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Abstract

Graph anomaly detection (GAD) is widely prevalent in scenarios such as financial
fraud detection, anti-money laundering and social bot detecion. However, structural
distribution shifts are commonly observed in real-world GAD data due to selection
bias, resulting in reduced homophily. Existing GAD methods tend to rely on ho-
mophilic shortcuts when trained on high-homophily structures, limiting their ability
to generalize well to data with low homophily under structural distribution shifts.
In this study, we propose to handle structural distribution shifts by generating novel
environments characterized by diverse homophilic structures and utilizing invariant
patterns, i.e., features and structures with the capability of stable prediction across
structural distribution shifts, which face two challenges: (1) How to discover invari-
ant patterns from entangled features and structures, as structures are sensitive to
varying homophilic distributions. (2) How to systematically construct new environ-
ments with diverse homophilic structures. To address these challenges, we propose
Ego-Neighborhood Disentangled Encoder with Homophily-aware Environment
Mixup (HEM), which effectively handles structural distribution shifts in GAD by
discovering invariant patterns. Specifically, we first propose an ego-neighborhood
disentangled encoder to decouple the learning of feature and structural embeddings,
which facilitates subsequent improvements in the invariance of structural embed-
dings for prediction. Next, we introduce a homophily-aware environment mixup
that dynamically adjusts edge weights through adversarial learning, effectively
generating environments with diverse structural distributions. Finally, we iteratively
train the classifier and environment mixup via adversarial training, simultaneously
improving the diversity of constructed environments and discovering invariant
patterns under structural distribution shifts. Extensive experiments on real-world
datasets demonstrate that our method outperforms existing baselines and achieves
state-of-the-art performance under structural distribution shift.

1 Introduction

Graph anomaly detection (GAD) [1] represents a classical task in graph machine learning, with
extensive applications in financial fraud detection[2], anti-money laundering[3], and social bot
detection[4, 5]. Typically, GAD can be formulated as a semi-supervised node classification
problem[6], where the objective is to identify anomalous nodes in the input graph. Graph neu-
ral networks (GNNs) have demonstrated superior predictive capabilities in GAD tasks due to their
ability to handle complex topological relationships and model sophisticated node representations[7].

However, structural distribution shifts[8–11] are prevalent in real-world graph anomaly detection sce-
narios due to factors such as selection bias[12]. For example, in anti-money laundering contexts[13],
coordinated money laundering accounts are more likely to be identified and labeled compared to
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isolated ones, while large-scale coordinated bot comments on social platforms are more easily de-
tected by automated systems. This results in a structural distribution shift between training and test
data, as nodes with stronger homophily and more connections to similar nodes are more likely to be
labeled. Existing GNNs for GAD methods trained on high-homophily structures tend to rely on the
homophilic shortcut, limiting their ability to generalize effectively to test data with low homophily
under structural distribution shifts.

In this paper, we study the problem of handling structural distribution shifts in graph anomaly
tasks by generating novel environments characterized by diverse homophilic structures and utilizing
invariant patterns, i.e., features and structures with the capability of stable prediction across structural
distribution shifts, which remains largely unexplored in the literature. However, this problem is highly
nontrivial with the following challenges:

• How to discover invariant patterns from entangled features and structures, as structures are
sensitive to varying homophilic distributions.

• How to systematically construct new environments with diverse homophilic structures.

To address these challenges, we propose a novel framework named Ego-Neighborhood Disentangled
Encoder with Homophily-aware Environment Mixup (HEM) to discover invariant patterns with
stable predictive abilities under structural distribution shifts. Specifically, we first propose an ego-
neighborhood disentangled encoder to separately model the feature and structure representations.
By this design, we can (1) disentangle feature information and structure information, enabling the
following modules to strengthen the invariance of the prediction patterns. (2) model the interaction
patterns between ego-node and neighborhood to better predict the anomaly probability. Then, we
propose a homophily-aware environment mixup, which dynamically adjusts edge weights within
the graph to implicitly modify the structure of ego graphs. This mechanism generates diverse
training environments and facilitates the learning of invariant patterns in a memory-efficient manner.
Finally, the two modules are trained iteratively in an adversarial manner, in order to improve the
diversity of the constructed environment and discover invariant patterns under structural distribution
shifts. Extensive experiments on real-world datasets demonstrate that our proposed method achieves
state-of-the-art performance in GAD under structural distribution shift scenarios.

The contributions of our work can be summarized as follows:

• We propose Ego-Neighborhood Disentangled Encoder with Homophily-aware Environment
Mixup (HEM), which can handle structural distribution shift in graph anomaly detection, which
is largely unexplored in literature.

• We propose an ego-neighborhood disentangled encoder to disentangle feature and structure
representations for learning invariant patterns, which is a general framework that can be utilized
to improve model performance for many GNNs. Besides, we propose a homophily-aware
environment mixup to efficiently generate training environments with diverse local structures to
improve the model’s generalization capability.

• Experiments on real-world datasets demonstrate that our method achieves state-of-the-art perfor-
mance compared to existing baselines.

2 Problem Formulation

In this section, we formulate the problem of graph anomaly detection under distribution shift.

Node-Attribute Graph A node-attribute graph G consists of a node set V, an edge set E, and node
attributes X ∈ Rn×d, where each row of X represents the feature vector of the corresponding node.
The edges between nodes are represented by the adjacency matrix A ∈ Rn×n, where n is the number
of nodes and d is the dimension of the input features. The node labels are defined as Y ∈ Rn×1.
Thus, a node-attribute graph can be summarized as G = {A,X, Y }. In node-level graph anomaly
detection, the labels are binary variables indicating whether a node is normal or anomalous.

Node-Level Graph Anomaly Detection (GAD) Node-level graph anomaly detection is an im-
balanced binary classification task. The goal of the proposed model is to predict whether a node
is normal or anomalous. In this paper, we focus on the transductive setting, while our proposed
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Figure 1: The overall framework of our proposed HEM. The framework transforms an original graph
into an augmented graph by dynamically adjusting edge weights with homophily-aware environment
mixup. Both graphs are processed by the ego-neighborhood disentangled encoder to extract feature
and structural representations. The original loss L and augmented loss LAUG are computed using
cross-entropy with the disentangled representations, while the diversity loss LDIV measures the
difference between original and augmented structural embeddings, and the PER loss LPER constrains
the proportion of perturbed edges to avoid trivial solutions. These losses jointly optimize the encoder
and environment mixup, enhancing generalization across varying structural distributions.

method can be simply applied in inductive scenarios. Following [14] [15] [16] [17], we formulate
this problem as predicting the probability to be an anomaly of a node given its induced ego-graph,
i.e., p(Yv|Gv). A k-order ego-graph Gv induced from v is a subgraph containing node v with all
of its k-hop neighbors, k is an arbitrary integer. The optimization objective is to learn an optimal
predictor to model the node’s anomaly probability

min
θ

E(yv,Gv)∼p(yv,Gv)L(fθ(Gv), yv) (1)

where fθ is a graph neural network parameterized by θ. Denote random variable of ego-graph and
node label as Gv , yv , and respective instances as Gv, yv.

Structural Distribution Shift Structural distribution shift in node-level tasks can be treated as a
covariate shift, which means the ego-graph distribution is different across training and test data, i.e.
ptrain(Gv) ̸= ptest(Gv), leading to different local structures. Therefore, we formulate this problem
as an out-of-distribution (OOD) problem,

min
θ

max
e∈E

E(yv,Gv)∼p(yv,Gv|e=e)[L(fθ(Gv), yv)|e]. (2)

In GAD tasks, structural distribution shift is a common problem[12], due to factors like sampling
bias. For example, in e-commerce networks, accounts that transact with anomalous accounts are
more likely to be anomalous themselves, potentially indicating participation in money laundering
transactions. This will cause a structural distribution shift that ego-graphs in the training set show
a higher homophily ratio, i.e. the proportion of neighbors sharing the same label as the central
node is much higher than that in the test set. The homophily ratio is defined as Homo(v) =

1
|N(v)| |u ∈ N(v)|Yu = Yv|. The ego-graphs with a high homophily ratio in the training stage may
lead GNNs to rely on the homophilic shortcut, a spurious pattern that predicts nodes’ labels by
the majority label in their neighborhood, and finally to fail in the test stage ego-graphs with low
homophily ratio.
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3 Method

In this section, we propose the HEM, a novel framework for graph anomaly detection under structural
distribution shift by introducing two key modules, ego-neighborhood disentangled encoder and
homophily-aware environment mixup.

3.1 Ego-Neighborhood Disentangled Encoder

It’s critical to utilize both knowledge from ego-node and neighborhood to extract invariant patterns in
graph anomaly detection for two reasons. (1) The interaction between the ego node and neighborhood
indicates the discrepancy, which is important for predicting anomalies. (2) Excessive reliance on
structural information results in unstable predictions under structural distribution shifts. Encoding
both feature and structure information with one encoder makes the variant and invariant patterns
entangled, leading to a performance drop under distribution shift. Most existing works simply employ
a single GNN as an encoder, leading to fail in test data with distribution shift. While CoLA[15]
models anomaly probability via local discrepancy, its method faces a trade-off between sampling size
and speed, resulting in suboptimal performance.

To overcome these limits, we propose an ego-neighborhood disentangled encoder to efficiently and
effectively extract feature and structural patterns from ego graphs in a decoupled manner.

Neighborhood Encoder We define the k-hop neighborhood as the ego-graph for a given node. The
neighborhood encoder can be implemented using any commonly used message-passing-based GNN
architecture. In our framework, we adopt the BWGNN[18], a strong backbone in GAD tasks, as the
neighborhood encoder.

Given the initial node features X and the adjacency matrix A, we first employ an Multi-Layer
Perceptron (MLP) projector to project it into the embedding space.

H0 = Proj(X) (3)

we can generally compute the neighborhood embeddings as follows

Hne = GNN(H0, A) (4)

Specifically, with BWGNN applied, the neighborhood embeddings can be modeled as

Hne =

K∑
k=0

wkÂ
kH0 (5)

where Â is the normalized adjacency matrix, i.e. Â = D− 1
2AD− 1

2 , D is the diagonal matrix. wk is
the k th coefficient from a Beta polynomial.

Ego-Node Encoder The relationship between ego-node’s feature and label is stable under structural
distribution shift since ego-nodes only contain information about a single instance. We disentangle
them from structural patterns so that we can model the anomaly probability by the interaction patterns.
Specifically, we employ an MLP to encode the ego-node’s representation. To align the neighborhood
embedding space and ego-node embedding space, we utilize the same projector as the neighborhood
embedding projector

Hego = H0 = Proj(X). (6)

The sharing projector ensures that the embeddings generated by the two encoders are aligned
within the same embedding space, facilitating effective interaction between the ego node and its
neighborhood embeddings.

Contrastive Prediction To capture the discrepancy between the ego-node embedding and structural
embedding, we employ a bilinear function to predict anomaly probability. This design is commonly
employed by contrastive learning methods [15, 19].

P (y | hego, hne) = σ(hT
egoWhne), (7)

where σ denotes the sigmoid function, and W is a learnable weight matrix that models the interaction
between the ego node and structural embeddings.
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The classification loss can be computed as

L = L(P (y | Hego, Hne), Y ) (8)

where L is cross-entropy loss.

3.2 Homophily-aware Environment Mixup

Existing out-of-distribution graph anomaly detection methods suffer from issues like reliance on
labeled and diverse environments[20, 21], high memory cost[14], or limited performance due to lack
of supervision[22].

To overcome these limitations, we propose a homophily-aware environment mixup, which generates
diverse environments exhibiting effective structural distribution shifts by dynamically re-weighting
edges based on the homophily observed among neighboring nodes. This process is both computation-
ally and memory efficient.

Homophily-aware environment mixup We propose a homophily-aware environment mixup, to
generate environments with structural distribution shift and improve the generalization capability of
the classifier across environments with different local structures. Our objective for this module is to
generate new environments with diverse local structures which is challenging enough to the classifier.
This can be formulated as

max
e∈E

E(yv,Gv)∼p(yv,Gv|e=e)[L(fθ(Gv), yv)|e]. (9)

As mentioned above, homophily is an important metric to describe local structure. An obvious shift
between training and test environments is the significant drop in homophily ratio. Motivated by this,
we propose an attention mechanism that dynamically adjusts edge weights according to the features
of the nodes connected by the edge. Specifically, following [23], we employ a node-wise attention
mechanism to model the connection strength between the nodes connected by the same edge as
follows

w(u,v) = sigmoid(LeakyReLU(concat(hego|u, hego|v)W )), (10)

where W is a learnable attention weight matrix. w(u,v) is the adjusted weight, normalized to [0, 1].
Then we apply the disentangled encoder on the generated graph with the adjusted edge weights in the
message passing process, resulting in ego-node and neighborhood embeddings H ′

ego and H ′
ne. The

augmented loss is defined as:

LAUG = L(P (y | H ′
ego, H

′
ne), Y ) (11)

Our design offers three key advantages. First, in contrast to methods that directly add or drop
edges, our approach enables continuous modulation of edge weights, allowing for a more fine-
grained perturbation of local structures. This continuous adjustment effectively mixes the discrete
states of connected and disconnected edges, providing a richer spectrum of graph augmentations.
Second, by optimizing the environment generator rather than directly manipulating several fully
connected adjacency matrices, our method achieves significant memory efficiency. This approach
circumvents the substantial memory overhead associated with storing and processing dense adjacency
representations in EERM[14]. Third, our method leverages the features of both endpoints of an
edge to perform homophily-aware edge weight adjustments, as opposed to random or uninformed
modifications, leading to generating environments with diverse local structures with respect to
homophily.

Diversity Loss To ensure the module generates diverse local structures, we introduce a diversity
loss that maximizes the dissimilarity between the original neighborhood embedding and the generated
neighborhood embedding:

LDIV = Cosine Similarity(Hne, H
′
ne), (12)

where Hsubgraph and H ′
subgraph represent the embeddings of the original and augmented subgraphs,

respectively.
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Preserved Edge Ratio(PER) Loss To prevent trivial solutions, such as adjusting all edge weights
to zero, we regularize the environment generator to perturb only a small subset of edges. This is
achieved by minimizing the following PER loss:

LPER =

∥∥∥∥∑e∈E w(e)

|E|
− ρ

∥∥∥∥
2

, (13)

where ρ is the target proportion of edges to preserve from perturbation.

3.3 Overall Adversarial Training

To jointly optimize the disentangled encoder and the environment mixup, we employ an iterative
adversarial training framework. This framework consists of an outer loop for training the encoder
and an inner loop for training the environment mixup, ensuring that both components are optimized
in a coordinated manner.

Outer Loop: Training the Disentangled Encoder In the outer loop, we train the encoder using a
composite loss function that mixes the standard classification loss L and the augmented loss LAUG.
The augmented loss LAUG ensures that the model generalizes well to environments with structural
distribution shifts. The overall loss function for the outer loop is defined as:

Louter = L+ LAUG. (14)

Inner Loop: Training the Environment Mixup In the inner loop, we optimize the environment
mixup to generate diverse and challenging augmented environments. The corresponding loss function
combines the augmented loss −LAUG, the diversity loss LDIV , and the PER loss LPER. Specifically:

Linner = −LAUG + LDIV + LPER. (15)

Here, −LAUG encourages to generate more challenging environments, LDIV maximizes the dissimi-
larity between original and generated environments to enhance diversity, and LPER ensures that only
a small subset of edges is perturbed, avoiding trivial solutions.

Training Dynamics The training process alternates between the outer and inner loops, as shown in
the Algorithm. 1. In each iteration of the outer loop, the encoder is updated to minimize Louter, while
in the inner loop, the environment mixup is updated to minimize Linner. This adversarial training
strategy encourages to generation of new distributions with diverse local structures and to improve
the generalization capability across different distributions.

Algorithm 1 Training pipeline for HEM
Require: Training epochs L, edge preservation ratio ρ

1: for l = 1, . . . , L do
2: Obtain Hego, Hne for each node as described in Section 3.1
3: Calculate classification loss L as Eq. 8
4: Generate new environment and calculate classification loss in generated environment LAUG

as Eq. 11
5: Calculate diversity loss LDIV and PER loss LPER as Eq. 12 and Eq. 13
6: Calculate inner loss Linner and outer loss Louter as Eq. 15 and Eq. 14
7: Update the homophily-aware environment mixup by minimizing inner loss
8: Update the disentagled encoder by minimizing outer loss
9: end for

3.4 Theoretical Explanation

To theoretically justify the proposed HEM framework, we analyze how it promotes prediction
stability and invariant learning across varying homophily ratios through a simplified example.
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Variable Definitions. Let h denote the homophily ratio and Y ∈ {0, 1} denote the node label,
where Y = 1 indicates an anomalous node and Y = 0 a normal node. Let π = P (Y = 1) be the
anomaly rate, and denote by rv the proportion of anomalous neighbors for node v:

rv =
1

dv

∑
u∈N (v)

Yu, (16)

where dv = |N (v)| is the node degree. We assume a constant node degree d. Let µ1 = E[X | Y = 1]
and µ0 = E[X | Y = 0], and denote ∆µ = µ1 − µ0 ̸= 0. For a one-layer message-passing encoder
followed by a linear classifier, the node embedding can be expressed as

Zv = rvµ1 + (1− rv)µ0 = µ0 + rv∆µ. (17)

Lemma 1 (Predictor Dependence on Homophily). The optimal coefficient that minimizes the
Mean Squared Error (MSE) between predictions and labels is

α∗(h) =
Cov(Y, r)

Var(r)
=

π(1− π)(2h− 1)
h(1−h)

d + π(1− π)(2h− 1)2
. (18)

Hence, the learned predictor α∗ depends explicitly on the homophily ratio h; a model trained under
homophily htr will be suboptimal for a test distribution with a different hte.

Lemma 2 (Bounded Deviation on the Test Distribution). If there exists an ϵ such that |hte−htr| ≤
ϵ, with the proposed environment mixup and adversarial training, the gap between the expected test
loss of the training-optimal parameters and the optimal test loss is bounded. Specifically,

L(hte, α
∗
tr)− L(hte, α

∗
te) ≤ VmaxLf ϵ

2 (19)

, where Lf denotes the Lipschitz constant of f(h) = α∗
h, and Vmax represents the maximum of

V ar(r) for h satisfying |h− htr| ≤ ϵ.

4 Experiments

In this section, we conduct various experiments to verify that our proposed method can handle
structural distribution shifts in graph anomaly detection tasks by utilizing the invariant patterns in the
disentangled subgraph representations.

4.1 Datasets

We choose 3 commonly used GAD datasets, including Amazon, Yelp, and T-finance. We provide the
details of the datasets in Appendix A.

4.2 Baselines

To demonstrate the effectiveness of our proposed method in addressing structural distribution shifts in
graph anomaly detection tasks through a complete comparison, we have selected four types of base-
lines for evaluation, including (1) General GNNs: GCN[24], GAT[23], GraphSAGE[25], (2)GNNs
Specialized for Graph Anomaly Detection: BernNet[26], BWGNN[18], GHRN[27], PCGNN[28],
BAT[29](3)General Out-of-Distribution Methods: GroupDRO[21], V-REx[20], (4)Graph Out-of-
Distribution Methods: SRGNN[22] , EERM[14], GDN[12].Details of these baseline models are
provided in Appendix B.

4.3 Settings

We adopt the above three real-world datasets as node-level graph anomaly detection tasks. We
transform Amazon and Yelp into homogeneous graphs by simply merging all types of edges into one
type to make a comparison between homogeneous GNNs and heterogeneous GNNs. We divide each
dataset into 2 domains, with/without structural distribution shift. For brevity, we denote domains
with/without distribution shift as ’w/ DS’ and ’w/o DS’ separately. Specifically, we sample nodes
by their homophily ratio, which means nodes with low homophily are more likely to be divided
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Table 1: Results of different methods on real-world graph anomaly detection datasets. The best
results are in bold and the second-best results are underlined. The results are reported in AUPRC.

Dataset Amazon Yelp T-Finance
Model w/o DS w/ DS w/o DS w/ DS w/o DS w/ DS
GCN 94.45±0.97 69.90±2.13 53.63±0.94 40.79±1.73 93.66±0.10 60.33±0.41

GAT 92.84±0.00 72.44±0.00 54.74±0.00 42.83±0.00 87.38±0.00 53.93±0.00

GraphSAGE 90.57±1.03 69.71±1.00 63.05±0.24 53.25±0.76 73.61±0.47 44.21±0.98

BernNet 92.83±0.02 71.34±0.21 52.99±0.20 48.53±0.32 89.25±0.71 65.21±0.58

PCGNN 90.95±0.01 72.02±0.03 54.05±0.78 44.52±0.32 69.37±1.54 36.84±2.07

GHRN 92.01±0.25 69.39±0.14 59.27±0.45 54.68±0.61 93.62±0.15 62.43±0.36

BWGNN 91.59±0.20 69.26±0.38 58.21±0.32 52.97±0.51 93.44±0.10 62.34±0.72

BAT 94.03±2.04 72.26±1.16 62.19±2.61 54.93±0.49 92.77±0.67 56.35±1.75

V-REx 92.54±0.14 68.84±0.23 59.16±0.70 53.58±0.65 93.04±0.12 60.66±0.78

GroupDRO 92.58±0.04 68.87±0.29 58.73±0.66 52.13±0.31 93.86±0.13 60.81±0.28

SRGNN 90.48±0.36 70.36±0.56 58.73±0.21 52.84±0.40 91.11±0.24 60.36±0.14

EERM 92.57±0.01 70.94±0.51 OOM OOM OOM OOM
GDN 91.97±0.50 68.93±0.43 48.20±1.13 48.43±0.92 92.51±0.07 59.84±0.05

HEM(+GCN) 93.70±0.11 70.59±0.09 55.09±0.47 52.05±1.00 95.69±0.08 64.97±0.11

HEM(+BWGNN) 91.97±0.74 74.91±0.49 61.42±0.56 58.45±1.01 94.76±0.06 66.04±0.29

Table 2: Results of different methods on real-world graph anomaly detection datasets. The best
results are in bold and the second-best results are underlined. The results are reported in Recall@K.

Model Amazon Yelp T-Finance
Model w/o DS w/ DS w/o DS w/ DS w/o DS w/ DS
GCN 90.18±1.01 65.37±0.69 51.95±0.24 44.04±0.27 89.57±0.22 57.50±0.89

GAT 90.22±2.18 66.99±0.83 56.42±0.00 48.11±0.00 82.59±0.00 51.88±0.00

GraphSAGE 88.18±0.64 65.20±0.61 58.92±0.23 51.01±0.49 65.88±0.72 43.68±1.22

BernNet 89.74±1.65 65.53±1.84 52.33±0.21 47.89±0.25 86.59±0.77 62.31±0.18

PCGNN 89.55±0.64 66.67±0.46 50.89±0.12 43.14±0.08 80.08±1.44 53.36±0.69

GHRN 89.55±0.00 62.93±0.00 54.96±0.54 51.13±0.57 87.53±0.69 60.16±0.28

BWGNN 90.00±0.00 63.90±0.00 54.98±0.83 50.33±0.37 87.76±0.84 60.75±0.72

BAT 90.18±1.21 66.99±0.83 56.80±2.64 51.37±2.14 88.83±1.54 56.54±0.72

V-REx 89.24±0.21 62.76±0.92 54.94±0.25 51.37±0.54 86.82±0.19 59.72±0.28

GroupDRO 89.55±0.00 61.63±0.61 55.63±0.54 51.09±0.40 88.63±0.29 60.53±0.31

SRGNN 90.00±0.37 63.41±0.40 54.31±0.58 50.79±0.59 87.92±0.73 59.20±1.10

GDN 89.39±0.21 64.88±1.05 49.34±1.66 48.21±1.64 85.73±0.22 58.02±0.91

HEM(+GCN) 90.45±0.00 65.85±0.00 52.83±0.49 49.47±0.20 90.27±0.44 62.23±0.58

HEM(+BWGNN) 90.15±0.21 67.80±0.80 56.10±0.68 52.63±0.28 90.43±0.22 63.12±0.10

into test data(’w/ DS’). Furthermore, we divide the ’w/o DS’ domain into training, validation, and
test(’w/o DS’) data. Since graph anomaly detection datasets are usually with severe data imbalance,
we use AUPRC (Area Under the Precision-Recall Curve) and Recall@K (the recall among the top-K
highest-confidence predictions) as the evaluation metrics.

4.4 Results

Based on the results in Table 1, we can get the following observations:

• Baselines all fail significantly under structural distribution shift: (1) Although baseline methods
performs well on test data without distribution shift, they all experience a significant performance
drop on test data with structural distribution shift. This phenomenon indicates that these methods
may rely on spurious patterns that can not be generalized to the test (’w/ DS’) environment.
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Table 3: Ablation studies on ego-neighborhood disentangled encoder and homophily-aware environ-
ment mixup, where ’w/o END’ denotes removing the ego-neighborhood disentangled encoder, ’w/o
DIV’ denotes removing diversity loss and ’w/o PER’ denotes removing PER loss. The best results
are in bold and the second-best results are underlined. The results are reported in AUPRC.

Dataset Amazon Yelp T-Finance
Model w/o DS w/ DS w/o DS w/ DS w/o DS w/ DS

w/o END encoder 91.41±0.43 66.59±1.63 58.33±1.09 56.53±0.90 94.52±0.23 62.50±0.50

w/o DIV 93.34±0.64 70.96±1.64 61.08±0.89 57.52±1.18 94.08±0.71 64.73±1.37

w/o PER 92.45±0.04 72.06±0.16 60.07±0.88 56.00±0.55 94.88±0.15 65.50±0.51

HEM(+BWGNN) 91.97±0.74 74.91±0.49 61.42±0.56 58.45±1.01 94.76±0.06 66.04±0.29

For example, a strong baseline GHRN, experiences performance drop of nearly 25%, 8%, 33%.
(2) Out-of-distribution baselines all fail to achieve consistent improvement across all datasets.
Compared with BWGNN, the backbone classifier used in these OOD methods, some of the
OOD baselines can achieve improvement on specific datasets, like EERM in Amazon and V-
REx in Yelp. However, none of them achieves consistent generalization improvement across
all datasets, indicating these OOD methods rely on diverse training environments with ground-
truth environment labels, e.g. V-REx, GroupDRO, SRGNN. EERM employs the REINFORCE
algorithm to create diverse training environments by directly optimizing multiple edge masks,
which costs too much memory resources.

• Our proposed method achieves consistent performance improvement across all datasets. Com-
pared with the best baselines, our method achieves relative improvements of 3.4%, 6.9%, and
1.3% on test (’w/ DS’) data, and outperforms all general and graph-specialized OOD baselines.
This implies that our method can capture the invariant patterns consistently, and create new
environments in a memory-efficient manner.

4.5 Abaltion Study

In this section, we conduct ablation studies to verify the effectiveness of our proposed ego-
neighborhood disentangled encoder and homophily-aware environment mixup.

Ego-neighborhood disentangled encoder We remove the disentangled encoder and simply apply
a GNN encoder. From Table 3, we can find that without ego-neighborhood disentangled encoder, the
model’s performance drops significantly in ’w/o DS’ and ’w/ DS’ test data across all datasets, which
implies the disentanglement design is important in modeling feature and structural information in
GAD tasks.

Homophily-aware environment mixup We remove the diversity loss (’w/o DIV’) and preserved
edge ratio loss (’w/o PER’) separately, and both of them show significant performance drops in Table
3. Specifically, removing diversity loss leads to consistent performance drop across all datasets, but
removing PER loss increases the performance on T-Finance, implying that deleting a large proportion
of edges in T-Finance can increase the generalization capability while preserving the performance
in the training stage. This can be verified in the hyperparameter sensitivity analysis. Moreover, our
proposed method reduced overfitting in the training stage by adding the diversity loss and preserved
edge ratio loss. For example, in the Amazon dataset, the models removing diversity loss or removing
PER loss perform better in the test(’w/o DS’) but worse in the test(’w/ DS’).

4.6 Complexity Analysis

In this section, we analyze the computation complexity of HEM. Denote |V | and |E| as the total
number of nodes and edges in the graph, and denote d as the dimension of hidden representation. The
ego-neighborhood disentangled encoder has a time complexity of O(|V |d2 + |E|d). The homophily-
aware environment mixup has a time complexity of O(|E|d+ |E|d+ |E|) = O(|E|d), including the
edge reweighting and computation of diversity loss and PER loss. Therefore, the total computation
complexity for HEM is O(|V |d2 + |E|d). HEM has a linear computation complexity with respect
to the number of nodes and edges, comparable to existing GNN baselines.
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5 Related Work

In this section, we review the existing works about graph anomaly detection and out-of-distribution
generalization.

Graph Anomaly Detection The common challenges in graph anomaly detection are data imbalance
and heterophily[1], and extensive works are proposed to solve these problems from spatial and
spectral prospectives[30–34]. For spatial methods, PCGNN[28] proposes a balanced sampler for the
neighborhood aggregation process in GNNs to reduce data imbalance. BAT[29] further proposes a
class-rebalancing-free data augmentation framework based on a topological paradigm, which can
mitigate the class-imbalance bias and achieve consistent performance boosting across general class
imbalance node classification tasks. GAS[35] utilizes structural preprocessing to handle severe
heterophily before applying the GNN model. CARE-GNN[36], PMP[37], GraphConsis[38] propose
to design new message passing and aggregation mechanisms to mitigate the influence of heterophily
on prediction. Another type of method like H2-FDetector[39] decouples the information aggregation
for homophilic and heterophilic patterns. Since traditional graph convolution is known as low-
frequency filters[40], extensive spectral GNN methods are proposed to handle high-frequency signals
in heterophilic graphs[41][42]. BWGNN[18] propose a polynomial spectral GNN with Beta kernel
as prior, which is proved to fit the spectral energy distribution in GAD scenario and achieves obvious
performance improvement compared with BernNet[26], which has no prior and tries to learn a kernel
from all possible polynomial functions. AMNet[43] tries to learn high-frequency and low-frequency
signals separately and combines them for prediction. While these GAD-specific methods have
achieved substantial progress, there is still room for further enhancement. They fail to adequately
model the interaction patterns between the ego-node and its surrounding neighborhood, which could
potentially reveal discrepancies that are crucial for more accurate anomaly identification.

Out-of-Distribution in Graph (OOD) The structural distribution shift is a prevalent issue in
graph data. For example, variations in disciplines and time periods may result in different citation
patterns in citation networks, and variations in geographic locations and relationship types result in
different interaction types in social networks. Existing OOD methods can be divided into general
methods and graph specialized methods[44–51]. General OOD approaches, such as V-REx[20]
and GroupDRO[21], commonly depend on diverse training environments characterized by explicit
environment labels, a challenging requirement in graph anomaly detection where inherent homophily
obscures environment distinctions. While graph-specific OOD methods have emerged, limitations
persist. For instance, EERM[14] constructs novel training environments using learnable graph
editors and trains with V-REx to learn invariant representations, yet incurs significant memory
overhead due to maintaining multiple full adjacency matrices. SRGNN[22] utilizes the kernel mean
matching method to regularize the discrepancy between embeddings of training and test data, while
the lack of supervised information leads to its limited performance. GDN[12, 8] is the first work
to address structural distribution shift in graph anomaly detection. They handle the problem in an
invariant learning way by identifying the critical anomaly features with gradients, while neglecting the
importance of varying local structures in distribution shift. In conclusion, prevailing methodologies
still have limitations prominently including memory inefficiency, insufficient availability of supervised
information, neglect of inherent local structural patterns, and undue reliance on specific training
environment assumptions.

6 Conclusion

In this paper, we proposed the Ego-Neighborhood Disentangled Encoder with Homophily-aware
Environment Mixup (HEM), for improving the OOD generalization performance for GAD problems.
First, we proposed an ego-neighborhood disentangled encoder to disentangle feature and structural
representations, in order to model discrepancy patterns and discover invariant patterns. Then, we
proposed the homophily-aware environment mixup to generate training environments with diverse
local structures to improve the generalization capability of the model. Our model achieves consistent
improvement across all datasets.

10



Acknowledgments and Disclosure of Funding

This work was supported by the National Key Research and Development Program of China
(No. 2022ZD0115903, 2023YFF1205001), National Natural Science Foundation of China No.
62222209, Beijing National Research Center for Information Science and Technology under Grant
No. BNR2023TD03006, and Beijing Key Lab of Networked Multimedia.

References
[1] X. Ma, J. Wu, S. Xue, J. Yang, C. Zhou, Q. Z. Sheng, H. Xiong, and L. Akoglu, “A comprehen-

sive survey on graph anomaly detection with deep learning,” IEEE Transactions on Knowledge
and Data Engineering, vol. 35, no. 12, pp. 12 012–12 038, 2021.

[2] X. Huang, Y. Yang, Y. Wang, C. Wang, Z. Zhang, J. Xu, L. Chen, and M. Vazirgiannis, “Dgraph:
A large-scale financial dataset for graph anomaly detection,” Advances in Neural Information
Processing Systems, vol. 35, pp. 22 765–22 777, 2022.

[3] M. Weber, G. Domeniconi, J. Chen, D. K. I. Weidele, C. Bellei, T. Robinson, and C. E. Leiserson,
“Anti-money laundering in bitcoin: Experimenting with graph convolutional networks for
financial forensics,” arXiv preprint arXiv:1908.02591, 2019.

[4] L. Cheng, R. Guo, K. Shu, and H. Liu, “Causal understanding of fake news dissemination on
social media,” in Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery
& Data Mining, 2021, pp. 148–157.

[5] X. Yuan, N. Zhou, S. Yu, H. Huang, Z. Chen, and F. Xia, “Higher-order structure based anomaly
detection on attributed networks,” in 2021 IEEE International Conference on Big Data (Big
Data). IEEE, 2021, pp. 2691–2700.

[6] J. Tang, F. Hua, Z. Gao, P. Zhao, and J. Li, “Gadbench: Revisiting and benchmarking supervised
graph anomaly detection,” Advances in Neural Information Processing Systems, vol. 36, pp.
29 628–29 653, 2023.

[7] J. Chen, G. Zhu, C. Yuan, and Y. Huang, “Boosting graph anomaly detection with adaptive
message passing,” in The Twelfth International Conference on Learning Representations.

[8] Y. Gao, J. Li, X. Wang, X. He, H. Feng, and Y. Zhang, “Revisiting attack-caused structural
distribution shift in graph anomaly detection,” IEEE Transactions on Knowledge and Data
Engineering, vol. 36, no. 9, pp. 4849–4861, 2024.

[9] M. Wu, X. Zheng, Q. Zhang, X. Shen, X. Luo, X. Zhu, and S. Pan, “Graph learning under
distribution shifts: A comprehensive survey on domain adaptation, out-of-distribution, and
continual learning,” arXiv preprint arXiv:2402.16374, 2024.

[10] W. Bao, Z. Zeng, Z. Liu, H. Tong, and J. He, “Adarc: Mitigating graph structure shifts during
test-time,” arXiv preprint arXiv:2410.06976, 2024.

[11] S. Liu, T. Li, Y. Feng, N. Tran, H. Zhao, Q. Qiu, and P. Li, “Structural re-weighting improves
graph domain adaptation,” in International Conference on Machine Learning. PMLR, 2023,
pp. 21 778–21 793.

[12] Y. Gao, X. Wang, X. He, Z. Liu, H. Feng, and Y. Zhang, “Alleviating structural distribution shift
in graph anomaly detection,” in Proceedings of the sixteenth ACM international conference on
web search and data mining, 2023, pp. 357–365.

[13] E. Altman, J. Blanuša, L. Von Niederhäusern, B. Egressy, A. Anghel, and K. Atasu, “Real-
istic synthetic financial transactions for anti-money laundering models,” Advances in Neural
Information Processing Systems, vol. 36, 2024.

[14] Q. Wu, H. Zhang, J. Yan, and D. Wipf, “Handling distribution shifts on graphs: An invariance
perspective,” arXiv preprint arXiv:2202.02466, 2022.

11



[15] Y. Liu, Z. Li, S. Pan, C. Gong, C. Zhou, and G. Karypis, “Anomaly detection on attributed
networks via contrastive self-supervised learning,” IEEE transactions on neural networks and
learning systems, vol. 33, no. 6, pp. 2378–2392, 2021.

[16] Z. Zhang, X. Wang, Z. Zhang, H. Li, Z. Qin, and W. Zhu, “Dynamic graph neural networks
under spatio-temporal distribution shift,” Advances in neural information processing systems,
vol. 35, pp. 6074–6089, 2022.

[17] Z. Zhang, X. Wang, Z. Zhang, Z. Qin, W. Wen, H. Xue, H. Li, and W. Zhu, “Spectral invari-
ant learning for dynamic graphs under distribution shifts,” Advances in Neural Information
Processing Systems, vol. 36, 2024.

[18] J. Tang, J. Li, Z. Gao, and J. Li, “Rethinking graph neural networks for anomaly detection,” in
International Conference on Machine Learning. PMLR, 2022, pp. 21 076–21 089.

[19] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with contrastive predictive coding,”
arXiv preprint arXiv:1807.03748, 2018.

[20] D. Krueger, E. Caballero, J.-H. Jacobsen, A. Zhang, J. Binas, D. Zhang, R. Le Priol, and
A. Courville, “Out-of-distribution generalization via risk extrapolation (rex),” in International
conference on machine learning. PMLR, 2021, pp. 5815–5826.

[21] S. Sagawa, P. W. Koh, T. B. Hashimoto, and P. Liang, “Distributionally robust neural networks
for group shifts: On the importance of regularization for worst-case generalization,” arXiv
preprint arXiv:1911.08731, 2019.

[22] Q. Zhu, N. Ponomareva, J. Han, and B. Perozzi, “Shift-robust gnns: Overcoming the limitations
of localized graph training data,” Advances in Neural Information Processing Systems, vol. 34,
pp. 27 965–27 977, 2021.

[23] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio et al., “Graph attention
networks,” stat, vol. 1050, no. 20, pp. 10–48 550, 2017.

[24] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,”
arXiv preprint arXiv:1609.02907, 2016.

[25] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large graphs,”
Advances in neural information processing systems, vol. 30, 2017.

[26] M. He, Z. Wei, H. Xu et al., “Bernnet: Learning arbitrary graph spectral filters via bernstein
approximation,” Advances in Neural Information Processing Systems, vol. 34, pp. 14 239–
14 251, 2021.

[27] Y. Gao, X. Wang, X. He, Z. Liu, H. Feng, and Y. Zhang, “Addressing heterophily in graph
anomaly detection: A perspective of graph spectrum,” in Proceedings of the ACM Web Confer-
ence 2023, 2023, pp. 1528–1538.

[28] Y. Liu, X. Ao, Z. Qin, J. Chi, J. Feng, H. Yang, and Q. He, “Pick and choose: a gnn-based
imbalanced learning approach for fraud detection,” in Proceedings of the web conference 2021,
2021, pp. 3168–3177.

[29] Z. Liu, R. Qiu, Z. Zeng, H. Yoo, D. Zhou, Z. Xu, Y. Zhu, K. Weldemariam, J. He, and H. Tong,
“Class-imbalanced graph learning without class rebalancing,” 2024.

[30] Y. Lin, J. Tang, C. Zi, H. V. Zhao, Y. Yao, and J. Li, “Unigad: Unifying multi-level graph
anomaly detection,” arXiv preprint arXiv:2411.06427, 2024.

[31] Q. Wang, G. Pang, M. Salehi, X. Xia, and C. Leckie, “Open-set graph anomaly detection via
normal structure regularisation,” arXiv preprint arXiv:2311.06835, 2023.

[32] J. Zhang, S. Wang, and S. Chen, “Reconstruction enhanced multi-view contrastive learning for
anomaly detection on attributed networks,” arXiv preprint arXiv:2205.04816, 2022.

12



[33] J. Duan, B. Xiao, S. Wang, H. Zhou, and X. Liu, “Arise: Graph anomaly detection on attributed
networks via substructure awareness,” IEEE transactions on neural networks and learning
systems, 2023.

[34] R. Guo, M. Zou, S. Zhang, X. Zhang, Z. Yu, and Z. Feng, “Graph local homophily network for
anomaly detection,” in Proceedings of the 33rd ACM International Conference on Information
and Knowledge Management, 2024, pp. 706–716.

[35] A. Li, Z. Qin, R. Liu, Y. Yang, and D. Li, “Spam review detection with graph convolutional
networks,” Proceedings of the 28th ACM International Conference on Information and
Knowledge Management, 2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:
201660501

[36] Y. Dou, Z. Liu, L. Sun, Y. Deng, H. Peng, and P. S. Yu, “Enhancing graph neural network-based
fraud detectors against camouflaged fraudsters,” in Proceedings of the 29th ACM international
conference on information & knowledge management, 2020, pp. 315–324.

[37] W. Zhuo, Z. Liu, B. Hooi, B. He, G. Tan, R. Fathony, and J. Chen, “Partitioning message passing
for graph fraud detection,” in The Twelfth International Conference on Learning Representations,
2024.

[38] Z. Liu, Y. Dou, P. S. Yu, Y. Deng, and H. Peng, “Alleviating the inconsistency problem of
applying graph neural network to fraud detection,” in Proceedings of the 43rd international ACM
SIGIR conference on research and development in information retrieval, 2020, pp. 1569–1572.

[39] F. Shi, Y. Cao, Y. Shang, Y. Zhou, C. Zhou, and J. Wu, “H2-fdetector: A gnn-based fraud detector
with homophilic and heterophilic connections,” in Proceedings of the ACM web conference
2022, 2022, pp. 1486–1494.

[40] D. Bo, X. Wang, C. Shi, and H. Shen, “Beyond low-frequency information in graph convolu-
tional networks,” in Proceedings of the AAAI conference on artificial intelligence, vol. 35, no. 5,
2021, pp. 3950–3957.

[41] E. Chien, J. Peng, P. Li, and O. Milenkovic, “Adaptive universal generalized pagerank graph
neural network,” arXiv preprint arXiv:2006.07988, 2020.

[42] Y. Gao, J. Fang, Y. Sui, Y. Li, X. Wang, H. Feng, and Y. Zhang, “Graph anomaly detection
with bi-level optimization,” in Proceedings of the ACM Web Conference 2024, ser. WWW ’24.
New York, NY, USA: Association for Computing Machinery, 2024, p. 4383–4394. [Online].
Available: https://doi.org/10.1145/3589334.3645673

[43] Z. Chai, S. You, Y. Yang, S. Pu, J. Xu, H. Cai, and W. Jiang, “Can abnormality be detected by
graph neural networks?” in IJCAI, 2022, pp. 1945–1951.

[44] X. Han, Z. Jiang, N. Liu, and X. Hu, “G-mixup: Graph data augmentation for graph classifica-
tion,” in International Conference on Machine Learning. PMLR, 2022, pp. 8230–8248.

[45] G. Liu, T. Zhao, J. Xu, T. Luo, and M. Jiang, “Graph rationalization with environment-based
augmentations,” in Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, 2022, pp. 1069–1078.

[46] K. Kong, G. Li, M. Ding, Z. Wu, C. Zhu, B. Ghanem, G. Taylor, and T. Goldstein, “Robust
optimization as data augmentation for large-scale graphs,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2022, pp. 60–69.

[47] S. Fan, X. Wang, C. Shi, P. Cui, and B. Wang, “Generalizing graph neural networks on out-
of-distribution graphs,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
2023.

[48] Y.-X. Wu, X. Wang, A. Zhang, X. He, and T.-S. Chua, “Discovering invariant rationales for
graph neural networks,” arXiv preprint arXiv:2201.12872, 2022.

[49] Q. Zhu, C. Zhang, C. Park, C. Yang, and J. Han, “Shift-robust node classification via graph
adversarial clustering,” arXiv preprint arXiv:2203.15802, 2022.

13

https://api.semanticscholar.org/CorpusID:201660501
https://api.semanticscholar.org/CorpusID:201660501
https://doi.org/10.1145/3589334.3645673


[50] J. Ma, J. Deng, and Q. Mei, “Subgroup generalization and fairness of graph neural networks,”
Advances in Neural Information Processing Systems, vol. 34, pp. 1048–1061, 2021.

[51] Y. Qin, X. Wang, Z. Zhang, P. Xie, and W. Zhu, “Graph neural architecture search under
distribution shifts,” in International Conference on Machine Learning. PMLR, 2022, pp.
18 083–18 095.

14



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims can be verified in the Experiments Section.
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Answer: [NA]
Justification: This paper proposes a new GAD OOD method in a structural distribution shift
setting and shows no obvious limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

15



Justification: The assumptions and proofs can be found in the Appendix E.
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of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The details can be found in the Experiments Section, especially the settings
subsection.
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• The answer NA means that the paper does not include experiments.
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whether the code and data are provided or not.
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• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
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to reproduce that algorithm.
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the architecture clearly and fully.
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the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: The data used in this paper are all public datasets, and it requires some time to
get the code fully prepared to be released.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: This can be found in the Experiments Section.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: This can be found in Table 1
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The details can be found in Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research is with the NeurIPS Code of Ethics in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper is focusing on improving the OOD algorithm in GAD problems,
with little impact on society.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper has no such risks since it’s an improved OOD method without
releasing any data or models that have a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: This can be found in the Experiments and Related Work Sections.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve such experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method does not involve LLMs as any important, original, or non-
standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Datasets

A.1 Dataset Details
• Amazon. The task of the Amazon dataset is to identify anomalous users who wrote fake reviews

for products under the Musical Instrument category on the Amazon website. Uses are nodes in
the graph and there are three types of edges: U-P-U (connects users reviewing at least one same
product), U-S-U (connects users giving at least one same star rating within one week), U-V-U
(connects users with top 5% mutual review text similarities among all users). The node features
are handcrafted features about user information.

• Yelp. Yelp dataset includes hotel and restaurant reviews, and the task is to filter spam reviews.
The reviews are nodes in the graph and there are three types of edges: R-U-R (connects reviews
posted by the same person), R-S-R (connects reviews about the same product with the same
rating), R-T-R (connects reviews about the same product while posted in the same month). The
node features are handcrafted features from raw texts.

• T-Finance. T-Finance dataset is about a transaction network and the target is to find anomaly
accounts. The nodes are accounts and the edges are transactions between accounts. The node
features are user profile details like registration days.

A.2 Dataset Split Method

The dataset is divided by the homophily ratio of nodes, split into 50%/10%/20%/20% for training,
validation, in-distribution test, and out-of-distribution (OOD) test sets, respectively.

The bottom 20% of nodes with the lowest homophily ratios are selected to form the OOD test set.

B Baseline Models

• General GNNs: GCN[24] utilizes convolution operation to aggregate messages from the neigh-
borhood and achieves excellent performance in semi-supervised graph tasks. GAT[23] adds an
attention mechanism to the message passing process, assigning different weights to edges in
order to aggregate information from important neighbors. GraphSAGE[25] utilizes neighborhood
sampling methods to fit inductive learning.

• GNNs Specialized for Graph Anomaly Detection: BernNet[26] utilizes a K-order Bernstein
polynomial approximation to estimate arbitrary graph spectral filers. BWGNN[18] uses Beta
distribution as prior for spectrum distribution of graph anomaly detection data. GHRN[27]
drops inter-class edges to delineate high-frequency components and increases the homophily of
heterophilic dataset. PCGNN[28] designs a label-balanced sampler to sample nodes and edges
within neighborhoods to increase homophily.BAT[29] proposed a plug-and-play framework that
dynamically augments the graph topology via uncertainty-based node risk estimation and virtual
connections.

• General Out-of-Distribution Methods: GroupDRO[21] puts more weights on worst-case across
different training domains. V-REx[20] enhances out-of-distribution generalization by extrapolat-
ing risks and minimizing the variance of losses across different environments.

• Graph Out-of-Distribution Methods: SRGNN[22] uses kernel mean matching to regularize the
difference in the distributions of training and test nodes’ embeddings, in order to avoid learning
spurious embedding distribution. EERM[14] utilizes REINFORCE to create diverse environments
at the training stage to enhance generalization capability. GDN[12] designs invariance losses and
uses gradient descent on input features to filter invariant features.

C Hyperparameter Sensitivity Analysis

C.1 Edge Preservation Ratio

We analyze the sensitivity of the hyperparameter ρ, the edge preservation ratio in PER loss from
Equation 13. From Figure 2, we can find a proper ρ is neither too small nor too big. A small ρ means
preserving only a small proportion of edges, which may destroy the invariant patterns, and a big ρ
lead to a structural distribution without much shift. A perfect choice of ρ is a balance of both aspects.
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Figure 2: Sensitivity of hyperparameter ρ. The area shows the average AUPRC and standard
deviations in the test(’w/ DS’) data. The dashed line represents the average AUPRC of the best-
performed baseline.

C.2 Advaserarial Training

Figure 3: Sensitivity of inner/outer training steps in the adversarial training. The area shows the
average AUPRC and standard deviations in the amazon test(’w/DS’). By default we choose inner
loop steps = 1 and outer loop steps = 500.

We conducted an extensive analysis on the Amazon dataset to evaluate the sensitivity of HEM to
the number of inner loop and outer loop steps. Our findings indicate that for the outer loop steps,
the model demonstrates robust performance as long as the training steps are not excessively limited.
Conversely, the model exhibits relatively higher sensitivity to the inner loop steps. Utilizing a smaller
number of inner loop training steps allows for the generation of augmented graphs with an appropriate
level of difficulty, thereby facilitating easier model convergence.

D Case Study

Figure 4: Case Study of Homophily Ratio in Yelp Dataset.
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In the case study, we analyze the homophily ratio of anomaly and normal nodes in Yelp dataset.
During the data preprocessing, we construct structural distribution shift by sampling nodes with
high homophily ratio as training data, leading to a shortcut to predict the label of central node by its
neighbors. From Figure 4, the model has learnt to adjust edge weight to decrease the homophily ratio
of the total graph and discovered patterns based on the augmented graph.

E Theoretical Proofs

E.1 Lemma 1 (Predictor Dependence on Homophily)

The optimal coefficient that minimizes the Mean Squared Error (MSE) between predictions and
labels is

α∗(h) =
Cov(Y, r)

Var(r)
=

π(1− π)(2h− 1)
h(1−h)

d + π(1− π)(2h− 1)2
. (20)

Firstly, the value of some key statistical properties are:

• Cov(Y, r) = π(1− π) (2h− 1),
• Var(Y ) = π(1− π),

• Var(r | Y=y) = h(1−h)
d ,

• Var(r) = h(1−h)
d + π(1− π)(2h− 1)2.

For a one-layer message-passing GNN followed by a linear classifier, the node embedding Zv is:

Zv = (AX)v = rvµ1 + (1− rv)µ0 = µ0 + rv∆µ. (21)

The final prediction Ŷv is then:

Ŷv = w⊤µ0 + (w⊤∆µ)︸ ︷︷ ︸
α

rv. (22)

The optimal coefficient α⋆ that minimizes the Mean Squared Error (MSE) is given by linear regres-
sion:

α⋆ =
Cov(Y, r)

Var(r)
=

π(1− π)(2h− 1)
h(1−h)

d + π(1− π)(2h− 1)2
. (23)

Lemma 2 (Bounded Deviation on the Test Distribution). If there exists an ϵ such that |hte−htr| ≤
ϵ, with the proposed environment mixup and adversarial training, the gap between the expected test
loss of the training-optimal parameters and the optimal test loss is bounded. Specifically,

L(hte, α
∗
tr)− L(hte, α

∗
te) ≤ VmaxLf ϵ

2 (24)

, where Lf denotes the Lipschitz constant of f(h) = α∗
h, and Vmax represents the maximum of

V ar(r) for h satisfying |h− htr| ≤ ϵ.

For simplicity, we define:

• C(h) = Cov(Y, r) = π(1− π) (2h− 1),

• V (h) = Var(r) = h(1−h)
d + π(1− π)(2h− 1)2.

Then the MSE Loss is:

L(h;α) = E
[
(Y − Ŷ )2 | h

]
= V (h)− 2αC(h) + α2V (h). (25)

Define the optimal α on h as α⋆ = f(h) = C(h)
V (h) , and the optimal loss as:

L⋆ = V (h)− C(h)2

V (h)
. (26)
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We assume HEM trains on Hϵ = [htr − ϵ, htr + ϵ] by applying environment mixup, which covers
hte.

Define:

• fmin = infh∈Hϵ
f(h),

• fmax = suph∈Hϵ
f(h),

• Vmax = suph∈Hϵ
V (h).

Then
L(h;α) = L⋆(h) + V (h)

(
α− f(h)

)2
, (27)

therefore we can get the upper bound of the loss difference:

L(h;α)− L⋆(h) ≤ sup
h∈Hϵ

V (h)
(
α− f(h)

)2 ≤ Vmax

(
sup
h∈Hϵ

(
α− f(h)

)2)
.

Since the goal of adversarial training in HEM is to minimize the loss in the worst case, we further
assume HEM can minimize the upper bound, then:

α =
fmin + fmax

2
. (28)

Thus,

L(h;α)− L⋆(h) ≤ Vmax

(
sup
h∈Hϵ

(
fmax − fmin

2

)2
)
. (29)

If f follows Lipschitz continuity, then

fmax − fmin ≤ Lf

(
(htr + ϵ)− (htr − ϵ)

)
= 2Lf ϵ. (30)

Finally,
L(h;α)− L⋆(h) ≤ VmaxL

2
f ϵ

2. (31)

F Configurations

All experiments are conducted with:

• Operating System: Ubuntu 20.04.6 LTS
• CPU: Intel(R) Xeon(R) Gold 6348 CPU @ 2.60GHz
• GPU: NVIDIA GeForce RTX 4090 with 24 GB of memory
• Software: Python 3.12.4; CUDA 12.2; PyTorch 2.4.1
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