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Abstract

Humans have the ability to learn novel compo-
sitional concepts by recalling and generalizing
primitive concepts acquired from past expe-
riences. Inspired by this observation, in this
paper, we propose MetaReVision, a retrieval-
enhanced meta-learning model to address the
visually grounded compositional concept learn-
ing problem. The proposed MetaReVision
consists of a retrieval module and a meta-
learning module which are designed to incorpo-
rate retrieved primitive concepts as a support-
ing set to meta-train vision-language models
for grounded compositional concept recogni-
tion. Through meta-learning from episodes con-
structed by the retriever, MetaReVision learns
a generic compositional representation that can
be fast updated to recognize novel composi-
tional concepts. We create CompCOCO and
CompFlickr to benchmark the grounded com-
positional concept learning. Our experimental
results show that MetaReVision outperforms
other competitive baselines and the retrieval
module plays an important role in this compo-
sitional learning process.

1 Introduction

Learning to compose from previous experience is
an important integral part of human intelligence
(Fodor and Pylyshyn, 1988; Biederman and Vessel,
2006). Generally, compositional learning refers to
the ability to learn a set of basic primitives and gen-
eralize these primitives in a novel scenario different
from training time (Kemp and Tenenbaum, 2009;
Ontanón et al., 2021). It includes various learning
aspects, such as systematic generalization, produc-
tivity and substitutivity (Hupkes et al., 2020). In
this work, we focus on systematic generalization
within the multi-modal setting and propose a multi-
modal compositional problem: Grounded Com-
positional Concept Learning (GCCL). As shown
in Figure 1, in the GCCL setting, the models are
trained with primitive concepts, such as red and

a large red 
bus is driving 
down the 
street.

two teddy 
bears sitting 
on an old chair 
together.

a man in 
black sits at 
a red table 
with red 
chairs

Learnt Element Concept: red, chair Compositional Concept: red chair

Figure 1: An illustration of Grounded Compositional
Concept Learning(GCCL). For example, given concepts
(red, bus) and (old, chair) in the training data, the goal
is to learn to predict novel compositional concepts (red,
chair) as masked token prediction at test time.

chair, from the training data. The trained models
are then applied to predict novel compositional con-
cepts e.g., red chair in the testing phase although
these concepts were never seen during training.

The ideal vision-language system should have
the compositional ability to solve the GCCL prob-
lem. Recently, significant efforts have been made
to the development of pre-training vision-language
models (VLMs) (Tan and Bansal, 2019; Su et al.,
2020; Radford et al., 2021). These VLMs have
demonstrated impressive performance in various
downstream tasks, including Visual Question An-
swering (VQA) (Li et al., 2020), Vision-Language
Navigation (VLN) (Hao et al., 2020) and image
captioning (Zhou et al., 2020). Despite their suc-
cess in related fields, it remains unclear whether
these models can truly perceive the world in a com-
positional manner or generate language compo-
sitionally to cooperate with humans in a shared
physical world. Such composition-related ques-
tions are important from both the theory and the
application perspectives. From the theory perspec-
tive, compositional learning allows the model to
process and understand objects by breaking them
down into smaller, interpretable units. Therefore,
compositional learning helps improve large models’



efficiency and generalization (Andreas et al., 2016).
From the application perspective, it is not realistic
to give the model all possible compositions in train-
ing data. For example, in Vision Language Navi-
gation (VLN), it is not feasible to observe a sofa
with all possible colors e.g. red sofa and blue sofa.
The vision-language models applied in VLN are ex-
pected to recognize these compositions after learn-
ing the element concepts 1. Compositional learning
can be viewed as a special case of zero-shot learn-
ing problems. Moreover, the domain-shift problem
is commonplace in zero-shot learning because the
statistical distribution of the data in the training set
(seen compositions) and the testing set (novel com-
positions) could be significantly different. While
compositionality can be reliably interpreted by hu-
mans, State-of-the-art VLMs, which are trained on
vast amounts of image-text pairs and employ di-
verse loss functions, still encounter challenges in
compositional learning (Ma et al., 2023b; Thrush
et al., 2022).

To address these limitations, this paper takes a
closer look at the compositionality in VLM with an
attempt to improve its ability. More specifically, we
create two grounded compositional concept learn-
ing datasets, CompFlickr and CompCOCO curated
from MSCOCO (Chen et al., 2015) and Flickr30K
(Plummer et al., 2015), for VLMs’ token-level
compositional analysis. Moreover, we present
MetaReVision, Meta-Learning with Retrieval for
Visually Grounded Compositional Concept Acquisi-
tion, a retrieval-enhanced meta-learning framework
for compositional concept acquisition, which intro-
duces retriever into GCCL. The retrieval mecha-
nism plays a crucial role in human learning. It facil-
itates long-term retention, understanding enhance-
ment, and knowledge transfer during the learning
process, which have been discussed by a large body
of studies in cognitive science (Karpicke and Blunt,
2011; Karpicke, 2012). To mimic such human’s
retrieving behavior(Roediger and Butler, 2011;
Karpicke and Roediger III, 2008), MetaReVision
retrieves relevant primitive concepts from a pre-
constructed concept database and provides them
as support evidence to do meta-learning for com-
positional concept learning. MetaReVision fol-
lows a Learn-Retrieval-Compose framework. It
shares the compositional learning burden be-
tween VLMs and the retriever. Through meta-

1Element concepts are also called primitive concepts in
our setting. We use them interchangeably in this work.

learning from the episodes constructed by the re-
triever, MetaReVision learns a generalized com-
positional representation that can be fast updated
for novel compositional recognition. We evaluate
MetaReVision on the proposed CompFlickr and
CompCOCO datasets. The empirical results show
that coupling retrieval and meta-learning performs
better in GCCL compared with previous baselines.

Contributions of this work can be summarized
as follows:

• This work explores a novel angle of retrieval-
enhanced compositional concept learning.
The model relies on retrieval to construct
episodes for meta-learning. It addresses the
domain-shift problem in compositional learn-
ing by learning from the retrieved instances.

• Two datasets are created to serve as bench-
marks for grounded compositional concept
learning. These datasets enrich existing zero-
shot vision-language tasks, from the end-task
level to the token-level.

• Our experiments show that MetaReVision
demonstrates stronger performance in GCCL,
especially in the novel setting. This empir-
ically shows the effectiveness of combining
retrieval and meta-learning techniques in the
context of grounded compositional learning.

2 Related Works

Meta-Learning also known as learning to learn,
aims to solve a low-resource problem by leverag-
ing the learned experience from a set of related
tasks. Meta-learning algorithms deal with the prob-
lem of efficient learning so that they can learn new
concepts or skills fast with just a few seen exam-
ples (few-shot setting) or even without seen exam-
ples (zero-shot setting). Different from the typical
meta-learning scenario where the training and test
episodes are given in advance in few-shot learn-
ing (Sung et al., 2018; Snell et al., 2017; Nichol
et al., 2018a; Finn et al., 2017), in GCCL, we
need to construct episodes to employ meta-learning
methods for compositional concept learning. In
MetaReVision, we introduce a retriever to actively
construct episodes to help compositional concept
learning. During the test time, with additional
retrieved support items, MetaReVision can fur-
ther fast-update VLMs for current compositional
concept recognition in the query set. This test-
time fine-tuning is different from previous works



which apply meta-learning in the zero-shot set-
ting(Conklin et al., 2021).

Retrieval-Enhanced Learning. Retrieving related
instances from a database, either the training set or
external knowledge base, has been widely applied
in tasks such as language modeling (Khandelwal
et al., 2019), reinforcement learning (Goyal et al.,
2022) and language tasks such as NER (Wang et al.,
2021). Instead of distilling all training information
into the model’s parameters through gradient up-
dates, retrieval-enhanced learning introduces a re-
triever to find related instances and based on these
instances conduct further learning. For example,
kNN-LM (Khandelwal et al., 2019) extends the
pre-trained language model by linearly interpolat-
ing its next word distribution with a retrieval mod-
ule. This design shows effective domain adaptation
ability. Wang et al. finds external contexts for the
target instance by retrieving a set of semantically
relevant texts to fine-tune the CRF module to ad-
dress the NER problem. These studies highlight
the significance of actively recalling information
from a database to enhance learning outcomes. The
general scheme of such methods is to combine a
parametric model with a non-parametric retrieval
system (Long et al., 2022). Different from these set-
tings, in GCCL, we train our own concept retriever
and show retrieval’s importance in compositional
learning.

Compositional Learning. Recent research sug-
gests that compositionality remains a challenge
for state-of-the-art (SoTA) neural models such as
Transformers and Graph Neural Networks (Niko-
laus et al., 2019; Hupkes et al., 2020; SHAO et al.,
2023). To tackle this challenge, inspired by sym-
bolic AI, some works try to add structural con-
straints into neural models (Bergen et al., 2021).
There are also some attempts to generate new data
for the compositions (Naeem et al., 2023; Xian
et al., 2018). Also, there have been noteworthy
advancements in vision-language benchmarks that
focus on probing and enhancing VLM’s composi-
tional abilities recently (Eisenschlos et al., 2023;
Thrush et al., 2022; Ruis et al., 2020; Ma et al.,
2023b). Nevertheless, these works build end tasks
in a compositional manner. They emphasize the
performance of these compositional end tasks with-
out giving consideration to the token-level compo-
sitional ability. However, GCCL targets VLM’s
token-level compositional ability. Moreover, dif-
ferent from symbolic and data-augment solutions,

MetaReVision explores the retrieval method to
solve the compositional problem.

3 Grounded Compositional Concept
Learning (GCCL)

We start by introducing the settings of Grounded
Compositional Concept Learning (GCCL) and fur-
ther introduce the benchmarks we curated for this
problem in this section.

3.1 Problem Definition
Existing VLMs try to learn a generic representation
for multi-modal tokens in different contexts. These
VLMs are expected to obtain generic token repre-
sentations that have strong transfer ability for down-
stream tasks. We consider a setting that directly
examines whether VLMs have the ability to acquire
compositional meanings of tokens through the lens
of language modeling. Different from the task-
level compositional studies, GCCL approaches the
compositional problem from the token-level and
investigates whether VLMs possess the capability
to acquire the compositional meanings of tokens.

Red apple in basket

Blue bus parking on road

Training Novel Comp. Testing

Seen Comp. Testing

a man standing by a red bus

Blue bus parking at corner

Figure 2: GCCL task definition. Red highlights seen
compositional concepts and blue highlights novel com-
positional concepts.

Figure 2 shows an example of the GCCL task.
Given a set of image-caption pairs with the compo-
sitional concepts masked out from the caption, the
model is tasked to learn the concept representations
and predict the masked compositional concept con-
ditioned on the contextual information. The learned
model is then applied in the testing phase on both
novel compositions as well as seen compositions.
The model is evaluated based on its ability to learn
novel compositions while maintaining (i.e., not for-
getting) seen compositions.

Formally, given a set of text-image pairs
{(xcap, ximg)}ni=1 where ximg ∈ I is the image
with annotated bounding boxes, xcap ∈ T is the
caption with the compositional concepts replaced
by MASK. The objective of GCCL is to predict the
masked tokens based on the contextual informa-
tion(Ma et al., 2023a; Jin et al., 2020). Therefore,



for BBoxes, only the locations are considered as
input, not their label information. A model capable
of solving GCCL can be described as a functional
f : I × T → Vattr × Vobj , where Vattr × Vobj

is the target compositional concepts which could
be either adjective + noun pairs or noun + verb
pairs. Based on whether Vattr × Vobj have been
seen during training, GCCL can be categorized into
seen compositional testing and novel compositional
testing. The desired compositional VLMs should
achieve improved novel performance without sacri-
ficing the seen performance.

3.2 GCCL Dataset Creation

We build GCCL’s benchmarks, CompFlickr and
CompCOCO, from MSCOCO (Chen et al., 2015)
and Flickr30K (Plummer et al., 2015). We use
the same data split introduced by Nikolaus et al..
Their work studies the composition ability of image
captioning systems by selecting 24 pairs as novel
compositions by removing all images related to
these 24 pairs from the training dataset. This en-
sures that novel compositions have never been seen
during training. Other works adapt the same data
split for compositional learning studies. For exam-
ple, Jin et al. utilized this split to check current VL
models’ compositional ability on phrases under the
continual learning setting. However, in Jin et al.’s
work, most of the extracted phrases are in the form
of article + noun, like the car and a man. They are
single objects instead of compositional concepts.
Such phase evaluation is not a good setting for
compositional learning.

In order to evaluate the token-level composi-
tional ability, we develop two benchmarks Compt-
COCO and ComptFlickr to address the above limi-
tation. Concretely, after paring the captions using
Stanta (Qi et al., 2020), we use a number of rules to
collect and mask the compositional concepts, the
details are in the Appendix C. Finally, the dataset
is divided into 4 parts: training set without novel
compositions, validation set with both seen and
novel compositions for hyper-parameter tuning and
model selection, seen test set, and novel test set.
The detailed statistics of novel compositions for
these two datasets are shown in Appendix D.

4 Meta-Learning with Retrieval for
GCCL (MetaReVision)

MetaReVision mainly consists of two modules:
the retrieval model and the meta-learner as shown

in Figure 3. The retrieval module learns to find
similar element concepts from the training data.
The meta-learner organizes the retrieved items as
a pseudo task to meta-tune VLMs for composi-
tional learning. In this part, we will discuss the
base VLMs, retrieval module, and meta-learning
module in detail and answer two key questions in
MetaReVision’s design: 1) How to retrieve related
items, 2) How to utilize the retrieved items in the
context of meta-learning.

4.1 Vision-Language Models (VLMs)
VLBERT (Su et al., 2020) and LXMERT (Tan and
Bansal, 2019) are two representative VLMs that
are suitable in our GCCL setting. They represent
one-stream and two-stream VLMs separately. The
difference is that two-stream VLMs have additional
self-attention layers before cross-attention layers.
We conduct experiments using these two types of
VLMs to show the general effectiveness of the pro-
posed framework. Moreover, all VLMs are trained
from scratch to make sure that they do not see novel
compositions during their training time.

4.2 Retriever and Element Concept Database
Given the compositional concepts, the ideal re-
triever is expected to retrieve the training examples
that are the most beneficial for the target compo-
sitional concept learning. It is usually assumed
that the examples that are the nearest neighbors
of query examples are more likely to be beneficial
ones for generalizing (Long et al., 2022). GCCL
retriever needs an encoder to encode the element
concept, construct a database to organize these ele-
ment concepts’ information, and retrieve relevant
concepts.
Element Concept Encoder. Given the linguistic
and visual clues for the compositional concepts, the
encoder is acting as a function f(xcap, ximg) that
maps a MASK concept to a fixed-length vector Rd.
Then for each primitive concept in the target com-
positions, f(·) can help retrieve related primitive
concepts. MetaReVision relies on these retrieved
concepts to conduct further compositional learn-
ing. In this way, MetaReVision enhances its own
compositional capability by augmenting the input
through the retrieval procedure. The encoding func-
tion f(·) is the key component for the retriever. In
traditional vision-language tasks, like VQA and
Visual Entailment(Song et al., 2022), CLIP (Rad-
ford et al., 2021) is usually used as the encoder
to encode the whole visual or textural input and



Input: A  [MASK] [MASK] driving on the road. 
Output: Blue Bus

FAISS Indexer

• Key: Dense Vector <0.1, 0.3, …, 0.95>
• Value:

• Element concept: Blue
• Element type: Adjective
• Sentence: a blue bus driving on the road
• Image ID: 7616

Element Concept DB

Retriever Construction Meta-Training

Input: large [MASK] [MASK] passing parked cars. 
Label:  White bus

Query Item

Support Item

a [blue] [bus] driving on the road.

a [white] [plate] on the table

Test Phase
Novel Compositions

Input: People sitting on the [MASK] [MASK].

Fine-Tune and Predict: Red Bus

VLM-Encoder VLM-Encoder VLM-Encoder

FAISS Indexer FAISS Indexer

Support Item

a [blue] [bus] driving on the road.

A [red] [truck] traveling on an 
intersection.

MAML Updating:

Figure 3: MetaReVision Architecture. The whole system includes two modules: retrieve and meta-trained VLM.
During testing, MetaReVision retrieves related instances to fast-update VLM for novel compositional learning.

help build the retriever. However, in GCCL’s token-
level compositional setting, we focus on the token’s
representation and therefore use the VLMs as an
encoder to extract MASK concept’s representation
for further compositional learning. These vectors
are used as keys to construct the Element Con-
cept Database and perform an approximate nearest
neighbor search to augment compositional learning.
We add a two-layer MLP and adopt Masked Lan-
guage Modeling (MLM) to train vision-language
retriever. For the encoder’s training, since we fo-
cus on concept acquisition, words in compositional
concepts are masked with a probability of 1.0, and
others are not masked during training.
Element Concept Database. The element concept
datastore DB = {(ki, vi)}, which is constructed
offline using the above-trained vision-language en-
coder, consists of dense representations of masked
element concepts k = Enc (xcap, ximg) ∈ Rd is as
keys and the corresponding (xcap, ximg) as values.
To efficiently access this database, we implement
the dense retriever for GCCL by an off-the-shelf-
retriever engine FAISS (Johnson et al., 2019) with a
flat index (IndexFlatIP) without any training. Then
given a masked concept, we can retrieve the top-
K DB items by calculating the cosine similarity
scores between the [MASK] concept with all DB
items in nearly real-time as follows:

Ret(k) = {(k1,Val1) , . . . , (kM ,ValM )} (1)

where k is the mask concept’s embedding vector,
ki is the DB item’s key, Vali = (xcapi , ximgi) is the

retrieved DB item’s value, and Ret is the retrieved
DB item set.

After adding the retrieval module into GCCL,
the problem can be re-formulized as:

p(v | x) = p(v | x,Ret(x))︸ ︷︷ ︸
Learner

p(Ret(x) | x)︸ ︷︷ ︸
Retrieval

(2)

where v is the MASK compositional concept’s pre-
diction, x ∈ Rd is the maksed concept’s encoded
vector and Ret(x) is the retrieved DB items based
on its vector x as Equation 1. The compositional
learning happens in two levels: 1) retrieve related
items from DB based on the encoding vector, 2)
learn conditioned on contextual information and
the retrieved items.

4.3 Meta-Learning for GCCL
Given the retrieved items, there are several ways to
exploit these examples to facilitate compositional
learning. The most direct method is to fine-tuning
(FT). However, because the retrieved items are
noisy and FT often faces over-fitting issues when
they learn from a few labeled examples, FT does
not help GCCL. Another choice in in-context learn-
ing (Wei et al., 2022). However, as GCCL is a
multi-modal problem. We have multiple image-
caption pairs in the contextual input, current large
multi-modals, like LLaVA (Liu et al., 2023) and
GPT-4 (gpt, 2023), can not be applied directly here.
In MetaReVision, we choose meta-learning frame-
work to utilize the retrieved items for GCCL. Meta-
learning here is to train the base VLM with the
ability to accumulate knowledge across episodes2

2episodes also called tasks in meta-learning.



and build internal generic representations for to-
kens that are suitable for compositional learning.
Moreover, we introduce the verbalizer module to
enforce the predicted concept for the query set com-
ing from the retrieved support items. The verbal-
izer helps mitigate the memorization problem in
meta-learning (Yin et al., 2019). In the following
part, we will discuss episode construction, the de-
tails about MAML, and verbalizer module used in
MetaReVision.
Episode Constructions. We construct GCCL tasks
τi for meta-learning as follows:

τi =
(
Dsupport

τi ,Dquery
τi

)
, (3)

where Dsupport
τi indicates the support set and Dquery

τi

indicates the query set. Specifically, for one task,
we randomly select one compositional concept as
the query set. Then we retrieve a small number of
examples that are similar to the query concepts.
These retrieved items make up the support set.
Meta-learning’s objective in GCCL is to predict
the compositional concepts in the query set after
learning the element concepts in the support set.
Here, episodes help VLMs to accumulate composi-
tional knowledge and learn a generic compositional
representation for masked concepts from the task-
level instead of instance-level.
Meta-Learner. We use MAML (Finn et al., 2017)
as our meta-learning algorithm. As an optimization-
based method, MAML has two optimizing steps
within each episode: the meta-train step and the
meta-test step. In the meta-train step, MAML
learns a task-specific learner θ′ based on the cur-
rent parameter θ and retrieved support items S. In
the meta-test step, MAML updates the parameter
θ based on the fast-updated parameter θ′ and the
compositional query items Q as shown in Figure 4.
Moreover, MAML can be solved by formulating it
as a bi-level optimization problem. Equation 2 can
be extended to Equation 4.

min
θ

L (Alg (θ,Retriever (S)) ,Q) ,

where Alg(θ,S) = θ − α∇θL(θ,S),
(4)

where θ is the learnt parameters, Retriever(S)
stands for the retrieved DB items, Q is target com-
positional concept and Alg represents the optimiza-
tion algorithm adapting to the support instances.
There are different versions regarding Alg (Nichol
et al., 2018b; Finn et al., 2017). We use MAML

MAML Learner for GCCL

Retrieved Support Items
𝒮𝒮 = 𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐, 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖 𝑖𝑖=1

𝑘𝑘

Meta-Train

𝜃𝜃𝑖𝑖′ = 𝜃𝜃 − 𝛼𝛼∇𝜃𝜃ℒ𝑉𝑉𝑉𝑉 𝑓𝑓𝜃𝜃 𝒮𝒮  

Meta-Test

𝜃𝜃 ← 𝜃𝜃 − 𝛽𝛽𝛻𝛻𝜃𝜃ℒ𝑉𝑉𝑉𝑉 𝑓𝑓𝜃𝜃𝑖𝑖′ 𝑄𝑄

Target Compositional Items
𝑄𝑄 = 𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐,𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 𝑗𝑗 𝑗𝑗=1

𝑉𝑉

𝜃𝜃

𝜃𝜃′

Figure 4: MAML’s computing procedure

which unrolls the optimizing process and tries to
find a good initial parameter configuration for all
compositions.
Verbalizer. MAML’s classical application is in
few-shot learning, where class-to-label assignment
needs to be conducted within each episode, that is,
the same class has different labels among different
episodes. Without such re-assignment, the models
can memorize the class information and conduct
prediction directly without considering the items
in the support set. This is known as memorization
problem in MAML discussed in (Yin et al., 2019).
To help MetaReVision learn from the retrieved
instances, we introduce the verbalizer module into
MetaReVision. It enforces prediction for the query
set by selecting concepts from the support set as
shown in Figure 5. In this way, MetaReVision will
rely on the retrieved element concepts rather than
memorizing the labels to do compositional learning.
This helps alleviate the MAML’s memorization
problem.

VLM Encoder

[IMG] [BBOX] [SEP]A  [Red]  [Bus].

Concept Predict Head

Retrieved Supporting Concepts

Red

Blue

Yellow

Bus
Train

Horse

Selection

Cross-Entropy Loss

Vocabulary

Retrieved Concept

Figure 5: Verbalizer helps VLM consider retrieved in-
stances when learning.

4.4 Inference

During inference time, we consider each test com-
positional concept as a query item and retrieve rel-
evant instances from concept DB as support in-
stances. Therefore, we construct a specific task for



the current compositional concept. Instead of ap-
plying the general model θ directly, MetaReVision
retrieves support instances to fast-update the model
to adapt to current compositions and make pre-
dictions as vi = argmaxv∈Sup P (v), where the
prediction comes from the retrieved concepts. In
MAML’s testing, it is observed that a larger num-
ber of updates can give a considerable performance
boost. Thus, we choose the inner loop updates to
20 before testing.

5 Experiments

In this section, we introduce the GCCL’s
datasets, demonstrate the implementing details of
MetaReVision, and compare its results with other
baselines. Ultimately, we empirically analyze the
retriever importance in MeaReVision.

5.1 Dataset

CompCOCO is constructed from MSCOCO (Chen
et al., 2015) using its 2014’s split. In this split,
COCO-captions has 103175 training images and
15112 validation images (Chen et al., 2015). Be-
cause MSCOCO does not provide test data, we
use the validation data as the testing data in Com-
pCOCO. Moreover, we did some minor synonym
modifications described in the Appendix A to ex-
tract more clean concepts.
CompFlickr is constructed from Flickr30k En-
tities (Plummer et al., 2015). Flickr30k con-
tains 276k manually annotated bounding boxes
for 31, 783 images and a total of 158, 915 En-
glish captions (five per image). We use the given
train/val/test split to construct CompFlickr.

5.2 Evaluation Metrics.

We use accuracy as our primary metric to measure
the GCCL performance and report object, attribute,
and compositional accuracy separately. Jin et al.
uses perplexity as the forgetting metric in continual
learning which is not appropriate in our work due
to MetaReVision’s offline setting.

5.3 Implementation Details

The implementation of MetaReVision uses the
HuggingFace Transformers library (Wolf et al.,
2020). For MAML, we use Adam optimizer
(Kingma and Ba, 2014) as both inner and outer
optimizers. We set the inner learning rate to 5e− 5,
the outer learning rate to 1e − 5, and based on

HIGHER 3 to calculate the higher gradients. The
code for this paper will be released at 4.

5.4 Baselines

We use two types of baselines in this evaluation.
The first is the train-from-scratch baseline which
trains VLMs from random initialized parameters.
Another baseline is MAML without retriever. In
this setting, VLMs are meta-trained using the same
retrieved tasks, but VLMs can not access the sup-
port set. It predicts directly during test time. This
baseline is used to show the importance of the re-
triever during test time for GCCL. Moreover, we
also compare two variants of MetaReVision, in-
cluding Top 4 and Div 4. Top 4 retrieves top 4
similar concepts, which may contain duplicated
concepts. The same concept could have different
vector representation which is affected by different
visual and textual contexts. For example, car could
have different vector values when modified by red
or blue. Div 4 retrieves the top 4 distinct similar
concepts expecting that the true primitive concept
will be in the retrieved set.

5.5 Main Results

We report the performance under both novel and
seen settings as shown in Table 1 and Table 2. From
the two tables, we can see that MetaReVision does
help compositional learning, especially in the novel
setting.
Novel Compositions. As shown in Table 1,
MetaReVision improves the performance on
the novel setting compared to the pre-trained
model and MAML models. This suggests that
MetaReVision captures a generic representation
which is beneficial for compositional learning
through meta-learning on the retrieved tasks. How-
ever, compared with seen compositions (i.e., Ta-
ble 2), the performance on novel pairs drops signifi-
cantly across the board. MetaReVision’s accuracy
drops by about 20% on CompCOCO dataset in
novel setting compared with the seen setting. This
indicates that such compositional generalization is
still a very difficult and open task for current VL
models.
Seen Compositions. Table 2 shows the perfor-
mance in the seen setting. From the table, we can
see that all models have similar accuracy in the
seen setting. One possible reason is that all the

3https://github.com/facebookresearch/higher
4https://github.com/HLR/MetaReVision



VL-Model VLBERT LXMERT

Metric Pair Accu.↑ Attr. Accu.↑ Obj. Accu.↑ Pair Accu.↑ Attr. Accu.↑ Obj. Accu.↑
C

O
C

O

Train-Scratch 7.73% 25.88% 50.74% 8.14% 26.36% 55.06%
MAML w/o Ret 9.03% 27.08% 50.04% 9.04% 27.01% 56.19%
Ours(Top 4) 11.15% 29.84% 50.17% 12.01% 29.36% 58.81%
Ours(Div 4) 13.50% 31.85% 50.92% 13.79% 33.76% 59.87%

Fl
ic

kr

Train-Scratch 6.04% 17.53% 65.21% 5.12% 18.10% 61.68%
MAML w/o Ret 8.60% 22.06% 64.38% 7.52% 18.45% 64.55%
Ours(Top 4) 10.7% 24.58% 65.54% 9.38% 20.45% 65.10%
Ours(Div 4) 11.50% 25.49% 66.58% 10.58% 22.45% 65.15%

Table 1: Results on Novel Compositional Concept.

VL-Model VLBERT LXMERT

Metric Pair Accu.↑ Attr. Accu.↑ Obj. Accu.↑ Pair Accu.↑ Attr. Accu.↑ Obj. Accu.↑

C
O

C
O

Train-Scratch 32.45% 49.06% 60.03% 34.12% 50.33% 61.96%
MAML w/o Ret 32.23% 49.05% 59.20% 34.09% 49.97% 61.93%
Ours(Top 4) 32.27% 49.15% 59.98% 34.02% 49.90% 61.90%
Ours(Div 4) 32.46% 50.01% 60.05% 34.15% 50.32% 62.00%

Fl
ic

kr

Train-Scratch 24.34% 42.72% 52.53% 22.68% 40.86% 50.11%
MAML w/o Ret 23.73% 41.92% 49.01% 22.15% 41.21% 49.97%
Ours(Top 4) 23.75% 41.95% 49.04% 22.75% 41.19% 50.01%
Ours(Div 4) 26.52% 46.11% 53.23% 23.41% 42.02% 51.61%

Table 2: Results on Seen Compositional Concept.

models have been fully trained using the seen com-
positional concepts. MAML-based methods do not
hurt the in-domain performance during this meta-
learning phase.

5.6 Empirical Analysis of Retriever

Retrieval Accuracy. Figure 6 shows the retriever’s
top-4 accuracy for attributes, objects, and pairs un-
der both seen and novel settings. Attribute recog-
nition is the key challenge compared with object
recognition in GCCL, even in the retrieval phase.
In GCCL, the learned VLMs are biased to the seen
attributes that need to be adjusted for effective com-
positional learning.

Importance of diverse sampling. Retrieving true
concepts into the support set is important for GCCL.
In this part, we assume an oracle situation where
we can always select the true element concepts into
the support set during test time. We study potential
advantages that can be derived under this config-
uration. From Figure 7, we can see that the true
concept in the support set does help the composi-
tional learning. It also explains the importance of
diverse sampling which increases the probability
of selecting the correct elemental concepts.
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Figure 6: Retriever accuracy comparison between seen
pairs and novel pairs in CompCOCO.

6 Conclusions and Future Work

In this work, we propose MetaReVision, which
combines retrieving method and meta-learning to
train VLMs for grounded compositional concept
learning. Our work highlights the significance of
retrieval in compositional learning. Our empiri-
cal results on two proposed datasets, CompCOCO
and CompFlickr, have shown that MetaReVision
consistently outperforms conventional VLMs and
meta-learning methods without retriever, especially
in novel settings. However, GCCL is still a chal-



12.01%

13.79%

24.41%

Top-4

Div-4

Oracle

Figure 7: MetaReVision’s accuracy on CompCOCO
using different retrievers.

lenging open problem and many problems remain.
Our future work will explore more cognitively plau-
sible models and explicitly address the grounding
ability in compositional concept learning.
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8 Limitations

The limitations of the proposed MetaReVision in-
clude 1) Grounding limitation. Currently, we rely
on VLM’s attention mechanism to do grounding.
We do not have an explicit grounding design to
align the textual concepts and visual regions. This
could be an interesting direction for future GCCL
works. 2) SoTA generative model comparisons.
Currently, we can not directly apply SoTA gener-
ative models, such as BLIP-2 and MiniGPT, on
GCCL due to the following reasons. One rea-
son is the GCCL problem setting. In GCCL, it
is not easy to transform the supporting items, in-
cluding multiple images and captions, into con-
textual input for these generative models. An-
other reason is controlled evaluation which means
that these huge generative models may have al-
ready seen the novel compositions during training
and it is not a fair comparison with other mod-
els. 3) Updating retriever. We construct our ele-
ment concept DB in advance and not updating this

DB during the meta-learning time. Training both
the learner and the retriever in an end-to-end man-
ner could improve the performance for GCCL and
other retrieval-enhanced models.
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A Modified MSCOCO Synonym List

In order to extract more compositional concepts, we modify (Lu et al., 2018)’s category and change the
drier synonym list as: hair drier, hairdryer, hair dryer, blow dryer, blow drier.

B Episode Examples

Table 3 shows episode examples constructed in MetaReVision. From the table, we can see that
MetaReVision can retrieve true element concepts for target compositional concepts, such as white truck,
bird fly, boy eat. But there also exist cases we can not find true element concepts in the retrieved support
set, such as blue bus. In this example, MetaReVision can retrieve many similar objects, but has a chal-
lenge to retrieve the true color blue. Also, from these randomly sampled episodes, we can see that in
GCCL, objects are easier to be retrieved compared to objects.

Target Context Target Concepts Retrieved Context Retrieved Concepts

A white truck parked in front of a house that is being built. White Truck

Several bikes parked next to a white van. White Van
A man in a suit poses by an colored truck. Colored Truck

A woman smiling in front of a big bus. Big Bus
People waiting on the side of the road for the yellow bus. Yellow Bus.

A couple of birds flying through a cloudy sky. bird fly

Two geese are flying in the air near trees. Geese Fly
Two hawks flying near a snow covered mountain. Hawk Fly

Two birds sit in the grass next to each other. Bird Sit
Two black birds are sitting on top of a mountain. Black Bird.

a small boy is eating from a green plate boy eat

A young boy is enjoying his pizza at the dinner table. Boy Enjoy
The little girl is eating lunch and having milk. Girl Eat

The woman is eating her meal at the table by herself. Woman Eat
An elderly couple is having a small snack in their kitchen. Couple Have.

A brown dog is on the deck of a boat on water. Brown Dog

A white and black dog laying on top of a yellow boat. Black Dog
a brown and black horse some green grass and some houses Brown Horse.

The black and white puppy is playing with a small toy. Dog Play
A white and black animal lays on a bench that is on grass outdoors. White Animal

a blue bus with a large sign on the side of it. Blue Bus

A red bus driving down a street in front of a red double decker bus. Red Bus
a red car driving down a city road on a cloudy day Red Car.
A red bus driving next to an orange and green bus. Green Bus

a red double decker bus a regular bus and a tow truck outdoors. Regular Bus

A

blue bus parked in front of an azure building.

Blue Bus

Two men in suits stand in front of a blue and white semi truck. Blue Truck
a white and black bus with a rainbow colored flag on the front Black Bus.

Four friends stand in front of an orange van. Orange Van
A large blue RV parked outside a large brick building. Blue RV

Table 3: Episode examples constructed by MetaReVison’s retrieval modules.

C Compositional Extracting Rules

After parsing by Stanza, we can extract compositional pairs using the following rules. Compared with Jin
et al.’ phase extracting rule, MetaReVision extracts more reasonable compositional pairs.

A      black      cat is   inside   a   white   toilet.
NounAdj

AMOD

A    brown   and   black   horse   in the middle of the city eating grass.
NounAdj Adj

AMOD
CONJ

The  big book   bus is   blue  and   yellow.

NSUBJ

An  orange blue and white bus and a brown round structure behind it.

AdjNoun

Adj Adj Noun

AMODAMOD

(a) Rules to extract adj-noun pairs.

A   large   passenger   airplane  flying through   the   air .
Noun Verb

ACL

An   airplane  that   is , either , landing or just taking off .
Noun Verb

ACL:RECL

A  cute  kitten is   sitting in   a   dish   on   a   table .
Noun Verb

NSUBJ

(b) Rules to extract verb-noun pairs.

Figure 8: Extracting rules to Construct CompFlickr and CompCOCO.



D GCCL Data Statistics

Table 4 shows the statistics of the extracted novel compositional concepts. From the table, we can see that
CompCOCO has more novel pairs than CompFlickr. And CompCOCO is a more reliable evaluation for
novel compositional learning than And CompFlickr

MSCOCO Flickr30K
Train Img. Train Caps. Test Img. Test Caps. Train Img. Train Caps. Val Img. Val Caps. Test Img. Test Caps.

black bird 205 323 122 190 17 24 0 0 2 3
small dog 681 1067 316 481 360 612 11 12 17 33
white boat 373 261 196 134 69 85 0 0 3 8
big truck 417 601 191 288 28 38 0 0 1 1
eat horse 212 378 106 187 2 2 0 0 0 0

stand child 1288 1556 577 741 1048 1475 38 57 26 36
white horse 264 500 151 300 51 100 3 4 4 8

big cat 184 216 103 108 0 0 0 0 1 1
blue bus 276 506 143 243 11 16 0 0 0 0

small table 261 296 134 154 48 54 1 1 1 1
hold child 1328 1860 664 992 835 1289 27 37 35 60
stand bird 532 831 260 406 13 24 0 0 0 0
brown dog 613 878 291 430 934 1838 31 61 29 58
small cat 252 325 149 183 2 3 0 0 0 0

white truck 262 420 121 175 35 42 2 2 2 2
big plane 967 1345 357 494 5 5 0 0 0 0

ride woman 595 674 300 330 266 537 8 17 9 23
fly bird 245 526 132 283 29 53 0 0 0 0

black cat 840 1760 448 940 15 27 0 0 1 1
big bird 215 291 123 169 24 34 0 0 0 0
red bus 566 1212 232 474 11 20 0 0 1 1

small plane 481 833 158 279 13 20 0 0 0 0
eat man 555 698 250 314 153 272 4 5 5 10

lie woman 301 388 144 194 145 278 1 2 4 8

Table 4: Novel Pair Statistics for both CompCOCO and CompFlickr. We use the same 24 pairs to verify the
compositional generalization.


