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ABSTRACT

As post-training techniques evolve, large language models (LLMs) are increasingly
augmented with structured multi-step reasoning abilities, often optimized through
reinforcement learning. These reasoning-enhanced models outperform standard
LLMs on complex tasks and now underpin many commercial LLM APIs. However,
to protect proprietary behavior and reduce verbosity, providers typically conceal
the reasoning traces while returning only the final answer. This opacity introduces
a critical transparency gap: users are billed for invisible reasoning tokens, which
often account for the majority of the cost, yet have no means to verify their au-
thenticity. This opens the door to token count manipulation, where providers may
overreport token usage or inject synthetic, low-effort tokens to inflate charges, a
threat that can be carried out at near-zero cost. To address this issue, we propose
ColIn, a verification framework that audits both the quantity and semantic validity
of hidden tokens. CoIn constructs a verifiable hash tree from token embedding
fingerprints to check token counts, and uses embedding-based relevance matching
to detect fabricated reasoning content. Experiments demonstrate that CoIn, when
deployed as a trusted third-party auditor, can effectively detect token count manipu-
lation with a success rate reaching up to 94.7%, showing the strong ability to restore
billing transparency in opaque LLM services. The dataset and code are available at
https://anonymous.4open.science/r/LLM-Auditing-CoIn-20F0.

1 INTRODUCTION

Large language models (LLMs) have achieved significant advances in recent years. Yet, as pre-
training begins to saturate available data resources (Zoph et al.l 2020)), the research community has
increasingly turned to inference-time innovations (Hu et al., |2023} |[Kumar et al.,2025). Among these,
reinforcement learning (RL)-optimized reasoning models have shown promise by generating longer,
structured reasoning traces that improve performance, particularly in tasks involving mathematics and
code (Guo et al.,[2025; Muennighoff et al.,|2025)). Such models, exemplified by DeepSeek-R1 (Guo
et al., [2025) and ChatGPT-O1 (Jaech et al., [2024), demonstrate that scaling at inference time can
yield new capabilities without further pretraining.

With this shift, providers like OpenAl increasingly adopt new service models. Reasoning traces, while
critical for quality, are often verbose, sometimes speculative (Jin et al., 2024; [Zhang et al., [2025]),
and may reveal internal behaviors vulnerable to distillation (Gou et al., 2021} [Sreenivas et al.| [2024).
To protect proprietary methods and streamline outputs, commercial APIs typically suppress these
intermediate steps, exposing only the final answer. However, users are still charged for all generated
tokens, including those hidden from view. We refer to such services as Commercial Opaque LLM
APIs (COLA)—proprietary, pay-per-token APIs that conceal intermediate reasoning text.

A natural consequence of this design is a verification gap: users have no means to verify token
usage or detect overbilling. Because reasoning tokens often outnumber answer tokens by more than
an order of magnitude (Figure[I), this invisibility allows providers to misreport token counts or
inject low-cost, fabricated reasoning tokens to artificially inflate token counts. We refer to this
practice as token count manipulation. For instance, a single ARC-AGI run by OpenAI’s 03 model
consumed 111 million tokens, costing $66,772P_-] Given the scale of reasoning-heavy workloads, even
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Figure 1: Ratio of reasoning tokens to answer tokens across datasets and deployed APIs. (a) Token
ratios on the OpenR1-Math dataset across different OpenAl reasoning models. (b) Token ratios of
the DeepSeek-R1 (Guo et al., [2025)) across various reasoning datasets. In both cases, the number of
reasoning tokens often exceeds answer tokens by an order of magnitude or more.

small inaccuracies in billing could translate into substantial financial consequences. Although there
is no evidence of deliberate misconduct, the asymmetry of information between providers and users
underscores the importance of transparent billing mechanisms to safeguard user interests.

To tackle this problem, we design CoIn (Counting the Invisible), a verification framework that
enables third-party auditing of invisible reasoning tokens in COLA. Importantly, our aim is not to
suggest that such practices are occurring in today’s systems, but rather to highlight a structural
vulnerability inherent to the COLA design. On the contrary, we acknowledge the provider’s
motivations for concealing reasoning traces, as well as the community’s concerns about opacity.
CoIn seeks to bridge this gap by providing a neutral auditing mechanism that ensures billing
accountability while preserving the confidentiality of hidden content.

CoIn consists of two key components: (1) Token Quantity Verification, which leverages a verifiable
hash tree (Merklel [1987) to store fingerprint embeddings of reasoning tokens. Upon an audit request,
ColIn allows users to query a small subset of the token fingerprints in the hash tree to verify the
number of invisible tokens, avoiding accessing the actual reasoning tokens; and (2) Semantic
Validity Verification, which detects fabricated, irrelevant, or low-effort token injection via a semantic
relevance matching head. This matching head takes the embeddings of both the reasoning tokens and
the answer tokens as input, and outputs a relevance score indicating their semantic consistency. Users
can assess this score to identify token count manipulation with low-effort token injection. Together,
these components enable CoIn to identify misreported token counts and fabricated reasoning traces,
enabling transparent billing without exposing proprietary data. In practice, CoIn can be deployed as a
trusted third-party auditing service that ensures billing transparency while preserving the integrity
and confidentiality requirements of COLA providers.

Our main contributions are as follows:

* We define the COLA architecture and formalize the emerging risk of foken count manipulation,
categorizing it into misreporting, naive inflation, and adaptive inflation strategies.

* We design Coln, a verification framework combining foken quantity verification via verifiable
hashing and semantic validity verification via embedding relevance, to audit invisible tokens
without exposing proprietary content.

* QOur experiments demonstrate that CoIn can achieve a 94.7% detection success rate against various
adaptive attacks with less than 40% embedding exposure and less than 4% token visibility. More-
over, even when 10% of tokens are maliciously forged by COLA, ColIn still maintains a 40.1%
probability of successful detection.

2 RELATED WORK

Reasoning Model. LLMs have shown strong performance on complex reasoning tasks by generating
intermediate steps, a technique known as chain-of-thought prompting (Wei et al. [2022). This
paradigm has been further enhanced by methods such as self-consistency (Wang et al., [2022)) and
program-aided reasoning (Gao et al.,|2023). Recent research reveals that generating more reasoning
steps at inference time can lead to higher answer accuracy, a phenomenon referred to as the test-
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time scaling law, which has become a guiding principle for optimizing LLMs (Snell et al.| [2024).
Reasoning models are typically LLMs fine-tuned via RL (Rafailov et al., 2023; [Wu et al., 2023}
Ramesh et al.,[2024) to produce structured reasoning traces before generating final answers, thereby
improving answer quality. These reasoning traces are often longer, more indirect, and may include
failed attempts, but are nonetheless closely tied to the final answer (Hao et al., 2024} Yang et al.,
2025b). Since these reasoning tokens are generated in the same autoregressive manner as answer
tokens, COLAs charge for them based on token count. However, the indirect and verbose nature of
reasoning makes it challenging to audit their legitimacy without direct access to the reasoning traces
themselves.

COLA Auditing. Several works have emerged to address the lack of transparency in COLA. [Sun
et al.| (2025)) systematically define the opacity problem of commercial LLM services and further
extend it to multi-agent settings. [Cai et al.| (2025) propose a watermark-based method to audit whether
a COLA uses the required LLM rather than a cheaper LLM. Similarly, Yuan et al.|(2025)) develop
a user-verifiable protocol to detect nodes that run unauthorized or incorrect LLM in a multi-agent
system. Another series of works (Zheng et al.| 2025} Marks et al., [2025) proposes auditing some
bad behaviors of LLMs, e.g., cheating and offensive outputs. These techniques mainly focus on the
model auditing and lack attention to the token count auditing of COLA.

3 PRELIMINARY

Participants and Problem Formulation. The CoIn framework involves three roles: (1) COLA — a
commercial LLM service provider (e.g., OpenAl) that performs multi-step reasoning and returns only
the final output to the user; (2) User — an end-user who submits prompts and receives answers along
with the billing summary; and (3) CoIn auditor — a trusted third party responsible for verifying the
invisible reasoning tokens on behalf of the user.

In each service interaction, the user sends a prompt P to COLA. The LLM generates reasoning tokens
R={ry,ro,..., T}, followed by answer tokens A = {a1, as, ..., ay,}. Only the final answer A is
returned to the user, while the reasoning trace R remains hidden. Billing is based on the total number
of tokens m + n, including the invisible reasoning tokens. As Figure[I|shows, reasoning tokens often
dominate the total count, i.e., m > n, resulting in a significant transparency gap.

Potential Token Count Manipulation. For a malicious COLA, we consider two strategies for token
count manipulation:

* Token Count Misreporting. COLA reports a falsified token count my > m, leading to direct
overbilling without modifying the output.

» Token Count Inflation. Anticipating user-side defenses (e.g., hash matching, spot-checking),
COLA may append low-effort fabricated tokens to the original reasoning trace. These fabricated
tokens can be generated via random sampling, retrieval from related documents, or repetition of
existing tokens, and then indistinguishably mixed with genuine reasoning tokens. The inflated
sequence is then used for billing, bypassing naive verification methods and still overcharging the
user. Due to the trade-off between risk, benefit, and cost, we only consider near-zero cost token
inflation, while fabrications requiring LLM participation are beyond our scope.

To address these threats, CoIn employs two components: (1) Token Quantity Verification, which
audits the reported token count using verifiable commitments and exposes embeddings; and (2)
Semantic Validity Verification, which evaluates the relevance between reasoning and answer tokens
to detect low-quality injections.

Threat Model. COLA has access to the user prompt P, the full reasoning trace R, and the answer
A, and controls the billing report (m, n), where m is the claimed number of reasoning tokens and n
is the number of answer tokens. It can manipulate the reported count without user visibility. The
CoIn auditor operates as a trusted third party. It can access P, A, and (m,n), but cannot observe
R directly or directly query the LLM used by COLA. However, it can request COLA to return the
embeddings of R, computed using an embedding model fixed by the auditor to prevent tampering.

4 CoIn: COUNTING THE INVISIBLE REASONING TOKENS

CoIn comprises two complementary components: token quantity verification and semantic validity
verification. The token quantity verification module treats embeddings of invisible reasoning tokens
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Figure 2: CoIn Framework.

as cryptographic fingerprints and organizes them into a verifiable hash tree. By querying a small
subset of these fingerprints, users can audit the claimed number of invisible tokens without accessing
their contents, thereby mitigating token count misreporting. The semantic validity verification module
trains a lightweight neural network, referred to as a matching head, to evaluate the relevance between
embeddings. During auditing, CoIn retrieves token embeddings from the hash tree and uses the
matching head to compute relevance scores both among reasoning tokens and between reasoning and
answer tokens. These scores help detect token count inflation through the injection of fabricated or
irrelevant reasoning tokens. An overview of the CoIn framework is illustrated in Figure 2]

4.1 TOKEN QUANTITY VERIFICATION

Token Fingerprint Generation. In CoIn, COLA is required to generate embeddings of its reasoning
tokens using a third-party embedding model Embd(-) designated by the CoIn auditor. These embed-
dings serve as token fingerprints used to construct a verifiable hash tree for auditing. This verifiable
hash tree enables CoIn to audit the total number of invisible tokens without accessing them, while the
per-token hash commitments preclude token count misreporting.

Specifically, given a reasoning sequence R, COLA first partitions R into « blocks. For each token r;
in block B;, COLA computes: (1) the block embedding Embd(B;), which embeds all the tokens
inside the block; and (2) the token embedding Embd(r;), which embeds the single token itself. Each
reasoning token therefore acquires both the block embedding and the token embedding. For each
reasoning token Embd(r;), CoIn concatenates its block embedding and token embedding to form the
token fingerprint: Embd(B;) || Embd(¢;).

Fingerprint Hash Tree Construction. COLA applies a cryptographic hash function (e.g., SHA-
256), agreed upon with Coln, to each token fingerprint to construct the leaf nodes of a Merkle Hash
Tree (Merkle| |1987). The number of leaf nodes is padded to the nearest power of two, and parent
nodes are built recursively by hashing concatenated sibling nodes up to the Merkle Root. This root
serves as a commitment to the full set of reasoning tokens and is submitted to CoIn. After constructing
the hash tree, COLA gives the Merkle Root to CoIn for Merkle Proofs upon user’s auditing request.

Merkle Proof. Upon receiving the answer A and the token counts m and n, a user may suspect
token inflation. To verify the count of invisible reasoning tokens, the user selects a block B;
and randomly chooses token indices to audit. Upon receiving the request, CoIn auditor requests
the following information from COLA: (1) the fingerprints of the selected tokens; and (2) the
corresponding Merkle Path, which is a sequence of sibling hashes needed to reconstruct the Merkle
Root from the corresponding token. CoIn recomputes the Merkle root from the provided data and
checks for consistency with the original commitment by COLA. A successful match confirms the
integrity of the selected token; a mismatch indicates possible fabrication and inflated token reporting.
The construction and Merkle Proof procedure is illustrated in Figure [2}(a) and detailed further in

Appendix [F1],
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The Merkle proof in token quantity verification ensures both the structural integrity and the correctness
of the reported token count, effectively defending against token count misreporting. However,
a dishonest COLA may still conduct token count inflation by injecting irrelevant or low-effort
fabricated tokens that pass count verification. To address this limitation, we introduce semantic
validity verification.

4.2 SEMANTIC VALIDITY VERIFICATION

To defend against token count inflation, we introduce the semantic validity verification component, as
illustrated in Figure 2}(b). This component ensures that reasoning tokens are semantically meaningful
and contribute to the final answer, preventing low-effort or fabricated token insertion. Based on this
principle, CoIn verifies the semantic validity of invisible tokens from two perspectives:

» Tokens-to-Block verification checks whether each reasoning token r; is semantically coherent
within its enclosing block B;. This defends against randomly injected or meaningless tokens.

* Block-to-Answer verification evaluates whether a reasoning block Bj; is semantically aligned
with the final answer A, thus identifying the insertion of low-cost content that is insufficiently
relevant to the task.

To support both tasks, CoIn trains two lightweight neural modules called the matching heads, which

are binary classifiers that determine whether two embeddings are semantically associated. Given two

token embeddings a and b, the matching head first computes the cosine similarity: cos_sim = 2%

lallToll*
and constructs the feature vector: h = [a; b; a — b; a ® b; cos_sim| € R4+1 where d is the
embedding dimension, [; ] denotes concatenation, and ® denotes element-wise multiplication. The

feature h is then passed through a two-layer feedforward network to produce a scalar match score
S € [0, 1], representing the likelihood that a and b are semantically aligned. This process can be
viewed as a regression function S = MH(a, b).

In CoIn, the matching heads MHy,(+), MHyp,(+) are trained offline for tokens-to-block and block-to-
answer verification respectively. CoIn uses open-source corpora and the same embedding model in
token fingerprinting to build the datasets for matching heads training.

Verification Protocol. In each verification round, the user randomly selects some reasoning tokens 7;
(by default, 10% of the tokens within a selected block) from the hash tree. Since the token fingerprint
consists of both the token embedding Embd(r;) and the corresponding block embedding Embd(B;),
it can be directly used for Tokens-to-Block verification. For the Block-to-Answer verification, we use
Embd(B;) and the embedding of the whole answer to compute the score:

Siy = MHw(AVG(Embd(r;)), Embd(B;)),  Ska = MHua(Embd(B;),Embd(A)). (1)

Here, Sy, and Sy, represent the relevance scores for the two respective verification tasks. Each score
reflects the estimated likelihood that the two input embeddings are semantically relevant.

4.3 WORKFLOW OF Coln

Enforcing Billing Integrity with CoIn. When a user suspects token count manipulation in a specific
response, they can initiate an audit request to CoIn. The audit begins with the user selecting a
fraction ~y of the total reasoning blocks for verification. CoIn then performs two Semantic Validity
Verifications and multiple Merkle Proofs on these selected blocks. The resulting match scores
are passed to a verifier, which issues a final decision. If the verifier accepts, the audit concludes
successfully. If the verifier rejects, the user continues by randomly selecting another unverified block
for auditing. This process repeats until either a successful judgment is reached or all blocks are
exhausted. If no verification passes, the audit concludes with COLA being flagged for token inflation.
The user may then request COLA to justify the charges by disclosing the original reasoning content.
The complete procedure is outlined in Algorithm 4]

Verifier Design. Each audit round produces a variable-length sequence of match scores, as the
number of verified blocks depends on verifier decisions. To handle this, we implement two types of
verifiers: (1) Rule-based: Averages the scores from two semantic verifications. The audit passes if
both averages exceed a threshold 7. (2) Learning-based: Uses a lightweight DeepSets model (Zaheer
et al.L [2017) to process the unordered set of match scores and audit will succeed if the confidence
exceeds 7. Auditing outcomes enable users to assess the trustworthiness of a COLA provider.
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Frequent failures in CoIn audits may erode user trust and damage provider reputation. By introducing
verifiable accountability, the CoIn framework serves as a deterrent against token count manipulation
in commercial LLM services.

Hyperparameter and Verification Cost. CoIn is governed by a few hyperparameters that control
auditing granularity and cost. Specifically, « is the number of blocks, S the block size, ~y the initial
sampling ratio (default: 0.3), and k& the number of tokens sampled per block (default: 0.1 % 5). A
smaller 3 reduces exposure but increases overhead. The protocol begins with v - « rounds and
may proceed up to o rounds under early stopping, so the number of verification rounds satisfies
¢ € [y - a, a]. As aresult, the total number of Merkle Proofs is k - ¢, and the number of Semantic
Judgments is 2 - £.

5 EXPERIMENTS

We systematically evaluate the robustness and reliability of CoIn and its submodules under various
adaptive inflation attacks across multiple datasets. We further analyze the construction cost of the
Hash Tree, as well as whether the partially exposed block embeddings and tokens can be exploited to
recover the reasoning tokens of COLA. Finally, we assess the difficulty of the dataset we constructed.

5.1 EXPERIMENT SETUP

Token Inflation Implementations. We study both naive and adaptive token count inflation strategies.
To enable fine-grained evaluation and systematic dataset construction, we design four variants of
adaptive inflation. All inflation types used in our experiments are summarized in Table[I] These
strategies are applied to generate inflated samples for both training and evaluation.

Table 1: Token inflation types used in our experiments.

Type Description

Naive Inflation =~ Randomly select tokens from the vocabulary for injection.
Ada. Inflation 1  Inject tokens with embeddings similar to P, R, or A.

Ada. Inflation 2  Inject tokens directly sampled from P, R, or A.

Ada. Inflation 3 Inject reasoning sequences extracted from other inputs.

Ada. Inflation 4 Inject retrieved sequences semantically similar to P, R, or A.

Datasets and Training Setup. We conduct experiments on five datasets derived from
DeepSeek-R1 (Guo et al.,|20235)), covering diverse reasoning domains: medical (Chen et al.| 2024a),
code (Team, |2025; [Facel [2025)), mathematics (Facel 2025), general reasonin and out-of-domain
(OOD) mathematics (Team), |2025} [Face, [2025). For training, we randomly sample 20,000 examples
from each dataset and combine them into a joint dataset. Another 1,000 samples per dataset are held
out to form the evaluation set for CoIn. We use the tokenizer of DeepSeek-R1 in our experiments.

For the matching head, we use all-MiniLM-L6-v2 (Reimers & Gurevych, 2019) as model structure.
In the tokens-to-block verification task, we treat original samples as normal instances and apply
Naive Inflation as well as Adaptive Inflation 1 and 2 to construct inflated samples. Normal and
inflated samples are labeled 0 and 1 respectively and mixed at a 1:1 ratio to form the training set.
For the block-to-answer verification task, we adopt a similar setup, but use Ada. Inflation 1-4
to construct inflated samples. This setting enables a thorough evaluation of the model’s ability to
detect both shallow and semantically sophisticated inflation attacks. The details are explained in

Appendix [C] [D}

Metrics. We define the Detection Success Rate (DSR) as the classification accuracy of our module,
computed separately for malicious and benign samples. Unlike conventional metrics (e.g. AUC), DSR
highlights performance differences across negative sample types and reveals asymmetric detection
difficulty that aggregated metrics may obscure. Inflation Rate (IR) indicates the percentage of
fabricated tokens injected by COLA relative to the number of original reasoning tokens. For benign
samples, the Average Exposure Rate (AER) refers to the proportion of blocks exposed during the
CoIn multi-step verification process out of the total number of blocks.

Zhttps://huggingface.co/datasets/glaiveai/reasoning-v1-20m
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5.2 DETECTION PERFORMANCE OF Coln

We evaluate CoIn’s ability to detect various token count inflation attacks. Figure [3] shows the
relationship between IR and DSR across five datasets. DSR increases with IR, indicating that more
aggressive inflation is easier to detect. For example, in the Naive Inflation setting, DSR approaches
100% when IR exceeds 0.5, suggesting near-perfect detection for heavily inflated queries. Figure ]
illustrates the impact of 75,. As 77, increases, DSR for malicious samples increases, while for benign
samples decreases. This highlights a tunable trade-off between user utility and COLA’s protection.

—e— Rule-based (Malicious Samples) Rule-based (Benign Samples)
—e— Learning-based (Malicious Samples) ~ —=-- Learning-based (Benign Samples)
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Figure 3: Performance of CoIn across different inflation methods and verifiers. The red lines and the
blue lines represent the DSR of rule-based verifier and learning-based verifier, respectively.

Learning-based Verifier Excels at Detecting Malicious Sam-  T,p1e 2: Influence of Block Size.
ples. In Figure [3| for a fair comparison, we set the threshold
7 = 0.5 for learning-based verifier, and 7 = 0.6 for rule-based Block Size 3
verifier. The initial sampling ratio ~ is set to 0.3. Across all set-  Metric
tings, the learning-based verifier consistently outperforms the 256 512 1024
rule-based variant in detecting inflated samples, achieving up
to 94.7% average DSR at an inflation ratio (IR) of 3.0. Among ﬁvg. a 168 86 4.3
; X . vg. {63 3.7 2.2
the adaptive methods, Ada. Inflation 2 and Ada. Inflation 3 AER| 038 043 049
present greater detection challenges. Nevertheless, CoIn still i ; .
achieves an average DSR of approximately 84.3% and 93.1% at IR = 3.0 for these cases. These results
demonstrate that CoIn remains robust even under strong adaptive inflation, and that learning-based
semantic verification offers significant advantages in practical detection scenarios.

Rule-based Verifier Excels at Handling Benign Samples. Although it is less effective at detecting
inflated samples, the rule-based verifier, as shown in Figure 3] performs better on benign samples
when properly tuned, due to its lower false positive rate. Given our verification mechanism, a higher
DSR on benign samples results in a lower Average Exposure Rate (AER), which makes COLA more
favorable toward such mechanisms. Based on the rule-based verifier (7 = 0.6), Table [Z] reports the
average number of blocks a, average verification rounds ¢ and AER across different block sizes [3.
With increasing 3, ¢ decreases, indicating lower cost. However, AER increases, and the results in
Appendix [G]show that increasing the block size reduces the DSR for adaptive inflation.

5.3 PERFORMANCE OF THE SEMANTIC VALIDITY VERIFICATION

Block-to-Answer Verification. We separately evaluate the performance of the two types of matching
heads introduced in Section[d.2] Table [3] shows the DSR of the matching heads on the Block-to-
Answer Verification task. The model achieves an average DSR of 94.8% across attack types. Even for
the Math (OOD) dataset, which was excluded from training, the model performs strongly, indicating
good generalization. The DSR drops slightly on clean (non-inflated) samples due to the presence
of reasoning blocks not directly contributing to the final answer (see Section[6). Additionally, Ada.
Inflation 3 introduced hard negatives that resemble real data, making separation more difficult.
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Figure 4: Impact of threshold 7 on DSR.

Table 3: Block-to-Answer Verification Performance Across Attack Types and Domains.

Attack Type | Medical Code Math General Math (OOD) | Avg.
Naive Inflation 99.4 100.0 100.0 99.3 100.0 99.7
Ada. Inflation 1 95.3 98.7 98.6 96.8 98.2 97.5
Ada. Inflation 2 94.4 92.3 92.8 94.2 92.7 93.3
Ada. Inflation 3 89.2 81.5 84.3 92.9 84.6 86.5
Ada. Inflation 4 94.2 97.9 99.0 96.1 97.8 97.0
Avg. With Inflation ‘ 94.5 94.1 94.9 95.8 94.7 ‘ 94.8
No Inflation ‘ 87.9 90.3 87.1 86.5 87.9 ‘ 87.9

Tokens-to-Block Verification. Table ] shows the results for tokens-to-block verification. The model
performs well overall but struggles with Adaptive Inflation 2, where tokens reused from the same
sample lead to significant lexical and semantic overlap. This overlap can blur the distinction between
original and fabricated content, especially when reused tokens legitimately contribute to the block.

Table 4: Tokens-to-Block Verification Performance Across Attack Types and Domains.

Attack Type | Medical Code Math General Math (OOD) | Avg.
Naive Inflation 90.8 90.5 95.3 84.5 94.6 91.2
Ada. Inflation 1 95.1 96.1 95.8 95.5 95.8 95.6
Ada. Inflation 2 76.0 752 739 73.6 74.8 74.7
Avg. With Inflation ‘ 87.3 87.2 88.4 84.5 88.4 ‘ 87.2
No Inflation ‘ 82.0 80.4 87.2 79.0 86.0 ‘ 82.9

Cost of Building Hash Trees. We evaluate the computational overhead of constructing the Merkle
Tree, with respect to input size and hidden dimension. Experiments were conducted on a dual-socket
AMD EPYC 7763 system (128 cores, 256 threads). All constructions ran as single-threaded processes
on one logical core. As shown in Figure[3] the construction time grows approximately linearly with
the input length for a fixed hidden dimension, and increases more steeply with higher dimensions.
Given that most LLM inference servers have underutilized CPUs, and the Merkle Tree construction
process scales effectively with parallelism, the cost of building it is nearly negligible.

6 DISCUSSION

Can the original text be recovered from the tokens and embeddings exposed by COLA? During
the CoIn verification process, COLA may leak partial block embeddings and tokens to CoIn. To
quantify the impact of such leakage, we design two experiments: (1) Direct reconstruction from
embeddings. Our protection goal is to prevent large-scale reasoning data from being collected for
reverse engineering or distillation, rather than avoiding leakage of individual reasoning fragments.
We adopt Vec2Text (Morris et al., [2023)), a “hypothesis—correction” iterative method for embedding
inversion. As shown in Table[5] text can still be partially recovered when the block size is small
(< 64), but recovery performance drops sharply as block size increases; at our framework’s minimum
block size of 256, the attack almost completely fails. Even when BLEU (Papineni et al., |2002) / F1
scores are relatively high, the reconstructed text often suffers from severe semantic distortion, making
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it unsuitable for malicious data distillation. (2) LLM-based reconstruction. We further assume that
a malicious CoIn may employ RAG to retrieve similar documents and use an LLM to reconstruct the
original content (prompt design provided in Appendix [H). Results on a math dataset (Table[7) show
that the combination of high BERTScore/EmbedSim and low BLEU/ROUGE indicates that LLMs
can preserve core semantics, but differ significantly in surface expression and syntactic structure.
Further experimental details are provided in Appendix[I|

Merkle Tree Construction Time
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How does CoIn defend against repetition-based token inflation? An important class of adversarial
strategies we must consider involves dishonest providers artificially inflating token counts by repeating
reasoning segments or appending permuted or LLM-rewritten variants. For simplicity, we did not
incorporate such strategies into the core method presented in this paper, but CoIn can be naturally
extended to mitigate them. For direct repetition, subtree equivalence checks in the Merkle tree
can reveal duplicated segments. If repeated content exists, identical hash values will appear at
sibling nodes, implying structurally identical subtrees and thus duplicated token sequences. For more
complex manipulations, such as random permutations or LLM-based rewritings, we provide detailed
experiments in Table E} We find that even after rewriting by Qwen3-4B (Yang et al., 2025a)), the
rewritten text still exhibits high similarity to the original. Therefore, the proposed subtree similarity
check retains strong potential to detect such inflation patterns. As a highly extensible framework,
CoIn can incorporate these additional measures to defend against a broader range of attacks. Detailed
analysis and experimental results are provided in Appendix

How difficult is the dataset we constructed? To investigate the dataset difficulty, we submitted the
failed samples from the Block-to-Answer Verification task, along with their Answer, to a LLM. Based
on the idea of LLM-as-a-Judge (Zheng et al.,|2023; |Li et al., |2024), we use a prompt to instruct the
LLM to perform binary classification. The prompt used is provided in Appendix [H| The relatively
high misclassification rate suggests that the LLM, after reading the original text, tends to align with
the matching head’s judgment. The LLM shows high error rates on Naive Inflation, Ada. Inflation 1
and 4, indicating strong performance of the matching head in these cases. However, it still struggles
with the remaining two adaptive inflations. Notably, 36.7% of real blocks were misclassified by the
LLM, suggesting that some parts of the true reasoning steps may be unrelated to answer derivation.

7 CONCLUSION

This paper presents CoIn, a novel auditing framework designed to verify the token counts and
semantic validity of hidden reasoning traces in COLA. We identify and formalize the problem of
token count manipulation, in which service providers can overcharge users by injecting redundant
or fabricated reasoning tokens that are not visible to the user, often at near-zero computational cost.
To address this, CoIn integrates two complementary components: a hash tree-based token quantity
verifier and a semantic relevance-based validity checker. Our extensive experiments demonstrate that
CoIn can detect both naive and adaptive inflation strategies with high accuracy, even under limited
exposure settings. By enabling transparent and auditable billing without revealing proprietary content,
CoIn introduces a practical mechanism for accountability in commercial LLM services. We hope
this work lays the foundation for future research on LLM API auditing, transparent reasoning, and
verifiable inference services.
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ETHICS STATEMENT

The central goal of this research is to enhance billing transparency and accountability in commercial
opaque LLM APIs, thereby fostering greater trust between service providers and users. Our work
identifies a potential vulnerability, token count manipulation, and proposes a defensive framework,
ColIn, to address it. We stress that our position is entirely neutral: we are not suggesting, implying,
or accusing any current commercial providers of engaging in such practices. Instead, we view this
research as a proactive exploration of potential risks that could arise from information asymmetries
between providers and users. Our objective is to contribute constructively to the ecosystem by
identifying possible vulnerabilities early and proposing mitigations that help prevent the erosion of
trust.

Ultimately, we believe this work contributes positively to the Al ecosystem by introducing a mecha-
nism that balances the provider’s need to protect intellectual property with the user’s right to verifiable
billing. We therefore believe this research raises no significant ethical concerns beyond the general
considerations outlined in the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we have made our code and datasets publicly available
under an anonymous license. The complete implementation of the CoIn framework, along with the
scripts used for all experiments, can be found at the following anonymous repository:

https://anonymous.4open.science/r/LLM-Auditing-CoIn-20F0.
We provide extensive details of our experimental setup in the paper, specifically:

* Dataset Construction: The methodology for creating the evaluation and training datasets,
including various token inflation strategies, is detailed in Section @ Additional details,
such as data sources with their corresponding HuggingFace links, dataset construction
methods, and data-related experimental settings, are further discussed in Appendix [C] Due
to file size limitations, we provide partial data samples through an anonymous link; the
complete dataset and the trained models involved will be released after the paper is accepted.

* Model and Training: The overall framework design, the architecture of the matching
head, and its execution method are discussed in Section ] Hyperparameters for training
the matching heads and the verifier, as well as detailed model architecture descriptions, are
provided in Appendix D}

* Algorithms: The core algorithms for Merkle Tree construction, Merkle Proof verification,
and the complete multi-round CoIn workflow are formally described in Algorithms 2] 3] ]
in Appendix [F|

Although we used LLMs to draft some data preprocessing scripts, all code has been manually
reviewed and verified by the authors. Furthermore, algorithmic skeletons generated by LLMs were
based on original Python code provided by the authors, and subsequently refined with additional
details by hand. The final released codebase ensures complete reproducibility. We believe these
resources provide a solid foundation for other researchers to verify our results and build upon our
work.
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A LLM USAGE STATEMENT

In the development of this work, we employed several commercial LLMs at different stages to
enhance the quality and robustness of our research. The specific applications are as follows:

Adversarial Brainstorming. After establishing the main framework of CoIn, we interacted with
LLMs in an adversarial manner by prompting them to act as attackers and propose potential exploits
and attack strategies against our design. This iterative process played an important role in identifying
weaknesses in the framework and improving our defense mechanisms. For example, adversarial
brainstorming inspired the idea of a multi-round verification mechanism: in cases of verification
failure, the CoIn framework could require a COLA to provide the original text, which substantially
increases the risk of fraudulent behavior being exposed. At the same time, we carefully considered
and ultimately rejected certain potential directions, such as zero-knowledge-proof-based defenses,
primarily due to concerns about practicality and scope.

Partial Code Generation and Code-to-Algorithm Conversion. We employed LLM:s to assist with
technical implementation. For instance, LLM was used to draft Python scripts for data preprocessing.
For some of the more complex algorithms in the appendix, we provided original Python code as
guidance and prompted LLMs to generate high-level IXTEX algorithmic skeletons based on this code.
These outputs then served as blueprints, which were thoroughly reviewed, refined, and supplemented
by the authors to ensure correctness and methodological consistency.

Manuscript Polishing. We used LLMs as writing assistants to improve sentence structure, check
spelling errors, and enhance the clarity and readability of the manuscript.

All LLM-generated content (including conceptual challenges, code, and text) was critically reviewed
by the authors, who take full responsibility for the scientific integrity and accuracy of the paper. We
emphasize that LLMs are not authors and bear no responsibility for this work; all accountability
lies with the human authors. This study did not involve any human subjects or sensitive data, and
therefore raises no additional ethical concerns beyond those discussed in our Ethics Statement.

B LIMITATIONS

We acknowledge that CoIn, despite its merits, possesses certain limitations that warrant discussion.

* Mechanistic limitations: When the inflation rate is low, CoIn shows limited performance
in detecting malicious samples; its probabilistic nature also inevitably leads to a non-zero
misclassification rate. In cases where benign samples are misclassified as malicious, the
protocol requires COLA to disclose the original text for verification. Furthermore, the
auditing process of CoIn depends on COLA’s active cooperation, which may constrain its
applicability in practice.

» Uncovered attack surfaces: CoIn remains less effective against certain sophisticated attacks.
For instance, LLM-based rewriting or expansion attacks may bypass detection, but they
require substantial computational cost, far beyond the near-zero cost scenarios considered
in this work, and are thus better categorized as model substitution (Cai et al.|(2025)); |Chen!
et al.|(2024b), for which a separate line of research exists and could be combined with CoIn.
Moreover, cascade-based inference |Liao et al.|(2025) or speculative sampling (Chen et al.
(2023)) poses ambiguous cases of “inflation,” where it is difficult to distinguish fraud from
legitimate reasoning optimization, leaving this aspect unverified.

* Potential privacy risks: Although Section [6]shows that recovering original tokens from
embeddings Morris et al.|(2023) under CoIn’s setting is difficult, future advances or attacks
tailored specifically to our setting may still expose partial information. While such partial
leakage is unlikely to enable the construction of high-quality distillation datasets, it may
become a serious concern in sensitive domains such as healthcare.
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C DATASET CONSTRUCTION AND EXPERIMENTAL DETAILS

C.1 DATASET CONSTRUCTION DETAILS

We construct two verification datasets for Block-to-Answer and Tokens-to-Block verification, each
dataset includes two types of inflated samples. The simple version consists entirely of artificially
generated (inflated) tokens, while the hard version contains a mixture of real and inflated tokens. For
Tokens-to-Block verification, we randomly sample between 3.125% and 12.5% of tokens from each
block to create both training and test instances.

For both verification tasks, we generate 1,200,000 positive and negative samples respectively. The
training set is uniformly distributed across four datasets. Since the difficulty levels of the samples
vary, we adjust the composition using an adaptive inflation strategy (applied in Block-to-Answer) to
ensure balanced learning.

For training the DeepSets model, we additionally sample 1,000 examples. To preserve generalization
capability, the data used for training this model does not overlap with any samples seen by the
matching heads.

C.2 EXPERIMENTAL DETAILS

All evaluation results, unless stated otherwise, are reported on 1,000 examples. This applies to
Block-to-Answer, Tokens-to-Block, and the test sets used within the CoIn framework. Each numeric
result is computed over a minimum of 1,000 samples to ensure statistical significance. Please refer to
the Algorithm [I] for our CoIn workflow test set construction process.

Algorithm 1 Streamlined Generation of Inflated Reasoning Sequences

Require: Original dataset D4, inflation ratios KC, strategies Sj;,; with weights W, tokenizer
T, embedder &, anchor source STcanchor, segment length range [Ly,in, Limaz], insertion mode
M., and optional block range [Byin, Bmaz] if using block mode.

Ensure: Inflated dataset D;y, f14ted

1: Initialize Djy, frateq < 0

2: Build FAISS indexes for RAG-based strategies

3: for each data point item; = (P;, R;, A;) in Doyyiq do
4: Torig «— T(Rz),

if T5,,.;4 is empty then continue

end if

Tunchor < SelectAnchor(item;, STcanchor)

Niaz < [[Torig| - max(K)]

9: Tpoot < CollectTokens(Nyqz, Tanchor, Siist, Ws)

10: for each k € K do

@R

11: N HTom‘g|'l€J

12: Ty, < Subsample(Tpoor, Ni)

13: Tfinal — Insert(Tori97 Tkv Minsa [Bmznv Bmaz])
14 Add T~Y(Tfinat) t0 Din fiatea With metadata
15: end for

16: end for

17: return Dy, fiated

C.3 TOKEN INJECTION STRATEGY FOR EVALUATION DATASET

To further clarify our dataset construction, we describe the token injection process used in generating
evaluation samples. For each original reasoning sequence, we apply the following procedure:

* Compute required malicious tokens. The number of injected tokens is determined by a
predefined inflation rate, ranging from 10% to 300% of the original reasoning length.

» Sample malicious tokens. Depending on the chosen inflation method, we collect sufficient
malicious tokens. For continuous text segments (e.g., Ada. Inflation 4, sampled from
Wikipedia), we ensure that each sampled document is between 256-512 tokens in length.
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* Partition into malicious blocks. The malicious tokens are grouped into blocks of length
between 32—-256 tokens.

* Random insertion. Each malicious block is randomly inserted into the original reasoning
content, leading to stochastic placement across different reasoning positions.

* Final block partition. After injection, the reasoning content (now containing malicious
blocks) is split into fixed-size blocks according to the block size 5.

This injection strategy creates more challenging and realistic evaluation cases. Because the placement
of malicious blocks is random, some reasoning blocks may contain no malicious content, while others
contain only 10-20% malicious tokens. Such variability increases the difficulty of detection and
ensures robustness of the evaluation.

C.4 SOURCE OF DATASET

To evaluate CoIn’s performance across different domains, we constructed training and test sets
based on five datasets distilled from DeepSeek-R1|Guo et al.[(2025)), including Medical (Chen et al.
(2024aﬂ Code [Team| (2025)); |[Face (2025ﬂ Math |[Face (2025 Generaﬂ and Out-of-Domain data
Math (OOD) Team! (2025); [Face| (2025 ﬂ Our final training set is a mixture of these five datasets.

D TRAINING AND MODEL DETAILS

D.1 HYPERPARAMETERS

For the matching heads used in Tokens-to-Block verification and Block-to-Answer verification, we
set the learning rate to 2 x 1075, the batch size to 128, and train for 3 epochs. We employ the Adam
optimizer and use the focal loss function. The hidden dimension of the model follows that of the
embedding model, set to 384.

For the DeepSets model in the verifier, we use a batch size of 128, a hidden dimension of 256, and
train for 5 epochs. We adopt the Adam optimizer with a learning rate of 1 x 10~ and use the binary
cross-entropy (BCE) loss. All experiments are conducted with a fixed random seed of 42.

D.2 TRAINING OF MATCHING HEADS

As described in the main text, MH_tb and MH_ba are two lightweight neural matching heads that take
as input a pair of embeddings and output a score between 0 and 1, indicating their semantic relevance.
Internally, these modules extract interaction features and feed them into two-layer feed-forward
networks. Below we detail how we construct diverse training pairs for both modules.

Block-to-Answer Matching (MH_ba).

* Benign samples: Extract continuous segments from the original reasoning blocks.
* Malicious samples: Cover all inflation types discussed in the paper:
1. Naive Inflation: Tokens randomly sampled from the vocabulary.
2. Adaptive Inflation 1: Embed the prompt, reasoning, and answer, then inject semantically
similar tokens based on cosine similarity.
3. Adaptive Inflation 2: Tokens or phrases randomly sampled from the prompt/reason-
ing/answer and re-injected into the reasoning.
4. Adaptive Inflation 3: For a given sample, find the most similar sample (via embedding)
in the dataset and inject its reasoning into the current one.
5. Adaptive Inflation 4: Similar to Inflation 1, but retrieves full paragraphs from an
external corpus (e.g., Wikipedia) based on embedding similarity.

3https ://huggingface.co/datasets/FreedomIntelligence/Medical-R1-Distill-Data
*https://huggingface.co/datasets/open-r1/0penThoughts-114k-Code_decontaminated
Shttps://huggingface.co/datasets/open-ri/0penR1-Math-220k

(’https ://huggingface.co/datasets/glaiveai/reasoning-v1-20m
"https://huggingface.co/datasets/open-ri/OpenThoughts-114k-math
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To ensure difficulty, the ratio of real reasoning to injected tokens is uniformly controlled in the
[20%, 80%)] range. We also construct fully malicious samples where all blocks are from inflation
sources, maintaining a 1:1 ratio between partial and full malicious samples.

Tokens-to-Block Matching (MH_tb). This module is trained using the same dataset as block-
to-answer. Instead of matching entire blocks, we randomly select 5-20 tokens from the original
text, average their embeddings, and use this token-group embedding as input alongside the block
embedding.

Dataset Size and Balance. For both tasks, we balance benign and malicious samples, with 1.2
million samples per class.

Due to space limitations, these details could not be included in the main text. They are now provided
in Appendix alongside code in the supplementary material.

E COMPUTATIONAL RESOURCES

All experiments were conducted on a high-performance workstation running Ubuntu 20.04.6 LTS.
The system is equipped with a dual-socket AMD EPYC 7763 processor, providing a total of 128
physical cores and 256 threads. For GPU acceleration, we utilized an NVIDIA RTX A6000 Ada
graphics card.
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F DETAILS OF CoIn

F.1 MERKLE TREE CONSTRUCTION

Algorithm [3] details the process COLA uses to construct the Merkle Hash Tree from a reasoning
sequence R. This corresponds to the "Token Fingerprint Generation" and "Fingerprint Hash Tree
Construction" paragraphs.

F.2 MERKLE PROOF VERIFICATION

Algorithm [2] describes how the CoIn auditor verifies the integrity of a token using its fingerprint and
the Merkle path provided by COLA. This corresponds to the "Merkle Proof" paragraph.

Algorithm 2 Merkle Proof Verification

Require: Committed Merkle Root M R ommitteq (from COLA).
Require: Token fingerprint fps,key Of the audited token (from COLA).
Require: Merkle Path P = [(h1,pos1), (he,posa), ..., (hq4,posq)] (from COLA), where hy, is a
sibling hash and posy, € {‘left’, ‘right’} indicates hy,’s position relative to the path node.
Require: Cryptographic hash function H ().
Ensure: Boolean: true if verification succeeds, false otherwise.
1: current_computed_hash <+ H(fpioken) > Hash the provided token fingerprint

2: for each pair (sibling_hash, position) € P do
3: if position = ‘left’ then
4: current_computed_hash < H (sibling_hash || current_computed_hash)
5: else if position = ‘right’ then
6: current_computed_hash < H (current_computed_hash || sibling_hash)
7: else
8: return false > Error: Invalid position in Merkle Path
9: end if
10: end for

11: M Rrecomputed < current_computed_hash
12: if MRrecomputed = MRcommitted then

13: return true > Verification successful: token integrity confirmed
14: else

15: return false > Verification failed: mismatch indicates potential issue
16: end if

Notes on Algorithms:

* Padding (Algorithm [3): The text states, "The number of leaf nodes is padded to the nearest
power of two." Algorithm [3]implements this by duplicating the hash of the last actual leaf
node if leaves exist. If the initial set of tokens (and thus fingerprints) is empty (N = 0), it
assumes padding to N2 = 1 using a hash of a predefined value (e.g., an empty string).
The exact nature of this padding for an empty set should be consistently defined between
COLA and the auditor.

* Merkle Path Representation (Algorithm 2): The Merkle Path P is assumed to be a list of
(hash, position) tuples. The ‘position‘ indicates if the sibling hash is to the ’left’ or 'right’ of
the node on the direct path from the audited leaf to the root.

* Concatenation for Hashing: The order of concatenation (e.g., H (le ftChild || rightChild)
vs. H(rightChild || le ftChild)) must be consistent throughout construction and verifica-
tion. The algorithms assume a fixed order (left child first).
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Algorithm 3 Merkle Tree Construction by COLA

Require: Reasoning tokens R; number of blocks «; embedding function Embd(-); cryptographic

hash function H(-).

Ensure: Merkle Root M R.

A A S e

— e e

16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

31:
32:
33:
34
35:
36:
37:
38:
39:
40:
41:
42:
43:
44
45:
46:
47:

// Phase 1: Token Fingerprint Generation and Leaf Node Creation

: Blocks <« Partition(R, o) > Partition R into By, ..., B,
. Fingerprints < () > Initialize as an empty list
: for each block B; € Blocks do
€block; < Embd(B;) > Compute block embedding
for each token r; € B; do
€token; < Embd(r;) > Compute token embedding
IPi = €vlock; || €token; > Form token fingerprint
Add fp; to Fingerprints
end for
. end for
: LeafNodes + () > Initialize as an empty list
. for each fingerprint fp € Fingerprints do
leaf < H(fp) > Hash fingerprint to create leaf node
Add leaf to Leaf Nodes
: end for

// Phase 2: Padding Leaf Nodes
N «+ length(Leaf Nodes)
Let Npo2 be the smallest power of two such that Npg2 > N.
if N < Npou2 then
if N =0 and N,,,2 > 0 then >e.g,N=0 = Npu2=1
padding_hash < H("") > Hash of empty string or other predefined padding value
for k < 1 to Ny do
Add padding_hash to Lea f Nodes
end for
else if V > 0 then
last_leaf_hash < LeafNodes[N — 1] > Get hash of the last actual leaf
for £ < 1to Npou2 — N do
Add last_leaf_hash to Leaf Nodes > Pad by duplicating the last leaf’s hash
end for
end if
end if
// Phase 3: Building the Tree Recursively
CurrentLevel Nodes < Leaf Nodes
while length(Current Level Nodes) > 1 do
NextLevel Nodes < )
for k < 0 to (Iength(CurrentLevel Nodes)/2) — 1 do
leftChild < CurrentLevel Nodes|2k]
rightChild < CurrentLevel Nodes[2k + 1]
parentHash < H(le ftChild || rightChild)
Add parentHash to NextLevel Nodes
end for
CurrentLevel Nodes < NextLevel Nodes
end while
if length(CurrentLevel Nodes) = 1 then
MR < CurrentLevel N odes|0] > The single remaining node is the Merkle Root
else > Handles N = 0 and N2 = 0, resulting in an empty C'urrent Level N odes
MR+ H("") > Define Merkle Root for an empty set of tokens, e.g., hash of empty string
end if
return M R

F.3 WORKFLOW OF Coln

Algorithm []illustrates the complete verification procedure of CoIn.
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Algorithm 4 Multi-Round Verification in CoIn

Require: COLA Response (containing reasoning blocks Biot and final answer A)
Require: Fraction « of blocks for initial verification (e.g., 0.1)
Require: Pre-trained matching heads MH (-, ), MHpa(+, -)
Require: Embedding function Embd(-)
Require: Verification threshold 7
Ensure: Audit decision: "Successful" or "COLA Flagged for Inflation"
// Initialization
¢ Bunverified <— Biotal
: Bveriﬁed — @
. audit_successful < false
. all_blocks_audited < false
// Initial round of verification

W=

5: Select an initial set of blocks Beurrent_round S Bunverifiea Of size [ - | Biota|]

6: if Beurrent_round is empty and |Bioa| > 0 then

7: Beurrent_round <— one randomly selected block from Bunyerified

8: end if

9: while not audit_successful and not all_blocks_audited do

10: if Beurrent_round 1S empty then
11: all_blocks_audited <+ true > No more blocks to check
12: goto FinalDecision
13: end if

14: round_scores < || > Initialize as an empty list/array
15: for each block B; € Beurrent_round 0

16: Randomly select a subset of reasoning tokens {r;}*_; from B; (e.g., 10
17: Fokens < AVG({Embd(r;)}%_,) > Average embedding of selected tokens
18: Eblock < Embd(Bj)
19: Eianswer < Embd(A)
20: Stv < MHip ( Eiokens, Eblock) > Tokens-to-Block score
21: Sta < MHpa (Eblock, Eanswer) > Block-to-Answer score
22: Add pair (Stb, Spa) to round_scores
23: CoIn performs Merkle Proofs on selected tokens in B; (verification of token integrity)
24: end for
25: Bveriﬁed «— Bveriﬁed U Bcurrent_round
26: Bunveriﬁed — Bunveriﬁed \ Bcurrenlimund
27: verifier_decision <— VERIFIER (round_scores, T) > Verifier can be rule-based or learning-based
28: if verifier_decision = Accept then
29: audit_successful < true
30: else
31: if Bunverifiea 1S empty then
32: all_blocks_audited < true
33: else
34: Select one new random block Bhex from Bunverified
35: Beurrent_round $— { Brext } > Next round verifies this single block
36: end if
37: end if
38: end while

FinalDecision:

39: if audit_successful then
40: return "Audit Successful"
41: else
42: return "COLA Flagged for Token Inflation" > User may request COLA to justify charges
43: end if
44: function VERIFIER(scores_list, T) > Example: Rule-based verifier
45: if scores_list is empty then return "Reject”
46: end if
47: avg_S_th < average of all Sy, in scores_list
48: avg_S_ba + average of all Sy, in scores_list
49: if avg_ S tb > 7 and avg_S_ba > 7 then
50: return "Accept"
51: else
52: return "Reject”
53: end if > Alternatively, a learning-based verifier (e.g., DeepSets) could be used here.

54: end function
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G DETECTION PERFORMANCE OF CoIn

We show the comparison of the two verifiers and the impact of 7 under different block sizes, as shown

in Figure [7[R[OIT0]
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Figure 7: Performance of CoIn across different inflation methods and verifiers (Block Size = 512).
The red lines and the blue lines represent the DSR of rule-based verifier and learning-based verifier,
respectively. For a fair comparison, we set the threshold 7 = 0.5 for learning-based verifier, and
7 = 0.6 for rule-based verifier.
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Figure 9: Performance of CoIn across different inflation methods and verifiers (Block Size = 1024).
The red lines and the blue lines represent the DSR of rule-based verifier and learning-based verifier,
respectively. For a fair comparison, we set the threshold 7 = 0.5 for learning-based verifier, and

7=0.6

for rule-based verifier.
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H PROMPTS USED IN DISCUSSION SECTION

Prompt[T1]is used to explore the question “Can the original text be recovered from the tokens and
embeddings exposed by COLA?”, while Prompt[I12]is used to explore “How difficult is the dataset
we constructed?”.

Prompt for Reconstructing Hidden Reasoning Passage

\.

Reconstructing Hidden Reasoning Prompt

You are an expert in natural language reasoning and semantic retrieval.

Your task is to help recover a semantically meaningful and logically connected hidden
passage that bridges a <Question> and an <Answer>.

This passage has been lost, but we know it is semantically related to both the <Question> and
the <Answer>, and lies between them.

Given a — **<Question>**:
{question}

And the — **<Answer>**:
{answer}

We also know that some tokens from the original passage are still visible:
{sampled_token_text}

And we retrieved related documents from Wikipedia using the embedding of the original
passage:
{retrieved_rag_docs}

Now, please help recover the most likely content of the hidden passage.
Return your answer strictly in the following JSON format:

\\recovered_json {
"recovered_text": "<your reconstructed passage here>"

b

J

Figure 11: Prompt for Recovering a Hidden Reasoning Passage Using Question, Answer, Token
Clues and Retrieved Wikipedia Documents.
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Prompt for Evaluating Reasoning Passage Relevance

Evaluating Reasoning Process Prompt
You are a logical reasoning analyst.

Given a final answer and a randomly selected text passage, your task is to assess whether the
text passage represents a reasoning process that leads to or supports the final answer.

The passage may or may not be relevant to the answer.

Your task is not to verify factual correctness, but to determine whether the passage
semantically or logically connects to the answer and explains or justifies it in any meaningful
way.

**Random Text Passage*+*:
{reason}

*%xFinal Answerxx:
{answer}

Please answer the following questions:
1. Is the text passage a plausible reasoning process that leads to the final answer?
2. Does it provide logical or semantic justification for the answer?

Respond in the following JSON format:

\\reasoning_assessment

{
"is_reasoning_process"”: true/false,
"justification”: "<your brief explanation of why the passage is or isn’t
a reasoning process for the answer>"
}
\ J

Figure 12: Prompt for Judging Whether a Block Supports or Explains a Final Answer.
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I CAN THE ORIGINAL TEXT BE RECOVERED FROM THE TOKENS AND
EMBEDDINGS EXPOSED BY COLA?

1.1 DIRECT RECONSTRUCTION FROM EMBEDDINGS

Objective. Our framework aims to protect the provider’s intellectual property by preventing large-
scale harvesting of reasoning traces for distillation or reverse-engineering. We do not target the
protection of isolated reasoning fragments, which are often trivially inferable from final answers or
API summaries and are thus not considered sensitive. The real risk arises only when many reasoning
steps are aggregated, enabling low-cost imitation of proprietary reasoning strategies.

Method. To assess direct reconstruction risk, we adopt the hypothesis—correction embedding
inversion approach Vec2Text [Morris et al.| (2023)) with the publicly released inversion_model
and corrector_model trained for OpenAl’s text-embedding-ada-002. We follow the default
configuration (50 update steps; sequence beam width = 4).

Findings. As shown in Table[5] partial recovery is possible only when the block size is small (< 64).
Consistent with prior observations [Morris et al.| (2023)), reconstruction accuracy degrades sharply
as length increases. In high-reasoning-load domains such as math and code, the reconstruction task
becomes especially difficult. At our framework’s minimum block size of 256, the attack completely
fails. Even when BLEU/F1 appear non-trivial, the recovered text typically exhibits severe semantic
drift, rendering it unsuitable for malicious distillation or dataset construction.

Block Size Code General Math Medical
BLEU TokenF1 | BLEU TokenFl1 | BLEU TokenF1 | BLEU Token F1
16 31.08 0.6913 87.70 0.9292 43.83 0.7467 73.88 0.8845
32 22.98 0.5433 57.80 0.7828 15.06 0.5123 48.12 0.7195
64 12.31 0.4437 32.44 0.6412 12.62 0.4256 31.88 0.6291
128 7.98 0.3206 14.34 0.4816 9.84 0.3441 16.82 0.4928
256 3.24 0.2603 4.37 0.3740 4.07 0.2617 5.73 0.3801
512 0.46 0.2048 0.68 0.2989 0.67 0.2016 0.78 0.3101

Table 6: Direct reconstruction from embeddings using Vec2Text Morris et al.| (2023) (50 update
steps; beam width 4). Recovery drops rapidly with length; at block size 256 (our minimum), attacks
effectively fail.

Example (Max Token Length = 64). Even with token-level overlap, the semantics are heavily
distorted:

Original:
formula OH2 = 9R2 - (a2 + b2 + c2). If R=4, then 9R2=9%16=144.
The sum of squares of the sides: a2 + b2 + c2. From earlier, a=BC=55, so

Predicted:

formula: OH(a2+b2+c2) = R(a2+b2+c2) = R(a2+b2+c2) = R(a2+b2+c2) ...

= R(a2+b2+c2) = R(a2+b2+c2) = R(a2+b2+c2) = 55.

If a square has sides, then R(a2+b2+c2) = 9. If a square has sides, then

This illustrates that despite moderate BLEU/F1, the reconstructed content diverges in meaning and
cannot serve as a basis for malicious distillation or dataset construction.

1.2 LM-BASED RECONSTRUCTION

During the verification process in CoIn, COLA leaks a certain number of block embeddings and
tokens within the blocks to CoIn. To quantify the impact of such leakage, we assume a malicious
CoIn leverages an RAG system to retrieve documents highly similar to the exposed embeddings and
tokens, then feeds all retrieved information into an LLM to reconstruct the original content. The
design and further details are provided in Appendix [H} We randomly selected 100 samples from a
mathematical dataset. We evaluated the similarity between the reconstructed blocks and the original
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Table 7: Similarity Between Blocks Reconstructed by CoIn and Real Blocks.

Block Size
256 512 1024

EmbedSim  0.65 0.66 0.75
BLEU 0.04 0.05 0.03
ROUGE-L 023 025 024
BERTScore 0.83 0.83 0.84

Metric

ones using embedding similarity, BLEU score |Papineni et al.| (2002), ROUGE-L |Lin| (2004) , and
BERTScore [Zhang et al|(2019). As shown in Table[/| we observe that a high BERTScore/EmbedSim
combined with low BLEU/ROUGE indicates that the LLM successfully preserves the core semantics,
while significantly differing from the real block in terms of surface expression and syntactic structure.

J DEFENDING AGAINST REPETITION-BASED TOKEN INFLATION ATTACKS

J.1 THREAT CHARACTERIZATION

Beyond inflation attacks that CoIn primarily targets, an important class of adversarial strategies
involves repetition-based manipulation. In such cases, a dishonest provider may artificially inflate
the number of tokens by (1) duplicating subsequences of the reasoning text, or (2) appending variants
of the original content generated through permutation or rewriting with small LLMs. These strategies
differ from simple fabrication in that they preserve surface plausibility, but nonetheless undermine
fair billing.

It is important to note that CoIn does not claim to defend against all advanced manipulations.
Achieving complete security is difficult, and—as is the case across many trustworthy Al domains such
as jailbreak defense, backdoor detection, and federated learning—robustness is typically achieved
through iterative adversarial refinement. The value of CoIn lies in providing a balanced foundation
that can be extended with additional defensive layers.

J.2 DETECTING DIRECT REPETITION

For the case of direct duplication, such as repeating hidden sequences or copying token fragments,
ColIn can be extended with subtree equivalence checks on Merkle tree substructures. During an audit,
the user may request all hash values at a specific level n of the Merkle tree. If repeated content exists,
identical hash values will appear at sibling positions. This is because identical hashes at sibling nodes
necessarily imply that the corresponding subtrees are structurally the same, which in turn means that
the underlying token sequences are repeated. Since the provider must still produce valid Merkle
proofs, these hash values necessarily correspond to real content; any attempt to falsify them would
invalidate the proof.

In addition, as described in the CoIn design, the user retains the right to request the original reasoning
text whenever suspicious billing arises. Once disclosed, repeated segments are trivially observable,
making deception practically infeasible.

J.3 ADDRESSING PERMUTED OR REWRITTEN VARIANTS

A more sophisticated attack involves appending permuted or rewritten versions of the original
output, possibly produced by a small auxiliary LLM. While such strategies fall outside CoIn’s initial
threat model, since they require non-trivial computation rather than near-zero-cost inflation, they
remain detectable through redundancy analysis.

To demonstrate this, we construct a controlled experiment:

* Let R, denote the original reasoning text.

* Generate an alternative sequence Ry, using a small LLM (Qwen/Qwen3-4B-Instruct-
2507 Yang et al.| (2025a)).

* Form the combined text Reombined = Fori ® Rum, Which yields 100% inflation.
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We then compute normalized n-gram redundancy rates. For a token sequence of length L and an
n-gram window size n, let D,, denote the number of distinct n-grams appearing more than once. The
redundancy rate is defined as:

Dy,

Redundancy(n) = I nil

Intuitively, this metric captures how much repetition exists in a sequence: the higher the value, the
more internally redundant the text is. Normalization by (L — n + 1) eliminates the influence of text
length, allowing fair comparisons across different samples.

J.4 EMPIRICAL RESULTS

The redundancy rates for different domains and n-gram sizes are summarized in Table[§] The results
show that Rombinea consistently exhibits much higher redundancy than either R or Rj,. Even
when using LLM rewriting, substantial overlaps remain between the original and fabricated text.
These redundancy patterns can be effectively detected by the Merkle subtree integrity check, thereby
enabling CoIn to flag such manipulations.

Source n-gramsize Ry Rim  Reombined

8 423 6.84 18.10

Code 16 1.00 4.40 17.23
32 0.29 348 16.60

8 0.24 047 9.32

General 16 0.04 0.14 8.95
32 0.01 0.07 8.72

8 521 7.28 12.18

Math 16 1.12 443 9.78
32 0.13 345 8.90

8 1.40 345 9.27

Medical 16 0.20 2.15 7.91
32 0.03 1.65 7.14

Table 8: Normalized redundancy rates of original text (Ro), LLM-generated variant (Ry,), and
combined text (Rcombined) across domains. Higher values indicate stronger repetition.

In summary, CoIn’s design can be naturally extended to resist repetition-based token inflation attacks:

* Direct duplication is detectable via subtree hash checks.
* Permuted or rewritten variants can be identified through redundancy analysis combined
with Merkle tree verification.

Although such strategies are outside the strict scope of CoIn’s original threat model, these results
illustrate the framework’s extensibility. As with other trustworthy Al systems, we expect robustness
to improve through iterative adversarial refinement and the integration of complementary defenses.
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