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Abstract

Large Language Models (LLMs) are known to exhibit social, demographic, and gender
biases, often as a consequence of their training data. In this work, we adopt a mechanistic
interpretability approach to analyze how such biases are structurally represented within
models such as GPT-2 and Llama2. Focusing on demographic and gender biases, we explore
different metrics to identify the internal edges responsible for biased behavior. We then
assess the stability, localization, and generalizability of these components across datasets and
linguistic variations. Through systematic ablations, we demonstrate that bias-related effects
are highly localized, often concentrated in a small subset of layers. Moreover, the identified
components change across fine-tuning settings, including those unrelated to bias. Finally,
we show that removing these components not only reduces biased outputs but also affects
other NLP tasks, such as named entity recognition and linguistic acceptability judgment,
because of the sharing of important components with these tasks. Our code is available at
https://github.com/zubair2004/MI_Bias.

1 Introduction

With the growing deployment of Large Language Models (LLMs) in high-impact domains such as education,
healthcare, law, and content moderation, ensuring their responsible use has become increasingly critical
(Birhane et al. (2023)). Among the many ethical and societal challenges associated with LLMs, bias remains
one of the most pressing and pervasive concerns. Numerous studies have demonstrated that LLMs can reflect
and even amplify harmful social, demographic, and gender biases in their outputs (Acerbi & Stubbersfield
(2023)). These biases often manifest in subtle yet consequential forms, including stereotyping, uneven
sentiment associations, and disproportionate representation. When integrated into downstream applications,
such biases can result in unfair treatment, discrimination, or the spread of misinformation. Prior work on
debiasing LLMs has predominantly explored approaches such as fine-tuning or data augmentation (Han et al.
(2024); Gallegos et al. (2024)). A complementary line of research has investigated the role of individual
neurons or attention heads in encoding gender bias (Vig et al. (2020)). However, these studies often lack
generalizability, as they tend to focus narrowly on a single type of bias and a specific model architecture.
Moreover, there remains limited exploration of key properties of bias-related components, such as their
localization, stability, and faithfulness to attribution methods, and overlap with features relevant to other
downstream tasks.

∗Equal contribution.
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Figure 1: Circuit Diagram for Positive Demographic Bias in a) GPT-2 Small, b) GPT-2 Large, and c) Llama-2. Green colour shows
Input node, Orange colour shows Attention Head, Purple colour shows MLP layer, and Yellow color shows Logits node. The description
of different types of nodes can be found in Table 6 in Appendix A.4. Circuit diagrams for gender bias are shown in Appendix A.9.

To address the above-mentioned limitations, this work investigates demographic and gender bias in GPT-2
Small, GPT-2 Large, and Llama2, Qwen2-0.5b, Gemma-2-2b. In demographic bias, LLMs generally tend to
predict mostly positive or negative words for a particular nationality. For example given an input ‘Afghan
people are so’, LLM completes it with negative words like ‘Afghan people are so poor’. Similarly, gender bias
tends to favour either the male or female gender for certain professions. An example of gender bias is ‘The
woman worked as a nurse. The man worked as a software engineer’. It can be observed from the example that
LLM assigned female gender to the ‘nurse’ profession and ‘male’ gender to the ’software engineer’ profession.

In our research scope, we use Mechanistic Interpretability (MI) (Olah (2022) )related methodologies to
identify important components within LLMs. Our central question is: Can demographic and gender biases
be localized within distinct substructures of an LLM’s architecture? If such biases can indeed be attributed
to identifiable components, this opens the possibility of targeted interventions—that is, mitigating harmful
behavior by modifying or ablating responsible components, rather than relying on full-scale retraining or
costly data augmentation. Out of different types of components (e.g., nodes and edges) available for analysis,
we specifically focus on identifying the edges responsible for bias using Edge Attribution Patching (EAP)
(Syed et al. (2024)) approach. An edge refers to a connection between two computational nodes, such as
neurons, attention heads, or layer outputs, typically representing the flow of information between adjacent
layers during the forward pass (Syed et al. (2024)). Figure 1 shows a sample of example circuits (subgraph
consisting of important edges 1) for demographic bias in GPT-2 Small, GPT-2 Large and Llama-2. The key
contributions of this work are as follows:

a) Localized Encoding of Demographic and Gender Bias in LLM Edges We conduct a comprehensive
analysis across GPT-2 Small, GPT-2 Large, and Llama-2 to investigate whether demographic and gender bias
is encoded in a localized manner. Our study employs different approaches to identify the edges most strongly
associated with biased behavior. As illustrated in Figure 2 and 3, our study concludes that demographic and
gender bias are mostly localized into certain edges and layers across different models.

b) Instability of Important Edges Across Lexical, Syntactic, and Fine-Tuning Variations We
evaluate the generalizability and stability of the identified edges across multiple dimensions, including different
types of bias (e.g., gender, demographic), fine-tuning settings, and variations in grammatical structures. Our
analysis (Figure 4 and 5) concludes that the edges identified for biased behavior don’t remain consistent
under perturbations to both the model and input text space.

1https://distill.pub/2020/circuits/zoom-in/#glossary-circuit
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c) Bias-Related Edge Overlap with Other Language Understanding Tasks We investigate the
extent to which edges identified as important for biased behavior are also functionally involved in broader
language understanding tasks. To probe this, we selectively corrupt edges associated with bias and measure
the resulting impact on performance across a diverse set of unrelated NLP tasks. This analysis reveals the
degree of functional entanglement between bias-related circuits and general linguistic competence, offering
insights into whether bias can be mitigated without compromising core language capabilities.

The paper is organized as follows. In Section 2, we describe existing works related to bias and mechanistic
interpretability in LLMs. Section 3 describes the methodology used for identifying the important components,
Section 4 describes the experiment setup, Section 5 describes results, and Section 6 concludes the paper.

2 Related Work

Bias in LLMs A growing body of research has investigated various forms of bias in LLMs. For instance, Kotek
et al. (2023) highlighted profession-related gender bias in GPT-3.5 and GPT-4, while Kamruzzaman et al.
(2024) demonstrated that models such as GPT and Llama-2 exhibit systematic biases across underexplored
dimensions, including age, physical appearance, academic affiliation, and nationality, using sentence completion
tasks. Similarly, Soundararajan & Delany (2024) observed gender bias in LLM-generated text. A broader
overview of bias evaluation and mitigation strategies is provided in Navigli et al. (2023).The work in Bolukbasi
et al. (2016b) proposed debiasing approach for gender bias in word vectors.

MI aims to reverse-engineer trained neural networks, similar to the analysis of compiled software binaries
Olah (2022). The central goal is to identify and understand the role of internal components—such as neurons,
attention heads, and edges that give rise to specific model behaviors, including tasks like indirect object
identification or bias propagation Olah et al. (2020); Meng et al. (2022); Geiger et al. (2021); Goh et al. (2021);
Wang et al. (2022). Recent work by Conmy et al. (2023) introduced an automated framework for discovering
task-relevant components; while Wu et al. (2023) proposed a causal testing method to determine whether a
network implements specific algorithms. Nanda et al. (2023) leveraged circuit-based analysis to explain the
grokking phenomenon. In complementary work, Goldowsky-Dill et al. (2023) refined our understanding of
induction heads in LLMs, and Katz et al. (2024) employed MI techniques to trace information flow through
transformer-based architectures.

MI for Bias Analysis Another thread of MI work has recently been harnessed to dissect and mitigate
biases in LLMs. Vig et al. (2020) pioneered causal mediation analysis to pinpoint a small subset of neurons
and attention heads in GPT-2 that drives gender bias. Chintam et al. (2023) combined automated circuit
discovery and targeted ablations to surgically edit bias-carrying components, substantially reducing stereotype
propagation with minimal impact on overall performance. The study in Kim et al. (2025) investigated how
political bias or perspective is encoded in LLM internals. Kim et al. (2025) found that models learn a
remarkably linear representation of political ideology (e.g. liberal to conservative) within their activation space.
However, prior work has not systematically examined the generalizability of bias-related components, nor
explored key properties such as their localization, stability under perturbations, and overlap with components
involved in broader language understanding tasks. To address these gaps, we conduct a comprehensive
analysis of these properties across multiple model architectures.

3 Edge Attribution in LLMs

To investigate how bias is encoded within LLMs, we adopt a causal intervention framework to assess the
relative importance of individual edges within the model architecture. As described in Section 1, an edge
generally represents the flow of information between adjacent layers during the forward pass. Each edge is
parameterized by a weight, which governs the strength of information transfer between the connected nodes.

A naive strategy would involve iteratively ablating individual edges and measuring their effect on model
outputs. However, such exhaustive interventions are computationally expensive at the scale of modern LLMs.
To address this, we leverage the Edge Attribution Patching (EAP) technique introduced by Syed et al. (2024),
which offers a more efficient approximation of causal importance. EAP assigns an attribution score to each
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edge, reflecting its contribution to a particular model behavior. Mathematically, EAP measures the value
described in Equation 1 for each edge.

|L(xclean | do(E = ecorr)) − L(xclean)| (1)

In Equation 1, L is a metric with respect to which we measure the effectiveness of a task, and L(xclean) shows
the value of metric when a clean sample is provided to the network and L(xclean | do(E = ecorr)) represents
the value of metric when corrupted activation (i.e. activation obtained from corrupted input ecorr) is applied
to an edge for which we want to find the importance. For the rest of the edges, clean activation is applied. If
a set of edges is important for a particular task then providing corrupted values to those edges will reduce
the value of L(xclean) significantly. Attribution patching is an approach(Syed et al. (2024)) that is used to
compute the value of Equation 1 with only two forward passes and one backward pass through the network.
This makes EAP computationally efficient.

3.1 Bias Metric Computation (L)

There is currently no universally accepted metric for quantifying demographic or gender bias in LLMs. Similar
to Qiu et al. (2023), we investigated two alternative formulations designed to capture different aspects of bias.
In Equation 2, m is the total number of samples on which L1 is computed.

L1 = 1
m

m∑
i=1

 k∑
j=1

Ppos(i)j −
k∑

j=1
Pneg(i)j

 (2)

Equation 2, shows one variation of metric denoted as L1. In Equation 2, we compute the difference in
aggregate probabilities assigned to positive/male (i.e. Ppos) versus negative/female (i.e. Pneg) tokens among
the top-k predicted next tokens. This captures the relative skew in the model’s output distribution. Higher
absolute value of L1 will show higher bias in an LLM.

L2 = 1
m

m∑
i=1

 k∑
j=1

Ppos(i)j

 (3)

Equation 3, shows the second variation of the bias metric denoted as L2. Equation 3 isolates the cumulative
probability assigned exclusively to positive/male tokens within the top-k predictions, offering a unidirectional
measure of bias. By comparing these two formulations (i.e., L1 and L2), we aim to understand which metric
more effectively identifies the edges responsible for encoding demographic and gender bias in EAP.

3.2 Defining Corrupted Samples

As shown in Equation 1, generating appropriate corrupted samples is a critical step in estimating the EAP
score. To maintain consistency in attribution, each corrupted sample must preserve the token length of its
corresponding clean input. To achieve this, we adopt the Symmetric Token Replacement (STR) strategy
proposed in Zhang & Nanda (2024), which ensures structural alignment between clean and perturbed inputs
while introducing minimal semantic drift. For demographic bias, we explored two approaches: C1, where the
country name in the sample was replaced with an out-of-distribution token, such as ‘abc’, and C2, where the
country name was replaced with ‘Emirati’, the nationality for which we did not observe any demographic bias
in LLM outputs. Similarly, for gender bias, we applied two strategies: C1, where gender-sensitive tokens like
profession names (e.g., doctor) were replaced with an out-of-distribution word like ‘xyz’, and C2, where we
used the gender-neutral term ‘broadcaster’, chosen because LLMs showed the most gender-neutral predictions
for this term. Table 1 presents the structure of both the clean and corrupted samples used in our experiment
setup.

3.3 Localization of Bias

As described in Section 1, one of the objectives of our experiments is to understand whether demographic
and gender bias is encoded within certain components in LLMs. We employ two principal strategies to assess
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Corrupted Sample
Clean Sample C1 C2

(DSS1) Afghan people are so ___ Abc people are so ___ Emirati people are so ___
(DSS2) As expected, Afghan people are so ___ As expected, Abc people are so ___ As expected, Emirati people are so ___

(GSS1) The doctor did a mistake, and everyone scolded ___ The xyz did a mistake, and everyone scolded ___ The broadcaster did a mistake, and everyone scolded ___
(GSS2) The doctor did a miracle, and everyone praised ___ The xyz did a miracle, and everyone praised ___ The broadcaster did a miracle, and everyone praised ___

Table 1: Variation of Clean and Corrupted Samples (i.e. C1, C2) Used for Different Bias Setup. DSS stands for Demographic Sensitive
Structure, GSS stands for Gender Sensitive Structure.

localization. Firstly, we evaluate the extent to which the highest-scoring edges (obtained from EAP method
described in Section 3) contribute to the overall value of the bias metric (L) compared to a baseline model
(i.e. where all edges are used). If bias is localized within specific edges, then ablating a greater number of
important edges from the model architecture should lead to a more substantial decrease in the overall metric
value for bias in the model. Additionally, we also analyze the layer-wise distribution of the important edges
to identify the origin of the important edges within the model architecture.

3.4 Stability of Important Edges

Here, our primary goal is to explore the stability of important edges identified using the EAP approach
described in Section 3. By stability, we refer to how much the important edges change with respect to different
criteria. We primarily focused on three different criteria. Each of them is described as follows.

C1: Stability with respect to Grammatical Structures Here we investigated generalizability across
different grammatical structures (i.e. DSS1, DSS2, GSS1 and GSS2 described in Table 1). Even if the
grammatical structure changes, the gender/demographic bias present in a sentence is of the same nature. If
the LLMs could generalize regarding bias, then the important structures related to bias remain the same for
all the grammatical structures. To investigate this, we tested the different grammatical structures mentioned
in Table 1. The difference between the grammatical structures for both demographic and gender bias is that,
in demographic bias, the semantic meanings of the two variations are almost similar. In contrast, for gender
bias, the semantic meanings of the two sentences are different. To estimate the stability, we have primarily
computed the overlap of top-K edges across different variations.

C2: Stability With Respect to Different Types of Bias Any kind of bias essentially means a preference
for certain types of tokens over others. Hence, the motivation of this set of experiments was to check if there
is any similarity between the important edges encoding different kinds of bias. In our research scope, we
looked into only demographic and gender bias.

C3: Robustness with respect to finetuning In this set of experiments, we investigate whether the
important edges change concerning fine-tuning on different types of data. Here, we primarily did two
different sets of experiments. Several studies Zmigrod et al. (2019); Han et al. (2024); Morerio et al. (2024)
have demonstrated that targeted fine-tuning with augmented data—specifically curated to address the
bias category of interest—can effectively mitigate biases in language models. In that direction, for the
first set of experiments, we finetuned the model with a dataset where positive things were said about
the countries/professions where there was negative demographic bias and vice versa. The objective of
this experiment was to check whether debiasing the model by fine-tuning changes the important edges for
generating sentences of the same grammatical structure. In the second set of experiments, we finetuned the
model on a dataset where there was no overlap with the bias-related sentences or test topics. The bias of
the model doesn’t change after this. We wanted to check whether the structures important for the bias also
remain the same or not.

3.5 Leveraging Important Edges for Debiasing LLMs

Existing debiasing techniques predominantly focus on data augmentation, modifications to the training
objective, or fine-tuning the model. While effective, these approaches inherently require retraining, which
can be computationally expensive and infeasible in scenarios where access to model internals or training
infrastructure is limited. To overcome this limitation, we propose a novel inference-time debiasing strategy
that leverages the important edges identified via the EAP method (Section 3). Our approach involves
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substituting the activations (logits) along bias-associated edges with those obtained from a corrupted version
of the input, while preserving clean activations along the remaining edges. This enables us to reduce biased
behavior without altering the model parameters. Notably, this method requires no additional training or
access to gradients and can be implemented entirely at inference time. To implement this technique, a
corrupted variant of the original input is provided alongside the clean input. In our research scope, we
automatically generated a corresponding corrupted input of the same length for each original input. The
details of this setup are described in Appendix A.6.

Prior work Kaneko et al. (2023) has demonstrated that debiasing can lead to performance degradation across
various downstream tasks, suggesting that bias-associated components may also contribute to task-relevant
behavior. To assess the broader impact of our debiasing method, we evaluated its effectiveness on a range of
standard NLP tasks. Specifically, we apply the corrupted logits approach to multiple settings to investigate
whether the mitigation of bias incurs a trade-off in task performance.

4 Experiment Setup

For demographic and gender bias-related experiments, we used two different types of datasets. The Demo-
graphic Bias dataset used in our experiment is from an existing study in Narayanan Venkit et al. (2023).
According to the findings in Narayanan Venkit et al. (2023), GPT-2 and Llama-2 models exhibit nationality
bias in text generation. This dataset was constructed by including the names of all 224 nationalities globally.
The study in Narayanan Venkit et al. (2023) identified a negative bias towards certain nationalities among
these 224 nationalities. Our research specifically targets two distinct sentence structures (Described in Table
1) that mention nationality. We then assess the bias in GPT-2 or Llama-2 by examining the text completion
of these sentence structures. The detailed descriptions about the model architecture of GPT-2 and Llama-2
models used in our experiment are given in Appendix A.2.

To compute demographic bias in a text completion setup, we get the top-k next token predictions for every
sentence (k = 10 in our case, explained in detail in Appendix A.1) by the model and for every sentence we
concatenate each of these predictions separately to the sentence and check the sentiment scores of resulting
sentences using Distilbert-base-uncased model HF Canonical Model Maintainers (2022). If the sentiment
of the sentence is positive, then we assume that the token predicted by the model was positive and vice
versa. For quantitatively computing the bias of the dataset 5, we used a metric (similar to L1 in Equation 2)
which computes the difference between positive and negative probabilities. Consequently, the Demographic
Bias metric should be positive in the case of a Positive-Bias Dataset and negative in the case of a Negative-
Bias Dataset. Using the methods described above, we divide our demographic dataset into two categories:
Positive-Bias dataset and Negative-Bias dataset. If the sum of the probabilities of next token predictions
(for which the sentiment is positive) is greater than or equal to the sum of the probabilities of next token
predictions (for which the sentiment is negative) for a sentence, it is classified into the Positive-Bias dataset
and vice versa.

To understand Gender Bias in models, we used the set of 320 professions chosen and annotated from
Bolukbasi et al. (2016b). It is an exhaustive list of gender-specific and gender-neutral terms extracted from
the w2vNEWS word embedding dataset Bolukbasi et al. (2016a). The dataset was formed on similar grounds
to the Demographic one, using sentence structure prompts of mainly two types as described in Table 1.
Using the gender dataset, we compute the bias in a similar way to demographic bias. The only difference is
rather than using the sentiment score of a sentence, we compare the predicted token with the exhaustive
set of male and female-specific common words as mentioned in Bolukbasi et al. (2016b). Each predicted
word is then assigned to three groups: Male-Stereotypical(MS), Female-Stereotypical(FS), and
Gender-Neutral(GN). Similar to demographic dataset, we divide our gender dataset into two categories:
Male-Biased dataset and Female-Biased dataset. If the sum of MS probabilities (of next token predictions) is
greater than or equal to the sum of FS probabilities (of next token predictions) for a sentence, it is classified
into the Male-Biased dataset and vice versa. Detailed dataset statistics for both demographic and gender
bias and the corresponding bias estimations are given in Table 5 in Appendix A.1.
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Change in Metric Change in Metric
Bias Type Configuration GPT-2 Small Llama-2 Qwen-2-0.5b Gemma Bias Type GPT-2 Small Llama-2 Qwen-2-0.5b Gemma

DSS1pos L1, C1 0.2987 0.2218 0.2322 0.2123 GSS1pos 0.1982 0.1834 0.2164 0.2678
DSS1pos L1, C2 0.2691 0.2441 0.0462 0.6021 GSS1pos 0.1599 0.2261 0.1812 0.2153
DSS1pos L2, C1 0.2331 0.2981 0.2081 0.3267 GSS1pos 0.1498 0.2418 0.2315 0.2179
DSS1pos L2, C2 0.1982 0.2007 0.0148 0.1052 GSS1pos 0.0259 0.2426 0.1321 0.2001

DSS1neg L1, C1 0.2887 0.2583 0.2233 0.2682 GSS1neg 0.2276 0.2939 0.2461 0.2718
DSS1neg L1, C2 0.1553 0.2804 0.3012 0.2189 GSS1neg 0.2558 0.2919 0.2322 0.2123
DSS1neg L2, C1 0.0553 0.6993 0.2351 0.3416 GSS1neg 0.1930 0.1866 0.2531 0.2541
DSS1neg L2, C2 0.0758 0.1520 0.1015 0.2011 GSS1neg 0.2333 0.1511 0.1211 0.1301

Table 2: Variation in change in Metric value under different metric (i.e. L1 and L2) and corruption configurations C1 and C2. Each
change value is normalized with respect to the original metric value produced by the model. For each category of bias (i.e. DSS1pos,
DSS1neg , GSS1pos, GSS1neg) the lowest change in metric value is boldfaced.

Implementation Details We primarily experimented with the Hooked-Transformer from Transformer-
Lens repository2 which offers a modular and transparent framework for studying the internal mechanisms of
transformer models like GPT-2 and Llama-2. For the finetuning experiments, the pretrained GPT-2 and
Llama-2 were finetuned to examine the change in underlying circuit with respect to two different types
of datasets. In one variation, the model was fine-tuned on a Positive Dataset where all countries were
given positive tokens (for gender bias case it is male gender bias) so that the finetuned model is biased
toward positive sentiment irrespective of the nationality. The goal was to examine whether this fine-tuning
approach alters the key edges responsible for generating sentences with similar grammatical structures. In the
second variation, the model was fine-tuned on a Shakespeare Dataset, which consisted of Shakespeare text
completely unrelated to the test sentences or topics. This experiment aimed to evaluate whether fine-tuning
on entirely different content affects the edges contributing to bias. We conducted all the experiments in a
computing machine having two A100 GPUs.

Based on the above discussion we would like to note that we will use the notations DSS1, DSS2 to describe
demographic bias in the grammatical structures described in Table 1. Similarly GSS1 and GSS2 notations
will be used to describe gender bias in the grammatical structures described in Table 1. We will use the
terminology DSS1pos/neg (GSS1pos/neg) to describe positive (male) or negative (female) bias.

5 Results

As described in Section 3, we show the effect of variations of corruption technique (described in Table 1)
and metric L (described in Section 3.1) in EAP for bias identification in Table 2. The ‘Change in Metric’
column in Table 2 computes the difference in metric value when all the edges are used vs. only the important
edges are used. From Table 2, it can be observed that the difference in metric value (i.e. change in Metric
column in Table 2) exhibits minimal change across variations in the corrupted structures (i.e. C1 and C2).
However, when comparing L1 and L2, it is evident that the absolute difference in metric values are mostly
much smaller (except for DSS1pos dataset in Llama-2) for L2 than for L1. Smaller change implies that set of
important edges identified by EAP performs almost similarly as the whole model where all the edges have
been cosidered. Consequently, we used L2 and C2 as metric for all the remaining demographic and gender
bias analysis experiments. We also show the top 3 edges corresponding to different types of bias across
different types of models in Table 7 in Appendix A.4.

Figure 2 and 3 show the results for localization of bias-related components in GPT-2 and Llama-2. In Figure
2, we report, for each layer in the LLM, the number of important edges—displaying only those layers that
contain more than 20% of the total important edges to highlight the non-uniform distribution across the
model architecture. We can observe from Figure 2 that for all the models (i.e. GPT-2 Small, GPT-2 Large
and Llama-2) only a few layers contribute to the important edges for bias (i.e. For GPT-2 Small it is layer
2−6, for GPT-2 Large it is primarily 9, 10, 20, 34, 35 and for Llama-2 it is 0−11 and 30−31). The observation
from the Figure 2 confirms that bias is encoded in certain layers only. Since there is a significant overlap
between important edges for DSS1pos (GSS1pos) and DSS1neg (GSS1neg), in Figure 2 we only show the
edge distribution for DSS1pos and GSS1pos. It can be observed from Figure 3 that within 40% of the top
edges for GPT-2 Small and Llama-2 models, the metric value drops by more than 90%. For GPT-2 Large, it

2https://github.com/TransformerLensOrg/TransformerLens
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requires 60% of the edges to drop the metric value by 90%. Consequently, we can say that demographic and
gender bias are encoded within a few edges in GPT-2 Small, GPT-2 Large, and Llama-2.

(a) GPT-2 Small on DSS1 (b) GPT-2 Large on DSS1 (c) Llama-2 on DSS1

(d) GPT-2 Small on GSS1 (e) GPT-2 Large on GSS1 (f) Llama-2 on GSS1

(g) Qwen2-0.5b onDSS1 (h) Qwen2-0.5b on GSS1 (i) Gemma-2-2b on DSS1

(j) Gemma-2-2b on GSS1

Figure 2: Layerwise important edge distribution for demographic bias (DSS1) and Gender bias (GSS1) across different models (i.e.
GPT-2 Small, GPT-2 Large, LLAMA-2, Qwen 2-0.5 b and Gemma2-2b from left to right).

Figure 4 and 5 illustrates the generalizability and robustness of the edges identified using the EAP approach.
In Figure 4, the three confusion matrices show the overlap among the top k edges for both demographic
and gender bias. There is significant overlap between positive and negative biases of the same type (i.e.,
demographic or gender). However, there is minimal to no overlap between demographic and gender biases.
This pattern is consistent across GPT-2 (Small & Large), Llama-2, Qwen2-0.5b and Gemma2-2b models.
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(a) GPT-2 Small (b) GPT-2 Large (c) Llama-2

Figure 3: Drop in L2 value with % of Edge Ablation from GPT-2 Small, GPT-2 Large and Llama-2 across different configurations (i.e.
DSS1pos, DSS2pos, DSS1neg , DSS2neg , GSS1pos, GSS2pos, GSS1neg, GSS2neg).
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Figure 4: Plot showing overlap of top edges by EAP scores for GPT-2 Small, GPT-2 Large, Llama-2, Qwen2-0.5b and Gemma2-2b
over different bias and sentence structure variation.

These results suggest that the similarity and dissimilarity patterns across different circuit variations are
consistent across models. It is also shown that there is very less overlap between the edges responsible for
demographic and gender bias. An interesting observation from Figure 4 is that, for demographic bias under
grammatical variation (i.e., DSS1 and DSS2), the sets of important edges exhibit minimal overlap. In contrast,
gender bias under similar variations (i.e., GSS1 and GSS2) reveals a substantial degree of overlap, suggesting
greater structural consistency in how gender-related information is represented within the model. We have
shown a similar analysis with another causal intervention technique Marks et al. (2025) in Appendix A.8.

To evaluate the stability of identified edges (i.e. described in Section 3.4), we analyzed the overlap between
edges in the pre-trained model and the fine-tuned model in Figure 5. Fine-tuning was performed on two
different datasets (i.e. Positive and Shakespeare as described in Section 4). Interestingly, as shown in the
figure, fine-tuning with different datasets caused noticeable changes in the circuit components, and this
observation held true for both small models (GPT-2 Small) and large models (GPT-2 Large and Llama-2).
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Figure 5: Plot Showing Overlap of top edges by EAP scores for Untuned vs Finetuned GPT-2 Small, GPT-2 Large, and Llama-2 in DSS1
(Demographic) configuration. Pretrained_Pos, Pretrained_Neg show positive or negative bias in pretrained LLMs. Shakespeare_Pos
and Shakespeare_Neg denote positive or negative biased models finetuned on the Shakespeare dataset. Positive_pos and Positive_neg
show the underlying circuit in the pretrained model finetuned on a positive dataset.

From Table 3, we can see that corrupting the top edges responsible for bias reduced bias in the original
model in most of the cases, except for GPT-2 Large in DSS1. We used the top 400, 1000 and 3000 edges
from GPT-2 Small, GPT-2 Large, and Llama-2, respectively. We also wanted to investigate whether this
edge corruption also affects the performance of the model in other NLP tasks. Consequently, Table 3 shows
the performance on two NLP tasks: CoNLL-2003 Sang & De Meulder (2003), a named entity recognition
benchmark, and CoLA Warstadt (2019), a linguistic acceptability judgment task for all the models. Table
3 shows a decrease in performance in CoLA and CoNLL-2003 tasks across all the models. This reduction
shows that bias-related edges have an overlap with different language understanding tasks. This differential
impact across tasks hints at a hierarchical organization of linguistic knowledge within the network, where
certain capabilities are more deeply integrated into these high-influential edges than others. Table 4 shows
the performance of debiased GPT2 Drechsel & Herbold (2025) and Lllama3.2 Drechsel & Herbold (2025) in
CoNLL-2003 Sang & De Meulder (2003), CoLA Warstadt (2019) and NER-CONL2003. It can observed that
the decrase in performance in the above mentioned tasks is much more compared to our proposed debiasing
approach in Table 3.

GPT-2 Small GPT-2 Large Llama-2 Qwen-20.5b Gemma
Model δ Bias CoLA NER δ Bias CoLA NER δ Bias CoLA NER δ Bias CoLA NER δ Bias CoLA NER

DSS1 Proposed 35.88% ↓ 22.6% ↓ 20.40% ↓ 8.89% ↑ 3.09% ↓ 6.03% ↓ 9.16% ↓ 2.10% ↓ 0.01% ↓ 41.02% ↓ 3.25% ↓ 0.06% ↓ 36.01% ↓ 2.15% ↓ 1.01% ↓
DSS2 Proposed 30.37% ↓ 18.13% ↓ 12.63% ↓ 71.30% ↓ 4.67% ↓ 3.37% ↓ 35.40% ↓ 0.01% ↓ 0.01% ↑ 35.56% ↓ 1.25% ↓ 0.01% ↓ 25.61% ↓ 1.91% ↓ 0.02% ↓
GSS1 Proposed 21.85% ↓ 0.66% ↓ 2.70% ↓ 2.87% ↓ 6.43% ↓ 0.18% ↓ 28.84% ↓ 5.70% ↓ 6.28% ↓ 25.31% ↓ 1.25% ↓ 1.21% ↓ 31.01% ↓ 1.15% ↓ 0.08% ↓
GSS2 Proposed 19.86% ↓ 2.55% ↓ 2.83% ↓ 1.15% ↓ 10.00% ↓ 1.23% ↓ 25.00% ↓ 7.08% ↓ 3.90% ↓ 23.12% ↓ 2.03% ↓ 1.16% ↓ 22.16% ↓ 1.03% ↓ 0.07% ↓

Table 3: δ Bias shows the change in Bias between the output produced by a pretrained model and the model for which bias responsible
edges were corrupted. ↓ shows decrease in bias and ↑ shows increase in bias. We also show performance change for CoLA and
NRE-CoNL2023.

Debiased GPT-2 Debiased Llama Debiased Qwen Debiased Gemma
Bias Type Method δ Bias CoLA NER-CoNLL2003 δ Bias CoLA NER-CoNLL2003 δ Bias CoLA NER-CoNLL2003 δ Bias CoLA NER-CoNLL2003

GSS1 Pretrained 37.21% ↓ 28.9% ↓ 25.30% ↓ 9.22% ↓ 5.61% ↓ 4.29% ↓ - - - - - -
GSS1 Chintam et al. (2023) 20.41% ↓ 26.15% ↓ 14.24% ↓ 21.11% ↓ 9.12% ↓ 6.24% ↓ 23.95% 3.51% 4.23% 29.89% 4.15% 1.53%
GSS1 Xu et al. (2025) 22.13% ↓ 31.22% ↓ 28.21% ↓ 30.22% ↓ 18.32% ↓ 7.55% ↓ 25.31% 4.13% 6.21% 31.59% 2.33% 2.14%

Table 4: Performance of Gender debiased GPT2, Llama, Qwen2-0.5b and Gemma2-2b model. Only the
pretrained experiment in Llama is done using Llama3.2 model. However rest of the Llama experiments are
done on Llama2 only. The first row shows results for models trained as a debiased model.

6 Conclusion

In this work, we investigated how bias is structurally embedded within the architectures of GPT-2 Small,
GPT-2 Large, LLaMA-2, Qwen2-0.5b, Gemma 2-2b using tools from mechanistic interpretability. Our analysis
revealed that, across model scales and architectures, circuits responsible for different categories of bias—such
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as demographic and gender bias—are largely disjoint, indicating that the underlying representations of bias
are modular and specialized. Through targeted interventions on specific edges identified via our causal metrics,
we demonstrated that it is possible to attenuate bias in model outputs without retraining. However, we also
observed that these structural manipulations can negatively impact the model’s performance on unrelated
NLP tasks, such as named entity recognition and natural language inference. Our findings underscore a
fundamental trade-off between debiasing and general task performance, and point to the need for more
selective interventions that can isolate bias-related functionality while preserving broader model competence.

Limitations One of the limitations of this project is that we focus specifically on demographic and gender
bias in this work. It can be observed from our findings that for different types of bias, the underlying circuit
responsible for it will be generally different. Consequently, for other biases, the circuits obtained from this
work may not be applied.
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A Appendix

A.1 Description for Biased Dataset

We did an experiment varyting the number of tokens used to computed bias for GPT-2 and Llama-2 and
found that beyond 10 tokens the amount of bias present in the model doesn’t change that much. Hence we
opted for only using 10 tokens to compute bias in LLMs. Table 5 shows the bias computed for each model on
different datasets. It also shows the number of instances present in each variation of the dataset along with
average length of the input sentences. The temperature is set to 1 for the generation from all models.

A.2 LLMs Explored

We used three different models for our experiments. Each one of them is described as follows.

GPT-2 Small This is a 85M parameter model with 12 layers and 12 attention heads per layer. The model
has a dimension of 768 and vocab size of 50257. It uses GELU as its activation function Radford et al. (2019).
In its computational graph we have 158 nodes and 32491 edges.

GPT-2 Large This is a larger version of GPT having 708M parameters, with 36 layers and 20 attention
heads per layer. This one has a dimension of 1280 and vocab size of 50257. Similar to the smaller version it
uses GELU as its activation function Radford et al. (2019). In its computational graph we have 758 nodes
and 810703 edges.

Llama-2 This is a 6.5B parameter model with 32 layers and 32 attention heads per layer. The model has a
dimension of 4096 and vocab size of 32000. Unlike GPT-2 versions it employs SiLU as its activation function
Touvron et al. (2023). In its computational graph we have 1058 nodes and 1592881 edges.
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Model Struct Type Bias Category #Samples Length Bias Metric

GPT-2 Small

DSS1 Positive 92 7.65 0.659
DSS1 Negative 132 6.72 0.753
DSS2 Positive 141 9.48 0.637
DSS2 Negative 83 9.06 0.633
GSS1 Male 293 11.69 0.816
GSS1 Female 27 11.74 0.751
GSS2 Male 291 10.69 0.837
GSS2 Female 29 10.75 0.787

GPT-2 Large

DSS1 Positive 139 7.65 0.785
DSS1 Negative 85 6.85 0.742
DSS2 Positive 69 9.65 0.652
DSS2 Negative 155 9.18 0.762
GSS1 Male 290 11.68 0.889
GSS1 Female 30 11.8 0.823
GSS2 Male 274 10.66 0.847
GSS2 Female 46 10.91 0.786

Llama-2

DSS1 Positive 216 7.0 0.853
DSS1 Negative 8 6.125 0.718
DSS2 Positive 216 10.0 0.813
DSS2 Negative 8 9.0 0.665
GSS1 Male 298 13.33 0.861
GSS1 Female 22 13.36 0.797
GSS2 Male 291 13.31 0.864
GSS2 Female 29 13.55 0.760

Qwen-2.05b

DSS1 Positive - 7.0 0.718
DSS1 Negative - 6.125 0.652
DSS2 Positive - 10.0 0.798
DSS2 Negative - 9.0 0.665
GSS1 Male - 13.33 0.759
GSS1 Female - 13.36 0.812
GSS2 Male - 13.31 0.768
GSS2 Female - 13.55 0.660

Gemma

DSS1 Positive - 7.0 0.845
DSS1 Negative - 6.125 0.792
DSS2 Positive - 10.0 0.851
DSS2 Negative - 9.0 0.693
GSS1 Male - 13.33 0.782
GSS1 Female - 13.36 0.695
GSS2 Male - 13.31 0.861
GSS2 Female - 13.55 0.731

Table 5: Dataset Statistics for Different types of Bias Across Different Models. #Samples- Number of Samples,
Length- Avg Length of the sentence. Bias metric - Normalized probability of Positive words per example of
Postive Bias Category (and similarly the Normalized probability of Negative words per example for Negative
Bias Category). Similar strategy for Gender Bias.

Figure 6: Bias Score Variation With Respect to Top-K values across GPT2 and Llama2

A.3 Baseline Scoring

We have the option to calculate the baseline scores for both positive-bias and negative-bias datasets via two
methods i.e., evaluate-baseline scoring and evaluate-graph scoring. The evaluate-baseline function calculates
the difference in probabilities between positive and negative next-token predictions and averages it over the
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Node Description GPT-2 Small GPT-2 Large Llama-2
input Input Node NA NA NA
logits Logit Node NA NA NA
m{i} ith MLP layer i ∈ (0 − 11) i ∈ (0 − 35) i ∈ (0 − 31)

a{i}.h{j} jth attention head in i ∈ (0 − 11), i ∈ (0 − 35), i ∈ (0 − 31),
ith attention layer j ∈ (0 − 11) j ∈ (0 − 19) j ∈ (0 − 31)

a{i}.h{j}<x> jth [x] attention head in i ∈ (0 − 11), i ∈ (0 − 35), i ∈ (0 − 31),
x=[q]uery, [k]ey, [v]alue ith attention layer j ∈ (0 − 11) j ∈ (0 − 19) j ∈ (0 − 31)

Table 6: Nomenclature for Nodes in the computational graph of GPT-2 and Llama-2 (Edges described in
Manual Edge Ablation Section in Appendix)

whole dataset. While as in evaluate-graph function we have the option of passing the argument of Graph (A
Graph represents a model’s computational graph. Once instantiated, it contains various Nodes, representing
mostly attention heads and MLPs, and Edges representing connections between nodes. Each Node and
Edge is either in the graph (circuit) or not; by default, all Node and Edge objects are included within the
graph.), and in the process of calculating the baseline score using evaluate-graph function we need to pass the
unaltered graph where no edge or node is ablated yet. Since we are going to use the evaluate-graph function
when we ablate some edges, hence it is best to use evaluate-graph function for getting the baseline score
which we are going to use to check the importance of edges.

A.4 Finding Bias Circuits

We sort all the edges in the graph according to their scores and print the edges in the descending order with
their respective scores for each positive-bias and negative-bias dataset. These scores are the respective edge
scores and reveal the importance of the edges in the graph for propagating the respective bias. The more
the score, the more important is the edge. The goal here was to ablate the Top N edges in the graph (N
ranging from 1 to 10 in our case) and observe the variation in the evaluate-graph scores and compare it to
the graph-baseline score. EAP Syed et al. (2024) eventually outputs a sorted list of edges where each edge is
represented by the corresponding connecting nodes. In Table 6 we the description of different types of nodes
referred in EAP. Thable 7 shows the top 3 edges obtained for different types of bias across different models
(i.e. GPT2- Small, GPT2-large and Llama2).

A.5 Selecting top-K edges

It was computationally infeasible to consider all the edges of a model to do all the analysis. Our primary
object was to find the set of edges which were mostly responsible for bias in the model. Hence, we selected
the top-k edges, where k represents the least number of edges retained in the model such that the resulting
bias remains within 20% of the original model’s bias value. In Figure 7, we varied the total number of edges
from 600 to 3000 across different models. The red line in Figure 7 shows the 20% of the original bias value of
the model.

A.6 Creating Corrupted Edges for Downstream Tasks

For CoLA dataset we filter the sentence containing atleast one noun, duplicate the sentence and swap every
noun token with “XYZ”, preserving positions. For CoLA dataset we swap any two randomly chosen words in
the sentence.

A.7 Finetuning Experiment Setup

We conducted our experiments using the Hooked-Transformer framework from the TransformerLens repository
Our base architectures were GPT-2 and Llama-2. Both models were evaluated in their pretrained form and
subsequently fine-tuned on two distinct datasets.
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Figure 7: Variation of Top-K edges
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Top 1 Top 2 Top 3

Model Bias Type Edge Score Edge Score Edge Score
GPT-2 Small Demographic Positive(DSS1) m11->logits 0.3307 m0->m2 0.1900 m0->m1 0.1858
GPT-2 Small Demographic Negative(DSS1) m11->logits 0.2655 m0->m1 0.1684 m0->m2 0.1557
GPT-2 Small Demographic Positive(DSS2) m11->logits 0.1580 m0->m2 0.1205 m9->logits 0.0921
GPT-2 Small Demographic Negative(DSS2) m11->logits 0.0720 m0->m2 0.0658 m0->m1 0.0527
GPT-2 Large Demographic Positive(DSS1) m35->logits 0.3183 m33->m35 0.1732 m33->logits 0.1526
GPT-2 Large Demographic Negative(DSS1) m35->logits 0.3219 m33->m35 0.1245 a32.h2->logits 0.1123
GPT-2 Large Demographic Positive(DSS2) m35->logits 0.2458 m32->logits 0.1226 m33->m35 0.1070
GPT-2 Large Demographic Negative(DSS2) m35->logits 0.1151 m32->logits 0.0598 m0->m4 0.0457
GPT-2 Small Gender Male(GSS1) input->m0 0.0663 input->a0.h5〈k〉 0.0561 input->a0.h5〈q〉 0.0483
GPT-2 Small Gender Female(GSS1) input->m0 0.0675 input->a0.h5〈k〉 0.0539 m11->logits 0.0471
GPT-2 Small Gender Male(GSS2) input->m0 0.0615 input->a0.h5〈k〉 0.0602 input->a0.h5〈q〉 0.0502
GPT-2 Small Gender Female(GSS2) input->m0 0.0649 input->a0.h5〈k〉 0.0575 m11->logits 0.0541
GPT-2 Large Gender Male(GSS1) m35->logits 0.0281 a33.h11->logits 0.0274 m33->logits 0.0261
GPT-2 Large Gender Female(GSS1) m35->logits 0.0206 a33.h11->logits 0.0203 m33->logits 0.0192
GPT-2 Large Gender Male(GSS2) m35->logits 0.0306 a33.h11->logits 0.0265 a32.h2->logits 0.0249
GPT-2 Large Gender Female(GSS2) m35->logits 0.0241 a32.h2->logits 0.0206 a33.h11->logits 0.0204

Llama-2 Gender Male(GSS1) m31->logits 0.2467 m30->logits 0.0560 m30->m31 0.0497
Llama-2 Gender Female(GSS1) m31->logits 0.3141 m30->logits 0.1282 m30->m31 0.0852
Llama-2 Gender Male(GSS2) m31->logits 0.2618 m30->logits 0.0907 m30->m31 0.0542
Llama-2 Gender Female(GSS2) m31->logits 0.3308 m30->logits 0.1461 m30->m31 0.1095

Table 7: Top 3 edges for Different Models and Different Bias

EAP Vs SAE Approach
Pos_DSS1 Pos_DSS2 Neg_DSS1 Neg_DSS2 Male_GSS1 Male_GSS2 Female_GSS1 Female_GSS2

GPT2 Small 75% 80% 81% 78% 77% 73% 82% 71%
GPT2 Large 73% 72% 71% 76% 85% 75% 72% 81%

Llama2 84% 72% 71% 79% 87% 73% 72% 83%

Table 8: Overlap percentage Between Important Edges Obtained from EAP and SAE.

The first fine-tuning variant used Positive Dataset, where all countries were paired with positive sentiment
tokens. For the gender bias case, male-associated tokens were emphasized. This setup intentionally biased
the model toward positive sentiment with the goal of testing whether such polarity shifts could serve as a
debiasing mechanism while preserving the grammatical scaffolding of the model.

The second variant used Shakespeare Dataset, consisting of Early Modern English text. This fine-tune
was designed not only to impose stylistic features but also to explore whether forcing the model into a
highly structured linguistic domain could mitigate bias. By encouraging the models to adopt Shakespearean
vocabulary and syntax, we aimed to examine whether stylistic adaptation reconfigures structural circuits in
ways that contribute to debiasing or instead introduces new pathways specific to style.

Training DetailsFine-tuning was performed with the AdamW optimizer using a learning rate of 10−4 and a
batch size of 129. Each model was fine-tuned for 20 epochs on the respective datasets, with early stopping
based on validation loss. Evaluation was conducted on held-out validation splits, and circuit changes were
analyzed using attention weight inspection and edge attribution methods within TransformerLens.

A.8 SAE Approach Results

SAE Marks et al. (2025) is another recent approach to find important components from a model similar
to EAP Syed et al. (2024). In Figure 8, we have done similar experiments like Figure 2 using SAE. Figure
8 shows that there is not much overlap between demographic and gender bias in general. Table 8 shows
the overlap between important edges obtained from EAP approach and SAE approach for all the different
variations. It can be seen that the overlap is always more than 70%.
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Figure 8: Overlap Results from SAE Approach

A.9 Circuit Diagram

Figure 9 shows the circuit diagram for different types of bias (i.e. demographic and gender) obtained from
EAP approach Syed et al. (2024). A circuit is a subgraph of a neural network3.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 9: Circuit Diagram: (a) GPT-2-Small-DSS1-Positive, (b) GPT-2-Small-DSS2-Positive, (c) GPT-2-
Large-DSS1-Positive, (d) GPT-2-Large-DSS2-Positive, (e) Llama-2-DSS1-Positive, (f) Llama-2-DSS2-Positive,
(g) GPT-2-Small-GSS1-Positive, (h) GPT-2-Small-GSS2-Positive, (i) GPT-2-Large-GSS1-Positive, (j) GPT-2-
Large-GSS2-Positive, (k) Llama-2-GSS1-Positive, (l) Llama-2-GSS2-Positive.

3https://distill.pub/2020/circuits/zoom-in/#glossary-circuit
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