
Continual Auxiliary Task Learning

Matthew McLeod, Chunlok Lo, Matthew Schlegel, Andrew Jacobsen, Raksha Kumaraswamy
Department of Computing Science, University of Alberta

{mmcleod2,chunlok,mkschleg,ajjacobs,kumarasw}@ualberta.ca

Martha White, Adam White
Department of Computing Science, University of Alberta

CIFAR Canada AI Chair, Alberta Machine Intelligence Institute (Amii)
{whitem,amw8}@ualberta.ca

Abstract

Learning auxiliary tasks, such as multiple predictions about the world, can provide
many benefits to reinforcement learning systems. A variety of off-policy learning
algorithms have been developed to learn such predictions, but as yet there is little
work on how to adapt the behavior to gather useful data for those off-policy pre-
dictions. In this work, we investigate a reinforcement learning system designed to
learn a collection of auxiliary tasks, with a behavior policy learning to take actions
to improve those auxiliary predictions. We highlight the inherent non-stationarity
in this continual auxiliary task learning problem, for both prediction learners and
the behavior learner. We develop an algorithm based on successor features that
facilitates tracking under non-stationary rewards, and prove the separation into
learning successor features and rewards provides convergence rate improvements.
We conduct an in-depth study into the resulting multi-prediction learning system.

1 Introduction

In never-ending learning systems, the agent often faces long periods of time when the external reward
is uninformative. A smart agent should use this time to practice reaching subgoals, learning new
skills, and refining model predictions. Later, the agent should use this prior learning to efficiently
maximize external reward. The agent engages in this self-directed learning during times when the
primary drives of the agent (e.g., hunger) are satisfied. Other times, the agent might have to trade-off
directly acting towards internal auxiliary learning objectives and taking actions that maximize reward.

In this paper we investigate how an agent should select actions to balance the needs of several
auxiliary learning objectives in a no-reward setting where no external reward is present. In particular,
we assume the agent’s auxiliary objectives are to learn a diverse set of value functions corresponding
to a set of fixed policies. Our solution at a high-level is straightforward. Each auxiliary value function
is learned in parallel and off-policy, and the behavior selects actions to maximize learning progress.
Prior work investigated similar questions in a state-less bandit like setting, where both off-policy
learning and function approximation are not required [Linke et al., 2020].

Otherwise, the majority of prior work has focused on how the agent could make use of auxiliary
learning objectives, not how behavior could be used to improve auxiliary task learning. Some work
has looked at defining (predictive) features, such as successor features and a basis of policies [Barreto
et al., 2018, Borsa et al., 2019, Barreto et al., 2020, 2019]; universal value function approximators
[Schaul et al., 2015]; and features based on value predictions [Schaul and Ring, 2013, Schlegel et al.,
2021]. The other focus has been exploration, using auxiliary learning objectives to generate bonuses
to aid exploration on the main task [Pathak et al., 2017, Stadie et al., 2015, Badia et al., 2020, Burda
et al., 2019]; using a given set of policies in a call-return fashion for scheduled auxiliary control

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

[Riedmiller et al., 2018]; and discovering subgoals in environments where it is difficult for the agent
to reach particular parts of the state-action space [Machado et al., 2017, Colas et al., 2019, Zhang
et al., 2020, Andrychowicz et al., 2017, Pong et al., 2019]. In all of these works, the behavior was
either fixed or optimized for the main task.

The problem of adapting the behavior to optimize many auxiliary predictions in the absence of
external reward is sufficiently complex to merit study in isolation. It involves several inter-dependent
learning mechanisms, multiple sources of non-stationarity, and high-variance due to off-policy
updating. If we cannot design learning systems that efficiently learn their auxiliary objectives in
isolation, then the agent is unlikely to learn its auxiliary tasks while additionally balancing external
reward maximization.

Further, understanding how to efficiently learn a collection of auxiliary objectives is complementary
to the goals of using those auxiliary objectives. It could amplify the auxiliary task effect in UNREAL
[Jaderberg et al., 2017], improve the efficiency and accuracy of learning successor features and
universal value function approximators, and improve the quality of the sub-policies used in scheduled
auxiliary control. It can also benefit the numerous systems that discover options, skills, and subgoals
[Gregor et al., 2017, Eysenbach et al., 2019a, Veeriah et al., 2019, Pitis et al., 2020, Nair et al., 2020,
Pertsch et al., 2020, Colas et al., 2019, Eysenbach et al., 2019b], by providing improved algorithms
to learn the resulting auxiliary tasks. For example, for multiple discovered subgoals, the agent can
adapt its behavior to efficiently learn policies to reach each subgoal.

In this paper we introduce an architecture for parallel auxiliary task learning. As the first such work
to tackle this question in reinforcement learning with function approximation, numerous algorithmic
challenges arise. We first formalize the problem of learning multiple predictions as a reinforcement
learning problem, and highlight that the rewards for the behavior policy are inherently non-stationary
due to changes in learning progress over time. We develop a strategy to use successor features to
exploit the stationarity of the dynamics, whilst allowing for fast tracking of changes in the rewards, and
prove that this separation provides a faster convergence rate than standard value function algorithms
like temporal difference learning. We empirically show that this separation facilitates tracking both
for prediction learners with non-stationary targets as well as the behavior.

2 Problem Formulation

We consider the multi-prediction problem, in which an agent continually interacts with an environment
to obtain accurate predictions. This interaction is formalized as a Markov decision process (MDP),
defined by a set of states S , a set of actions A, and a transition probability function P(s, a, s

0). The
agent’s goal, when taking actions, is to gather data that is useful for learning N predictions, where
each prediction corresponds to a general value function (GVF) [Sutton et al., 2011].

A GVF question is formalized as a three tuple (⇡, �, c), where the target is the expected return of the
cumulant, defined by c : S ⇥A⇥ S ! R, when following policy ⇡ : S ⇥A! [0, 1], discounted by
� : S ⇥A⇥ S ! [0, 1]. More precisely, the target is the action-value

Q(s, a)
def
= E⇡ [Gt|St = s, At = a] for Gt

def
= Ct+1 + �t+1Gt+1

where Ct+1
def
= c(St, At, St+1) and �t+1

def
= �(St, At, St+1). The extension of � to transitions allows

for a broader class of problems, including easily specifying termination, without complicating the
theory [White, 2017]. The expectation is under policy ⇡, with transitions according to P . The
prediction targets could also be state-value functions; we assume the targets are action-values in this
work to provide a unified discussion of successor features for both the GVF and behavior learners.

At each time step, the agent produces N predictions, a Q̂
(j)
t (St, At) for prediction j with true

targets Q
(j)
t (St, At). We assume the GVF question can change over time, and so Q can change with

time. The goal is to have low error in the prediction, in terms of the root mean-squared value error
(RMSVE), under state-action weighting d : S ⇥A! R:

RMSVE(Q̂, Q)
def
=

sX

s2S

X

a2A
d(s, a)(Q̂(s, a)�Q(s, a))2 (1)

The total error up to time step t, across all predictions, is TE def
=
Pt

i=1

PN
j=1 RMSVE(Q̂(j)

i , Q
(j)
i).

2

Behavior

Task 1 Task 2 Task N

Intrinsic Reward
Weight Change

St
at

e/
O

bs
er

va
tio

n

Agent

(S
t+

1
)

<latexit sha1_base64="OjSwn01Y1y62YFQEFg9u2D/6H18=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahIpRdqeix6MVjRfsh7VKyabYNTbJLkhXK0l/hxYMiXv053vw3pu0etPXBwOO9GWbmBTFn2rjut5NbWV1b38hvFra2d3b3ivsHTR0litAGiXik2gHWlDNJG4YZTtuxolgEnLaC0c3Ubz1RpVkkH8w4pr7AA8lCRrCx0mP5vpeaM29y2iuW3Io7A1omXkZKkKHeK351+xFJBJWGcKx1x3Nj46dYGUY4nRS6iaYxJiM8oB1LJRZU++ns4Ak6sUofhZGyJQ2aqb8nUiy0HovAdgpshnrRm4r/eZ3EhFd+ymScGCrJfFGYcGQiNP0e9ZmixPCxJZgoZm9FZIgVJsZmVLAheIsvL5PmecWrVi7uqqXadRZHHo7gGMrgwSXU4Bbq0AACAp7hFd4c5bw4787HvDXnZDOH8AfO5w+hlo+n</latexit>

Rt+1

<latexit sha1_base64="V1A7ppgGUup3oxpxVAu7QIY7BKo=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSIIQkmkoseiF49V7Ae0oWy2m3bpZhN2J0IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZekEhh0HW/nZXVtfWNzcJWcXtnd2+/dHDYNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbqd+64lrI2L1iOOE+xEdKBEKRtFKrYdehufepFcquxV3BrJMvJyUIUe9V/rq9mOWRlwhk9SYjucm6GdUo2CST4rd1PCEshEd8I6likbc+Nns3Ak5tUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophtd+JlSSIldsvihMJcGYTH8nfaE5Qzm2hDIt7K2EDammDG1CRRuCt/jyMmleVLxq5fK+Wq7d5HEU4BhO4Aw8uIIa3EEdGsBgBM/wCm9O4rw4787HvHXFyWeO4A+czx/XnY9B</latexit>

At+1

<latexit sha1_base64="kReBLeP7qxIcNi6r2Ca46gqAW68=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSIIQkmkoseqF48V7Ae0oWy2m3bpZhN2J0IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZekEhh0HW/nZXVtfWNzcJWcXtnd2+/dHDYNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWM7qZ+64lrI2L1iOOE+xEdKBEKRtFKrZtehufepFcquxV3BrJMvJyUIUe9V/rq9mOWRlwhk9SYjucm6GdUo2CST4rd1PCEshEd8I6likbc+Nns3Ak5tUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophtd+JlSSIldsvihMJcGYTH8nfaE5Qzm2hDIt7K2EDammDG1CRRuCt/jyMmleVLxq5fKhWq7d5nEU4BhO4Aw8uIIa3EMdGsBgBM/wCm9O4rw4787HvHXFyWeO4A+czx+9c48w</latexit>

EnvironmentThe agent’s goal is to gather data and update its predictions to make
TE small. This goal can itself be formalized as a reinforcement learning
problem, by defining rewards for the behavior policy that depend on the
agent’s predictions. Such rewards are often called intrinsic rewards. For
example, if we could directly measure the RMSVE, one potential intrin-
sic reward would be the decrease in the RMSVE after taking action At

from state St and transitioning to St+1. This reflects the agent’s learning
progress—how much it was able to learn—due to that new experience.
The reward is high if the action generated data that resulted in substan-
tial learning. While the RMSVE is the most direct measure of learning
progress, it cannot be calculated without the true values.

Algorithm 1 Multi-Prediction Learning System
Input: N GVF questions

Initialize behavior policy parameters ✓0

and GVF learners w
(1)
0 , . . . , w

(N)
0

Obtain initial observation S0

for t = 0, 1, . . . do
Choose action At according to ⇡✓t(·|St)
Observe next state vector St+1 and �t+1

// Update predictions with new data
for j = 1 to N do

c c
(j)(St, At, St+1)

� �
(j)(St, At, St+1)

Update w
(j)
t with (St, At, c, St+1, �)

// Compute intrinsic reward, update behavior
Rt+1

PN
j=1 kw

(j)
t+1 � w

(j)
t k1

Update ✓t with (St, At, Rt+1, St+1, �t+1)

Many intrinsic rewards have been considered to es-
timate the learning progress of predictions. A recent
work provided a thorough survey of different options,
as well as an empirical study [Linke et al., 2020].
Their conclusion was that, for reasonable prediction
learners, simple learning progress measures—like the
change in weights—were effective for producing ef-
fective data gathering. We rely on this conclusion
here, and formalize the problem using the `1 norm
on the change in weights. Other intrinsic rewards
could be swapped into the framework; but, because
our focus is on the non-stationarity in the system and
because empirically we found this weight-change in-
trinsic reward to be effective, we opt for this simple
choice upfront.

We provide the generic pseudocode for a multi-
prediction reinforcement learning system, in Algo-
rithm 1. Note that the behavior agent also has a sep-
arate transition-based �, which enables us to encode
both continuing and episodic problems. For example, the pseudo-termination for a GVF could be a
particular state in the environment, such as a doorway. The discount for the GVF would be zero in
that state, even though it is not a true terminal state; the behavior discount �t+1 would not be zero.

3 Non-stationarity Induced by Learning

On the surface, the multi-prediction problem outlined in the previous section is a relatively straightfor-
ward reinforcement learning problem. The behavior policy learns to maximize cumulative reward, and
simultaneously learns predictions about its environment. Many RL systems incorporate prediction
learning, either as auxiliary tasks or to learn a model. However, unlike standard RL problems, the
rewards for the behavior are non-stationary when using intrinsic rewards, even under stationary
dynamics. Further, the prediction problems themselves are non-stationary due to a changing behavior.

To understand this more deeply, consider first the behavior rewards. On each time step, the predictions
are updated. Progressively, they get more and more accurate. Imagine a scenario where they can
become perfectly accurate, such as in the tabular setting with stationary cumulants. The behavior
rewards are high in early learning, when predictions are inaccurate. As predictions become more
and more accurate, the change in weights gets smaller until eventually the behavior rewards are near
zero. This means that when the behavior revisits a state, the reward distribution has actually changed.
More generally, in the function approximation setting, the behavior rewards will continue to change
with time, not necessarily decay to zero.

The prediction problems are also non-stationary for two reasons. First, the cumulants themselves
might be non-stationary, even if the transition dynamics are stationary. For example, the cumulant
could correspond to the amount of food in a location in the environment, that slowly gets depleted.
Or, the cumulant could depend on a hidden variable, that makes the outcome appear non-stationary.
Even with a stationary cumulant, the prediction learning problem can be non-stationary due to a
changing behavior policy. As the behavior policy changes, the state distribution changes. Implicitly,

3

when learning off-policy, the predictions are minimizing an objective weighted by the state visitation
under the behavior policy. As the behavior changes, the underlying objective is actually changing,
resulting in a non-stationary prediction problem.

Though there has been some work on learning under non-stationarity in RL and bandits, none to
our knowledge has addressed the multi-prediction setting in MDPs. There has been some work
developing reinforcement learning algorithms for non-stationary MDPs, but largely for the tabular
setting [Sutton and Barto, 2018, Da Silva et al., 2006, Abdallah and Kaisers, 2016, Cheung et al.,
2020] or assuming periodic shifts [Chandak et al., 2020a,b, Padakandla et al., 2020]. There has
also been some work in the non-stationary multi-armed bandit setting [Garivier and Moulines, 2008,
Koulouriotis and Xanthopoulos, 2008, Besbes et al., 2014]. The non-stationary rewards for the
behavior, that decay over time, have been considered for the bandit setting, under rotting bandits
[Levine et al., 2017, Seznec et al., 2019]; these algorithms do not obviously extend to the RL setting.

4 Handling the Non-Stationarity in a Multi-prediction System

In this section, we describe a unified approach to handle non-stationarity in both the GVF and
behavior learners, using successor features. We first discuss how to use successor features to learn
under non-stationary cumulants, for prediction. Then we discuss using successor features for control,
allows us to leverage this approach for non-stationary rewards for the behavior. We then discuss
state-reweightings, and how to mitigate non-stationarity due to a changing behavior.

4.1 Successor Features for Non-stationary Rewards

Successor features provide an elegant way to learn value functions under non-stationarity. The
separation of learning stationary successor features and rewards enables more effective tracking of
non-stationary rewards, as we explain in this section and formally prove in Section 5.

Assume that there is a weight vector w⇤ 2 Rd and features x(s, a) 2 Rd for each state and action
(s, a) such that r(s, a) = hx(s, a),w⇤i. Recursively define

 (s, a) = E⇡[x(St, At) + �t+1 (St+1, At+1)|St = s, At = a]

 (s, a) is called the successor features, the discounted cumulative sum of feature vectors, if we
follow policy ⇡. For t

def
= (St, At) and xt

def
= x(St, At), we can see Q(s, a) = h (s, a),w⇤i

h (s, a),w⇤i = E⇡[hxt,w
⇤i|St = s, At = a] + E⇡[�t+1h t+1,w

⇤i|St = s, At = a]

= r(s, a) + E⇡[�t+1hxt+1,w
⇤i|St = s, At = a] + E⇡[�t+1�t+2h t+2,w

⇤i|St = s, At = a]

= r(s, a) + E⇡[�t+1rt+1|St = s, At = a] + E⇡[�t+1�t+2h t+2,w
⇤i|St = s, At = a]

= . . . = E⇡[r(s, a) + �t+1rt+1 + �t+1�t+2rt+2 + . . . |St = s, At = a] = Q(s, a).

If we have features x(s, a) 2 Rd which allow us to represent the immediate reward, then successor
features provide a good representation to approximate the GVF. We simply learn another set of
parameters wc 2 Rd that predict the immediate cumulant (or reward): c(s, a) ⇡ hx(s, a),wci.
These parameters wc are updated using a standard regression update, and Q(s, a) ⇡ h (s, a),wci .

The successor features (s, a) themselves, however, also need to be approximated. In most cases,
we cannot explicitly maintain a separate (s, a) for each (s, a), outside of the tabular setting.
Notice that each element in (s, a) corresponds to a true expected return: the cumulative dis-
counted sum of a reward feature into the future. Therefore, (s, a) can be approximated using
any value function approximation method, such as temporal difference (TD) learning. We learn
parameters w for the approximation ̂(s, a;w) = [̂1(s, a;w), ..., ̂d(s, a;w)]> 2 Rd where
 ̂m(s, a;w) ⇡ m(s, a). We can use any function approximator for ̂(s, a;w), such as linear
function approximation with tile coding with w , linearly weighting the tile coding features to
produce ̂(s, a;w), or neural networks, where w are the parameters of the neural network.

We summarize the algorithm using successor features for non-stationary rewards/cumulants, called
SF-NR, in Algorithm 2. We provide an update formula for the approximate SF using Expected Sarsa
for prediction [Sutton and Barto, 2018] for simplicity, but note that any value learning algorithm can
be used here. In our experiments, we use Tree-Backup [Precup, 2000] because it reduces variance

4

from off-policy learning; we provide the pseudocode in Appendix D. Algorithm 2 assumes that
the reward features x(s, a) are given, but of course these can be learned as well. Ideally, we would
learn a compact set of reward features that provide accurate estimates as a linear function of these
reward features. A compact (smaller) set of reward features is preferred because it makes the SF
more computationally efficient to learn.

Algorithm 2 Successor Features for
Non-stationary Rewards (SF-NR)
Input:(St,At,St+1,Ct+1,�t+1),⇡,w ,wc

x x(St, At)
 ̂ ̂(St, At;w)

 ̂0
P

a0 ⇡(a0|St+1) ̂(St+1, a
0;w)

� 0
for m = 1 to d do
�m xm + �t+1 ̂0

m � ̂m

� �+ �mr ̂m

w w + ↵�
wc wc + ↵(Ct+1 � hx,wci)x

There are two key advantages from the separation into
learning successor features and immediate cumulant
estimates. First, it easily allows different or chang-
ing cumulants to be used, for the same policy, using
the same successor features. The transition dynamics
summarized in the stationary successor features can
be learned slowly to high accuracy and re-used. This
re-use property is why these representations have been
used for transfer [Barreto et al., 2017, 2018, 2020].
This property is pertinent for us, because it allows us
to more easily track changes in the cumulant. The re-
gression updates can quickly update the parameters wc,
and exploit the already learned successor features to
more quickly track value estimates. Small changes in the rewards can result in large changes in the
values; without the separation, therefore, it can be more difficult to directly track the value estimates.

Second, the separation allows us to take advantage of online regression algorithms with strong
convergence guarantees. Many optimizers and accelerations are designed for a supervised setting,
rather than for temporal difference algorithms. Once the successor features are learned, the prediction
problem reduces to a supervised learning problem. We can therefore even further improve tracking by
leveraging these algorithms to learn and track the immediate cumulant. We formalize the convergence
rate improvements, from this separation, in Section 5.

4.2 GPI with Successor Features for Control

In this section we outline a control algorithm under non-stationary rewards. SF-NR provides a method
for updating the value estimate due to changing rewards. The behavior for the multi-prediction
problem has changing rewards, and so could benefit from SF-NR. But SF-NR only provides a
mechanism to efficiently track action-values for a fixed policy, not for a changing policy. Instead,
we turn to the idea of constraining the behavior to act greedily with respect to the values for a set of
policies, introduced as Generalized Policy Improvement (GPI) Barreto et al. [2018, 2020].

For our system, this is particularly natural, as we are already learning successor features for a
collection of policies. Let us start there, where we assume our set of policies is ⇧ = {⇡1, . . . ,⇡N}.
Assume also that we have learned the successor features for these policies, ̂(s, a;w(j)

), and that we
have weights ✓r 2 Rd such that hx(s, a), ✓ri ⇡ E[Rt+1|St = s, At = a] for behavior reward Rt+1.
Then on each step, the behavior policy takes the following greedy action

µ(s) = argmax
a

max
j2{1,...,N}

Q̂
(j)
r (s, a) = argmax

a
max

j2{1,...,N}
h ̂(s, a;w(j)

), ✓ri

The resulting policy is guaranteed to be an improvement: in every state the new policy has a value
at least as good as any of the policies in the set [Barreto et al., 2017, Theorem 1]. Later work also
showed sampled efficiency of GPI when combining known reward weights to solve novel tasks
[Barreto et al., 2020].

The use of successor features has similar benefits as discussed above, because the estimates can adapt
more rapidly as the rewards change, due to learning progress changing over time. The separation
is even more critical here, as we know the rewards are constantly drifting, and tracking quickly
is even more critical. We could even more aggressively adapt to these non-stationary rewards, by
anticipating trends. For example, instead of a regression update, we can model the trend (up or down)
in the reward for a state and action. If the reward has been decreasing over time, then likely it will
continue to decrease. Stochastic gradient descent will put more weight on recent points, but would
likely predict a higher expected reward than is actually observed. For simplicity here, we still choose
to use stochastic gradient descent, as it is a reasonably effective tracking algorithm, but note that
performance improvements could likely be obtained by exploiting this structure in this problem.

5

We can consider a different set of policies for GVFs and behavior. However, the two are naturally
coupled. First, the GPI theory shows that greedifying over a larger collection of policies provides
better policies. It is sensible then to at least include the GVF policies into the set for the behavior.
Second, the behavior needs to learn the successor features for the additional policies. Arguably, it
should try to gather data to learn these well, so as to facilitate its own policy improvement. It should
therefore also incorporate the learning progress for these successor features, into the intrinsic reward.
For this work, therefore, we assume that the behavior uses the set of GVF policies. Note that the
weight change intrinsic reward uses the concatenation of w and wc.

4.3 Interest and prior corrections for the changing state distribution

The final source of non-stationarity is in the state distribution. As the behavior µ changes, the
state-action visitation distribution dµt : S ⇥ A ! [0, 1] changes. The state distribution implicitly
weights the relative importance of states in the GVF objective, called the projected Bellman error
(PBE). Correspondingly, the optimal SF solution could be changing, since the objective is changing.
The impact of a changing state-weighting depends on function approximation capacity, because the
weighting indicates how to trade-off function approximation error across states. When approximation
error is low or zero—such as in the tabular setting—the weighting has little impact on the solution.
Generally, however, we expect some approximation error and so a non-negligible impact.

We can completely remove this source of non-stationary by using prior corrections. These are
products of importance sampling ratios, that reweight the trajectory to match the probability of
seeing that trajectory under the target policy ⇡. Namely, it modifies the state weighting to d⇡, the
state-action visitation distribution under ⇡. We explicitly show this in Appendix C. Unfortunately,
prior corrections can be highly problematic in a system where the behavior policy takes exploratory
actions and target policies are nearly deterministic. It is likely that these corrections will often either
be zero, or near zero, resulting in almost no learning.

To overcome this inherent difficulty, we restrict which states are important for each predictive question.
Likely, when creating a GVF, the agent is interested in predictions for that GVF only in certain parts
of the space. This is similar to the idea of initiation sets for options, where an option is only executed
from a small set of relevant states. We can ask: what is the GVF answer, from this smaller set of
states of interest? This can be encoded with a non-negative interest function, i(s, a), where some (or
even many) states have an interest of zero. This interest is incorporated into the state-weighting in the
objective, so the agent can focus function approximation resources on states of interest.

When using interest, it is sensible to use emphatic weights [Sutton et al., 2016]. Emphatic weightings
are a prior correction method, used under the excursions model [Patterson et al., 2021]. They reweight
to a discounted state-action visitation under ⇡ when starting from states proportionally to dµ. Further,
they ensure states inherit the interest of any states that bootstrap off of them. Even if a state has an
interest of zero, we want to accurately estimate its value if an important states bootstraps off of its
value. The combination of interest and emphatic weightings—which shift state-action weighting to
visitation under ⇡—means that we mitigate much of the non-stationarity in the state-action weighting.
We provide the pseudocode for this Emphatic TB (ETB) algorithm in Appendix D.

5 Sample Efficiency of SF-NR

As suggested in Section 4.1, the use of successor features makes SF-NR particularly well-suited
to our multi-prediction problem setting. The reason for this is simple: given access to an accurate
SF matrix, value function estimation reduces to a fundamentally simpler linear prediction problem.
Indeed, access to an accurate SF enables one to sidestep known lower-bounds on PBE estimation.

For simplicity, we prove the result for value functions; the result easily extends to action-values.
Denote by v⇡ 2 R|S| the vector with entries v

⇡(s), r⇡ 2 R|S| the vector of expected immediate
rewards in each state, and P 2 R|S|⇥|S| the matrix of transition probabilities. The following lemma,
proven in Appendix A.1, relates mean squared value error (VE) to one-step reward prediction error.

Lemma 1 Assume there exists a w⇤ 2 Rd
such that r⇡ = Xw⇤

. Let r̂
def

= Xw for some w 2 Rd
,

and let D = Diag({d(s)}s2S) for distribution d fully supported on S , with k · kD the weighted norm

under D. Then the value estimate v̂
def

= w satisfies
1
2kv

⇡ � v̂k2D
kr⇡�r̂k2

D
2(1��)2 .

6

Thus we can ensure that VE(v⇡, v̂) " by ensuring that kr⇡�r̂k2D "(1��)2. This is promising, as
this latter expression is readily expressed as the objective of a linear regression problem. To illustrate
the utility of this, let’s look at a concrete example: suppose the agent has an accurate SF matrix and
that the reward function changes at some point in the agent’s deployment. Suppose access to a batch
of transitions D def

= {St, At, S
0
t, rt, ⇢t}T

t=1 with which we can correct our estimate of v
⇡ , where each

(s, a, s
0
, ⇢) 2 D is such that s ⇠ dµ for some known behavior policy µ, At ⇠ ⇡(·|s), s

0 ⇠ P (·|s, a)
and r = r(s, a, s

0). Assume for simplicity that ⇢t ⇢max , k�(St)k1 L, rt Rmax for some
finite ⇢max , Rmax , L 2 R+. Then we can get the following result, proven in Appendix A.2, that is a
straightforward application of Orabona [2019, Theorem 7.26].
Proposition 1 Define `t(w)

def

= ⇢t
2 (rt � hx(St), wi)2. Suppose we apply a basic recursive least-

squares estimator to minimize regret on this loss sequence, producing a sequence of iterates wt. Let

wT
def

= 1
T

PT
t=1 wt denote the average iterate. For v̂(s) = h (s), wT i, we have that

kv⇡ � v̂k2D O

d⇢maxR

2
max log

�
1 + ⇢max L

2
T
�

(1� �)2T

!
. (2)

In contrast, without the SF we are faced with minimizing a harder objective: the PBE. It can be shown
that minimizing the PBE is equivalent to a stochastic saddle-point problem, and the convergence to the
saddle-point of this problem has an unimprovable rate of O

⇣
⌧

T 2 + (1+�)⇢max L2d
T + �p

T

⌘
where ⌧ is

the maximum eigenvalue of the covariance matrix and � bounds gradient stochasticity, and this conver-
gence rate translates into the performance bound 1

2kv
⇡ � v̂k2D O

⇣q
⌧

T 2 + (1+�)⇢max L2d
T + �p

T

⌘

[Liu et al., 2018a, Proposition 5]. Comparing with Equation 2, we observe an additional dependence
of O(

p
⌧/T) as well as the worse dependence of at least O(1/

p
T) � (log (T) /T) on all other

quantities of interest, reinforcing the intuition that access to the SF enables us to more efficiently
re-evaluate the value function.

6 A First Experiment Testing the Multi-prediction System

Figure 1: Tabular TMaze with 4 GVFs,
with cumulants of zero except in the goals.
The right plot shows the cumulants in the
goals. G2 and G4 have constant cumu-
lants, G1 has a distractor cumulant and G4 a
drifter.

In this section, we investigate the utility of using SF-
NR under non-stationary cumulants and rewards, both
for prediction and control. We conduct the experiment
in a TMaze environment, inspired by the environments
used to test animal cognition [Tolman and Honzik,
1930]. The environment, depicted in Figure 1, has
four GVFs where each policy takes the fastest route
to its corresponding goal. The cumulants are zero
everywhere except for at the goals. The cumulant can
be of three types: a constant fixed value (constant), a
fixed-mean and high variance value (distractor), or a
non-stationary zero-mean random walk process with
a low variance (drifter). Exact formulas for these
cumulants are in Appendix E.1.

Utility of SF-NR for a Fixed Behavior Policy
We start by testing the utility of SF-NR for GVF learning, under a fixed policy that provides good
data coverage for every GVF. The Fixed-Behavior Policy is started from random states in the TMaze,
and moves towards the closest goal, with a 50/50 chance of going either direction if there is a tie.
This policy is like a round robin policy, in that one of the GVF policies is executed each episode and,
in expectation, all four policies are executed the same number of times.

We compare an agent that uses SF-NR and one that learns the approximate GVFs using Tree Back-Up
(TB). TB is an off-policy temporal difference (TD) algorithm, that reduces variance in the eligibility
trace. We also use TB to learn the successor features in SF-NR. Both use � = 0.9 and a stepsize
method called Auto [Mahmood et al., 2012] designed for online learning. We sweep the initial stepsize
and meta stepsizes for Auto. For further details about the agents and optimizer, see Appendix D. We
additionally compare to least squares TD (LSTD), with � = 0.9, particularly as it computes a matrix
similar to the SF, but does not separate out cumulant learning (see Appendix B for this connection).

7

<latexit sha1_base64="ITJ8Uxkg9zvGjDfflW6tH7QHRwE=">AAACCXicdVDJSgNBEO1xN25Rj14ag6AgQ48mLjdBEI9uMUImhJ5OJWnSs9BdI4YhVy/+ihcPinj1D7z5N3ZiBBV9UPB4r4qqekGipEHG3p2R0bHxicmp6dzM7Nz8Qn5x6dLEqRZQFrGK9VXADSgZQRklKrhKNPAwUFAJOod9v3IN2sg4usBuArWQtyLZlIKjlep56ofpuo9wg9mRvIFGb2PTT+RQOT/rbdTzBebus22vtE2Z63nFnVLJkqLHdvdK1HPZAAUyxEk9/+Y3YpGGEKFQ3JiqxxKsZVyjFAp6OT81kHDR4S2oWhrxEEwtG3zSo2tWadBmrG1FSAfq94mMh8Z0w8B2hhzb5rfXF//yqik292qZjJIUIRKfi5qpohjTfiy0ITUIVF1LuNDS3kpFm2su0IaXsyF8fUr/J5dbrrfjstNi4WB/GMcUWSGrZJ14ZJcckGNyQspEkFtyTx7Jk3PnPDjPzstn64gznFkmP+C8fgCBEpoz</latexit>

µ(Fixed), ⇡(SR)

<latexit sha1_base64="XRCgJKOjuQa6cQ6sB+2Bahj1sb4=">AAACCXicdVDJSgNBEO1xN25Rj14agxBBhhnNehMF8aiQRCETQk+nok16FrprxDDk6sVf8eJBEa/+gTf/xs4iqOiDgsd7VVTV82MpNDrOhzU1PTM7N7+wmFlaXlldy65vNHSUKA51HslIXfpMgxQh1FGghMtYAQt8CRd+73joX9yA0iIKa9iPoRWwq1B0BWdopHaWekGS9xBuMT0Rt9AZ7O55sZgotaPBbjubc2y3WHHLJerYhUq1WC0YUj4oVkoOdW1nhByZ4Kydffc6EU8CCJFLpnXTdWJspUyh4BIGGS/REDPeY1fQNDRkAehWOvpkQHeM0qHdSJkKkY7U7xMpC7TuB77pDBhe69/eUPzLaybYrbRSEcYJQsjHi7qJpBjRYSy0IxRwlH1DGFfC3Er5NVOMowkvY0L4+pT+Txr7tluynfNC7rA6iWOBbJFtkicuKZNDckrOSJ1wckceyBN5tu6tR+vFeh23TlmTmU3yA9bbJ5LzmkA=</latexit>

µ(Fixed), ⇡(TB)

<latexit sha1_base64="P2J8ihdxIhtG5AuSSQtATBYvBxQ=">AAACC3icdVDLSgNBEJz1bXytevQyGIQIsuxqEuNNUMSDB8VEhWwIs5NOHJx9MNMrhiV3L/6KFw+KePUHvPk3TmIEFS1oqKnqZrorSKTQ6Lrv1sjo2PjE5NR0bmZ2bn7BXlw603GqONR4LGN1ETANUkRQQ4ESLhIFLAwknAdXe33//BqUFnFUxW4CjZB1ItEWnKGRmvaqH6YFH+EGswNxA63e+oafiKFydFrd76037bzruJXSVmWTuk6xXNkueYaYZ2lrh3qOO0CeDHHctN/8VszTECLkkmld99wEGxlTKLiEXs5PNSSMX7EO1A2NWAi6kQ1u6dE1o7RoO1amIqQD9ftExkKtu2FgOkOGl/q31xf/8uoptiuNTERJihDxz4/aqaQY034wtCUUcJRdQxhXwuxK+SVTjKOJL2dC+LqU/k/ONh2v7LgnxfzuzjCOKbJCVkmBeGSb7JJDckxqhJNbck8eyZN1Zz1Yz9bLZ+uINZxZJj9gvX4A3Kua7A==</latexit>

µ(Fixed), ⇡(LSTD)

(a) Fixed-Behavior Policy

<latexit sha1_base64="ZdLzjZV6lPy3KA+i3F0D+ksEDKg=">AAACCXicdVDJSgNBEO2JW4xb1KOXxiAoyNBj9lvAi8e4RAOZEHo6naRJz0J3jRiGXL34K148KOLVP/Dm39iJEVT0QcHjvSqq6nmRFBoIebdSc/MLi0vp5czK6tr6RnZz61KHsWK8wUIZqqZHNZci4A0QIHkzUpz6nuRX3vB44l9dc6VFGFzAKOJtn/YD0ROMgpE6Wez68b4L/AaSc6o0HR8cupH4Us7GB51sjtikUCqX85jY+YpTIFVDSuWiU8xjxyZT5NAM9U72ze2GLPZ5AExSrVsOiaCdUAWCST7OuLHmEWVD2uctQwPqc91Opp+M8Z5RurgXKlMB4Kn6fSKhvtYj3zOdPoWB/u1NxL+8Vgy9SjsRQRQDD9jnol4sMYR4EgvuCsUZyJEhlClhbsVsQBVlYMLLmBC+PsX/k8sj2ynZ5LSQq1VncaTRDtpF+8hBZVRDJ6iOGoihW3SPHtGTdWc9WM/Wy2dryprNbKMfsF4/AKEmmkg=</latexit>

µ(Sarsa), ⇡(SR)

<latexit sha1_base64="KCbvVNSlPgEsHZ+pF2DvCdMg9aM=">AAACCXicdVDLSgNBEJyNrxhfqx69DAbBgCyzJibmJnrxqGhMIBvC7GSSDJl9MNMrhiVXL/6KFw+KePUPvPk3TmIEFS1oKKq66e7yYyk0EPJuZWZm5+YXsou5peWV1TV7feNKR4livMYiGamGTzWXIuQ1ECB5I1acBr7kdX9wMvbr11xpEYWXMIx5K6C9UHQFo2Ckto29INn1gN9AekGVpqPCnheLqXJ5PCq07TxxSKlcqRQxcYqHbolUDSlXDtyDInYdMkEeTXHWtt+8TsSSgIfAJNW66ZIYWilVIJjko5yXaB5TNqA93jQ0pAHXrXTyyQjvGKWDu5EyFQKeqN8nUhpoPQx80xlQ6Ovf3lj8y2sm0D1spSKME+Ah+1zUTSSGCI9jwR2hOAM5NIQyJcytmPWpogxMeDkTwten+H9yte+4ZYecl/JH1WkcWbSFttEuclEFHaFTdIZqiKFbdI8e0ZN1Zz1Yz9bLZ2vGms5soh+wXj8Aik2aOQ==</latexit>

µ(Sarsa), ⇡(TB)
<latexit sha1_base64="8SSix4ySnQMRUrh/HHLWYLpsLOE=">AAACB3icdVDLSgMxFM34rPVVdSlIsAgKMqQPbbsrulB3FawKnVIyaaqhmQfJHbEMs3Pjr7hxoYhbf8Gdf2PajqCiBy6cnHMvufe4oRQaCPmwJianpmdmM3PZ+YXFpeXcyuq5DiLFeJMFMlCXLtVcCp83QYDkl6Hi1HMlv3D7h0P/4oYrLQL/DAYhb3v0yhc9wSgYqZPbcLxo2wF+C/FR4yTZ2XVCkb7PDpKdTi5P7BopkeoeJjaplio1YkipVi6WirhgkxHyKEWjk3t3ugGLPO4Dk1TrVoGE0I6pAsEkT7JOpHlIWZ9e8ZahPvW4bsejOxK8ZZQu7gXKlA94pH6fiKmn9cBzTadH4Vr/9obiX14rgl61HQs/jID7bPxRL5IYAjwMBXeF4gzkwBDKlDC7YnZNFWVgosuaEL4uxf+T86Jd2LfJaTlfr6VxZNA62kTbqIAqqI6OUQM1EUN36AE9oWfr3nq0XqzXceuElc6soR+w3j4BcPqZBw==</latexit>

µ(GPI), ⇡(TB)

<latexit sha1_base64="CePl3kCPiu5Nqh/03NYDHDaZshs=">AAACB3icdVBLS0JBFJ7b0+xltQxiSAKFuIzaQ3dCi2pnD03wiswdRx2c+2Dm3Egu7tr0V9q0KKJtf6Fd/6bRDCrqgwPffN85zDmfG0qhgZB3a2p6ZnZuPrGQXFxaXllNra3XdBApxqsskIGqu1RzKXxeBQGS10PFqedKfuX2j0b+1TVXWgT+JQxC3vRo1xcdwSgYqZXacrwo4wC/gfi4cjrM7jqhmLwvzofZVipN7BIpkOI+JjYpFg5LxJBCaS9fyOOcTcZIowkqrdSb0w5Y5HEfmKRaN3IkhGZMFQgm+TDpRJqHlPVplzcM9anHdTMe3zHEO0Zp406gTPmAx+r3iZh6Wg8813R6FHr6tzcS//IaEXSKzVj4YQTcZ58fdSKJIcCjUHBbKM5ADgyhTAmzK2Y9qigDE13ShPB1Kf6f1PJ27sAmZ3vpcmkSRwJtom2UQTl0iMroBFVQFTF0i+7RI3qy7qwH69l6+WydsiYzG+gHrNcPh9OZFg==</latexit>

µ(GPI), ⇡(SR)

(b) Learned Behavior Policy

Distractor

Distractor
Drifter

Drifter

Constants Constants

(c) Visitation Plot Comparison

Figure 2: Performance in Tabular TMaze, with averages over 30 runs. (a) and (b) show average off-
policy prediction RMSE, with standard errors, where the error is weighted by (a) the state distribution
dµ for the Fixed-Behavior policy and (b) a uniform state weighting when learning the behavior. (c)
Goal visitation plots for GPI with SF and TB.

In Figure 2a, we can see SF-NR allows for much more effective learning, particularly later in learning
when it more effectively tracks the non-stationary signals. LSTD performs much more poorly, likely
because it corresponds to a closed-form batch solution, which uses old cumulants that are no longer
reflective of the current cumulant distribution.

Investigating GPI for Learning the Behavior
Next we investigate if SF-NR improves learning of the whole system, both for the GVFs and for the
behavior policy. We use SF-NR and TB for the GVF learners, and Expected Sarsa (Sarsa) and GPI
for the behavior. The GPI agent uses the GVF policies for its set of policies. The reward features for
the behavior are likely different than those for the GVF learners, because the cumulants are zero in
most states whereas intrinsic rewards are likely non-zero in most states. The GPI agent, therefore,
learns its own SFs for each policy, also using TB. The reward weights that estimate the (changing)
intrinsic rewards are learned using Auto, as are the SFs. Note that the behavior and GVF learners all
share the same meta-step size—namely only one shared parameter is swept.

The results highlight that SF for the GVFs is critical for effective learning, though GPI and Sarsa
perform similarly, as shown in Figure 3b. The utility of SF is even greater here, with TB GVF learners
inducing much worse performance than SF GVF learners. GPI and Sarsa are similar, which is likely
due to the fact that Sarsa uses traces with tabular features, which allow states along the trajectory to
the drifter goal to update quickly. In following sections, we find a bigger distinction between the two.

We visualize the goal visitation of GPI in Figure 2c. Once the GVF learners have a good estimate for
the constant cumulant signals and the distractor cumulant signal, the agent behavior should switch
to visiting only the drifter cumulant as that is the only goal where visiting would improve the GVF
prediction. When using SF GVF learners, this behavior emerges, but under TB GVF learners the agent
incorrectly focuses on the distractor. This is even more pronounced for Sarsa (see Appendix F.2).

7 Experiments under Function Approximation

We evaluate our system in a similar fashion to the last section, but now under function approximation.
We use a benchmark problem at the end of this section, but start with experiments in the TMaze mod-
ified to be a continuous environment, with full details described in Appendix E.1. The environment
observation ot 2 R2 corresponds to the xy coordinates of the agent. We use tile coded features of 2
tilings of 8 tiles for the state representation, both for TB and to learn the SF.

The reward features for the GVF learners can be much simpler than the state-action features because
they only need to estimate the cumulants, which are zero in every state except the goals. The reward
features are a one-hot encoding indicating if s

0 in the tuple of (s, a, s
0) is in the pseudo-termination

goals of the GVFs. For the Continuous TMaze, this gives a 4 dimensional vector. The reward features
for GPI is state aggregation applied along the one dimensional line components. Appendix E.1
contains more details on the reward features for the GVF and behavior learners.

Results for a Fixed Behavior and Learned Behaviors
Under function approximation, SF-NR continues to enable more effective tracking of the cumulants
than the other methods. For control, GPI is notably better than Sarsa, potentially because under

8

<latexit sha1_base64="ITJ8Uxkg9zvGjDfflW6tH7QHRwE=">AAACCXicdVDJSgNBEO1xN25Rj14ag6AgQ48mLjdBEI9uMUImhJ5OJWnSs9BdI4YhVy/+ihcPinj1D7z5N3ZiBBV9UPB4r4qqekGipEHG3p2R0bHxicmp6dzM7Nz8Qn5x6dLEqRZQFrGK9VXADSgZQRklKrhKNPAwUFAJOod9v3IN2sg4usBuArWQtyLZlIKjlep56ofpuo9wg9mRvIFGb2PTT+RQOT/rbdTzBebus22vtE2Z63nFnVLJkqLHdvdK1HPZAAUyxEk9/+Y3YpGGEKFQ3JiqxxKsZVyjFAp6OT81kHDR4S2oWhrxEEwtG3zSo2tWadBmrG1FSAfq94mMh8Z0w8B2hhzb5rfXF//yqik292qZjJIUIRKfi5qpohjTfiy0ITUIVF1LuNDS3kpFm2su0IaXsyF8fUr/J5dbrrfjstNi4WB/GMcUWSGrZJ14ZJcckGNyQspEkFtyTx7Jk3PnPDjPzstn64gznFkmP+C8fgCBEpoz</latexit>

µ(Fixed), ⇡(SR)

<latexit sha1_base64="XRCgJKOjuQa6cQ6sB+2Bahj1sb4=">AAACCXicdVDJSgNBEO1xN25Rj14agxBBhhnNehMF8aiQRCETQk+nok16FrprxDDk6sVf8eJBEa/+gTf/xs4iqOiDgsd7VVTV82MpNDrOhzU1PTM7N7+wmFlaXlldy65vNHSUKA51HslIXfpMgxQh1FGghMtYAQt8CRd+73joX9yA0iIKa9iPoRWwq1B0BWdopHaWekGS9xBuMT0Rt9AZ7O55sZgotaPBbjubc2y3WHHLJerYhUq1WC0YUj4oVkoOdW1nhByZ4Kydffc6EU8CCJFLpnXTdWJspUyh4BIGGS/REDPeY1fQNDRkAehWOvpkQHeM0qHdSJkKkY7U7xMpC7TuB77pDBhe69/eUPzLaybYrbRSEcYJQsjHi7qJpBjRYSy0IxRwlH1DGFfC3Er5NVOMowkvY0L4+pT+Txr7tluynfNC7rA6iWOBbJFtkicuKZNDckrOSJ1wckceyBN5tu6tR+vFeh23TlmTmU3yA9bbJ5LzmkA=</latexit>

µ(Fixed), ⇡(TB)

<latexit sha1_base64="P2J8ihdxIhtG5AuSSQtATBYvBxQ=">AAACC3icdVDLSgNBEJz1bXytevQyGIQIsuxqEuNNUMSDB8VEhWwIs5NOHJx9MNMrhiV3L/6KFw+KePUHvPk3TmIEFS1oqKnqZrorSKTQ6Lrv1sjo2PjE5NR0bmZ2bn7BXlw603GqONR4LGN1ETANUkRQQ4ESLhIFLAwknAdXe33//BqUFnFUxW4CjZB1ItEWnKGRmvaqH6YFH+EGswNxA63e+oafiKFydFrd76037bzruJXSVmWTuk6xXNkueYaYZ2lrh3qOO0CeDHHctN/8VszTECLkkmld99wEGxlTKLiEXs5PNSSMX7EO1A2NWAi6kQ1u6dE1o7RoO1amIqQD9ftExkKtu2FgOkOGl/q31xf/8uoptiuNTERJihDxz4/aqaQY034wtCUUcJRdQxhXwuxK+SVTjKOJL2dC+LqU/k/ONh2v7LgnxfzuzjCOKbJCVkmBeGSb7JJDckxqhJNbck8eyZN1Zz1Yz9bLZ+uINZxZJj9gvX4A3Kua7A==</latexit>

µ(Fixed), ⇡(LSTD)

(a) Fixed-Behavior Policy

<latexit sha1_base64="ZdLzjZV6lPy3KA+i3F0D+ksEDKg=">AAACCXicdVDJSgNBEO2JW4xb1KOXxiAoyNBj9lvAi8e4RAOZEHo6naRJz0J3jRiGXL34K148KOLVP/Dm39iJEVT0QcHjvSqq6nmRFBoIebdSc/MLi0vp5czK6tr6RnZz61KHsWK8wUIZqqZHNZci4A0QIHkzUpz6nuRX3vB44l9dc6VFGFzAKOJtn/YD0ROMgpE6Wez68b4L/AaSc6o0HR8cupH4Us7GB51sjtikUCqX85jY+YpTIFVDSuWiU8xjxyZT5NAM9U72ze2GLPZ5AExSrVsOiaCdUAWCST7OuLHmEWVD2uctQwPqc91Opp+M8Z5RurgXKlMB4Kn6fSKhvtYj3zOdPoWB/u1NxL+8Vgy9SjsRQRQDD9jnol4sMYR4EgvuCsUZyJEhlClhbsVsQBVlYMLLmBC+PsX/k8sj2ynZ5LSQq1VncaTRDtpF+8hBZVRDJ6iOGoihW3SPHtGTdWc9WM/Wy2dryprNbKMfsF4/AKEmmkg=</latexit>

µ(Sarsa), ⇡(SR)

<latexit sha1_base64="KCbvVNSlPgEsHZ+pF2DvCdMg9aM=">AAACCXicdVDLSgNBEJyNrxhfqx69DAbBgCyzJibmJnrxqGhMIBvC7GSSDJl9MNMrhiVXL/6KFw+KePUPvPk3TmIEFS1oKKq66e7yYyk0EPJuZWZm5+YXsou5peWV1TV7feNKR4livMYiGamGTzWXIuQ1ECB5I1acBr7kdX9wMvbr11xpEYWXMIx5K6C9UHQFo2Ckto29INn1gN9AekGVpqPCnheLqXJ5PCq07TxxSKlcqRQxcYqHbolUDSlXDtyDInYdMkEeTXHWtt+8TsSSgIfAJNW66ZIYWilVIJjko5yXaB5TNqA93jQ0pAHXrXTyyQjvGKWDu5EyFQKeqN8nUhpoPQx80xlQ6Ovf3lj8y2sm0D1spSKME+Ah+1zUTSSGCI9jwR2hOAM5NIQyJcytmPWpogxMeDkTwten+H9yte+4ZYecl/JH1WkcWbSFttEuclEFHaFTdIZqiKFbdI8e0ZN1Zz1Yz9bLZ2vGms5soh+wXj8Aik2aOQ==</latexit>

µ(Sarsa), ⇡(TB)

<latexit sha1_base64="8SSix4ySnQMRUrh/HHLWYLpsLOE=">AAACB3icdVDLSgMxFM34rPVVdSlIsAgKMqQPbbsrulB3FawKnVIyaaqhmQfJHbEMs3Pjr7hxoYhbf8Gdf2PajqCiBy6cnHMvufe4oRQaCPmwJianpmdmM3PZ+YXFpeXcyuq5DiLFeJMFMlCXLtVcCp83QYDkl6Hi1HMlv3D7h0P/4oYrLQL/DAYhb3v0yhc9wSgYqZPbcLxo2wF+C/FR4yTZ2XVCkb7PDpKdTi5P7BopkeoeJjaplio1YkipVi6WirhgkxHyKEWjk3t3ugGLPO4Dk1TrVoGE0I6pAsEkT7JOpHlIWZ9e8ZahPvW4bsejOxK8ZZQu7gXKlA94pH6fiKmn9cBzTadH4Vr/9obiX14rgl61HQs/jID7bPxRL5IYAjwMBXeF4gzkwBDKlDC7YnZNFWVgosuaEL4uxf+T86Jd2LfJaTlfr6VxZNA62kTbqIAqqI6OUQM1EUN36AE9oWfr3nq0XqzXceuElc6soR+w3j4BcPqZBw==</latexit>

µ(GPI), ⇡(TB)

<latexit sha1_base64="CePl3kCPiu5Nqh/03NYDHDaZshs=">AAACB3icdVBLS0JBFJ7b0+xltQxiSAKFuIzaQ3dCi2pnD03wiswdRx2c+2Dm3Egu7tr0V9q0KKJtf6Fd/6bRDCrqgwPffN85zDmfG0qhgZB3a2p6ZnZuPrGQXFxaXllNra3XdBApxqsskIGqu1RzKXxeBQGS10PFqedKfuX2j0b+1TVXWgT+JQxC3vRo1xcdwSgYqZXacrwo4wC/gfi4cjrM7jqhmLwvzofZVipN7BIpkOI+JjYpFg5LxJBCaS9fyOOcTcZIowkqrdSb0w5Y5HEfmKRaN3IkhGZMFQgm+TDpRJqHlPVplzcM9anHdTMe3zHEO0Zp406gTPmAx+r3iZh6Wg8813R6FHr6tzcS//IaEXSKzVj4YQTcZ58fdSKJIcCjUHBbKM5ADgyhTAmzK2Y9qigDE13ShPB1Kf6f1PJ27sAmZ3vpcmkSRwJtom2UQTl0iMroBFVQFTF0i+7RI3qy7qwH69l6+WydsiYzG+gHrNcPh9OZFg==</latexit>

µ(GPI), ⇡(SR)

(b) Learned Behavior Policy

<latexit sha1_base64="ITJ8Uxkg9zvGjDfflW6tH7QHRwE=">AAACCXicdVDJSgNBEO1xN25Rj14ag6AgQ48mLjdBEI9uMUImhJ5OJWnSs9BdI4YhVy/+ihcPinj1D7z5N3ZiBBV9UPB4r4qqekGipEHG3p2R0bHxicmp6dzM7Nz8Qn5x6dLEqRZQFrGK9VXADSgZQRklKrhKNPAwUFAJOod9v3IN2sg4usBuArWQtyLZlIKjlep56ofpuo9wg9mRvIFGb2PTT+RQOT/rbdTzBebus22vtE2Z63nFnVLJkqLHdvdK1HPZAAUyxEk9/+Y3YpGGEKFQ3JiqxxKsZVyjFAp6OT81kHDR4S2oWhrxEEwtG3zSo2tWadBmrG1FSAfq94mMh8Z0w8B2hhzb5rfXF//yqik292qZjJIUIRKfi5qpohjTfiy0ITUIVF1LuNDS3kpFm2su0IaXsyF8fUr/J5dbrrfjstNi4WB/GMcUWSGrZJ14ZJcckGNyQspEkFtyTx7Jk3PnPDjPzstn64gznFkmP+C8fgCBEpoz</latexit>

µ(Fixed), ⇡(SR)

<latexit sha1_base64="XRCgJKOjuQa6cQ6sB+2Bahj1sb4=">AAACCXicdVDJSgNBEO1xN25Rj14agxBBhhnNehMF8aiQRCETQk+nok16FrprxDDk6sVf8eJBEa/+gTf/xs4iqOiDgsd7VVTV82MpNDrOhzU1PTM7N7+wmFlaXlldy65vNHSUKA51HslIXfpMgxQh1FGghMtYAQt8CRd+73joX9yA0iIKa9iPoRWwq1B0BWdopHaWekGS9xBuMT0Rt9AZ7O55sZgotaPBbjubc2y3WHHLJerYhUq1WC0YUj4oVkoOdW1nhByZ4Kydffc6EU8CCJFLpnXTdWJspUyh4BIGGS/REDPeY1fQNDRkAehWOvpkQHeM0qHdSJkKkY7U7xMpC7TuB77pDBhe69/eUPzLaybYrbRSEcYJQsjHi7qJpBjRYSy0IxRwlH1DGFfC3Er5NVOMowkvY0L4+pT+Txr7tluynfNC7rA6iWOBbJFtkicuKZNDckrOSJ1wckceyBN5tu6tR+vFeh23TlmTmU3yA9bbJ5LzmkA=</latexit>

µ(Fixed), ⇡(TB)

<latexit sha1_base64="P2J8ihdxIhtG5AuSSQtATBYvBxQ=">AAACC3icdVDLSgNBEJz1bXytevQyGIQIsuxqEuNNUMSDB8VEhWwIs5NOHJx9MNMrhiV3L/6KFw+KePUHvPk3TmIEFS1oqKnqZrorSKTQ6Lrv1sjo2PjE5NR0bmZ2bn7BXlw603GqONR4LGN1ETANUkRQQ4ESLhIFLAwknAdXe33//BqUFnFUxW4CjZB1ItEWnKGRmvaqH6YFH+EGswNxA63e+oafiKFydFrd76037bzruJXSVmWTuk6xXNkueYaYZ2lrh3qOO0CeDHHctN/8VszTECLkkmld99wEGxlTKLiEXs5PNSSMX7EO1A2NWAi6kQ1u6dE1o7RoO1amIqQD9ftExkKtu2FgOkOGl/q31xf/8uoptiuNTERJihDxz4/aqaQY034wtCUUcJRdQxhXwuxK+SVTjKOJL2dC+LqU/k/ONh2v7LgnxfzuzjCOKbJCVkmBeGSb7JJDckxqhJNbck8eyZN1Zz1Yz9bLZ+uINZxZJj9gvX4A3Kua7A==</latexit>

µ(Fixed), ⇡(LSTD)

<latexit sha1_base64="aHvaRd/lgH6u1C8zmNH9ZDdhc6o=">AAACE3icdVDLSitBEO3xbfRq1KWbxiCoyNCjwSQ7QRCXvqJCJoSeTkUbex5014hhmH9w46+4caGIWzfu/Bs7D0HleqDgcE4VVXWCREmDjH04I6Nj4xOTU9OFmdl/c/PFhcUzE6daQF3EKtYXATegZAR1lKjgItHAw0DBeXC91/PPb0AbGUen2E2gGfLLSHak4GilVnHDD9M1H+EWs315C+18fdNP5FA5Oc7XB4zSvNoqlphbY9usVqHMZdXqDmOWbNfKXrlCPZf1USJDHLaK7347FmkIEQrFjWl4LMFmxjVKoSAv+KmBhItrfgkNSyMegmlm/Z9yumqVNu3E2laEtK9+n8h4aEw3DGxnyPHK/PZ64v+8RoqdajOTUZIiRGKwqJMqijHtBUTbUoNA1bWECy3trVRccc0F2hgLNoSvT+nf5GzL9XZcdlQu7daGcUyRZbJC1ohHKmSXHJBDUieC3JEH8kSenXvn0XlxXgetI85wZon8gPP2CfbqnjI=</latexit>

µ(Fixed), ⇡(SR) 8

<latexit sha1_base64="wuh9SXMFkjq2of1ekbzDzfXxqHk=">AAACE3icdVDLSgNBEJz1GeMr6tHLYBBUZNkkRjc3URCPCkaFbAizk44Ozj6Y6ZWEZf/Bi7/ixYMiXr1482+cPAQVLWgoqrrp7vJjKTQ6zoc1Nj4xOTWdm8nPzs0vLBaWls91lCgOdR7JSF36TIMUIdRRoITLWAELfAkX/s1h37+4BaVFFJ5hL4ZmwK5C0RGcoZFahS0vSDY8hC6mR6IL7Wxz24vFSDk7yDaHjNLMbRWKju1Ud6puhTp2xa2VB2TXrVTLNVqynQGKZISTVuHda0c8CSBELpnWjZITYzNlCgWXkOW9REPM+A27goahIQtAN9PBTxldN0qbdiJlKkQ6UL9PpCzQuhf4pjNgeK1/e33xL6+RYMdtpiKME4SQDxd1Ekkxov2AaFso4Ch7hjCuhLmV8mumGEcTY96E8PUp/Z+cl+3Sru2c7hT3a6M4cmSVrJENUiJ7ZJ8ckxNSJ5zckQfyRJ6te+vRerFeh61j1mhmhfyA9fYJ8faeMA==</latexit>

µ(Fixed), ⇡(TB) 8

(c) Replay with Fixed-Behavior

Figure 3: Performance in Continuous TMaze, with averages over 30 runs. (a) and (b) show average
off-policy prediction RMSE, with standard errors, where the error is weighted by (a) the state
distribution dµ for the Fixed-Behavior policy and (b) a uniform state weighting when learning the
behavior. (c) RMSE in Continuous TMaze with a Fixed Behavior when incorporating replay.

function approximation eligibility traces are not as effective at sweeping back changes in behavior
rewards and so the separation is more important. We include visitations plots in Appendix F.1, which
are similar to the tabular setting.

Note that the efficacy of SF-NR and GPI relied on having reward features that did not overly generalize.
The SF learns the expected feature vector when following the target policy. For the GVF learners, if
states on the trajectory share features with states near the goal, then the value estimates will likely be
higher for those states. The rewards are learned using squared error, which unlike other losses, is
likely only to bring cumulant estimates to near zero. These small non-zero cumulant estimates are
accumulated by the SF for the entire trajectory, resulting in higher error than TB. We demonstrate this
in Appendix F.3. We designed reward features to avoid this problem for our experiments, knowing
that effective reward features can and have been learned for SF [Barreto et al., 2020].

Results using Replay
The above results uses completely online learning, with eligibility traces. A natural question is if the
more modern approach of using replay could significantly change the results. In fact, early versions
of the system included replay but had surprisingly negative results, which we later realized was
due to the inherent non-stationarity in the system. Replaying old cumulants and rewards, that have
become outdated, actually harms performance of the system. Once we have the separation with the
SF, however, we can actually benefit from replay for this stationary component.

We demonstrate this result in Figure 3c. We use � = 0 for this result, because we use replay. The
settings are otherwise the same as above, and we resweep hyperparameters for this experiment.
SF-NR benefits from replay, because it only uses it for its stationary component: the SF. TB, on the
other hand, actually performs more poorly with replay. As before, LSTD which similarly uses old
cumulants, also performs poorly.

Incorporating Interest

<latexit sha1_base64="oKxxLbtGGNDH1jWEJuAn/0kYjcM=">AAACB3icdVDLSgMxFM34tr6qLgUJFqEFGSa2VrsTXKi7+ugDOqVk0lRDMw+SO2IZunPjr7hxoYhbf8Gdf2P6EFT0wIWTc+4l9x4vkkKD43xYE5NT0zOzc/OphcWl5ZX06lpVh7FivMJCGaq6RzWXIuAVECB5PVKc+p7kNa97NPBrN1xpEQaX0It406dXgegIRsFIrfSm68dZF/gtJMfl035ux43E+H1x3s+10hnHLjl5UixhxyaktJcnhhSIU9w/wMR2hsigMcqt9LvbDlns8wCYpFo3iBNBM6EKBJO8n3JjzSPKuvSKNwwNqM91Mxne0cfbRmnjTqhMBYCH6veJhPpa93zPdPoUrvVvbyD+5TVi6Bw0ExFEMfCAjT7qxBJDiAeh4LZQnIHsGUKZEmZXzK6pogxMdCkTwtel+H9S3bVJ0S6cFTKHpXEcc2gDbaEsImgfHaITVEYVxNAdekBP6Nm6tx6tF+t11DphjWfW0Q9Yb5+HgZkZ</latexit>

µ(GPI), ⇡(SR)

<latexit sha1_base64="jMRKV2wSl4oOhuUifp5Tv3YiRU0=">AAAB+3icdVDJSgNBEO2JW4xbjEcvjUGIIMNMMma5Bb14jGgWSELo6XSSJj0L3TWSMORXvHhQxKs/4s2/sbMIKvqg4PFeFVX13FBwBZb1YSTW1jc2t5LbqZ3dvf2D9GGmoYJIUlangQhkyyWKCe6zOnAQrBVKRjxXsKY7vpr7zXsmFQ/8O5iGrOuRoc8HnBLQUi+d6XhRrgNsAvEtkYrMzs576axlVqxKwSliyyyU8+WKo4l9kXdKFWyb1gJZtEKtl37v9AMaecwHKohSbdsKoRsTCZwKNkt1IsVCQsdkyNqa+sRjqhsvbp/hU6308SCQunzAC/X7REw8paaeqzs9AiP125uLf3ntCAblbsz9MALm0+WiQSQwBHgeBO5zySiIqSaESq5vxXREJKGg40rpEL4+xf+TRt60i6Zz42Srl6s4kugYnaAcslEJVdE1qqE6omiCHtATejZmxqPxYrwuWxPGauYI/YDx9gkzDZST</latexit>

µ(Sarsa),
<latexit sha1_base64="DwS2KIMKtzGZTlWn5L1d4U4it78=">AAACA3icdVA9TxtBEN0zAYz5cqAjzSoWkmmOO3PBdmclDelMgm0k27L21mNYsbd32p0DrJMlGv5KmhSJUNr8iXT5N6yNkQDBk0Z6em9GM/PCRAqDnvffyS28W1xazq8UVtfWNzaL77faJk41hxaPZaxPQ2ZACgUtFCjhNNHAolBCJ7z4MvU7l6CNiNUJjhPoR+xMiZHgDK00KO70ElHuIVxj9v0bvdqnXxWCBoOTvUGx5Ll1r34QHFLPPahVavXAEv9TJajWqe96M5TIHM1B8V9vGPM0AoVcMmO6vpdgP2MaBZcwKfRSAwnjF+wMupYqFoHpZ7MfJnTXKkM6irUthXSmPp3IWGTMOAptZ8Tw3Lz0puJrXjfFUa2fCZWkCIo/LBqlkmJMp4HQodDAUY4tYVwLeyvl50wzbnMwBRvC46f0bdKuuP6hGxwHpcbneRx58oF8JGXikyppkCPSJC3CyQ35QX6R386t89O5c/48tOac+cw2eQbn7z2gtpeN</latexit>

⇡(SR w/ Interest)
<latexit sha1_base64="bZFqfAV8OSaC7ISjcVl6HM3lyqo=">AAAB+3icdVDJSgNBEO2JW4xbjEcvjUGIIMN0DFluQS8eI5oFkhB6Op2kSc9Cd40kDPkVLx4U8eqPePNv7CyCij4oeLxXRVU9N5RCg+N8WIm19Y3NreR2amd3b/8gfZhp6CBSjNdZIAPVcqnmUvi8DgIkb4WKU8+VvOmOr+Z+854rLQL/DqYh73p06IuBYBSM1EtnOl6U6wCfQHxLlaazs/NeOuvYpJS/qDjYsYulMiHEkEreKZECJrazQBatUOul3zv9gEUe94FJqnWbOCF0Y6pAMMlnqU6keUjZmA5521Cfelx348XtM3xqlD4eBMqUD3ihfp+Iqaf11HNNp0dhpH97c/Evrx3BoNyNhR9GwH22XDSIJIYAz4PAfaE4Azk1hDIlzK2YjaiiDExcKRPC16f4f9LI26RoF24K2erlKo4kOkYnKIcIKqEqukY1VEcMTdADekLP1sx6tF6s12VrwlrNHKEfsN4+ARBqlHs=</latexit>

µ(Sarsa),
<latexit sha1_base64="1CoD5DCxVucu/W/pN2IxbGZ3lPo=">AAAB/nicdVDJSgNBEO2JW4xbVDx5aQyCXsbpGLLcQkTwGDUxQhJCT6ejTXoWumvUMAT8FS8eFPHqd3jzb+wsgoo+KHi8V0VVPTeUQoPjfFiJmdm5+YXkYmppeWV1Lb2+caGDSDFeZ4EM1KVLNZfC53UQIPllqDj1XMkbbv9o5DduuNIi8GswCHnbo1e+6AlGwUid9FYrFHst4HcQn5/h2wN8XKsM9zvpjGOTQvaw5GDHzheKhBBDSlmnQHKY2M4YGTRFtZN+b3UDFnncByap1k3ihNCOqQLBJB+mWpHmIWV9esWbhvrU47odj88f4l2jdHEvUKZ8wGP1+0RMPa0Hnms6PQrX+rc3Ev/ymhH0iu1Y+GEE3GeTRb1IYgjwKAvcFYozkANDKFPC3IrZNVWUgUksZUL4+hT/Ty6yNsnbudNcplyZxpFE22gH7SGCCqiMTlAV1RFDMXpAT+jZurcerRfrddKasKYzm+gHrLdP4veU0A==</latexit>

⇡(SR w/ ETB)

Figure 4: Using interest: shading
is standard error over 30 runs.

To study the effects of interest, a more open world environment
is needed. The Open 2D World is used to analyze this problem
as described in Appendix E.2. At the start of each episode, the
agent begins in the center of the environment. The interest for
each GVF in the states is one if the state is in the same quadrant
as the GVF’s respective goal, and zero otherwise. This enables
the GVFs to focus their learning on a subset of the entire space
and thus use the function approximation resources more wisely
and give a better weight change profile as an intrinsic reward to
the behavior learner. Each GVF prediction i is evaluated under
state-action weighting induced by running ⇡i, with results in Figure 4.

Both TB with interest and ETB reweight states to focus more on state visitation under the policy.
Both significantly improve performance over not using interest, both allowing faster learning and
reaching a lower error. The reweighting under ETB more closely matches state visitation under the
policy, and accounts for the impacts of bootstrapping. We find that ETB does provide some initial
learning benefits. The original ETD algorithm is known to suffer from variance issues; we may find
with variance reduction that the utility of ETB is even more pronounced.

9

<latexit sha1_base64="8pd46Yze6hKoCQryLpeMmc4yHV8=">AAACB3icdVDLSgMxFM34rPVVdSlIsAgWZEh8tHYnuFB39dEqdErJpGkNZh4kd8QydOfGX3HjQhG3/oI7/8a0VlDRAxdOzrmX3Hv8WEkDhLw7I6Nj4xOTmans9Mzs3HxuYbFmokRzUeWRivSFz4xQMhRVkKDERawFC3wlzv2r/b5/fi20kVF4Bt1YNALWCWVbcgZWauZWvCBZ90DcQHpQOeoVNrxYDt+nJ71CM5cnbpls0WIZE5fS8s4WtWSbkmJpF1OXDJBHQ1SauTevFfEkECFwxYypUxJDI2UaJFeil/USI2LGr1hH1C0NWSBMIx3c0cNrVmnhdqRthYAH6veJlAXGdAPfdgYMLs1vry/+5dUTaO82UhnGCYiQf37UThSGCPdDwS2pBQfVtYRxLe2umF8yzTjY6LI2hK9L8f+ktunSokuOt/N75WEcGbSMVtE6oqiE9tAhqqAq4ugW3aNH9OTcOQ/Os/Py2TriDGeW0A84rx+GOZkV</latexit>

µ(GPI), ⇡(SR)

<latexit sha1_base64="uagMFaVU7o2JnVI1YbxIY9Ly9XU=">AAACCXicdVDLSgNBEJz1bXxFPXoZDEIEWSarZuMt4MVjfCQGsiHMTiZxyOyDmV4xLHv14q948aCIV//Am3/jJEZQ0YKGoqqb7i4/lkIDIe/W1PTM7Nz8wmJuaXlldS2/vtHQUaIYr7NIRqrpU82lCHkdBEjejBWngS/5pT84HvmX11xpEYUXMIx5O6D9UPQEo2CkTh57QVL0gN9Aek6VptnunheLL+Us2+3kC8QmZeK4Dib2/pHrOBVDyhX3sOzgkk3GKKAJap38m9eNWBLwEJikWrdKJIZ2ShUIJnmW8xLNY8oGtM9bhoY04Lqdjj/J8I5RurgXKVMh4LH6fSKlgdbDwDedAYUr/dsbiX95rQR6lXYqwjgBHrLPRb1EYojwKBbcFYozkENDKFPC3IrZFVWUgQkvZ0L4+hT/TxqOXSrb5PSgUD2axLGAttA2KqISclEVnaAaqiOGbtE9ekRP1p31YD1bL5+tU9ZkZhP9gPX6AaTwmks=</latexit>

µ(Sarsa), ⇡(SR)

<latexit sha1_base64="4BjTUObyCV4hEzogenrYed9tKv4=">AAACCnicdVDJSgNBEO1xjXGLevTSGgQDEiYuWW4BLx5jNImQCaGn0zFNunuG7hoxDDl78Ve8eFDEq1/gzb+xswgq+qDg8V4VVfX8UHADrvvhzMzOzS8sJpaSyyura+upjc26CSJNWY0GItBXPjFMcMVqwEGwq1AzIn3BGn7/dOQ3bpg2PFCXMAhZS5JrxbucErBSO7XjyWjfA3YLcZWoTiCHmQMv5FPpojrMtFNpN5svnBSLeTwmpZI7IcWjAs5l3THSaIpKO/XudQIaSaaACmJMM+eG0IqJBk4FGya9yLCQ0D65Zk1LFZHMtOLxK0O8Z5UO7gbalgI8Vr9PxEQaM5C+7ZQEeua3NxL/8poRdIutmKswAqboZFE3EhgCPMoFd7hmFMTAEkI1t7di2iOaULDpJW0IX5/i/0n9MJvLZ93z43S5NI0jgbbRLtpHOVRAZXSGKqiGKLpDD+gJPTv3zqPz4rxOWmec6cwW+gHn7ROfOJra</latexit>

µ(Random), ⇡(SR)

(a) RMSE for each GVF (b) GVF#2 goal visits: left hill top (c) GVF#1 goal visits: right hill top

Figure 5: Performance in Mountain Car averaged over 30 runs, with standard errors. (a) Learning
curves for RMSE, with a uniform weighting over states and actions. (b), (c) show the number of
times that the agent reached the termination for each GVF.
Validation of the Multi-Prediction System in a Standard Benchmark Problem
Finally, we investigate multi-prediction learning in an environment not obviously designed for this
setting: Mountain Car. The goal here is to show that multi-prediction learning is natural in many
problem settings, and to show results in a standard benchmark not designed for our setting that has
more complex transition dynamics. In the usual formulation the agent must learn to rock back and
forth building up momentum to reach the top of the hill on the right—a classic cost to goal problem.
This is a hard exploration task where a random agent requires thousands of steps to reach the top of
the hill from the bottom of the valley. Here we use Mountain Car to see if our approach can learn
about more than just getting out of the valley quickly. We specified a GVF whose termination and
policy focuses on reaching top of the left hill, and a second GVF about reaching the top of the other
side. The full details of the GVFs and setup of this task can be found in the Appendix E.3.

Figure 5a shows how GPI and Sarsa compare against a baseline random policy. GPI provides much
better data for GVF learning than the random policy and Sarsa, significantly reducing the RMSE of
the learned GVFs. The goal visitation plots show GPI explores the domain and visits both GVFs goal
far more often than random, and more effectively than Sarsa.

8 Conclusion

In this work, we take the first few steps towards building an effective multi-prediction learning system.
We highlight the inherent non-stationarity in the problem and design algorithms based on successor
features (SF) to better adapt to this non-stationarity. We show that (1) temporally consistent behavior
emerges from optimizing the amount of learning across diverse GVF questions; (2) successor features
are useful for tracking nonstationary rewards and cumulants, both in theory and empirically; (3)
replay is well suited for learning the stationary components successor features while meta-learning
works well for the non-stationary components; and (4) interest functions can improve the performance
of the entire system, by focusing learning to a subset of states for each prediction.

Our work also highlights several critical open questions. (1) The utility of SFs is tied to the quality
of the reward features; better understanding of how to learn these reward features is essential. (2)
Continual Auxiliary Task Learning is an RL problem, and requires effective exploration approaches
to find and maximize intrinsic rewards—the intrinsic rewards do not provide a solution to exploration.
Never-ending exploration is needed. (3) The interaction between discovering predictive questions
and learning them effectively remains largely unexplored. In this work, we focused on learning,
for a given set of GVFs. Other work has focused on discovering useful GVFs [Veeriah et al., 2019,
2021, Nair et al., 2020, Zahavy et al., 2021]. The interaction between the two is likely to introduce
additional complexity in learning behavior, including producing automatic curricula observed in
previous work [Oudeyer et al., 2007, Chentanez et al., 2005].

This work demonstrates the utility of several new ideas in RL that are conceptually compelling,
but not widely used in RL systems, namely SF and GVFs, GPI with SF for control, meta-descent
step-size adaption, and interest functions. The trials and tribulations that lead to this work involved
many failures using classic algorithms in RL, like replay; and, in the end, providing evidence
for utility in these newer ideas. Our journey highlights the importance of building and analyzing
complete RL systems, where the interacting parts—with different timescales of learning and complex
interdependencies—necessitate incorporating these conceptually important ideas. Solving these
integration problems represents the next big step for RL research.

10

Acknowledgments and Disclosure of Funding

This work was supported by NSERC Discovery, IVADO, CIFAR through CCAI Chair funding and
by the Alberta Machine Intelligence Institute (Amii).

References
Sherief Abdallah and Michael Kaisers. Addressing environment non-stationarity by repeating

q-learning updates. The Journal of Machine Learning Research, 17(1):1582–1612, 2016.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. In
Advances in Neural Information Processing Systems, 2017.

Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven
Kapturowski, Olivier Tieleman, Martı́n Arjovsky, Alexander Pritzel, Andew Bolt, et al. Never
give up: Learning directed exploration strategies. In International Conference on Learning

Representations, 2020.

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt, and
David Silver. Successor features for transfer in reinforcement learning. In Advances in Neural

Information Processing Systems, 2017.

Andre Barreto, Diana Borsa, John Quan, Tom Schaul, David Silver, Matteo Hessel, Daniel Mankowitz,
Augustin Zidek, and Remi Munos. Transfer in deep reinforcement learning using successor features
and generalised policy improvement. In International Conference on Machine Learning, 2018.

Andre Barreto, Diana Borsa, Shaobo Hou, Gheorghe Comanici, Eser Aygün, Philippe Hamel, Daniel
Toyama, Jonathan hunt, Shibl Mourad, David Silver, and Doina Precup. The option keyboard:
Combining skills in reinforcement learning. In Advances in Neural Information Processing Systems,
2019.

André Barreto, Shaobo Hou, Diana Borsa, David Silver, and Doina Precup. Fast reinforcement
learning with generalized policy updates. Proceedings of the National Academy of Sciences, 117
(48):30079–30087, 2020.

Omar Besbes, Yonatan Gur, and Assaf Zeevi. Stochastic multi-armed-bandit problem with non-
stationary rewards. In Advances in Neural Information Processing Systems, 2014.

Diana Borsa, André Barreto, John Quan, Daniel Mankowitz, Rémi Munos, Hado van Hasselt, David
Silver, and Tom Schaul. Universal successor features approximators. In International Conference

on Learning Representations, 2019.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In International Conference on Learning Representations, 2019.

Yash Chandak, Scott M Jordan, Georgios Theocharous, Martha White, and Philip S Thomas. Towards
safe policy improvement for non-stationary mdps. Advances in Neural Information Processing

Systems, 2020a.

Yash Chandak, Georgios Theocharous, Shiv Shanka, Martha White, Sridhar Mahadevan, and Philip S
Thomas. Optimizing for the future in non-stationary mdps. International Conference on Machine

Learning, 2020b.

Nuttapong Chentanez, Andrew Barto, and Satinder Singh. Intrinsically motivated reinforcement
learning. In Advances in Neural Information Processing Systems, 2005.

Wang Chi Cheung, David Simchi-Levi, and Ruihao Zhu. Reinforcement learning for non-stationary
markov decision processes: The blessing of (more) optimism. International Conference on

Machine Learning, 2020.

Cédric Colas, Pierre Fournier, Mohamed Chetouani, Olivier Sigaud, and Pierre-Yves Oudeyer.
Curious: intrinsically motivated modular multi-goal reinforcement learning. In International

conference on machine learning, 2019.

11

Bruno C Da Silva, Eduardo W Basso, Filipo S Perotto, Ana L C. Bazzan, and Paulo M Engel.
Improving reinforcement learning with context detection. In Autonomous agents and multiagent

systems, pages 810–812, 2006.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you
need: Learning skills without a reward function. In International Conference on Learning

Representations, 2019a.

Benjamin Eysenbach, Ruslan Salakhutdinov, and Sergey Levine. Search on the replay buffer:
Bridging planning and reinforcement learning. In Advances in Neural Information Processing

Systems, 2019b.

Aurélien Garivier and Eric Moulines. On upper-confidence bound policies for non-stationary bandit
problems. arXiv preprint arXiv:0805.3415, 2008.

Sina Ghiassian, Andrew Patterson, Martha White, Richard S Sutton, and Adam White. Online
off-policy prediction. arXiv preprint arXiv:1811.02597, 2018.

Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic control. Interational

Conference on Learning Representations Workshop, 2017.

Assaf Hallak and Shie Mannor. Consistent on-line off-policy evaluation. In International Conference

on Machine Learning, 2017.

Andrew Jacobsen, Matthew Schlegel, Cameron Linke, Thomas Degris, Adam White, and Martha
White. Meta-descent for online, continual prediction. In Proceedings of the AAAI Conference on

Artificial Intelligence, 2019.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. In
International Conference on Learning Representations, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International

Conference on Learning Representations, 2015.

Dimitris E Koulouriotis and A Xanthopoulos. Reinforcement learning and evolutionary algorithms
for non-stationary multi-armed bandit problems. Applied Mathematics and Computation, 196(2):
913–922, 2008.

Nir Levine, Koby Crammer, and Shie Mannor. Rotting bandits. In Advances in Neural Information

Processing Systems, 2017.

Cam Linke, Nadia M Ady, Martha White, Thomas Degris, and Adam White. Adapting behavior via
intrinsic reward: A survey and empirical study. Journal of Artificial Intelligence Research, 69:
1287–1332, 2020.

Bo Liu, Ian Gemp, Mohammad Ghavamzadeh, Ji Liu, Sridhar Mahadevan, and Marek Petrik.
Proximal gradient temporal difference learning: Stable reinforcement learning with polynomial
sample complexity. Journal of Artificial Intelligence Research, 2018a.

Qiang Liu, Lihong Li, Ziyang Tang, and Dengyong Zhou. Breaking the Curse of Horizon: Infinite-
Horizon Off-Policy Estimation. Advances in Neural Information Processing Systems, 2018b.

Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Off-Policy Policy Gradient with
Stationary Distribution Correction. Uncertainty in Artificial Intelligence, pages 1180–1190, 2020.

Marlos C Machado, Marc G Bellemare, and Michael Bowling. A laplacian framework for option
discovery in reinforcement learning. In International Conference on Machine Learning, 2017.

Ashique Mahmood, Huizhen Yu, and Richard Sutton. Multi-step off-policy learning without impor-
tance sampling ratios. 02 2017.

Ashique Rupam Mahmood, Richard S Sutton, Thomas Degris, and Patrick M Pilarski. Tuning-
free step-size adaptation. In IEEE International Conference on Acoustics, Speech and Signal

Processing, 2012.

12

Ashvin Nair, Shikhar Bahl, Alexander Khazatsky, Vitchyr Pong, Glen Berseth, and Sergey Levine.
Contextual imagined goals for self-supervised robotic learning. In Conference on Robot Learning,
2020.

Francesco Orabona. A modern introduction to online learning, 2019.

Pierre-Yves Oudeyer, Frédéric Kaplan, and Verena V. Hafner. Intrinsic motivation systems for
autonomous mental development. In IEEE Transactions on Evolutionary Computation, 2007.

Sindhu Padakandla, KJ Prabuchandran, and Shalabh Bhatnagar. Reinforcement learning algorithm
for non-stationary environments. Applied Intelligence, 50(11):3590–3606, 2020.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration by
self-supervised prediction. In International Conference on Machine Learning, 2017.

Andrew Patterson, Adam White, Sina Ghiassian, and Martha White. A generalized projected bellman
error for off-policy value estimation in reinforcement learning. arXiv preprint arXiv:2104.13844,
2021.

Karl Pertsch, Oleh Rybkin, Frederik Ebert, Shenghao Zhou, Dinesh Jayaraman, Chelsea Finn, and
Sergey Levine. Long-horizon visual planning with goal-conditioned hierarchical predictors. In
Advances in Neural Information Processing Systems, 2020.

Silviu Pitis, Harris Chan, Stephen Zhao, Bradly Stadie, and Jimmy Ba. Maximum entropy gain
exploration for long horizon multi-goal reinforcement learning. In International Conference on

Machine Learning, 2020.

Vitchyr H Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey Levine. Skew-fit:
State-covering self-supervised reinforcement learning. arXiv preprint arXiv:1903.03698, 2019.

Doina Precup. Eligibility traces for off-policy policy evaluation. Computer Science Department

Faculty Publication Series, page 80, 2000.

Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom Wiele,
Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg. Learning by playing solving sparse
reward tasks from scratch. In International Conference on Machine Learning, 2018.

Tom Schaul and Mark B Ring. Better generalization with forecasts. In International Joint Conferences

on Artificial Intelligence, 2013.

Tom Schaul, Dan Horgan, Karol Gregor, and David Silver. Universal value function approximators.
In International Conference on Machine Learning, 2015.

Bruno Scherrer. Improved and generalized upper bounds on the complexity of policy iteration.
Mathematics of Operations Research, 2016.

Matthew Schlegel, Andrew Jacobsen, Zaheer Abbas, Andrew Patterson, Adam White, and Martha
White. General value function networks. Journal of Artificial Intelligence Research, 70:497–543,
2021.

Julien Seznec, Andrea Locatelli, Alexandra Carpentier, Alessandro Lazaric, and Michal Valko. Rot-
ting bandits are no harder than stochastic ones. International Conference on Artificial Intelligence

and Statistics, 2019.

Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in reinforcement
learning with deep predictive models. arXiv preprint arXiv:1507.00814, 2015.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A Bradford
Book, Cambridge, MA, USA, 2018. ISBN 0262039249.

Richard S Sutton, Joseph Modayil, Michael Delp, Thomas Degris, Patrick M Pilarski, Adam White,
and Doina Precup. Horde: A scalable real-time architecture for learning knowledge from unsuper-
vised sensorimotor interaction. In International Conference on Autonomous Agents and Multiagent

Systems, 2011.

13

Richard S Sutton, A Rupam Mahmood, and Martha White. An emphatic approach to the problem
of off-policy temporal-difference learning. The Journal of Machine Learning Research, 17(1):
2603–2631, 2016.

Edward Chace Tolman and Charles H Honzik. Introduction and removal of reward, and maze
performance in rats. University of California publications in psychology, 1930.

Vivek Veeriah, Matteo Hessel, Zhongwen Xu, Janarthanan Rajendran, Richard L. Lewis, Junhyuk
Oh, Hado van Hasselt, David Silver, and Satinder Singh. Discovery of useful questions as auxiliary
tasks. In Neural Information Processing Systems, 2019.

Vivek Veeriah, Tom Zahavy, Matteo Hessel, Zhongwen Xu, Junhyuk Oh, Iurii Kemaev, Hado van
Hasselt, David Silver, and Satinder Singh. Discovery of options via meta-learned subgoals. In
Advances in Neural Information Processing Systems, 2021.

Martha White. Unifying task specification in reinforcement learning. In International Conference on

Machine Learning, 2017.

Tom Zahavy, Brendan O’Donoghue, Andre Barreto, Volodymyr Mnih, Sebastian Flennerhag, and
Satinder Singh. Discovering diverse nearly optimal policies with successor features. arXiv preprint

arXiv:2106.00669, 2021.

Tianren Zhang, Shangqi Guo, Tian Tan, Xiaolin Hu, and Feng Chen. Generating adjacency-
constrained subgoals in hierarchical reinforcement learning. In Advances in Neural Information

Processing Systems, 2020.

14

