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Abstract

Graph Neural Networks (GNNs) have demonstrated strong performance across
tasks such as node classification, link prediction, and graph classification, but
remain vulnerable to backdoor attacks that implant imperceptible triggers during
training to control predictions. While node-level attacks exploit local message
passing, graph-level attacks face the harder challenge of manipulating global repre-
sentations while maintaining stealth. We identify two main sources of anomaly in
existing graph classification backdoor methods: structural deviation from rare sub-
graph triggers and semantic deviation caused by label flipping, both of which make
poisoned graphs easily detectable by anomaly detection models. To address this,
we propose DPSBA, a clean-label backdoor framework that learns in-distribution
triggers via adversarial training guided by anomaly-aware discriminators. DPSBA
effectively suppresses both structural and semantic anomalies, achieving high attack
success while significantly improving stealth. Extensive experiments on real-world
datasets validate that DPSBA achieves a superior balance between effectiveness
and detectability compared to state-of-the-art baselines. The code is available at
https://github.com/TheCoder0fs/DPSBA.

1 Introduction

Graph Neural Networks (GNNs) are foundational models for learning on graph-structured data,
achieving strong performance in tasks like node classification, link prediction, and graph classifi-
cation [[1]. Through message passing, GNNs capture structural and feature dependencies, enabling
applications in social networks [2], recommender systems [3], and molecular analysis [4]. As GNNs
are increasingly adopted in real-world systems, their security has drawn growing attention. Among
various threats, backdoor attacks, where imperceptible triggers are embedded [S]] in training data to
manipulate predictions, pose a serious risk due to their stealth [6H8]]. While extensively studied in
vision and NLP, backdoor vulnerabilities in graph learning remain under exploration.

Most existing graph backdoor studies focus on node classification, where local triggers are injected
to misclassify specific nodes [9, [10]. These attacks leverage GNN locality to propagate triggers
through neighborhoods while remaining hard to detect. Link prediction attacks similarly operate in a
local context, targeting the presence or absence of edges between node pairs [11]]. In contrast, graph
classification poses a fundamentally different and more complex challenge. Here, the attacker must
influence the global semantics of an entire graph rather than a single node or edge. This requires
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Figure 1: Anomaly score distributions of clean vs. backdoor graphs on the AIDS dataset.
Anomaly scores are computed via SIGNET [[12] for backdoor samples generated by ER-B [13]],
GTA [14], and Motif [15]. In all cases, backdoor graphs (yellow) shift significantly rightward
compared to clean graphs (blue), revealing strong distributional deviation. This underscores the
detectability of prior triggers and the need for distribution-preserving attacks.

triggers to manipulate the full-graph embedding, often through larger or structurally rare subgraphs.
Recent backdoor attacks on graph classification attempt to address global manipulation challenges by
injecting structurally distinct subgraphs, such as rare motifs [[15]. However, these approaches often
introduce obvious out-of-distribution (OOD) artifacts, which significantly compromise stealth and
limit their practicality in real-world settings. As shown in Figure[I] there exists a clear distribution gap
between clean and backdoor graphs, making current methods highly detectable by outlier detection
models. Although Zhang et al. [16]] similarly observe OOD issues in node classification and propose
a distribution-preserving strategy, their approach relies on local perturbations that affect only a single
node’s embedding. In contrast, graph classification requires modifying the global message-passing
process to influence the entire graph representation, making distribution preservation significantly
more challenging (see Appendix [C.T]for theoretical justification).

This global nature further amplifies the risk of both structural and semantic deviations when inserting
backdoor triggers, as detailed in Appendix [A} 1) Structural Deviation: Triggered by the injection of
rare or unnatural subgraphs (e.g., low-frequency motifs) that diverge from the structural distribution
of clean graphs. These triggers often create shortcut correlations with target labels and are easily
identified by outlier detectors, as shown in Table[A5] Rare motifs as triggers (Motif) achieve high
attack success rates (ASR) but are highly detectable. In contrast, more frequent motifs (Motif-S)
reduce detectability but also weaken attack effectiveness; 2) Semantic Deviation: Caused by label
flipping, this introduces a discrepancy between a graph’s assigned class and its inherent structure. As
demonstrated in Table[A6] adopting clean-label settings reduces the overall anomaly degree (AUC)
across all methods but results in a notable ASR drop, revealing a fundamental trade-off between attack
stealth and success. These findings highlight a critical limitation of existing methods: their inability to
balance effectiveness and stealth. This raises a key challenge: Can we design a graph-level backdoor
attack that preserves the distributional properties of clean samples, avoids label manipulation, and
remains both effective and stealthy?

To tackle these challenges, we propose DPSBA (Distribution-Preserving Stealthy Backdoor Attack),
a clean-label backdoor framework for graph classification. Unlike prior methods that use rare or
manually designed subgraph triggers, often causing high anomaly scores, DPSBA adaptively learns
in-distribution triggers from target-class data. To address both structural and semantic deviations,
it introduces a joint training strategy combining: (1) a clean-label attack mechanism that preserves
semantic consistency by avoiding label flipping, and (2) distribution-aware discriminators that
penalize structural and feature-level anomalies. Through adversarial training with a surrogate classifier
and anomaly detectors, DPSBA enables effective and stealthy trigger generation. Experiments on
real-world datasets show that DPSBA substantially lowers anomaly scores while maintaining high
attack success rates, achieving a strong trade-off between stealth and efficacy.

2 Preliminaries

In this section, we first give the definition of the graph classification task and then introduce our
stealthy backdoor attack objective.



2.1 Graph Classification Task

Given a dataset consisting of graph-structured instances, the objective of graph classification is
to assign a class label to each graph. Formally, a graph classification dataset is defined as: C =
{(G1,11), (G2,y2), ..., (Gn, yn)}, where each graph G; = (V;, E;) is composed of a set of nodes
V; and edges E;, and y; € ) is the corresponding ground-truth class label. Let n denote the number
of graph samples in the dataset. The goal is to learn a graph-level classifier: f : G — ), which maps
each input graph G € G to one of the class labels in ) = {y1, ya, ..., yn }- The classifier f is typically
trained via gradient-based optimization using a supervised loss function L4, (€.g., cross-entropy)
over the training set Cai -

2.2 Stealthy Backdoor Attack on Graph Classification Task

Backdoor attacks inject a hidden and malicious trigger mechanism (i.e., "backdoor") into the target
model in advance. When the trigger appears, the backdoor is activated and misleads the model to get
the desired output.

Attacker’s Goal. The objective of a backdoor attacker in graph classification is threefold: (1) The
model trained with injected backdoors should predict any graph containing the trigger as the attacker-
specified target label y;; (2) The model’s performance on clean graphs should remain unaffected;
(3) The backdoor graphs should not exhibit significant distributional deviations from clean graphs,
ensuring high stealthiness. Formally, the attacker’s goal can be formulated as:

fet (m(G;gt)) =Yt fet(G) = f@(G)7 diﬂ.(fo(m(G§gt))>fo(G)) <€ (D

where GG denotes a clean graph, and y; is the target label specified by the attacker. The function
m(G; g¢) denotes the trigger injection process, producing a backdoor graph G, by embedding
trigger subgraph g, into G. fy and fy, represent the clean and poisoned graph classification models,
respectively. f, is a detection model trained on clean graphs, and diff(-, -) measures the anomaly
difference (e.g., anomaly score) between a clean graph and its backdoor counterpart. The scalar e
defines an upper bound on acceptable deviation for stealthiness, and can be tuned per dataset.

Attacker’s Knowledge and Capability. We consider a restricted and realistic threat model in
which the attacker has limited access and control: (1) Black-box knowledge: The attacker has no
knowledge of the target model architecture, training hyperparameters, or optimization pipeline. This
accommodates the possibility that different graph classification models may be deployed. (2) Limited
poisoning capability: The attacker can only poison a small fraction of the training dataset and is
not allowed to modify any labels. This reflects a more challenging clean-label setting and simulates
real-world scenarios where data integrity is partially enforced.

3 Methodology

Grounded in the attacker’s goal, DPSBA adaptively generates subgraph triggers whose topology
and features mimic in-distribution patterns of clean graphs, reducing detectability while ensuring
attack success. As shown in Figure 2] DPSBA includes two stages: poisoned sample construction and
trigger optimization. In the first stage, hard samples from the target class are selected and injected
with triggers at strategically chosen locations. The trigger’s structure and features are generated by a
learnable topology-feature generator. In the second stage, DPSBA jointly optimizes attack success
via a surrogate model and minimizes detectability via anomaly-aware discriminators through staged
adversarial training.

3.1 Poisoned Sample Construction

To support clean-label stealthy backdoor injection, DPSBA constructs poisoned samples from the
target class itself, avoiding explicit label flipping. This process comprises three stages: (i) selecting
informative samples for poisoning, (ii) identifying optimal injection locations within each graph, and
(iii) initializing and injecting the trigger subgraph. Together, these steps ensure that the backdoor
signal is both semantically consistent and statistically in-distribution.
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3.1.1 Hard Sample Selection

In the clean-label setting, directly selecting target-class samples avoids semantic inconsistency but
may reduce the effectiveness of the attack. To counteract this, DPSBA strategically mines hard
samples, i.e., samples from the target class that the model finds uncertain. This design is inspired by
Gao et al. [17], who show that hard samples can amplify the effectiveness of backdoor attacks by
being more susceptible to manipulation. In particular, low-confidence samples, those near the model’s
decision boundary, require smaller perturbations to shift predictions, and are thus better candidates
for subtle backdoor injection. We use a clean surrogate model f, to measure the confidence score of
a graph GG with respect to the target label y; as:
ef 0 (G)yt

Cfd(G) = SOftmaX(fQ(G))yt = W, (2)
i=1 '

where f3(G) € R denotes the logit output of the surrogate model for graph G, K is the total
number of classes, and ¥, is the target class index. We select the bottom p% of target-class graphs
with the lowest c¢fd(G) scores as poisoned samples. These hard samples are passed to the subsequent
trigger location and injection stages, where subtle but effective perturbations are applied. Since they
are more vulnerable to decision changes, they are more likely to be misclassified into the target class
once the trigger is activated, while still maintaining clean-label consistency and high stealth.

3.1.2 Trigger Location Selection

After selecting the hard target-class samples for poisoning, DPSBA determines where in each graph to
inject the trigger. Existing studies adopt various strategies to identify influential nodes, such as using
centrality metrics [[15] or extracting interpretable subgraphs [[18} [19]. While interpretation-based
methods offer precision, they often incur prohibitive computational costs. To strike a balance between
scalability and informativeness, DPSBA adopts a two-stage selection process. First, nodes with
high degree centrality are pre-selected as candidates. Specifically, for a graph G with IV nodes, we
compute the normalized degree centrality of each node v as deg(v)/(/N — 1) and retain the top-k
nodes (with & typically set to 20, where M is the trigger size). Next, among these candidates, we
identify the M most influential nodes using a surrogate-based ablation approach. For each node v in
the candidate set NV,,,,, we evaluate its contribution to model prediction by measuring the change in

output after removing it:
S() =1fo(G + Av) = fo(G)], ©)

where A, denotes the removal of node v from G. The top-M nodes with the highest S(v) values are
selected as trigger attachment nodes. These nodes are then replaced, along with their edges, by an
initialized subgraph trigger g, to prepare for the subsequent generation phase.

3.1.3 Trigger Generation and Injection

To enable the insertion of stealthy and effective triggers, generative approaches offer superior
flexibility and control over random, interpretability-based, or search-based strategies. Inspired by
GTA [14], DPSBA introduces two lightweight yet expressive modules, i.e., a topology generator
and a feature generator, that cooperatively define the structure and node attributes of the injected
subgraph. These generators are trained in a separate phase to adaptively fit the data distribution.



Topology Generator. The topology generator is implemented as a multilayer perceptron (MLP)
that transforms the adjacency matrix H of the target injection region into a learnable soft structure:
H' = o(W1H + by ), where W, and b; are learnable parameters (for the convenience of subsequent
discussion, they will be simply referred to as w;) and o(+) is a non-linear activation function. For

undirected graphs, the adjacency matrix is symmetrized as A = % (H’ +H'"). To accommodate

the discrete nature of graph topology, we adopt a binarization mechanism inspired by binarized neural
networks [20], where the final adjacency matrix is given by: Apinary = I(A > 0.5). Binarization
is applied only during forward propagation to preserve gradient flow during backpropagation. The
resulting binary matrix defines the trigger’s structural connectivity.

Feature Generator. To ensure the feature space consistency between clean and poisoned graphs,
the feature generator produces trigger node features based on the original features at the injection
site. It employs an MLP to generate: X' = o(W5X + bs), where X denotes the original features
of the injected nodes, and W5, b, are learnable parameters, which are simply referred to as wy
for the convenience of subsequent discussion. This transformation ensures that generated features
remain aligned with the data distribution, thereby reducing feature-level anomaly. Besides, the
feature generator can also avoid distribution shift when the target graphs have high attribute variance.
The feature generator does not rely on distribution priors of the entire dataset. Instead, it takes as
input the local structural and attribute context around the trigger injection site and generates features
that blend smoothly with the surrounding neighborhood. This allows the generator to adapt to the
specific variance of each target graph on a per-instance basis, without requiring any handcrafted
normalization or explicit regularization. As a result, the generated features remain close to the local
data manifold, reducing the likelihood of creating detectable anomalies, even in the presence of high
attribute variance across graphs.

Trigger Injection. Given a selected clean graph G and the generated trigger subgraph g; =
(Apinary, X'), DPSBA injects the trigger at the designated node locations to produce a poisoned
sample: G4, = m(G; g;), where m(-) denotes the injection operation. The resulting G, is added to
the training set along with clean graphs. After the backdoored model is trained, the attacker can craft
adaptive triggers during inference and inject them into arbitrary test graphs to activate the backdoor
and induce targeted misclassification.

3.2 Trigger Optimization

Once the trigger subgraph is initialized, DPSBA enters the optimization phase to jointly refine the
topology and feature generators for both effectiveness and stealth. It minimizes a hybrid objective
comprising: (1) an attack loss that enforces confident misclassification into the target class, and (2) an
adversarial anomaly loss that suppresses structural and feature-level deviations detectable by outlier
models. This is achieved via a two-stage adversarial training strategy with dedicated discriminators
and a dynamically updated surrogate model.

Attack Effectiveness. The core goal of a backdoor attack is to ensure that the trigger-embedded
graph G, is classified into the target class y;. This is achieved by minimizing the attack loss with
respect to a surrogate model fy-:

Eatk = - 1Og f@* (th )yt ) (4)
where fg-(-)y, denotes the logit output of the surrogate model for class ;.

Stealthiness via Adversarial Anomaly Minimization. To ensure the trigger remains statistically in-
conspicuous, DPSBA introduces adversarial discriminators trained to distinguish clean and backdoor
samples from structure and feature perspectives. Specifically, the topology discriminator Dy, (a GCN)
detects structural anomalies, while the feature discriminator Dy, (an MLP) detects feature distribution
shifts. The generators aim to fool these discriminators via the following minimax objectives:

min meax E( ) Z log Dy, (G) + Z log(1 — Dy, (Gg, (wr))), ®)
o GG, GGy

I{gﬂ max £Y) = > log Dy, (G)+ > log(1 — Dy, (Gy, (wr))), (6)
G~Ge G~Gy



where G, and G are the clean and poisoned graph sets, and w;, wy are the generator parameters.

Joint Training Objectives. DPSBA jointly optimizes the generators using a weighted sum of the
attack loss and the corresponding adversarial loss. For the topology generator:

H‘})in Z l:atk (th (wt)) + a/:gzt) (Det (th (wt)))7 s.t. 9* = arg Hbin £train(f9 (C))7 (7)
' Gegy

and for the feature generator:

min > Lak(Go, (wr)) + 5L (Do Gy, (), 540" = argmin Livain(fo(C)), ®)
T GeGy

where « and (3 are hyperparameters balancing stealth and attack objectives, and C'is the clean training
set used to update the surrogate model.

Adversarial Training Strategy. To realize both stealth and attack effectiveness, DPSBA adopts a
staged adversarial training strategy to optimize the topology and feature generators in coordination
with anomaly discriminators. The joint objective encourages trigger-embedded graphs to be confi-
dently misclassified into the target class while remaining statistically similar to clean samples. To
further justify this design, we derive in Appendix [C.2]a formal lower bound that connects the total
variation distance between clean and poisoned graph distributions with the optimal anomaly detection
AUC, demonstrating that minimizing such divergence directly improves stealthiness.

The training process consists of two alternating phases: 1) Topology optimization phase: The
topology generator w; and discriminator Dy, are alternately updated. The generator learns to
create subgraph structures that both maximize attack loss L, and minimize structural anomaly
signals detectable by Dy,. 2) Feature optimization phase: Similarly, the feature generator wy
and discriminator Dy, are jointly trained. The generator adapts node features to support effective
attacks while suppressing attribute-level anomalies identified by Dy, . To maintain alignment with the
evolving trigger distribution, the surrogate model fj is fine-tuned after each phase, ensuring reliable
attack gradient signals throughout training. This cooperative optimization framework allows DPSBA
to dynamically balance the trade-off between attack success and stealth, as further summarized in
Appendix [D] Time complexity analysis can be found in Appendix [F|

4 Experiment

We first introduce the experimental setup, including datasets, baselines, and implementation details.
Then, we evaluate DPSBA’s performance on attack effectiveness and stealth across multiple settings,
followed by ablation analysis and anomaly stealth evaluation. Additional hyperparameter studies are

included in Appendix [E4|E.5

4.1 Experimental Setup
4.1.1 Datasets and Evaluation Metrics

We evaluate DPSBA on four real-world graph classification datasets from the TUDataset benchmark
[21]: PROTEINS_full [22] ( protein graphs for function prediction), AIDS [23]] (molecular graphs
related to AIDS research), FRANKENSTEIN [24] (a compound property dataset combining BURS
and MNIST features), and ENZYMES [25] 26]] (a 6-class biomolecular classification task). For each
dataset, we designate the minority class as the attack target to simulate a realistic low-frequency
scenario. The statistics for the datasets are summarized in Table We adopt three metrics: ASR
(Attack Success Rate) for attack effectiveness, CAD (Clean Accuracy Drop) to assess model utility
degradation, and AUC (Area Under the ROC Curve) to quantify anomaly detectability via outlier
models. Detailed metric definitions are deferred to Appendix[E.2]

4.1.2 Baselines

We compare DPSBA with five representative graph-level backdoor attack methods. ER-B [13]
generates universal triggers using the Erd6s—Rényi random graph model. LIA [18] modifies the
connections of low-importance nodes, as identified by GNN explanation techniques, with fixed trigger
structures. GTA [[14] employs a bi-level optimization strategy to train a subgraph generator that adapts



triggers per graph. Motif [[15] selects low-frequency motifs from the dataset as effective but easily
detectable triggers. Motif-S is a stealthier variant using the high-frequency M41 motif, reducing
anomaly scores while slightly sacrificing attack strength. Following GTA [14]], we split each dataset
into 50% training and 50% test sets, with 5% of the training data poisoned. To ensure fair comparison,
all methods adopt a fixed trigger size of 4. Both the topology and feature generators are trained for
20 epochs per stage over 3 iterations with a learning rate of 0.001, using early stopping [27]. For
baselines, we use the best hyperparameters reported in their original papers.

4.1.3 Graph Classification Models and Anomaly Detection Algorithms

Following prior work on graph backdoor attacks [[15], we evaluate DPSBA on three widely used
graph classifiers: GCN [28], GIN [29], and SAGPool [30]. These models are used both as attack
targets and surrogates to test generalizability across architectures. Clean accuracy results are reported
in Table @ For anomaly detection, we adopt SIGNET [12], identified as the most effective method
in a recent benchmark study [31]], to assess the stealthiness of injected backdoor samples.

4.2 Experimental Results

Table 1: Comparison results between DPSBA and each baseline model

Datasets S‘f\f[rgdgea]te Metrics ER-B LIA GTA  Motif Motif-S  Ours

ASR (%) 51.53 6835 73.16 7091  48.56 73.93
GCN CAD (%) 4.73  4.70 5.14 5.92 4.66 4.62
AUC (%) 70.04 71.01 7820 79.16 64.72 60.11

PROTEINS_ ASR (%) 6253 5877 8096 79.08 63.01  87.91
full GIN CAD (%) 488 436 457 497 4.33 4.92
AUC (%) 79.65 71.74 7996 80.06 7049  62.95

ASR (%) 65.38 64.81 94.04 7135 57.09 94.15
SAGPool CAD (%) 426 5.02 3.65 3.36 3.94 3.29
AUC (%) 7134 76.89 7857 8275 81.8l1 69.20

ASR (%) 85.38 8549 9321 92.69  56.08 94.76
GCN CAD (%) 4.53  3.80 5.14 4.12 4.03 2.38
AUC (%) 98.08 97.22 9934 99.71 89.43 72.65

AIDS ASR (%) 9399 9556 9752 97.75 56.8 95.87
GIN CAD (%) 2.69  2.03 2.65 2.28 2.51 1.94
AUC (%) 9998 9920 9934 99.71  94.29 73.66

ASR (%) 59.26 62.66 86.99 87.65 62.89 98.90
SAGPool CAD (%) 1.65 1.79 3.77 2.64 2.44 -0.40
AUC (%) 9579 9456 99.67 99.02 93.43 77.23

ASR (%) 63.60 61.04 9935 80.57 59.24 98.37
GCN CAD (%) 1.71 1.56 2.74 1.15 3.96 1.01
AUC (%) 80.41 75.66 100.00 89.64 69.23 68.96

FRANKEN- ASR (%) 92.06 82.63 98.65 9287 58.68  99.84
STEIN GIN CAD (%) 360 235 195 244 1.75 1.83
AUC (%) 8573 76.15 91.06 87.54 65.77  73.46

ASR (%) 68.15 90.18 9523 8456 5229 99.99
SAGPool CAD (%) 4.78  4.66 4.64 4.61 6.86 4.57
AUC (%) 64.89 7750 80.46 87.29 60.98 60.12

ASR (%) 26.09 3043 9533 21.74 1521 96.67
GCN CAD (%) 4.17 499 3.00 4.99 -1.67 -0.67
AUC (%) 6832 66.15 7120 71.35 66.22 66.11

ENZYME ASR (%) 3783 27.02 9600 1621 12.16  99.33
N S GIN  CAD (%) 917 1000 267 833 417  -0.33
AUC (%) 7140 6201 7642 68.18 6578  41.20

ASR (%) 29.54 38.63 100.00 15.91 11.37  100.00
SAGPool CAD (%) 4.33  6.67 5.00 10.83 3.33 4.00
AUC (%) 57773 6398 7037 7547  69.48 49.91




Table 2: Results of the transferability evaluation(%)

Surrogate model  Actual model PROTEINS_full AIDS FRANKENSTEIN
ASR CAD ASR CAD ASR CAD
GIN 81.32 4.79 99.44 1.01 98.37 0.03

GCN

SAGPool 98.90 0.08 96.14 248 94.96 -0.10

4.2.1 Effectiveness and Stealthiness

We evaluate DPSBA on three datasets against six baselines in terms of attack effectiveness (ASR),
model performance drop (CAD), and anomaly detectability (AUC), as shown in Table|l| DPSBA
consistently achieves optimal or near-optimal ASR across datasets and models, verifying its strong
attack capability. This is credited to its adaptive trigger generation guided by confident hard samples
and structurally important nodes. In terms of CAD, DPSBA maintains minimal accuracy degradation
(<5%), indicating high stealth at the model level. For distribution-level stealth, DPSBA significantly
reduces AUC, i.e., maintaining values around 70%, demonstrating strong resistance to detection
by statistical outlier models. We further observe that ASR and AUC fluctuate significantly across
datasets due to inherent differences in graph structure and anomaly sensitivity. For datasets particularly
sensitive to attribute or structural perturbations (e.g., FRANKENSTEIN), even minor modifications
can induce high ASR yet large anomaly scores. In such cases, we recommend an early stopping
strategy, namely terminating generator updates once ASR saturates or marginal gains diminish, to
enhance stealth. For instance, on FRANKENSTEIN, where attribute anomalies are highly detectable
(GTA achieves >95% ASR but with high AUC), DPSBA disables the feature generator early, achieving
near-perfect ASR solely via structural triggers. Across all benchmarks, DPSBA achieves the high
ASR of Motif while matching the stealth of Motif-S, validating its ability to balance effectiveness
and detectability. For multi-class graph classification tasks, DPSBA consistently outperforms all
baselines in terms of both attack success rate (ASR) and stealth (CAD, AUC) across three surrogate
models. Notably, most baselines (except GTA) fail on this dataset due to high attribute and strucutre
variability, underscoring the advantage of our distribution-preserving and adaptive design.

4.2.2 Transferability

To evaluate the transferability of DPSBA, we use GCN as the surrogate model to generate triggers
and test them on other classifiers. Table [2]reports ASR and CAD across datasets using GIN and
SAGPool as target models. Since AUC is model-independent, it is omitted. Results show that DPSBA
maintains high ASR and low CAD across architectures, demonstrating strong transferability even
when using a simple surrogate model. Meanwhile, we observe a counterintuitive phenomenon. A
comparison of the experimental results on the AIDS and PROTEINS_full datasets in Table [[|and
Table 2] reveals that the ASR is higher when the surrogate model differs from the actual model than
when they are identical. We provide a detailed discussion of this matter in Appendix [E.6

4.2.3 Anomaly Stealth Analysis

To show the anomaly Table 3: Performance (AUC%) of different anomaly detection models
stealthiness of DPSBA, we

first visualize the anomaly Models PROTEINS full AIDS FRANKENSTEIN
score distributions of clean OCGIN 55.19 86.52 7212
and backdoor graphs on all GLocalKD 50.24 31.46 46.57
datasets in Figure 3} The SIGNET 60.11 72.65 68.96

distributions show strong
overlap, indicating that
DPSBA-generated triggers exhibit minimal anomaly and are hard to distinguish from clean samples.
This is largely attributed to the use of clean-label constraints and adaptive optimization. To further
assess robustness across detectors, we evaluate DPSBA under multiple anomaly detection algorithms,
including OCGIN [32] and GLocalKD [33], with results summarized in Table[3] DPSBA consistently
achieves low AUCs and, notably, GLocalKD fails to detect most triggers, confirming the strong
stealth of DPSBA across detection methods. Beyond anomaly detection, we examine randomized
subsampling [[13}[14], a standard defense strategy that randomly removes subgraphs during training.
As shown in Figure f[(a), DPSBA maintains high ASR despite this defense, thanks to its compact



trigger size and dual embedding in structure and features, making the trigger difficult to eliminate via
sampling.
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Figure 3: Anomaly distribution visualization
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samples are detected. In contrast,
previous methods show signifi- Figure 4: Attack performance under defense

cant degradation. This highlights

a key insight: existing detection strategies, while effective at identifying poisoned data, remain
insufficient to fully prevent backdoor success due to the low sample requirement for trigger activation.
More proactive and robust defenses are needed to counter stealthy attacks like DPSBA.

4.3 Ablation Study

To evaluate the role of each Table 4: Results of the ablation experiments (%)
component in DPSBA, we

conduct ablation experiments Model PROTEINS_full AIDS

on PROTEINS_full and ASR CAD AUC ASR CAD AUC

AIDS by removing one
module at a time: DPSBA/S DPSBA 7393 462 60.11 9476 238 72.65

(w/o hard sample selection), DPSBA/S 7098 3.57 60.24 9132 2.09 72.60
DPSBA/N (w/o position DPSBA/N  70.74 453 5897 93.67 231 71.26
selection), DPSBA/F (w/o DPSBA/F  71.80 496 59.01 8567 240 6726
feature generator), DPSBA/T DPSBA/T  69.08 3.71 5473 93.66 291 7141
(wlo topology generator), and ~ DPSBA/OD ~ 90.88 490  90.23 9946 3.54 93.72

DPSBA/OD (w/o adversarial

training), with results shown in Table 4| Note: The FRANKENSTEIN dataset is highly sensitive to
attribute perturbations, where even small feature changes can lead to high ASR and pronounced
anomaly. As discussed in Section 4.2.1, we apply early stopping to the feature generator on this
dataset; thus, it is excluded from the ablation study.

Removing the sample or location selection module (S/N) slightly reduces ASR, confirming their
effectiveness in identifying vulnerable graph regions. Excluding either generator (F/T) significantly
degrades ASR but slightly improves AUC, suggesting that targeting both topology and features is
essential for strong attacks, while single-aspect perturbation introduces fewer anomalies. The relative
importance of these attributes varies across datasets, indicating that under strict stealth constraints,
selectively optimizing one may be preferable. DPSBA/OD achieves the highest ASR but suffers the
worst AUC, highlighting the importance of adversarial training for stealth. All other variants maintain
CAD within 5%, showing minimal impact on model performance. Overall, the full DPSBA provides
the best trade-off between effectiveness and stealth, with adversarial training enhancing detectability
resistance and other modules improving attack strength.



4.4 Impact of the Loss Weights o and

To control the anomaly
level of injected triggers,
DPSBA employs adversar-
ial training with two loss
weights: « for structural
anomalies and S for fea-
ture anomalies. This experi-
ment investigates how vary-
ing these weights affects
the trade-off between attack
effectiveness and stealth.
Specifically, we vary o and Figure 5: Parametric analysis of « and

S from 0.1 to 100 in the

joint loss formulations (Equations[7]and ) and observe the corresponding changes in attack success
rate (ASR) and anomaly detectability (AUC). Results are shown in Figure[5] Overall, both ASR
and AUC exhibit a downward trend as « and [ increase. Larger weights impose stronger anomaly
constraints, limiting the model’s aggressiveness and thereby enhancing stealth. However, the rate
of decline differs between « and /3, reflecting their distinct effects on structural and feature-based
anomaly regularization, respectively. This suggests the two parameters can be tuned independently
to suit dataset-specific characteristics. Importantly, when « and 3 exceed a certain threshold, AUC
stabilizes, indicating diminishing returns from further increasing anomaly penalties. This plateau
signals that stealth constraints have been effectively enforced. At this point, DPSBA achieves a
favorable balance between high ASR and low AUC. This analysis provides practical guidance for
tuning « and /3 based on application-specific requirements: small values favor stronger attacks, while
larger values improve stealth, helping practitioners achieve optimal trade-offs on different datasets.

5 Conclusion

In this paper, we present DPSBA, a clean-label backdoor framework tailored for graph classification.
Unlike prior work that relies on out-of-distribution triggers, semantic label flipping, or manually
designed patterns, DPSBA learns in-distribution triggers directly from target-class graphs via a joint
optimization process. The framework integrates a clean-label attack mechanism with anomaly-aware
adversarial training, optimizing both attack effectiveness and stealth. Specifically, it employs struc-
tural and feature-level discriminators to minimize detectable deviations while preserving semantic
consistency. Extensive experiments on diverse graph benchmarks and architectures demonstrate that
DPSBA consistently achieves high attack success rates (ASR), low anomaly detection scores (AUC),
and negligible clean accuracy drop (CAD). These results validate that DPSBA achieves a favorable
balance between stealth and attack potency, outperforming existing baselines in both effectiveness
and detectability. Our findings highlight the practicality of stealthy, distribution-preserving backdoor
attacks in real-world graph learning scenarios.

Limitations. The clean-label constraint, while significantly enhancing stealth, may limit attack
potency in scenarios with imbalanced class distributions or scarce target-class samples, where clean
instances are insufficient to support effective trigger learning. Additionally, DPSBA operates under a
partial training data access assumption, which restricts its applicability to fully black-box scenarios
or test-time attacks where no data access is available. Future work may investigate lightweight
or black-box-compatible variants of DPSBA, explore adaptation to broader graph settings such as
heterophilic or dynamic graphs, and develop theoretically grounded defenses capable of detecting
distribution-preserving triggers.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In abstract, we outline the problems we have solved and the contributions we
have made. The claims made match the theoretical and experimental results.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In conclusion, we introduce the limitations of the method and the reasons that
cause them.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The assumptions in the paper are clearly stated in the statement of theorems.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We clearly introduce the model framework and datasets, and provide the
parameters.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We submit the code and data, and introduce the data processing method.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In the experimental section and appendix, we provide detailed information
about the training and testing details

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We conduct experiments ten times and compute the average value.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide sufficient information on the computer resources in appendix,
including GPU and CPU.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We comply with the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the positive impact of DPSBA on related fields in Appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We did not use data or models that have a high risk of misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite the original paper that produced the code package or dataset.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We use LLM only for writing, editing, or formatting purposes and does not
impact the core methodology, scientific rigorousness, or originality of the research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Anomaly Issues in Graph Classification Attacks

To demonstrate that backdoor graphs in graph classification tasks tend to exhibit clear out-of-
distribution (OOD) characteristics, we conduct anomaly detection experiments on the AIDS
dataset [23]. Specifically, we use the SIGNET algorithm [12] to evaluate the statistical anomaly
of poisoned samples generated by representative backdoor attack methods, including ER-B [13]],
LIA [18], GTA [14], and Motif [[15], comparing them against clean training samples. As shown in
Table[A3] we adopt AUC as the evaluation metric for anomaly detection, which reflects how well
a detector can distinguish clean graphs from anomalous ones. The results show that most existing
methods result in extremely high AUC scores, often exceeding 90%, highlighting that backdoor
samples are statistically distinguishable and exhibit significant anomalies. This stands in contrast to
node-level backdoor attacks, where the GNN’s local message passing can help diffuse trigger signals
and reduce detectability.

Table A5: Performance of backdoor attack methods on the AIDS dataset
Backdoor Attack Method
ER-B LIA GTA Motif Motif-S

ASR(%) 8538 8549 9321 92.69 56.08
AUC(%) 98.08 97.22 9934 99.71 89.43
CAD(%) 453 380 514 412 4.03

Metrics

Structural Deviation. Backdoor models often exploit shortcut learning by associating rare subgraph
triggers with the target class to enhance attack success. However, these rare triggers tend to deviate
significantly from the natural graph distribution, making them easy to detect. Referring to the trigger
selection strategy in Motif [[15], we design a comparison between two variants: (1) Motif uses the
least frequent motif as the trigger, while (2) Motif-S adopts the most common motif in the AIDS
dataset. As shown in Table[A3] Motif achieves higher ASR due to the strong signal of the rare trigger.
However, this also results in extremely high AUC scores, indicating poor stealth. In contrast, Motif-S
trades off some attack effectiveness for significantly improved stealth, as frequent motifs are naturally
present in the dataset and thus harder for anomaly detectors to distinguish. This validates that trigger
frequency directly influences the detectability of structural anomalies.

Table A6: Performance of clean label backdoor attack
Backdoor Attack Method
ER-B LIA GTA Motif Motif-S

ASR(%) 37.11 57.62 91.88 84.37 1.80
AUC(%) 61.03 5942 98.05 97.74 71.88
CAD(%) 433 378 492 424 4.13

Metrics

Semantic Deviation. Label manipulation, commonly used in traditional backdoor attacks, intro-
duces semantic inconsistency between the graph content and its assigned label, exacerbating anomaly.
The success of such attacks relies on enforcing a co-occurrence between the trigger and target label,
which is typically achieved by inserting the trigger into non-target-class samples and forcibly flipping
their labels. This label tampering often results in category-level semantic conflict. To assess its effect,
we further evaluate the same backdoor methods under a clean-label setting (i.e., without modifying
labels). As shown in Table[A6] while the AUC scores drop in all methods, indicating improved stealth,
the ASR also drops significantly. This suggests that semantic consistency reduces the statistical
footprint of the backdoor, but at the cost of attack success. In summary, label flipping enhances attack
strength but induces additional semantic anomaly, making backdoor graphs more detectable.

These findings highlight two major anomaly sources in graph-level backdoor attacks: structural
deviation from rare subgraphs and semantic inconsistency due to label tampering. This motivates the
design of DPSBA, which aims to preserve distributional characteristics by avoiding both sources of
anomaly.
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B Related Work

B.1 General Graph Backdoor Attacks

Backdoor attacks constitute a class of adversarial attacks in which an attacker implants a hidden
behavior, known as a trigger mechanism, into the model during training. Once trained, the model
behaves normally on clean inputs, maintaining high utility and stealth. However, when presented
with an input containing a specific trigger pattern, the backdoor is activated and causes the model
to misclassify the input into an attacker-specified target class. This property makes backdoor
attacks particularly insidious in real-world deployments. In the graph domain, various works have
explored backdoor threats in settings beyond standard graph classification. For node classification
tasks, researchers have proposed attacks that inject malicious subgraphs or perturb node features to
manipulate predictions. For example, Zhang et al.[34] first investigated the stealthiness dimension
of backdoor attacks on node classification, while Wang et al.[35]] introduced multi-target attacks
to expand adversarial flexibility. Zhao et al.[36] proposed a spectral backdoor method by subtly
altering the frequency domain of node features. For link prediction tasks, Zheng et al.[37] constructed
triggers composed of fabricated nodes and target link pairs, whereas Dai et al.[11] showed that
even single-node triggers can influence link predictions. Other studies have expanded backdoor
threats into more specialized domains. For example, Zhang et al.[6] proposed the first attack on
graph contrastive learning(38},139], and Alrahis et al.[40] designed a hardware-level GNN backdoor
mechanism. In the context of graph prompt learning, Lyu et al.[41] framed backdoor injection as a
feature-collision optimization problem. Federated graph learning has also been explored: Xu et al.
proposed two attack paradigms: distributed backdoor attack (DBA)[42] and Centralized Backdoor
Attack (CBA)[43]], targeting collaborative learning environments through data poisoning strategies.
Although recent efforts have extended graph backdoor attacks to a wide range of scenarios, the graph
classification task remains the primary focus due to its foundational role in bioinformatics, chemistry,
and cybersecurity. Its holistic graph-level nature presents both unique challenges and opportunities
for backdoor research.

B.2 Backdoor Attacks against Graph Classification Tasks

Existing backdoor attack methods targeting graph classification can be broadly categorized into four
groups based on their trigger generation strategies: (1) random pattern generation, (2) interpretability-
based generation, (3) gradient-based optimization, and (4) distribution-aware or search-based methods.
Random Generation via Graph Distribution: Zhang et al.[13] first introduced a backdoor attack
against GNNs by randomly generating subgraphs using Erd6s—Rényi (ER) models and inserting
them as universal triggers into the training set. This demonstrated that fixed subgraph patterns can
reliably activate backdoors in graph classification. Sheng et al.[44]] further incorporated statistical
characteristics of the dataset to create hybrid local-global trigger patterns, improving both the
flexibility and efficacy of the attack. Explainability-Based Trigger Design: Xu et al.[[18] leveraged
GNNEXxplainer to assess the importance of the node and identify the optimal injection sites, the
least important or the most influential nodes, for the trigger subgraphs. This method emphasized
the influence of structural semantics on model decisions and improved the stealthiness of trigger
placement. Building on this idea, Wang et al.[[19] proposed inserting explainable subgraphs as triggers.
Tong et al.[45] took this further by identifying and replacing predictive substructures in graphs to
construct semantically-aligned triggers. Gradient-Based Optimization Methods: Xi et al.[14]
proposed GTA, a general and dynamic backdoor attack framework that learns subgraph triggers via
bilevel optimization. Unlike fixed-pattern methods, GTA can adapt trigger structures to specific graph
instances, enhancing attack flexibility and stealth. Similarly, Yang et al.[46] developed TRAP, which
perturbs graphs through gradient-driven strategies to generate transferable, pattern-free backdoor
triggers. Search-Based or Distribution-Aware Methods: Recent work has focused on designing
triggers that better conform to data distributions. Dai et al.[47]] extended the semantic backdoor
paradigm to GNNSs, constructing triggers based on class-relevant node types and graph semantics.
Zheng et al.[15] introduced a motif-based framework, where triggers are searched from statistically
significant and frequently occurring subgraph structures. They proposed three strategies to enhance
effectiveness and stealth: 1) Use of motifs that are absent in the dataset (maximal anomaly), 2) Use
of motifs predominantly present in the target class (semantic bias), 3) Use of dense motif structures
with high interconnectivity (amplified influence). This taxonomy reflects a growing awareness that
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both attack efficacy and stealth must be co-optimized, especially as anomaly detection models are
increasingly deployed for backdoor defense.

C Theoretical Analyses

C.1 Distributional Shift in Graph vs. Node-Level Attacks

To rigorously compare the detectability of backdoor triggers in graph vs. node classification, we
analyze the total variation distance (TV) under local subgraph perturbations.
Definition 1 (Total Variation Distance). Let P, Py, be the distributions of clean and poisoned
graphs in a graph classification task, and Py, Py, for node classification. The distributional shift is
quantified by:

TVg :=TV(Pg,Ps), TVy :=TV(Py,Py), ©)
where TV distance is defined as:

TV(P,P') := %/X |p(z) — p'(z)|da. (10)

Theorem 1 (Lower Bound on Graph-Level Distributional Shift). Let N be the number of nodes in
a graph, M < N the number of trigger nodes, and assume the trigger introduces local deviation
A = || turigger — 14]]1 in node features. Then the total variation distance of the graph-level distribution
satisfies:

M ) 1
TVGZC-F, wzthc:i-A. (11

Proof. In graph classification, predictions are made based on aggregated global features (e.g., mean

pooling). Let p be the average node embedding of a clean graph, and piyigeer the embedding from
trigger nodes. After injecting a trigger subgraph of size M, the poisoned graph has average feature:

) M M
n = 1-— ﬁ 12 + ﬁ,uftrigger

M
||/.L/ - /’[’Hl = ||Mtrigger - /”'”1 ) N

Then the feature shift becomes:

Using Pinsker’s inequality variant (Tsybakov, 2009, Eq. 2.14), which states:
1
TV(P, P') = Sl[Ep-[a] - Ep[]]1,

we obtain: ) ) M M
Vg 2 5“// —plh = 9 (| Furigger — #ll1 - N SN

O

Remark 1 (On Comparison with Node-Level TV). In node classification, the trigger affects only a
few nodes and their k-hop neighbors. Since predictions are localized, the overall distributional shift
is often less significant. Letting TVy = 0 - % be a heuristic approximation, we note:

M
TVGzc-N>TVV, ifc>9.

This inequality holds when the graph-level aggregation amplifies the statistical impact of the trigger
compared to node-local shifts.

Caution: The term TV and TV ¢ are over different data domains (nodes vs. graphs), and thus are
not directly additive:

M
We cannot claim: TVg > TVy +c- N

Instead, we highlight the fact that graph-level shift lower bounds node-level shift under same
perturbation size, and is strictly greater if the trigger induces global mean shifts.
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Corollary 1 (Implication for Backdoor Stealth). Backdoor attacks on graph classification inherently
suffer greater distributional shift than on node classification. This makes graph-level triggers more
detectable by anomaly detection models, motivating the need for distribution-preserving designs like
DPSBA.

C.2 Trigger Distributional Detectability Bound

We now establish a lower bound connecting the detectability of backdoor samples to the statistical
divergence between clean and poisoned data distributions.

Definition 2 (Total Variation Distance). Let P and P’ be the distributions over clean and poisoned
graphs. Then:

TVGH%?=%EW&Q—P%®M=;Az@ﬂ—ﬁ@ﬂw, (12)

where p(z), p'(x) are probability densities over G, the space of all graphs.

Theorem 2 (Lower Bound on AUC for Detecting Poisoned Graphs). Let s(-) be any score function
used by a binary anomaly detector to distinguish P and P’. Then:
1+ TV(P,P)

AUCu > ———— 13)

Proof. From hypothesis testing theory (Le Cam’s Lemma, see [48]]), the optimal binary decision rule
achieves AUC:

1+ TV(P, P
AUCq, = B(s(zy) > s(z_)) = T,
where 2, ~ P’, z_ ~ P. Thus, no detector can achieve lower AUC than this bound. O
Corollary 2 (Indistinguishability at Low TV). If TV(P, P') — 0, then:

AUCdef — 0.5,

implying poisoned graphs become statistically indistinguishable from clean ones. Designing triggers
that preserve common graph motifs or feature statistics helps satisfy this condition.

Implication. DPSBA minimizes the anomaly loss to reduce TV (P, P’), achieving stealthy attacks
even under statistical anomaly detection, as supported by the empirical histograms in Fig. [3]

D Algorithm of DPSBA

The DPSBA algorithm is detailed in Algorithm[T] Initially, we train the surrogate model fp- using
the clean dataset, initialize the relevant model parameters and select poisoning samples from the data
whose class is the target class y; (lines 1-3). From lines 4-8, We inject triggers into the poisoned
sample G . Lines 10-17 and lines 18-25 are topology generation stage and feature generation stage,
respectively. The topology (feature) discriminator 0 (07) and the generator w; (wy) are alternately
optimized and then update the surrogate model fy- with the current backdoor training set C”.

E Experimental Details
E.1 Datasets

The key statistics of the datasets are presented in Table[E7]

E.2 Metrics
This section details the evaluation metrics used to assess both the effectiveness and stealthiness of

backdoor attacks, including Attack Success Rate (ASR), Clean Accuracy Drop (CAD), and Area
Under the Curve (AUC).
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Algorithm 1 DPSBA

Input: Datasets C, target label y;, attack budgets M/, maximum number of training epochs
Output: Backdoor training set C’, topology/feature generator parameters wy/w s

1: The model fy- is trained through the gradient Vg L;,.qin (C);

2: Randomly initialize the topology generator parameters w;, the feature generator parameters
wy, the topology anomaly discriminator parameters ¢; and the feature anomaly discriminator
parameters 0 ;

3: The poisoned samples G'p are selected from Cly;] according to the confidence score cfd
calculated by Eq. (2);

4: for G € Gg do

5 According to the centrality calculated by deg(v)/(N — 1), nodes with high degree centrality

are pre-selected as candidates Vg, ;

6:  According to the importance score S calculated by Eq. (3), M injection positions are selected;

7. Using m(G; g¢) inject triggers in G}

8: end for
// Put trigger-embedded graph G g back into the dataset to form the backdoored dataset C”

9: while not converged yet do

10:  while epoch < epochs do

11: Update 6, by gradient according to Eq.

12: Update w; via gradient V,,, L5 (Gg, (wi)) + aﬁg) (Dg,(Gy, (wy))) according to Eq. ;
13:  end while

14: for G € G do

15: Update G by m(G; g¢);

16:  end for

17:  Update fy- by gradient Vo Lypqin(C');

18:  while epoch < epochs do

19: Update ¢ by gradient according to Eq. @

20: Update wy via gradient V,, La11,(Gy, (wy)) + ﬁﬁ&f) (Do, (G, (wy))) according to Eq. @b
21:  end while

22: for G € Ggdo

23: Update G by m(G; g);

24:  end for

25:  Update fg- by gradient Vg Lyyqin(C');

26: end while

27: return C’,wy,wy

Table E7: Datasets statistics

Datasets PROTEINS_full AIDS FRANKENSTEIN ENZYMES
Number of graphs 1113 2000 4337 600
Avg. Number of nodes 39.06 15.69 16.90 32.63
Avg. Number of edges 72.82 16.20 17.88 62.14
Number of classes 2 2 2 6
Label distribution 663 [0], 450 [1] 400 [0], 1600 [1] 1936 [0], 2401 [1] 100 [1-6]
Target label 1 0 0 0

(1) Attack Success Rate (ASR): ASR quantifies the proportion of trigger-embedded graphs that are
successfully misclassified into the target class. It serves as the primary measure of attack effectiveness
and is defined as:

Number of successful attacks
A = . 14
SH Total number of backdoor trials (14)

(2) Clean Accuracy Drop (CAD): CAD measures the performance degradation of the poisoned
model on clean samples, indicating the stealthiness of the attack when the trigger is absent. It is
defined as the accuracy difference between a clean model and the backdoored model on a clean test
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Table E8: Model accuracy on a clean dataset
Model
GCN GIN  SAGPool

PROTEINS_full ~ 75.58 76.23 73.99
AIDS 98.64 98.92 98.26
FRANKENSTEIN 60.81 64.32 62.75

Datasets

set:
CAD = ACCclean model — ACObackdoor model s (15)

where accuracy is calculated as:
1
Acc = < §‘_1: (5 = i), (16)

with I(-) denoting the indicator function, §; the predicted label, y; the ground-truth label, and N the
number of test samples.

Interpretation: A high ASR indicates effective attack performance, while a low CAD implies
minimal disruption to normal prediction behavior, reflecting strong stealth.

(3) Area Under the Curve (AUC): To evaluate stealth from the perspective of anomaly detection,
we use the AUC score produced by an anomaly detection model (e.g., SIGNET) trained on clean
graphs. AUC reflects the model’s ability to distinguish backdoor samples from clean ones:

AUC = P(s(z4) > s(z-)), (17)

where s(x) denotes the anomaly score of graph x, and x 1, x_ are randomly selected anomalous and
clean samples, respectively.

Interpretation:

* AUC — 1.0: the detector perfectly separates anomalies from clean data, i.e., low stealth.

* AUC — 0.5: the detector cannot distinguish between backdoor and clean samples,i.e., high
stealth.

* AUC < 0.5: the detector is misled, incorrectly prioritizing clean samples as more anomalous.

Goal: An effective backdoor should aim for an AUC as close as possible to 0.5, indicating that the
anomaly introduced by the trigger is indistinguishable from natural variations in clean data, thus
enhancing stealth against detection models.

E.3 Accuracy of Graph Classifiers on Clean Data

Table |[ES|illustrates the accuracy of three different graph classifiers on the clean datasets.

E.4 Impact of the Poisoning Rate

To investigate how the poisoning rate influences DPSBA’s performance, we evaluate the variation of
attack success rate (ASR) and clean accuracy drop (CAD) under different poisoning rates. Since the
anomaly level of the trigger is determined by its structural and feature design rather than injection
frequency, we focus here on ASR and CAD as shown in Figure[E€] As the poisoning rate increases
from 1% to 7%, ASR consistently improves across all datasets, confirming that injecting more
poisoned samples strengthens the backdoor effect. However, the growth rate of ASR gradually slows,
indicating diminishing returns. Meanwhile, CAD shows a slight upward trend with higher poisoning
rates, but remains below 5% in all cases, demonstrating that DPSBA maintains high stealth even under
increased poisoning levels. This result suggests that while increasing the poisoning rate enhances
attack effectiveness, DPSBA can still preserve stealthiness due to its clean-label and anomaly-aware
design. Practitioners may adjust the poisoning budget to balance performance and resource cost
without significantly sacrificing stealth.
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Figure E6: The impact of the Poisoning Rate

E.5 Impact of Trigger Size
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Figure E7: The impact of trigger size

We further examine the effect of trigger size on the performance of DPSBA. As shown in Figure
increasing the size of the trigger leads to a consistent improvement in attack success rate (ASR)
across all datasets. This is expected, as larger triggers introduce stronger perturbations to the graph’s
topology and features, making it easier for the model to associate the injected pattern with the target
label. However, this enhancement in effectiveness comes at the cost of stealthiness. As the size of
the trigger increases, the level of anomaly, as measured by the AUC, also increases. This indicates
that larger triggers deviate more from the normal graph distribution, thus being more detectable by
anomaly detection models. Still, the AUC values remain within an acceptable range (mostly below
80%), preserving a reasonable degree of stealth. Moreover, the clean accuracy drop (CAD) exhibits a
general upward trend with increasing trigger size, though it remains under 5% in most cases. This
suggests that even larger triggers do not significantly impair the model’s generalization performance
on clean data. In summary, trigger size presents a clear trade-off: larger triggers yield stronger attacks
but increase detectability, while smaller ones offer greater stealth at the cost of ASR. DPSBA supports
flexible adjustment of this trade-off based on practical requirements.

E.6 Higher ASR in Cross-Architecture Transfer Settings

We explain this counterintuitive phenomenon from three perspectives: model expressiveness, trigger
generalizability, and dataset characteristics.

(1) Model Expressiveness vs. Overfitting: GIN and SAGPool are more expressive than GCN.
GIN is theoretically equivalent to the Weisfeiler-Lehman test, capable of distinguishing fine-grained
substructures and SAGPool uses self-attention to highlight global structures most relevant for classifi-
cation. These powerful models, when used as surrogates, tend to learn highly specialized, structure-
sensitive triggers. While effective on the surrogate model itself, such triggers are prone to overfitting
and may fail to generalize to unseen samples or to minor parameter shifts. This aligns with prior
observations [49] that stronger surrogates often overfit their own gradients, reducing perturbation
transferability.

(2) GCN-Trained Triggers Are More Transferable: GCN, with its smoother message passing
and lower expressiveness, tends to learn broader and more transferable trigger patterns. These triggers
may achieve lower ASR on GCN itself (as seen in Table , but generalize better when transferred to
expressive models like GIN or SAGPool, which are more sensitive to subtle perturbations and thus
amplify the attack effect.
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(3) Dataset-Specific Factors Amplify the Effect: In the AIDS dataset, molecular graphs are small
but structurally complex. Local substructures (e.g., functional groups) are crucial, making GIN highly
sensitive to local changes caused by transferred triggers. In PROTEINS_full dataset, graphs are
larger and denser (node—edge ratio ~ 1:1.86), favoring models like SAGPool that focus on global
structure. GCN’s triggers are naturally aligned with such global perturbations, which SAGPool tends
to emphasize.

F Time Complexity Analysis

We analyze the training time complexity of DPSBA by accounting for graph sparsity and the
dimensionality of node features. The framework consists of three main stages: (1) hard sample
selection; (2) trigger location selection and initialization; and (3) adversarial optimization of the
topology and feature generators. Let us denote:

* C: number of graphs in the clean training set

* N: average number of nodes per graph

* d: average degree of nodes (assumes sparse graph, i.e., d < N)
* F: node feature dimension

* B: the total number of poisoned graphs

» FE: total number of adversarial training epochs

1) Hard Sample Selection. For each graph in the target class, we compute its confidence score
with respect to the target label using a forward pass through the surrogate model. Assuming each
node aggregates information from d neighbors, and node features are F-dimensional, the per-graph
complexity is O(N - d - F'), leading to O(C - N - d - F'). This term reflects the initial overhead of
scoring and ranking all graphs to identify low-confidence (hard) samples.

2) Trigger Location Selection. For each selected hard sample, DPSBA computes node importance
via a deletion-based interpretability scheme. Each candidate node requires one additional forward
pass through the GNN after node removal. If we sample k candidates per graph, the cost becomes
O(k- N -d- F). Since k is fixed and small (k ~ 2M), this step scales as O(C' - N - d - F). Thus,
steps (1) and (2) share the same leading complexity.

3) Trigger Optimization. In each epoch, we optimize the topology and feature generators to
simultaneously (a) maximize attack loss and (b) minimize anomaly detection confidence through
adversarial discriminators (GCN and MLP). Each poisoned graph in the batch undergoes GCN-based
classification and gradient updates. Assuming adversarial training lasts E epochs, the total cost
becomes O(F - B - N - d - F). This dominates the runtime due to repeated gradient steps.

Overall Complexity. Combining the above three stages, the total training complexity of DPSBA is:
O(C-N-d-F+E-B-N -d-F) This expression reveals linear scalability with respect to the number
of nodes, average degree, and feature dimension. The first term corresponds to one-time sampling and
location inference; the second reflects iterative adversarial training. As the number of poisoned graphs
(B) and training epochs (F) are relatively small, DPSBA maintains practical efficiency under sparse
graph assumptions. DPSBA achieves a favorable balance between attack efficacy and efficiency: its
overall complexity is comparable to standard GNN training pipelines while introducing minimal
overhead. Moreover, by leveraging sparse message passing and modular optimization, DPSBA
remains scalable to real-world graphs with thousands of nodes and high-dimensional features.

In addition, we benchmark the actual training time of DPSBA and compare it with several representa-
tive baselines (ER-B, LIA, GTA, and Motif) on the largest dataset, FRANKENSTEIN. The results
are reported in Table[F9] All experiments are conducted on a machine equipped with a 14-core Intel
17-12700H CPU, an NVIDIA GeForce RTX 3060 GPU (12 GB), and Windows 11 (version 23H2). As
shown in the table, DPSBA achieves the highest ASR (99.84%) while maintaining the lowest CAD
(1.83%) and AUC (73.46%), demonstrating a superior balance between attack success and stealth.
Although DPSBA incurs slightly more training time compared to the lightest baseline (ER-B), the
overhead is acceptable given the substantial gains in performance. Notably, our framework integrates
an early-stopping mechanism during adversarial training, which adaptively terminates optimization
once the attack objective converges. This not only reduces computational overhead but also avoids
unnecessary overfitting, making DPSBA both effective and time-efficient.
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Table F9: Training Time and Attack Performance on FRANKENSTEIN.
Metrics ER-B LIA  GTA Motif Ours

ASR (%) 92.06 82.63 9523 84.56 99.84
CAD (%) 3.60 235 195 244 1.83
AUC (%) 85.73 76.15 91.06 87.54 73.46
Time (s) 210 261 376 239 281

G Discussion of Inductive Graph Classification Setting

While our current work focuses on the transductive graph classification setting, we believe that several
key components of DPSBA have promising potential to extend to the inductive regime. In particular:
1) The feature generator operates based on localized structural and attribute information at the trigger
injection site, and 2) The distribution-aware discriminators regularize stealth on a per-graph basis
through adversarial training. Both modules are graph-local in nature and do not rely on inter-graph
interactions or train—test graph overlap, making them amenable to inductive settings where new test
graphs are unseen during training. That said, certain components, such as the hard sample selection
module, currently assume access to sufficient examples of the target class, which poses challenges
in few-shot scenarios. Adapting this component to work under strong data constraints (e.g., via
meta-learning or class-agnostic proxy supervision) is a meaningful direction for future work.

H Broader Impacts

This work reveals that even under clean-label settings, graph classification models remain highly
vulnerable to stealthy backdoor attacks. By exposing this underexplored threat, our method highlights
the limitations of existing defenses and underscores the need for more robust anomaly detection and
training strategies. While our approach may be misused, we release it to raise awareness and promote
the development of secure graph learning systems in critical domains such as bioinformatics, finance,
and cybersecurity.
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