to the accuracy guarantees. By
subsamplability, with probability at least 1 — &/2, the non-private estimates of \,,;,, must be within
a factor of (1 + «) due to our subsample complexity. Therefore, at most two consecutive buckets
would be filled with AL . s. Due to our sample complexity and private histograms utility, those

buckets are released with probability at least (1 — £/2), which proves our theorem. O
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C Missing Proofs

Lemma C.1. (Lemma B4 restated.) Given X = {X;,...,X,} C R%, C > 0,¢ > 0,0 < n <

1,0<y <l,and k > 1s.t. I <X <X kIl where ¥ = %XXT. Let V « Span({v; : \; > ¢k) and

IT < nIIy + IIy 1. Given that: n > O (m % 1n(T/5)) Then:

1 1

(1= =
Y —c kK

In particular, if x > C' for some constant C' then:

1 2 2
[<7ﬂzﬂjw

T (- m=) (1 - coro—g)

) 2SI X () + 4 + 2¢)k]

kIl

Proof. First we prove the upper bound. Note that ||IIXII||; = ||[II(X — N)II|| < ||ISII) + |V
So we bound the two terms separately. Using Fact -1 with A = O(3 In(1/¢)) for sufficiently large

n we get | N2 < ¢k w.p. 1 — &/2. Additionally |TISII|y < 72|y STy || + ||y SIy. || <
n?(k +¢) + K < (n? + 1 + ¢)k. So overall,

X2 < (7* + % + 2¢)5

Next we prove the lower bound. Let u € S?~!. Our lower bound requires we show that v TIXTTu >

(1- n2$—c . %) We consider two cases:
e Case I: |yul?® < % L
Since ||TIy 1 ul|? + || TIyul? = 1 we have ||l ul[? > (1 — 77;21/1% - 1), hence, using the
fact that ¥ > I we have that
1 1
WS > [l 2 [Hyeal? > (1= )

* Case2: vl > o= - 1
Note that " TIXTu = w TI(X — N)Ilu = u"TIXTu — w”TINTIu. So we bound each

term separately. We know that
uI ISy > o Ty Sy u > sy ul)?
Additionally, based on the bound on the spectral norm of N we have that «”TINTIu <
ck||Tul|? < ek||Iyul|?. So overall:
uTTINIu > (%9 — c)k|[Hyul? > 1 O
Claim C.2. (Claim B restated.) Analogously to Definition B2, fix any m’ > m and define
Pa(m') ={z € X : JueR*: (z7u)? > m'(1+ )L 3, (7u)?}. Then it holds that
B+ 8

P Plai N < .
zegx[xe il ()] < m/

Proof. Letz € X be adatapointand X = {Xl, .. m’ + be a subsample of m/ points i.i.d from X.

L X
From subsamplability we know that: Pr[(1—a)X < 3 < (1+a)%] > 1— where & = LS aaT
reX

and 3 = Ly X;XT. In other words:
i€[m’]

Privu e R?: (1 —a)u’Su <ufSu < (14 a)uf>Su] > 1 - 6.

Clearly, if even a single zog € Py (m’) belongs to X then we’d have that for some direction u we
have

. 1 . 1
u'Su = — Z(XzTu)Q > —/(xgu)2 > (14 a)u'2u



contradicting subsamplability. It follows that w.p. > 1 — 3 no point in X belongs to Py (m’). Thus,
if we denote p = PrX [ € Pai(m’)] then we get that 1 — 8 < (1—p)™ . Using known inequalities
TER

we gete P > (1 —p)™ >1— > e P therefore p < L:;L?Q. 0

Lemma C.3. (Lemma BXR restated.) Let X be a (m,a,)-subsamplable with [ <
.Let P = X \ Piyi. Then:

a
2
4(14+a) log(m)

1 1
Vu € R?: - Z(m,u>2 > (1-— a)ﬁ Z(m,u>2
z€EP zeX

Proof. Fix direction u, and denote A” = 1 3™ (z u)? and A = 1 3" (x,u)?. Our goal is to prove

zeP rzeX
that A — AP < a.
Assume that Py holds a p-fraction of X, and denote also ! = ‘ P}wl S {x,u)?. Hence:
e P

)\:p)\tail+)\P — A*)\P:p)\tail

which implies that our goal is to prove that pA®! < o).

Now split the interval [(1 + a)mA\, R?], the interval of P, into buckets By, By, Ba, ..., Bj, where
B; = [2'(1 + a)mA, 2T (1 + a)mA)

2 2
and k = IOg(qum) < log((lfm), and clearly we have xlzg([@:, uw)? > m(l+a)) = xfe’g([:c €
k
U Bi]. Recall that Claim B2 implies that for any i we can set m’ = 2im and get:
i=0
2
Prlze B <P
zeX 2'm
Now we can bound pAf using B;:
' k
pAl < Pr [z € Bj]- 2L (1 + a)mA
zE
=0
~B4B
< ZO T 2L (1 + a)ymA < 28 - 2k(1 + a)A
which is upper bounded by A for 5 < m. O

Lemma C.4. (Lemma B restated.) At each iteration ¢ of Algorithm [, only points belonging to

P are subjected to shrinking, given that o < 1/2, 1) = —— and ¢ =

10m 80m

Proof. The proof works by induction on the iterations of the algorithm. Clearly, at t = 0, before the
algorithm begins, no points were subjected to shrinking so the argument is vacuously correct.

Lett < T and let x € X denote a point that undergoes shrinking for the first time at iteration ¢,
with X denoting the input of the ¢-th time we apply Algorithm B. Our goal is to show that = stems
from a point in P,;. Since x hasn’t been shrunk prior to iteration ¢, then there exists some z; in the
original input such that = A’x; for the linear transformation A* = IT* - TI*~! - ... - TI*. Our goal is
to show that z; € Py

We assume 2 is shrunk at iteration ¢. This shrinking happens since 27Ty, .z > %RQ. With a < %

we have 2 > 142 then it follows that « satisfies:
1 1
e Ty x> 1(1 +a)R? = 1(1 +a)k,
For the given parameters 1/ and c, observe that:

1
e Ty i > Z(l +a)k > 2m(1 + a)(¢ + ¢)k + ck.

17



Recall that V+ denotes the subspace spanned by all eigenvectors of S=%+N corresponding to
eigenvalues < v and that | N|| < cx. Now denote U~ the subspace spanned by all eigenvectors of
¥ corresponding to eigenvalues < (1) + ¢)k. By Weyl’s theorem it holds that

e Hyrx > 2 yix —ck > 2m(1 4 o) (Y + )k
Thus we infer the existence of u € U~ (unit length vector in the direction II;;. z) such that:
(zTu)? > 2m(1 + @) (¥ + ¢)k.

But as U~ is spanned by all eigenvalues < (1) + ¢)x of ¥ then it holds that £ >~ _ . (2Tu)? <
(¥ + )k, so

(@Tu)? > 2m(1+a) = 3 (5Tu)? @)

reX?

Now recall that = undergoes shrinking for the first time at iteration ¢. That means that there exists
some x; in the original input such that z = A’x; for the linear transformation A* = IT¢-TI*~1. ... TI',
Moreover, by the induction hypothesis all points that were shrunk upto iteration ¢ are from Py;. So
for any point 2 € X\ Py it holds that 2 = A'y for the corresponding y in the original input X.
Wegetthat 1 3 (Tu)??>1 S (Tu)?=21 Y (HTATw2

zeX?t € X\ Pail YEX\ Puil

We now apply Lemma B8 to infer that

% Z (yTATU)ZZ(l—OA)%Z( TAT %Z TAT
eX

YE X\ Puil yeXx

seeing as a < 1/2. Plugging this into Equation (?) we

1
CATW2 = (2T w)2 1 L AT )2
(@i, ATu)® = (z7u)* > m(1 + @) n;@, u)

which by definition proves that z; belongs to Py;;. O

Corollary C.5. (Corollary BT restated.) In all iterations of the algorithm it holds that > > I,
namely, that the least eigenvalue of the second moment matrix of the input is > 1.

Proof. Again, we prove this by induction of ¢, the iteration of Algorithm D. In fact, denoting X
as the input of of Algorithm O at iteration ¢, then we argue that the least eigenvalue of the matrix

L5 aaTisatleast 1.
z€X '\ Pail

Consider ¢t = 0, prior to the execution of Algorithm [ even once. Apply Lemma B8 with u being
the direction of the least eigenvalue of ¥, and we get that = >~ 2z” > (1 — «) - 1. Observe
x€ X\ Puail
that Algorithm [ invokes Algorithm & on the input multiplied a —-factor and so it holds that
L% xz” > 1for X°, the very first input on which Algorithm B is run.
z€ X0\ Pyit

Consider now any intermediate ¢, where we assume that input satisfies % > zxl > 1.

TEXT\ Py a
We can apply Lemma B4 and Corollary B3 solely to the pomts in X\ P, and have that
= 7xHx > 1. Since Lemma B9 asserts no point in X* \ P is shrunk then we get
T € X\ Pail
that the required also holds at the invocation of the next iteration. O

Claim C.6. (Claim B2 restated.) Let D be a distribution on R¢ with a finite second moment X.
Consider a random vector 4 chosen by drawing 2 ~ D and then multiplying y = ¥ ~'/2z. Suppose
that ||y|| < M; a.s. that we also have a bound || E[(yTy)yy”]|| < Ma. Fix o, 8 > 0. If we draw

2
m = max { 2Ms %} -In(44/8) examples from D and compute the empirical second moment

matrix f], then w.p. > 1 — f3 it holds that
|Z77288 72 — ||, < o

18



Proof. Denote our sample of drawn points as x1, xs, ..., T,,. Define Vi @ y; = X7 Y22, so that
" m

Ely;yl] = I. This transforms the problem to bounding: ||, — I2 < a where ¥, = L Z vyl
K]

Now [lyiy] ll2 = llyills < M?.

Next, define the random deviation Z of the estimator fly from the true covariance matrix I:

N ™ 1
Zzzy_I:ZZi where Z; = E(yiyiT—I)

i=1

The random matrices Z; are independent, identically distributed, and centered. To apply Fact B,
we need to find a uniform bound R for the summands, and we need to control the matrix variance
statistic o2. First, let us develop a uniform bound on the spectral norm of each summand. We can
calculate that:

1 1 M +1
1Zill = —llyayd” = 11 < —(lyayi | + 1) <
m m m

Second, we need to bound the matrix variance statistic o2 defined in £, with 0% = || E[ZZ7T]|| =

m
| " E[Z;Z}]|. We need to determine the variance of each summand. By direct calculation:
i=1

1 1 1
Z: 77 = — al — Dyl — DT = — (ElyiyFyiwl] — 1) < syl y;
E[ZiZ; ] mQE[(yyz Y(yiy; — 1) ] mQ(E[yylyyz] )fmIE[yylyyl]
Then we have:

2 & T & 1 T T 1 T T M2
o> = | > ElZZ]] Z —5 Elya viyy | < —IEl vy Il < —=

We now invoke the matrix Bernstein inequality, Fact BI:

R ma? /2
Prlll> — T <2d- -
IS, ~ Tla > o] < 2 exp (g L)

which is upper bounded by 3 given that m > m(«, ) = max { My M} - 1n(4d/p). O

)

D More Applications

D.1 Application: The Uniform Distribution Over Some Convex Ellipsoid

Fix a PSD matrix 0 < A < I. Consider the uniform distribution D over the surface of some convex
ellipsoid K = {x € R? | 27 A~12 = 1}. Our goal in this section is to argue that our algorithm is
able to approximate the 2nd moment matrix >p. To that end, we want to determine the size m of

a subsample drawn from D, such that with probability at least 1 — (: HE;/ 229251/ I < a
where Xp = %A is the second moment of D.

To utilize Claim B, it is necessary to compute the bounds M; and M. First, note that if x is

drawn from the surface of /C then || E_l/ 2|l = V/d||y|| for unit-length vector y, implying M; = /d.

1/2

Second, consider y = 25 x and observe that:

Elyy"yy"] = E[S5 22" S5 2255 = & - E[A” 2T A7 2T A
® 2. E[A~222T A2 = @2 - A=2 RlzzT] A~ =) a1

where mequahty (x) follows from the fact that 27 A=x = 1 for all i and equality (x*) follows since
Elz;zl] = 1A

Hence we have || E[y;y! vy ]| < d = M, and we conclude that D is (O (% - In(44/5)) , o, B)-
subsamplable.
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Recall that we (1 & )-approximate the 2nd-moment matrix of the input w.p.> 1 —¢£. Thus, we need
the input itself to be a (1 + ~y)-approximation of the 2nd-moment matrix of the distribution. This
means our algorithm requires

d 1
m(3,6)+0 [ ™02 [ tog( L tog(rstrize
Y P )\min
fora = /2 and § = O(W) in order to return a (1 + O(+))-approximation of the 2nd
moment of the distribution w.p. > 1 — O(¢).
Plugging the m(«, ) of D we conclude that in order to return a (1 + O(+y))-approximation of the
2nd moment of D w.p. > 1 — O(&) our sample complexity ought to be

(3, ogyey) | d 10g(1/Amin) - ( d d3/2>
O | —21ell2mn) - [T 100(1/ Ain) - log(—L2m0y ) = 0 (5 4 S
m(y,€) + ( 5 P og(1/ ) - log( ¢ ) 42 + /P

While, for comparison, our baseline algorithm requires

in order to return a (1+O())-approximation of the 2nd moment of the distribution w.p. > 1—0(¢).

D.2 Examples of Heavy-Tailed Distributions

The above discussion holds for a general distribution. Next we demonstrate our algorithms perfor-
mance a few heavy-tailed distributions. However, we also emphasize that many more applications
are possible, since the subsamplability assumption is broad and encompasses a wide range of in-
put distributions. For example, we further analyze datasets drawn from uniform distributions over
ellipsoids and from Gaussian mixtures with stochastic outliers in Appendix D1l and ?? respectively.

The Truncated Pareto Distribution. Throughout we use the following distribution truncated
Pareto distribution, denoted P, that is supported on the interval [1, B] for some B > 1 (say B = 10),
and whose PDF is o< 6. Formally, its PDF is

5B° —6 < <
) = 55T TflfxfB
0 ifr<lorx >DB
so that f integrates to 1. Simple calculations show that 6 L) A =2 Bgi—ll), that o2 def
A~Ps
B*(B%-1 B*(B-1
)\Epﬁ[A2} = % . % and that AAI?P6[A4] =5- B(5—1 )

We consider here two distributions composed of a A ~ Pg and v €g S9=1 The first is \v, namely a
vector with direction distributed uniformly over the unit sphere and magnitude distributed according
to the Pg distribution; and the second is A o v, namely a (d + 1)-dimensional vector with first
coordinate drawn from Pg, concatenated with a uniformly chosen vector from the unit sphere on the
remaining d coordinates.

The \v Distribution. Define the random variable z = Av, where v is uniformly distributed from
the unit sphere, and A ~ Pg. Let D be the distribution of x. Our goal is to argue that our algorithm
is able to approximate the 2nd moment matrix >p and outperforms the baseline(s). To that end, we
want to determine the size m(«, 8) of a subsample drawn from D so that with probability at least

1-B: 1852 8p85 2 — Il < a

To utilize Claim B2, we compute Xp = E[Mv(\v)T] = E[N2] E[vv?] = %gl, since E[vo’] = L1
It follows that y = 251/2:5 = *[{—f)\v, so we can bound ||y|| = M, def BU—*G/E. Lastly, it is necessary
to compute M>. To this end, we evaluate the expectation:
B5 -1 3d

m)z (52 A(0)" - ()]

E[Sp "zl S5 wia] £5] = El(

K3 K3
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94> B5—1

- %(32(33 —-1)
(x) 9d® , B® —1 5B4B—-1) 1

= — 2. I <2dI
25(32(33—1)) B5—1 d — d

() 9d* B°—1

)? - E[NY] - E[vo" vo”] > BEo

)?-EMNY - Efvo”]

where () follows from vTv = 1 and (*x) holds since E[\*] = % and E[ov”] = 1. Hence
we have || E[y;yl viyl]|| < 2d = M. We now plug-in our values of B, A, and M and infer this
distribution is m(a, §)-sampleable for m = O(max{%, daﬁ} In(d/s)). Plugging this into (II) we
conclude that in order to return a (1+O(y))-approximation of the 2nd moment of D w.p. > 1—-0(¢)
our sample complexity ought to be

11
m(7,6)+0 <m(2,10g(Bd)) g -log(Bd) -log(log(Bd))> =0 (max{;é, (T} + a5 d)

o i3

While, for comparison, our baseline algorithm requires
~ (d- ~(d d B3
O( m(%f)) :O(max{27}>
€y € Rl
in order to return a (1+O(+y))-approximation of the 2nd moment of the distribution w.p. > 1—-0(§).
The A o v Distribution. Consider the (d + 1)-dimensional distribution D where the first coordi-
nate is drawn from the truncated Pareto distribution Pg and the remaining coordinates are drawn
uniformly over the unit sphere S¢~1: Te. 2z = D ~ D. Our goal in this section is to ar-

gue that our algorithm is able to approximate the 2nd moment matrix >p. To that end, we want
to determine the size m of a subsample drawn from D, such that with probability at least 1 — 3:

185 25p55 " — I3 < o

First it is easy to see that the Lo-norm of any x ~ D is at most B + 1. Next, we compute >p:

B A ™ A2 T, o2 0
mo=uly| B wl=l], wa)i=|F Y,
1 =T -1
It follows that the vector iy = Z;/ r = [a(ﬁ) \2& I] D} = {%ﬂ, S0 its norm is upper

bounded by M; = y/d + o 2B2. So now we can evaluate the expectation:

_ ~2)\2 ~L/d T
E[nyny1=E[||ynyT]=E[<%2A2+d>[ 7p N oy Vi ]1

o5 "W duu™

_ [og "EN + dog P E[N?) 0 _ [og *EN] +4d 0

- 0 (06 2EN] +d) 1] — 0 (d+ 1)1y
AR 0

=dlgq + |:06 %*3[ ] I

seeing as o5 * E[A*] ~ £ = O(1) we can infer that M = || E[yy T yy]|| = O(d).
We now plug-in our values of B, Ay, and M and infer this distribution is m(c, 3)-samplable for
m = O(max{-% d+T’32} In(4/s)). Plugging this into (@) we conclude that in order to return a

a2

(1 £ O(~))-approximation of the 2nd moment of D w.p. > 1 — O(£) our sample complexity ought
to be

11
m(y,€)+0 (W g-log(Bd) ~10g(10g(€Bd))> 5 (max{ d At B dt B d)

72y v\
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The analysis suggests we can even set B = O(v/d) and get a sample complexity of O ( ’% + f‘ii;).

While, for comparison, our baseline algorithm requires

= (d-m(v,6)\ A~ (d d B*>+d\ip<vd ~, d?
0< ) =6 (Smaxt G 2 ) o)

in order to return a (1+£O(+))-approximation of the 2nd moment of the distribution w.p. > 1—-0(§).
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